cc48d7eba83f799a8e397d45acbd74b6e254e40e
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199
200 /* The method to call, if any, when a new fork is attached. */
201 static linux_nat_new_fork_ftype *linux_nat_new_fork;
202
203 /* The method to call, if any, when a process is no longer
204 attached. */
205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
206
207 /* Hook to call prior to resuming a thread. */
208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
209
210 /* The method to call, if any, when the siginfo object needs to be
211 converted between the layout returned by ptrace, and the layout in
212 the architecture of the inferior. */
213 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
214 gdb_byte *,
215 int);
216
217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
218 Called by our to_xfer_partial. */
219 static target_xfer_partial_ftype *super_xfer_partial;
220
221 /* The saved to_close method, inherited from inf-ptrace.c.
222 Called by our to_close. */
223 static void (*super_close) (struct target_ops *);
224
225 static unsigned int debug_linux_nat;
226 static void
227 show_debug_linux_nat (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
231 value);
232 }
233
234 struct simple_pid_list
235 {
236 int pid;
237 int status;
238 struct simple_pid_list *next;
239 };
240 struct simple_pid_list *stopped_pids;
241
242 /* Whether target_thread_events is in effect. */
243 static int report_thread_events;
244
245 /* Async mode support. */
246
247 /* The read/write ends of the pipe registered as waitable file in the
248 event loop. */
249 static int linux_nat_event_pipe[2] = { -1, -1 };
250
251 /* True if we're currently in async mode. */
252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
253
254 /* Flush the event pipe. */
255
256 static void
257 async_file_flush (void)
258 {
259 int ret;
260 char buf;
261
262 do
263 {
264 ret = read (linux_nat_event_pipe[0], &buf, 1);
265 }
266 while (ret >= 0 || (ret == -1 && errno == EINTR));
267 }
268
269 /* Put something (anything, doesn't matter what, or how much) in event
270 pipe, so that the select/poll in the event-loop realizes we have
271 something to process. */
272
273 static void
274 async_file_mark (void)
275 {
276 int ret;
277
278 /* It doesn't really matter what the pipe contains, as long we end
279 up with something in it. Might as well flush the previous
280 left-overs. */
281 async_file_flush ();
282
283 do
284 {
285 ret = write (linux_nat_event_pipe[1], "+", 1);
286 }
287 while (ret == -1 && errno == EINTR);
288
289 /* Ignore EAGAIN. If the pipe is full, the event loop will already
290 be awakened anyway. */
291 }
292
293 static int kill_lwp (int lwpid, int signo);
294
295 static int stop_callback (struct lwp_info *lp, void *data);
296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
297
298 static void block_child_signals (sigset_t *prev_mask);
299 static void restore_child_signals_mask (sigset_t *prev_mask);
300
301 struct lwp_info;
302 static struct lwp_info *add_lwp (ptid_t ptid);
303 static void purge_lwp_list (int pid);
304 static void delete_lwp (ptid_t ptid);
305 static struct lwp_info *find_lwp_pid (ptid_t ptid);
306
307 static int lwp_status_pending_p (struct lwp_info *lp);
308
309 static int sigtrap_is_event (int status);
310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
311
312 static void save_stop_reason (struct lwp_info *lp);
313
314 \f
315 /* LWP accessors. */
316
317 /* See nat/linux-nat.h. */
318
319 ptid_t
320 ptid_of_lwp (struct lwp_info *lwp)
321 {
322 return lwp->ptid;
323 }
324
325 /* See nat/linux-nat.h. */
326
327 void
328 lwp_set_arch_private_info (struct lwp_info *lwp,
329 struct arch_lwp_info *info)
330 {
331 lwp->arch_private = info;
332 }
333
334 /* See nat/linux-nat.h. */
335
336 struct arch_lwp_info *
337 lwp_arch_private_info (struct lwp_info *lwp)
338 {
339 return lwp->arch_private;
340 }
341
342 /* See nat/linux-nat.h. */
343
344 int
345 lwp_is_stopped (struct lwp_info *lwp)
346 {
347 return lwp->stopped;
348 }
349
350 /* See nat/linux-nat.h. */
351
352 enum target_stop_reason
353 lwp_stop_reason (struct lwp_info *lwp)
354 {
355 return lwp->stop_reason;
356 }
357
358 /* See nat/linux-nat.h. */
359
360 int
361 lwp_is_stepping (struct lwp_info *lwp)
362 {
363 return lwp->step;
364 }
365
366 \f
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
373
374 new_pid->pid = pid;
375 new_pid->status = status;
376 new_pid->next = *listp;
377 *listp = new_pid;
378 }
379
380 static int
381 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
382 {
383 struct simple_pid_list **p;
384
385 for (p = listp; *p != NULL; p = &(*p)->next)
386 if ((*p)->pid == pid)
387 {
388 struct simple_pid_list *next = (*p)->next;
389
390 *statusp = (*p)->status;
391 xfree (*p);
392 *p = next;
393 return 1;
394 }
395 return 0;
396 }
397
398 /* Return the ptrace options that we want to try to enable. */
399
400 static int
401 linux_nat_ptrace_options (int attached)
402 {
403 int options = 0;
404
405 if (!attached)
406 options |= PTRACE_O_EXITKILL;
407
408 options |= (PTRACE_O_TRACESYSGOOD
409 | PTRACE_O_TRACEVFORKDONE
410 | PTRACE_O_TRACEVFORK
411 | PTRACE_O_TRACEFORK
412 | PTRACE_O_TRACEEXEC);
413
414 return options;
415 }
416
417 /* Initialize ptrace warnings and check for supported ptrace
418 features given PID.
419
420 ATTACHED should be nonzero iff we attached to the inferior. */
421
422 static void
423 linux_init_ptrace (pid_t pid, int attached)
424 {
425 int options = linux_nat_ptrace_options (attached);
426
427 linux_enable_event_reporting (pid, options);
428 linux_ptrace_init_warnings ();
429 }
430
431 static void
432 linux_child_post_attach (struct target_ops *self, int pid)
433 {
434 linux_init_ptrace (pid, 1);
435 }
436
437 static void
438 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
439 {
440 linux_init_ptrace (ptid_get_pid (ptid), 0);
441 }
442
443 /* Return the number of known LWPs in the tgid given by PID. */
444
445 static int
446 num_lwps (int pid)
447 {
448 int count = 0;
449 struct lwp_info *lp;
450
451 for (lp = lwp_list; lp; lp = lp->next)
452 if (ptid_get_pid (lp->ptid) == pid)
453 count++;
454
455 return count;
456 }
457
458 /* Call delete_lwp with prototype compatible for make_cleanup. */
459
460 static void
461 delete_lwp_cleanup (void *lp_voidp)
462 {
463 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
464
465 delete_lwp (lp->ptid);
466 }
467
468 /* Target hook for follow_fork. On entry inferior_ptid must be the
469 ptid of the followed inferior. At return, inferior_ptid will be
470 unchanged. */
471
472 static int
473 linux_child_follow_fork (struct target_ops *ops, int follow_child,
474 int detach_fork)
475 {
476 if (!follow_child)
477 {
478 struct lwp_info *child_lp = NULL;
479 int status = W_STOPCODE (0);
480 int has_vforked;
481 ptid_t parent_ptid, child_ptid;
482 int parent_pid, child_pid;
483
484 has_vforked = (inferior_thread ()->pending_follow.kind
485 == TARGET_WAITKIND_VFORKED);
486 parent_ptid = inferior_ptid;
487 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
488 parent_pid = ptid_get_lwp (parent_ptid);
489 child_pid = ptid_get_lwp (child_ptid);
490
491 /* We're already attached to the parent, by default. */
492 child_lp = add_lwp (child_ptid);
493 child_lp->stopped = 1;
494 child_lp->last_resume_kind = resume_stop;
495
496 /* Detach new forked process? */
497 if (detach_fork)
498 {
499 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
500 child_lp);
501
502 if (linux_nat_prepare_to_resume != NULL)
503 linux_nat_prepare_to_resume (child_lp);
504
505 /* When debugging an inferior in an architecture that supports
506 hardware single stepping on a kernel without commit
507 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
508 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
509 set if the parent process had them set.
510 To work around this, single step the child process
511 once before detaching to clear the flags. */
512
513 if (!gdbarch_software_single_step_p (target_thread_architecture
514 (child_lp->ptid)))
515 {
516 linux_disable_event_reporting (child_pid);
517 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
518 perror_with_name (_("Couldn't do single step"));
519 if (my_waitpid (child_pid, &status, 0) < 0)
520 perror_with_name (_("Couldn't wait vfork process"));
521 }
522
523 if (WIFSTOPPED (status))
524 {
525 int signo;
526
527 signo = WSTOPSIG (status);
528 if (signo != 0
529 && !signal_pass_state (gdb_signal_from_host (signo)))
530 signo = 0;
531 ptrace (PTRACE_DETACH, child_pid, 0, signo);
532 }
533
534 do_cleanups (old_chain);
535 }
536 else
537 {
538 scoped_restore save_inferior_ptid
539 = make_scoped_restore (&inferior_ptid);
540 inferior_ptid = child_ptid;
541
542 /* Let the thread_db layer learn about this new process. */
543 check_for_thread_db ();
544 }
545
546 if (has_vforked)
547 {
548 struct lwp_info *parent_lp;
549
550 parent_lp = find_lwp_pid (parent_ptid);
551 gdb_assert (linux_supports_tracefork () >= 0);
552
553 if (linux_supports_tracevforkdone ())
554 {
555 if (debug_linux_nat)
556 fprintf_unfiltered (gdb_stdlog,
557 "LCFF: waiting for VFORK_DONE on %d\n",
558 parent_pid);
559 parent_lp->stopped = 1;
560
561 /* We'll handle the VFORK_DONE event like any other
562 event, in target_wait. */
563 }
564 else
565 {
566 /* We can't insert breakpoints until the child has
567 finished with the shared memory region. We need to
568 wait until that happens. Ideal would be to just
569 call:
570 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
571 - waitpid (parent_pid, &status, __WALL);
572 However, most architectures can't handle a syscall
573 being traced on the way out if it wasn't traced on
574 the way in.
575
576 We might also think to loop, continuing the child
577 until it exits or gets a SIGTRAP. One problem is
578 that the child might call ptrace with PTRACE_TRACEME.
579
580 There's no simple and reliable way to figure out when
581 the vforked child will be done with its copy of the
582 shared memory. We could step it out of the syscall,
583 two instructions, let it go, and then single-step the
584 parent once. When we have hardware single-step, this
585 would work; with software single-step it could still
586 be made to work but we'd have to be able to insert
587 single-step breakpoints in the child, and we'd have
588 to insert -just- the single-step breakpoint in the
589 parent. Very awkward.
590
591 In the end, the best we can do is to make sure it
592 runs for a little while. Hopefully it will be out of
593 range of any breakpoints we reinsert. Usually this
594 is only the single-step breakpoint at vfork's return
595 point. */
596
597 if (debug_linux_nat)
598 fprintf_unfiltered (gdb_stdlog,
599 "LCFF: no VFORK_DONE "
600 "support, sleeping a bit\n");
601
602 usleep (10000);
603
604 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
605 and leave it pending. The next linux_nat_resume call
606 will notice a pending event, and bypasses actually
607 resuming the inferior. */
608 parent_lp->status = 0;
609 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
610 parent_lp->stopped = 1;
611
612 /* If we're in async mode, need to tell the event loop
613 there's something here to process. */
614 if (target_is_async_p ())
615 async_file_mark ();
616 }
617 }
618 }
619 else
620 {
621 struct lwp_info *child_lp;
622
623 child_lp = add_lwp (inferior_ptid);
624 child_lp->stopped = 1;
625 child_lp->last_resume_kind = resume_stop;
626
627 /* Let the thread_db layer learn about this new process. */
628 check_for_thread_db ();
629 }
630
631 return 0;
632 }
633
634 \f
635 static int
636 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
637 {
638 return !linux_supports_tracefork ();
639 }
640
641 static int
642 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
643 {
644 return 0;
645 }
646
647 static int
648 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
649 {
650 return !linux_supports_tracefork ();
651 }
652
653 static int
654 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
655 {
656 return 0;
657 }
658
659 static int
660 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
661 {
662 return !linux_supports_tracefork ();
663 }
664
665 static int
666 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
667 {
668 return 0;
669 }
670
671 static int
672 linux_child_set_syscall_catchpoint (struct target_ops *self,
673 int pid, int needed, int any_count,
674 int table_size, int *table)
675 {
676 if (!linux_supports_tracesysgood ())
677 return 1;
678
679 /* On GNU/Linux, we ignore the arguments. It means that we only
680 enable the syscall catchpoints, but do not disable them.
681
682 Also, we do not use the `table' information because we do not
683 filter system calls here. We let GDB do the logic for us. */
684 return 0;
685 }
686
687 /* List of known LWPs, keyed by LWP PID. This speeds up the common
688 case of mapping a PID returned from the kernel to our corresponding
689 lwp_info data structure. */
690 static htab_t lwp_lwpid_htab;
691
692 /* Calculate a hash from a lwp_info's LWP PID. */
693
694 static hashval_t
695 lwp_info_hash (const void *ap)
696 {
697 const struct lwp_info *lp = (struct lwp_info *) ap;
698 pid_t pid = ptid_get_lwp (lp->ptid);
699
700 return iterative_hash_object (pid, 0);
701 }
702
703 /* Equality function for the lwp_info hash table. Compares the LWP's
704 PID. */
705
706 static int
707 lwp_lwpid_htab_eq (const void *a, const void *b)
708 {
709 const struct lwp_info *entry = (const struct lwp_info *) a;
710 const struct lwp_info *element = (const struct lwp_info *) b;
711
712 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
713 }
714
715 /* Create the lwp_lwpid_htab hash table. */
716
717 static void
718 lwp_lwpid_htab_create (void)
719 {
720 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
721 }
722
723 /* Add LP to the hash table. */
724
725 static void
726 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
727 {
728 void **slot;
729
730 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
731 gdb_assert (slot != NULL && *slot == NULL);
732 *slot = lp;
733 }
734
735 /* Head of doubly-linked list of known LWPs. Sorted by reverse
736 creation order. This order is assumed in some cases. E.g.,
737 reaping status after killing alls lwps of a process: the leader LWP
738 must be reaped last. */
739 struct lwp_info *lwp_list;
740
741 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
742
743 static void
744 lwp_list_add (struct lwp_info *lp)
745 {
746 lp->next = lwp_list;
747 if (lwp_list != NULL)
748 lwp_list->prev = lp;
749 lwp_list = lp;
750 }
751
752 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
753 list. */
754
755 static void
756 lwp_list_remove (struct lwp_info *lp)
757 {
758 /* Remove from sorted-by-creation-order list. */
759 if (lp->next != NULL)
760 lp->next->prev = lp->prev;
761 if (lp->prev != NULL)
762 lp->prev->next = lp->next;
763 if (lp == lwp_list)
764 lwp_list = lp->next;
765 }
766
767 \f
768
769 /* Original signal mask. */
770 static sigset_t normal_mask;
771
772 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
773 _initialize_linux_nat. */
774 static sigset_t suspend_mask;
775
776 /* Signals to block to make that sigsuspend work. */
777 static sigset_t blocked_mask;
778
779 /* SIGCHLD action. */
780 struct sigaction sigchld_action;
781
782 /* Block child signals (SIGCHLD and linux threads signals), and store
783 the previous mask in PREV_MASK. */
784
785 static void
786 block_child_signals (sigset_t *prev_mask)
787 {
788 /* Make sure SIGCHLD is blocked. */
789 if (!sigismember (&blocked_mask, SIGCHLD))
790 sigaddset (&blocked_mask, SIGCHLD);
791
792 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
793 }
794
795 /* Restore child signals mask, previously returned by
796 block_child_signals. */
797
798 static void
799 restore_child_signals_mask (sigset_t *prev_mask)
800 {
801 sigprocmask (SIG_SETMASK, prev_mask, NULL);
802 }
803
804 /* Mask of signals to pass directly to the inferior. */
805 static sigset_t pass_mask;
806
807 /* Update signals to pass to the inferior. */
808 static void
809 linux_nat_pass_signals (struct target_ops *self,
810 int numsigs, unsigned char *pass_signals)
811 {
812 int signo;
813
814 sigemptyset (&pass_mask);
815
816 for (signo = 1; signo < NSIG; signo++)
817 {
818 int target_signo = gdb_signal_from_host (signo);
819 if (target_signo < numsigs && pass_signals[target_signo])
820 sigaddset (&pass_mask, signo);
821 }
822 }
823
824 \f
825
826 /* Prototypes for local functions. */
827 static int stop_wait_callback (struct lwp_info *lp, void *data);
828 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
829 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
830 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
831
832 \f
833
834 /* Destroy and free LP. */
835
836 static void
837 lwp_free (struct lwp_info *lp)
838 {
839 xfree (lp->arch_private);
840 xfree (lp);
841 }
842
843 /* Traversal function for purge_lwp_list. */
844
845 static int
846 lwp_lwpid_htab_remove_pid (void **slot, void *info)
847 {
848 struct lwp_info *lp = (struct lwp_info *) *slot;
849 int pid = *(int *) info;
850
851 if (ptid_get_pid (lp->ptid) == pid)
852 {
853 htab_clear_slot (lwp_lwpid_htab, slot);
854 lwp_list_remove (lp);
855 lwp_free (lp);
856 }
857
858 return 1;
859 }
860
861 /* Remove all LWPs belong to PID from the lwp list. */
862
863 static void
864 purge_lwp_list (int pid)
865 {
866 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
867 }
868
869 /* Add the LWP specified by PTID to the list. PTID is the first LWP
870 in the process. Return a pointer to the structure describing the
871 new LWP.
872
873 This differs from add_lwp in that we don't let the arch specific
874 bits know about this new thread. Current clients of this callback
875 take the opportunity to install watchpoints in the new thread, and
876 we shouldn't do that for the first thread. If we're spawning a
877 child ("run"), the thread executes the shell wrapper first, and we
878 shouldn't touch it until it execs the program we want to debug.
879 For "attach", it'd be okay to call the callback, but it's not
880 necessary, because watchpoints can't yet have been inserted into
881 the inferior. */
882
883 static struct lwp_info *
884 add_initial_lwp (ptid_t ptid)
885 {
886 struct lwp_info *lp;
887
888 gdb_assert (ptid_lwp_p (ptid));
889
890 lp = XNEW (struct lwp_info);
891
892 memset (lp, 0, sizeof (struct lwp_info));
893
894 lp->last_resume_kind = resume_continue;
895 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
896
897 lp->ptid = ptid;
898 lp->core = -1;
899
900 /* Add to sorted-by-reverse-creation-order list. */
901 lwp_list_add (lp);
902
903 /* Add to keyed-by-pid htab. */
904 lwp_lwpid_htab_add_lwp (lp);
905
906 return lp;
907 }
908
909 /* Add the LWP specified by PID to the list. Return a pointer to the
910 structure describing the new LWP. The LWP should already be
911 stopped. */
912
913 static struct lwp_info *
914 add_lwp (ptid_t ptid)
915 {
916 struct lwp_info *lp;
917
918 lp = add_initial_lwp (ptid);
919
920 /* Let the arch specific bits know about this new thread. Current
921 clients of this callback take the opportunity to install
922 watchpoints in the new thread. We don't do this for the first
923 thread though. See add_initial_lwp. */
924 if (linux_nat_new_thread != NULL)
925 linux_nat_new_thread (lp);
926
927 return lp;
928 }
929
930 /* Remove the LWP specified by PID from the list. */
931
932 static void
933 delete_lwp (ptid_t ptid)
934 {
935 struct lwp_info *lp;
936 void **slot;
937 struct lwp_info dummy;
938
939 dummy.ptid = ptid;
940 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
941 if (slot == NULL)
942 return;
943
944 lp = *(struct lwp_info **) slot;
945 gdb_assert (lp != NULL);
946
947 htab_clear_slot (lwp_lwpid_htab, slot);
948
949 /* Remove from sorted-by-creation-order list. */
950 lwp_list_remove (lp);
951
952 /* Release. */
953 lwp_free (lp);
954 }
955
956 /* Return a pointer to the structure describing the LWP corresponding
957 to PID. If no corresponding LWP could be found, return NULL. */
958
959 static struct lwp_info *
960 find_lwp_pid (ptid_t ptid)
961 {
962 struct lwp_info *lp;
963 int lwp;
964 struct lwp_info dummy;
965
966 if (ptid_lwp_p (ptid))
967 lwp = ptid_get_lwp (ptid);
968 else
969 lwp = ptid_get_pid (ptid);
970
971 dummy.ptid = ptid_build (0, lwp, 0);
972 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
973 return lp;
974 }
975
976 /* See nat/linux-nat.h. */
977
978 struct lwp_info *
979 iterate_over_lwps (ptid_t filter,
980 iterate_over_lwps_ftype callback,
981 void *data)
982 {
983 struct lwp_info *lp, *lpnext;
984
985 for (lp = lwp_list; lp; lp = lpnext)
986 {
987 lpnext = lp->next;
988
989 if (ptid_match (lp->ptid, filter))
990 {
991 if ((*callback) (lp, data) != 0)
992 return lp;
993 }
994 }
995
996 return NULL;
997 }
998
999 /* Update our internal state when changing from one checkpoint to
1000 another indicated by NEW_PTID. We can only switch single-threaded
1001 applications, so we only create one new LWP, and the previous list
1002 is discarded. */
1003
1004 void
1005 linux_nat_switch_fork (ptid_t new_ptid)
1006 {
1007 struct lwp_info *lp;
1008
1009 purge_lwp_list (ptid_get_pid (inferior_ptid));
1010
1011 lp = add_lwp (new_ptid);
1012 lp->stopped = 1;
1013
1014 /* This changes the thread's ptid while preserving the gdb thread
1015 num. Also changes the inferior pid, while preserving the
1016 inferior num. */
1017 thread_change_ptid (inferior_ptid, new_ptid);
1018
1019 /* We've just told GDB core that the thread changed target id, but,
1020 in fact, it really is a different thread, with different register
1021 contents. */
1022 registers_changed ();
1023 }
1024
1025 /* Handle the exit of a single thread LP. */
1026
1027 static void
1028 exit_lwp (struct lwp_info *lp)
1029 {
1030 struct thread_info *th = find_thread_ptid (lp->ptid);
1031
1032 if (th)
1033 {
1034 if (print_thread_events)
1035 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1036
1037 delete_thread (lp->ptid);
1038 }
1039
1040 delete_lwp (lp->ptid);
1041 }
1042
1043 /* Wait for the LWP specified by LP, which we have just attached to.
1044 Returns a wait status for that LWP, to cache. */
1045
1046 static int
1047 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1048 {
1049 pid_t new_pid, pid = ptid_get_lwp (ptid);
1050 int status;
1051
1052 if (linux_proc_pid_is_stopped (pid))
1053 {
1054 if (debug_linux_nat)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "LNPAW: Attaching to a stopped process\n");
1057
1058 /* The process is definitely stopped. It is in a job control
1059 stop, unless the kernel predates the TASK_STOPPED /
1060 TASK_TRACED distinction, in which case it might be in a
1061 ptrace stop. Make sure it is in a ptrace stop; from there we
1062 can kill it, signal it, et cetera.
1063
1064 First make sure there is a pending SIGSTOP. Since we are
1065 already attached, the process can not transition from stopped
1066 to running without a PTRACE_CONT; so we know this signal will
1067 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1068 probably already in the queue (unless this kernel is old
1069 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1070 is not an RT signal, it can only be queued once. */
1071 kill_lwp (pid, SIGSTOP);
1072
1073 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1074 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1075 ptrace (PTRACE_CONT, pid, 0, 0);
1076 }
1077
1078 /* Make sure the initial process is stopped. The user-level threads
1079 layer might want to poke around in the inferior, and that won't
1080 work if things haven't stabilized yet. */
1081 new_pid = my_waitpid (pid, &status, __WALL);
1082 gdb_assert (pid == new_pid);
1083
1084 if (!WIFSTOPPED (status))
1085 {
1086 /* The pid we tried to attach has apparently just exited. */
1087 if (debug_linux_nat)
1088 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1089 pid, status_to_str (status));
1090 return status;
1091 }
1092
1093 if (WSTOPSIG (status) != SIGSTOP)
1094 {
1095 *signalled = 1;
1096 if (debug_linux_nat)
1097 fprintf_unfiltered (gdb_stdlog,
1098 "LNPAW: Received %s after attaching\n",
1099 status_to_str (status));
1100 }
1101
1102 return status;
1103 }
1104
1105 static void
1106 linux_nat_create_inferior (struct target_ops *ops,
1107 const char *exec_file, const std::string &allargs,
1108 char **env, int from_tty)
1109 {
1110 struct cleanup *restore_personality
1111 = maybe_disable_address_space_randomization (disable_randomization);
1112
1113 /* The fork_child mechanism is synchronous and calls target_wait, so
1114 we have to mask the async mode. */
1115
1116 /* Make sure we report all signals during startup. */
1117 linux_nat_pass_signals (ops, 0, NULL);
1118
1119 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1120
1121 do_cleanups (restore_personality);
1122 }
1123
1124 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1125 already attached. Returns true if a new LWP is found, false
1126 otherwise. */
1127
1128 static int
1129 attach_proc_task_lwp_callback (ptid_t ptid)
1130 {
1131 struct lwp_info *lp;
1132
1133 /* Ignore LWPs we're already attached to. */
1134 lp = find_lwp_pid (ptid);
1135 if (lp == NULL)
1136 {
1137 int lwpid = ptid_get_lwp (ptid);
1138
1139 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1140 {
1141 int err = errno;
1142
1143 /* Be quiet if we simply raced with the thread exiting.
1144 EPERM is returned if the thread's task still exists, and
1145 is marked as exited or zombie, as well as other
1146 conditions, so in that case, confirm the status in
1147 /proc/PID/status. */
1148 if (err == ESRCH
1149 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1150 {
1151 if (debug_linux_nat)
1152 {
1153 fprintf_unfiltered (gdb_stdlog,
1154 "Cannot attach to lwp %d: "
1155 "thread is gone (%d: %s)\n",
1156 lwpid, err, safe_strerror (err));
1157 }
1158 }
1159 else
1160 {
1161 warning (_("Cannot attach to lwp %d: %s"),
1162 lwpid,
1163 linux_ptrace_attach_fail_reason_string (ptid,
1164 err));
1165 }
1166 }
1167 else
1168 {
1169 if (debug_linux_nat)
1170 fprintf_unfiltered (gdb_stdlog,
1171 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1172 target_pid_to_str (ptid));
1173
1174 lp = add_lwp (ptid);
1175
1176 /* The next time we wait for this LWP we'll see a SIGSTOP as
1177 PTRACE_ATTACH brings it to a halt. */
1178 lp->signalled = 1;
1179
1180 /* We need to wait for a stop before being able to make the
1181 next ptrace call on this LWP. */
1182 lp->must_set_ptrace_flags = 1;
1183
1184 /* So that wait collects the SIGSTOP. */
1185 lp->resumed = 1;
1186
1187 /* Also add the LWP to gdb's thread list, in case a
1188 matching libthread_db is not found (or the process uses
1189 raw clone). */
1190 add_thread (lp->ptid);
1191 set_running (lp->ptid, 1);
1192 set_executing (lp->ptid, 1);
1193 }
1194
1195 return 1;
1196 }
1197 return 0;
1198 }
1199
1200 static void
1201 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1202 {
1203 struct lwp_info *lp;
1204 int status;
1205 ptid_t ptid;
1206
1207 /* Make sure we report all signals during attach. */
1208 linux_nat_pass_signals (ops, 0, NULL);
1209
1210 TRY
1211 {
1212 linux_ops->to_attach (ops, args, from_tty);
1213 }
1214 CATCH (ex, RETURN_MASK_ERROR)
1215 {
1216 pid_t pid = parse_pid_to_attach (args);
1217 struct buffer buffer;
1218 char *message, *buffer_s;
1219
1220 message = xstrdup (ex.message);
1221 make_cleanup (xfree, message);
1222
1223 buffer_init (&buffer);
1224 linux_ptrace_attach_fail_reason (pid, &buffer);
1225
1226 buffer_grow_str0 (&buffer, "");
1227 buffer_s = buffer_finish (&buffer);
1228 make_cleanup (xfree, buffer_s);
1229
1230 if (*buffer_s != '\0')
1231 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1232 else
1233 throw_error (ex.error, "%s", message);
1234 }
1235 END_CATCH
1236
1237 /* The ptrace base target adds the main thread with (pid,0,0)
1238 format. Decorate it with lwp info. */
1239 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1240 ptid_get_pid (inferior_ptid),
1241 0);
1242 thread_change_ptid (inferior_ptid, ptid);
1243
1244 /* Add the initial process as the first LWP to the list. */
1245 lp = add_initial_lwp (ptid);
1246
1247 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1248 if (!WIFSTOPPED (status))
1249 {
1250 if (WIFEXITED (status))
1251 {
1252 int exit_code = WEXITSTATUS (status);
1253
1254 target_terminal::ours ();
1255 target_mourn_inferior (inferior_ptid);
1256 if (exit_code == 0)
1257 error (_("Unable to attach: program exited normally."));
1258 else
1259 error (_("Unable to attach: program exited with code %d."),
1260 exit_code);
1261 }
1262 else if (WIFSIGNALED (status))
1263 {
1264 enum gdb_signal signo;
1265
1266 target_terminal::ours ();
1267 target_mourn_inferior (inferior_ptid);
1268
1269 signo = gdb_signal_from_host (WTERMSIG (status));
1270 error (_("Unable to attach: program terminated with signal "
1271 "%s, %s."),
1272 gdb_signal_to_name (signo),
1273 gdb_signal_to_string (signo));
1274 }
1275
1276 internal_error (__FILE__, __LINE__,
1277 _("unexpected status %d for PID %ld"),
1278 status, (long) ptid_get_lwp (ptid));
1279 }
1280
1281 lp->stopped = 1;
1282
1283 /* Save the wait status to report later. */
1284 lp->resumed = 1;
1285 if (debug_linux_nat)
1286 fprintf_unfiltered (gdb_stdlog,
1287 "LNA: waitpid %ld, saving status %s\n",
1288 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1289
1290 lp->status = status;
1291
1292 /* We must attach to every LWP. If /proc is mounted, use that to
1293 find them now. The inferior may be using raw clone instead of
1294 using pthreads. But even if it is using pthreads, thread_db
1295 walks structures in the inferior's address space to find the list
1296 of threads/LWPs, and those structures may well be corrupted.
1297 Note that once thread_db is loaded, we'll still use it to list
1298 threads and associate pthread info with each LWP. */
1299 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1300 attach_proc_task_lwp_callback);
1301
1302 if (target_can_async_p ())
1303 target_async (1);
1304 }
1305
1306 /* Get pending signal of THREAD as a host signal number, for detaching
1307 purposes. This is the signal the thread last stopped for, which we
1308 need to deliver to the thread when detaching, otherwise, it'd be
1309 suppressed/lost. */
1310
1311 static int
1312 get_detach_signal (struct lwp_info *lp)
1313 {
1314 enum gdb_signal signo = GDB_SIGNAL_0;
1315
1316 /* If we paused threads momentarily, we may have stored pending
1317 events in lp->status or lp->waitstatus (see stop_wait_callback),
1318 and GDB core hasn't seen any signal for those threads.
1319 Otherwise, the last signal reported to the core is found in the
1320 thread object's stop_signal.
1321
1322 There's a corner case that isn't handled here at present. Only
1323 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1324 stop_signal make sense as a real signal to pass to the inferior.
1325 Some catchpoint related events, like
1326 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1327 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1328 those traps are debug API (ptrace in our case) related and
1329 induced; the inferior wouldn't see them if it wasn't being
1330 traced. Hence, we should never pass them to the inferior, even
1331 when set to pass state. Since this corner case isn't handled by
1332 infrun.c when proceeding with a signal, for consistency, neither
1333 do we handle it here (or elsewhere in the file we check for
1334 signal pass state). Normally SIGTRAP isn't set to pass state, so
1335 this is really a corner case. */
1336
1337 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1338 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1339 else if (lp->status)
1340 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1341 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1342 {
1343 struct thread_info *tp = find_thread_ptid (lp->ptid);
1344
1345 if (tp->suspend.waitstatus_pending_p)
1346 signo = tp->suspend.waitstatus.value.sig;
1347 else
1348 signo = tp->suspend.stop_signal;
1349 }
1350 else if (!target_is_non_stop_p ())
1351 {
1352 struct target_waitstatus last;
1353 ptid_t last_ptid;
1354
1355 get_last_target_status (&last_ptid, &last);
1356
1357 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1358 {
1359 struct thread_info *tp = find_thread_ptid (lp->ptid);
1360
1361 signo = tp->suspend.stop_signal;
1362 }
1363 }
1364
1365 if (signo == GDB_SIGNAL_0)
1366 {
1367 if (debug_linux_nat)
1368 fprintf_unfiltered (gdb_stdlog,
1369 "GPT: lwp %s has no pending signal\n",
1370 target_pid_to_str (lp->ptid));
1371 }
1372 else if (!signal_pass_state (signo))
1373 {
1374 if (debug_linux_nat)
1375 fprintf_unfiltered (gdb_stdlog,
1376 "GPT: lwp %s had signal %s, "
1377 "but it is in no pass state\n",
1378 target_pid_to_str (lp->ptid),
1379 gdb_signal_to_string (signo));
1380 }
1381 else
1382 {
1383 if (debug_linux_nat)
1384 fprintf_unfiltered (gdb_stdlog,
1385 "GPT: lwp %s has pending signal %s\n",
1386 target_pid_to_str (lp->ptid),
1387 gdb_signal_to_string (signo));
1388
1389 return gdb_signal_to_host (signo);
1390 }
1391
1392 return 0;
1393 }
1394
1395 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1396 signal number that should be passed to the LWP when detaching.
1397 Otherwise pass any pending signal the LWP may have, if any. */
1398
1399 static void
1400 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1401 {
1402 int lwpid = ptid_get_lwp (lp->ptid);
1403 int signo;
1404
1405 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1406
1407 if (debug_linux_nat && lp->status)
1408 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1409 strsignal (WSTOPSIG (lp->status)),
1410 target_pid_to_str (lp->ptid));
1411
1412 /* If there is a pending SIGSTOP, get rid of it. */
1413 if (lp->signalled)
1414 {
1415 if (debug_linux_nat)
1416 fprintf_unfiltered (gdb_stdlog,
1417 "DC: Sending SIGCONT to %s\n",
1418 target_pid_to_str (lp->ptid));
1419
1420 kill_lwp (lwpid, SIGCONT);
1421 lp->signalled = 0;
1422 }
1423
1424 if (signo_p == NULL)
1425 {
1426 /* Pass on any pending signal for this LWP. */
1427 signo = get_detach_signal (lp);
1428 }
1429 else
1430 signo = *signo_p;
1431
1432 /* Preparing to resume may try to write registers, and fail if the
1433 lwp is zombie. If that happens, ignore the error. We'll handle
1434 it below, when detach fails with ESRCH. */
1435 TRY
1436 {
1437 if (linux_nat_prepare_to_resume != NULL)
1438 linux_nat_prepare_to_resume (lp);
1439 }
1440 CATCH (ex, RETURN_MASK_ERROR)
1441 {
1442 if (!check_ptrace_stopped_lwp_gone (lp))
1443 throw_exception (ex);
1444 }
1445 END_CATCH
1446
1447 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1448 {
1449 int save_errno = errno;
1450
1451 /* We know the thread exists, so ESRCH must mean the lwp is
1452 zombie. This can happen if one of the already-detached
1453 threads exits the whole thread group. In that case we're
1454 still attached, and must reap the lwp. */
1455 if (save_errno == ESRCH)
1456 {
1457 int ret, status;
1458
1459 ret = my_waitpid (lwpid, &status, __WALL);
1460 if (ret == -1)
1461 {
1462 warning (_("Couldn't reap LWP %d while detaching: %s"),
1463 lwpid, strerror (errno));
1464 }
1465 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1466 {
1467 warning (_("Reaping LWP %d while detaching "
1468 "returned unexpected status 0x%x"),
1469 lwpid, status);
1470 }
1471 }
1472 else
1473 {
1474 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1475 safe_strerror (save_errno));
1476 }
1477 }
1478 else if (debug_linux_nat)
1479 {
1480 fprintf_unfiltered (gdb_stdlog,
1481 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1482 target_pid_to_str (lp->ptid),
1483 strsignal (signo));
1484 }
1485
1486 delete_lwp (lp->ptid);
1487 }
1488
1489 static int
1490 detach_callback (struct lwp_info *lp, void *data)
1491 {
1492 /* We don't actually detach from the thread group leader just yet.
1493 If the thread group exits, we must reap the zombie clone lwps
1494 before we're able to reap the leader. */
1495 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1496 detach_one_lwp (lp, NULL);
1497 return 0;
1498 }
1499
1500 static void
1501 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1502 {
1503 int pid;
1504 struct lwp_info *main_lwp;
1505
1506 pid = ptid_get_pid (inferior_ptid);
1507
1508 /* Don't unregister from the event loop, as there may be other
1509 inferiors running. */
1510
1511 /* Stop all threads before detaching. ptrace requires that the
1512 thread is stopped to sucessfully detach. */
1513 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1514 /* ... and wait until all of them have reported back that
1515 they're no longer running. */
1516 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1517
1518 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1519
1520 /* Only the initial process should be left right now. */
1521 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1522
1523 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1524
1525 if (forks_exist_p ())
1526 {
1527 /* Multi-fork case. The current inferior_ptid is being detached
1528 from, but there are other viable forks to debug. Detach from
1529 the current fork, and context-switch to the first
1530 available. */
1531 linux_fork_detach (args, from_tty);
1532 }
1533 else
1534 {
1535 int signo;
1536
1537 target_announce_detach (from_tty);
1538
1539 /* Pass on any pending signal for the last LWP, unless the user
1540 requested detaching with a different signal (most likely 0,
1541 meaning, discard the signal). */
1542 if (args != NULL)
1543 signo = atoi (args);
1544 else
1545 signo = get_detach_signal (main_lwp);
1546
1547 detach_one_lwp (main_lwp, &signo);
1548
1549 inf_ptrace_detach_success (ops);
1550 }
1551 }
1552
1553 /* Resume execution of the inferior process. If STEP is nonzero,
1554 single-step it. If SIGNAL is nonzero, give it that signal. */
1555
1556 static void
1557 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1558 enum gdb_signal signo)
1559 {
1560 lp->step = step;
1561
1562 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1563 We only presently need that if the LWP is stepped though (to
1564 handle the case of stepping a breakpoint instruction). */
1565 if (step)
1566 {
1567 struct regcache *regcache = get_thread_regcache (lp->ptid);
1568
1569 lp->stop_pc = regcache_read_pc (regcache);
1570 }
1571 else
1572 lp->stop_pc = 0;
1573
1574 if (linux_nat_prepare_to_resume != NULL)
1575 linux_nat_prepare_to_resume (lp);
1576 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1577
1578 /* Successfully resumed. Clear state that no longer makes sense,
1579 and mark the LWP as running. Must not do this before resuming
1580 otherwise if that fails other code will be confused. E.g., we'd
1581 later try to stop the LWP and hang forever waiting for a stop
1582 status. Note that we must not throw after this is cleared,
1583 otherwise handle_zombie_lwp_error would get confused. */
1584 lp->stopped = 0;
1585 lp->core = -1;
1586 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1587 registers_changed_ptid (lp->ptid);
1588 }
1589
1590 /* Called when we try to resume a stopped LWP and that errors out. If
1591 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1592 or about to become), discard the error, clear any pending status
1593 the LWP may have, and return true (we'll collect the exit status
1594 soon enough). Otherwise, return false. */
1595
1596 static int
1597 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1598 {
1599 /* If we get an error after resuming the LWP successfully, we'd
1600 confuse !T state for the LWP being gone. */
1601 gdb_assert (lp->stopped);
1602
1603 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1604 because even if ptrace failed with ESRCH, the tracee may be "not
1605 yet fully dead", but already refusing ptrace requests. In that
1606 case the tracee has 'R (Running)' state for a little bit
1607 (observed in Linux 3.18). See also the note on ESRCH in the
1608 ptrace(2) man page. Instead, check whether the LWP has any state
1609 other than ptrace-stopped. */
1610
1611 /* Don't assume anything if /proc/PID/status can't be read. */
1612 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1613 {
1614 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1615 lp->status = 0;
1616 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1617 return 1;
1618 }
1619 return 0;
1620 }
1621
1622 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1623 disappears while we try to resume it. */
1624
1625 static void
1626 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1627 {
1628 TRY
1629 {
1630 linux_resume_one_lwp_throw (lp, step, signo);
1631 }
1632 CATCH (ex, RETURN_MASK_ERROR)
1633 {
1634 if (!check_ptrace_stopped_lwp_gone (lp))
1635 throw_exception (ex);
1636 }
1637 END_CATCH
1638 }
1639
1640 /* Resume LP. */
1641
1642 static void
1643 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1644 {
1645 if (lp->stopped)
1646 {
1647 struct inferior *inf = find_inferior_ptid (lp->ptid);
1648
1649 if (inf->vfork_child != NULL)
1650 {
1651 if (debug_linux_nat)
1652 fprintf_unfiltered (gdb_stdlog,
1653 "RC: Not resuming %s (vfork parent)\n",
1654 target_pid_to_str (lp->ptid));
1655 }
1656 else if (!lwp_status_pending_p (lp))
1657 {
1658 if (debug_linux_nat)
1659 fprintf_unfiltered (gdb_stdlog,
1660 "RC: Resuming sibling %s, %s, %s\n",
1661 target_pid_to_str (lp->ptid),
1662 (signo != GDB_SIGNAL_0
1663 ? strsignal (gdb_signal_to_host (signo))
1664 : "0"),
1665 step ? "step" : "resume");
1666
1667 linux_resume_one_lwp (lp, step, signo);
1668 }
1669 else
1670 {
1671 if (debug_linux_nat)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "RC: Not resuming sibling %s (has pending)\n",
1674 target_pid_to_str (lp->ptid));
1675 }
1676 }
1677 else
1678 {
1679 if (debug_linux_nat)
1680 fprintf_unfiltered (gdb_stdlog,
1681 "RC: Not resuming sibling %s (not stopped)\n",
1682 target_pid_to_str (lp->ptid));
1683 }
1684 }
1685
1686 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1687 Resume LWP with the last stop signal, if it is in pass state. */
1688
1689 static int
1690 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1691 {
1692 enum gdb_signal signo = GDB_SIGNAL_0;
1693
1694 if (lp == except)
1695 return 0;
1696
1697 if (lp->stopped)
1698 {
1699 struct thread_info *thread;
1700
1701 thread = find_thread_ptid (lp->ptid);
1702 if (thread != NULL)
1703 {
1704 signo = thread->suspend.stop_signal;
1705 thread->suspend.stop_signal = GDB_SIGNAL_0;
1706 }
1707 }
1708
1709 resume_lwp (lp, 0, signo);
1710 return 0;
1711 }
1712
1713 static int
1714 resume_clear_callback (struct lwp_info *lp, void *data)
1715 {
1716 lp->resumed = 0;
1717 lp->last_resume_kind = resume_stop;
1718 return 0;
1719 }
1720
1721 static int
1722 resume_set_callback (struct lwp_info *lp, void *data)
1723 {
1724 lp->resumed = 1;
1725 lp->last_resume_kind = resume_continue;
1726 return 0;
1727 }
1728
1729 static void
1730 linux_nat_resume (struct target_ops *ops,
1731 ptid_t ptid, int step, enum gdb_signal signo)
1732 {
1733 struct lwp_info *lp;
1734 int resume_many;
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1739 step ? "step" : "resume",
1740 target_pid_to_str (ptid),
1741 (signo != GDB_SIGNAL_0
1742 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1743 target_pid_to_str (inferior_ptid));
1744
1745 /* A specific PTID means `step only this process id'. */
1746 resume_many = (ptid_equal (minus_one_ptid, ptid)
1747 || ptid_is_pid (ptid));
1748
1749 /* Mark the lwps we're resuming as resumed. */
1750 iterate_over_lwps (ptid, resume_set_callback, NULL);
1751
1752 /* See if it's the current inferior that should be handled
1753 specially. */
1754 if (resume_many)
1755 lp = find_lwp_pid (inferior_ptid);
1756 else
1757 lp = find_lwp_pid (ptid);
1758 gdb_assert (lp != NULL);
1759
1760 /* Remember if we're stepping. */
1761 lp->last_resume_kind = step ? resume_step : resume_continue;
1762
1763 /* If we have a pending wait status for this thread, there is no
1764 point in resuming the process. But first make sure that
1765 linux_nat_wait won't preemptively handle the event - we
1766 should never take this short-circuit if we are going to
1767 leave LP running, since we have skipped resuming all the
1768 other threads. This bit of code needs to be synchronized
1769 with linux_nat_wait. */
1770
1771 if (lp->status && WIFSTOPPED (lp->status))
1772 {
1773 if (!lp->step
1774 && WSTOPSIG (lp->status)
1775 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1776 {
1777 if (debug_linux_nat)
1778 fprintf_unfiltered (gdb_stdlog,
1779 "LLR: Not short circuiting for ignored "
1780 "status 0x%x\n", lp->status);
1781
1782 /* FIXME: What should we do if we are supposed to continue
1783 this thread with a signal? */
1784 gdb_assert (signo == GDB_SIGNAL_0);
1785 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1786 lp->status = 0;
1787 }
1788 }
1789
1790 if (lwp_status_pending_p (lp))
1791 {
1792 /* FIXME: What should we do if we are supposed to continue
1793 this thread with a signal? */
1794 gdb_assert (signo == GDB_SIGNAL_0);
1795
1796 if (debug_linux_nat)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "LLR: Short circuiting for status 0x%x\n",
1799 lp->status);
1800
1801 if (target_can_async_p ())
1802 {
1803 target_async (1);
1804 /* Tell the event loop we have something to process. */
1805 async_file_mark ();
1806 }
1807 return;
1808 }
1809
1810 if (resume_many)
1811 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1812
1813 if (debug_linux_nat)
1814 fprintf_unfiltered (gdb_stdlog,
1815 "LLR: %s %s, %s (resume event thread)\n",
1816 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1817 target_pid_to_str (lp->ptid),
1818 (signo != GDB_SIGNAL_0
1819 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1820
1821 linux_resume_one_lwp (lp, step, signo);
1822
1823 if (target_can_async_p ())
1824 target_async (1);
1825 }
1826
1827 /* Send a signal to an LWP. */
1828
1829 static int
1830 kill_lwp (int lwpid, int signo)
1831 {
1832 int ret;
1833
1834 errno = 0;
1835 ret = syscall (__NR_tkill, lwpid, signo);
1836 if (errno == ENOSYS)
1837 {
1838 /* If tkill fails, then we are not using nptl threads, a
1839 configuration we no longer support. */
1840 perror_with_name (("tkill"));
1841 }
1842 return ret;
1843 }
1844
1845 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1846 event, check if the core is interested in it: if not, ignore the
1847 event, and keep waiting; otherwise, we need to toggle the LWP's
1848 syscall entry/exit status, since the ptrace event itself doesn't
1849 indicate it, and report the trap to higher layers. */
1850
1851 static int
1852 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1853 {
1854 struct target_waitstatus *ourstatus = &lp->waitstatus;
1855 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1856 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1857
1858 if (stopping)
1859 {
1860 /* If we're stopping threads, there's a SIGSTOP pending, which
1861 makes it so that the LWP reports an immediate syscall return,
1862 followed by the SIGSTOP. Skip seeing that "return" using
1863 PTRACE_CONT directly, and let stop_wait_callback collect the
1864 SIGSTOP. Later when the thread is resumed, a new syscall
1865 entry event. If we didn't do this (and returned 0), we'd
1866 leave a syscall entry pending, and our caller, by using
1867 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1868 itself. Later, when the user re-resumes this LWP, we'd see
1869 another syscall entry event and we'd mistake it for a return.
1870
1871 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1872 (leaving immediately with LWP->signalled set, without issuing
1873 a PTRACE_CONT), it would still be problematic to leave this
1874 syscall enter pending, as later when the thread is resumed,
1875 it would then see the same syscall exit mentioned above,
1876 followed by the delayed SIGSTOP, while the syscall didn't
1877 actually get to execute. It seems it would be even more
1878 confusing to the user. */
1879
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "LHST: ignoring syscall %d "
1883 "for LWP %ld (stopping threads), "
1884 "resuming with PTRACE_CONT for SIGSTOP\n",
1885 syscall_number,
1886 ptid_get_lwp (lp->ptid));
1887
1888 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1889 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1890 lp->stopped = 0;
1891 return 1;
1892 }
1893
1894 /* Always update the entry/return state, even if this particular
1895 syscall isn't interesting to the core now. In async mode,
1896 the user could install a new catchpoint for this syscall
1897 between syscall enter/return, and we'll need to know to
1898 report a syscall return if that happens. */
1899 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1900 ? TARGET_WAITKIND_SYSCALL_RETURN
1901 : TARGET_WAITKIND_SYSCALL_ENTRY);
1902
1903 if (catch_syscall_enabled ())
1904 {
1905 if (catching_syscall_number (syscall_number))
1906 {
1907 /* Alright, an event to report. */
1908 ourstatus->kind = lp->syscall_state;
1909 ourstatus->value.syscall_number = syscall_number;
1910
1911 if (debug_linux_nat)
1912 fprintf_unfiltered (gdb_stdlog,
1913 "LHST: stopping for %s of syscall %d"
1914 " for LWP %ld\n",
1915 lp->syscall_state
1916 == TARGET_WAITKIND_SYSCALL_ENTRY
1917 ? "entry" : "return",
1918 syscall_number,
1919 ptid_get_lwp (lp->ptid));
1920 return 0;
1921 }
1922
1923 if (debug_linux_nat)
1924 fprintf_unfiltered (gdb_stdlog,
1925 "LHST: ignoring %s of syscall %d "
1926 "for LWP %ld\n",
1927 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1928 ? "entry" : "return",
1929 syscall_number,
1930 ptid_get_lwp (lp->ptid));
1931 }
1932 else
1933 {
1934 /* If we had been syscall tracing, and hence used PT_SYSCALL
1935 before on this LWP, it could happen that the user removes all
1936 syscall catchpoints before we get to process this event.
1937 There are two noteworthy issues here:
1938
1939 - When stopped at a syscall entry event, resuming with
1940 PT_STEP still resumes executing the syscall and reports a
1941 syscall return.
1942
1943 - Only PT_SYSCALL catches syscall enters. If we last
1944 single-stepped this thread, then this event can't be a
1945 syscall enter. If we last single-stepped this thread, this
1946 has to be a syscall exit.
1947
1948 The points above mean that the next resume, be it PT_STEP or
1949 PT_CONTINUE, can not trigger a syscall trace event. */
1950 if (debug_linux_nat)
1951 fprintf_unfiltered (gdb_stdlog,
1952 "LHST: caught syscall event "
1953 "with no syscall catchpoints."
1954 " %d for LWP %ld, ignoring\n",
1955 syscall_number,
1956 ptid_get_lwp (lp->ptid));
1957 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1958 }
1959
1960 /* The core isn't interested in this event. For efficiency, avoid
1961 stopping all threads only to have the core resume them all again.
1962 Since we're not stopping threads, if we're still syscall tracing
1963 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1964 subsequent syscall. Simply resume using the inf-ptrace layer,
1965 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1966
1967 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1968 return 1;
1969 }
1970
1971 /* Handle a GNU/Linux extended wait response. If we see a clone
1972 event, we need to add the new LWP to our list (and not report the
1973 trap to higher layers). This function returns non-zero if the
1974 event should be ignored and we should wait again. If STOPPING is
1975 true, the new LWP remains stopped, otherwise it is continued. */
1976
1977 static int
1978 linux_handle_extended_wait (struct lwp_info *lp, int status)
1979 {
1980 int pid = ptid_get_lwp (lp->ptid);
1981 struct target_waitstatus *ourstatus = &lp->waitstatus;
1982 int event = linux_ptrace_get_extended_event (status);
1983
1984 /* All extended events we currently use are mid-syscall. Only
1985 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1986 you have to be using PTRACE_SEIZE to get that. */
1987 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1988
1989 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1990 || event == PTRACE_EVENT_CLONE)
1991 {
1992 unsigned long new_pid;
1993 int ret;
1994
1995 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1996
1997 /* If we haven't already seen the new PID stop, wait for it now. */
1998 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1999 {
2000 /* The new child has a pending SIGSTOP. We can't affect it until it
2001 hits the SIGSTOP, but we're already attached. */
2002 ret = my_waitpid (new_pid, &status, __WALL);
2003 if (ret == -1)
2004 perror_with_name (_("waiting for new child"));
2005 else if (ret != new_pid)
2006 internal_error (__FILE__, __LINE__,
2007 _("wait returned unexpected PID %d"), ret);
2008 else if (!WIFSTOPPED (status))
2009 internal_error (__FILE__, __LINE__,
2010 _("wait returned unexpected status 0x%x"), status);
2011 }
2012
2013 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2014
2015 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2016 {
2017 /* The arch-specific native code may need to know about new
2018 forks even if those end up never mapped to an
2019 inferior. */
2020 if (linux_nat_new_fork != NULL)
2021 linux_nat_new_fork (lp, new_pid);
2022 }
2023
2024 if (event == PTRACE_EVENT_FORK
2025 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2026 {
2027 /* Handle checkpointing by linux-fork.c here as a special
2028 case. We don't want the follow-fork-mode or 'catch fork'
2029 to interfere with this. */
2030
2031 /* This won't actually modify the breakpoint list, but will
2032 physically remove the breakpoints from the child. */
2033 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2034
2035 /* Retain child fork in ptrace (stopped) state. */
2036 if (!find_fork_pid (new_pid))
2037 add_fork (new_pid);
2038
2039 /* Report as spurious, so that infrun doesn't want to follow
2040 this fork. We're actually doing an infcall in
2041 linux-fork.c. */
2042 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2043
2044 /* Report the stop to the core. */
2045 return 0;
2046 }
2047
2048 if (event == PTRACE_EVENT_FORK)
2049 ourstatus->kind = TARGET_WAITKIND_FORKED;
2050 else if (event == PTRACE_EVENT_VFORK)
2051 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2052 else if (event == PTRACE_EVENT_CLONE)
2053 {
2054 struct lwp_info *new_lp;
2055
2056 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2057
2058 if (debug_linux_nat)
2059 fprintf_unfiltered (gdb_stdlog,
2060 "LHEW: Got clone event "
2061 "from LWP %d, new child is LWP %ld\n",
2062 pid, new_pid);
2063
2064 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2065 new_lp->stopped = 1;
2066 new_lp->resumed = 1;
2067
2068 /* If the thread_db layer is active, let it record the user
2069 level thread id and status, and add the thread to GDB's
2070 list. */
2071 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2072 {
2073 /* The process is not using thread_db. Add the LWP to
2074 GDB's list. */
2075 target_post_attach (ptid_get_lwp (new_lp->ptid));
2076 add_thread (new_lp->ptid);
2077 }
2078
2079 /* Even if we're stopping the thread for some reason
2080 internal to this module, from the perspective of infrun
2081 and the user/frontend, this new thread is running until
2082 it next reports a stop. */
2083 set_running (new_lp->ptid, 1);
2084 set_executing (new_lp->ptid, 1);
2085
2086 if (WSTOPSIG (status) != SIGSTOP)
2087 {
2088 /* This can happen if someone starts sending signals to
2089 the new thread before it gets a chance to run, which
2090 have a lower number than SIGSTOP (e.g. SIGUSR1).
2091 This is an unlikely case, and harder to handle for
2092 fork / vfork than for clone, so we do not try - but
2093 we handle it for clone events here. */
2094
2095 new_lp->signalled = 1;
2096
2097 /* We created NEW_LP so it cannot yet contain STATUS. */
2098 gdb_assert (new_lp->status == 0);
2099
2100 /* Save the wait status to report later. */
2101 if (debug_linux_nat)
2102 fprintf_unfiltered (gdb_stdlog,
2103 "LHEW: waitpid of new LWP %ld, "
2104 "saving status %s\n",
2105 (long) ptid_get_lwp (new_lp->ptid),
2106 status_to_str (status));
2107 new_lp->status = status;
2108 }
2109 else if (report_thread_events)
2110 {
2111 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2112 new_lp->status = status;
2113 }
2114
2115 return 1;
2116 }
2117
2118 return 0;
2119 }
2120
2121 if (event == PTRACE_EVENT_EXEC)
2122 {
2123 if (debug_linux_nat)
2124 fprintf_unfiltered (gdb_stdlog,
2125 "LHEW: Got exec event from LWP %ld\n",
2126 ptid_get_lwp (lp->ptid));
2127
2128 ourstatus->kind = TARGET_WAITKIND_EXECD;
2129 ourstatus->value.execd_pathname
2130 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2131
2132 /* The thread that execed must have been resumed, but, when a
2133 thread execs, it changes its tid to the tgid, and the old
2134 tgid thread might have not been resumed. */
2135 lp->resumed = 1;
2136 return 0;
2137 }
2138
2139 if (event == PTRACE_EVENT_VFORK_DONE)
2140 {
2141 if (current_inferior ()->waiting_for_vfork_done)
2142 {
2143 if (debug_linux_nat)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "LHEW: Got expected PTRACE_EVENT_"
2146 "VFORK_DONE from LWP %ld: stopping\n",
2147 ptid_get_lwp (lp->ptid));
2148
2149 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2150 return 0;
2151 }
2152
2153 if (debug_linux_nat)
2154 fprintf_unfiltered (gdb_stdlog,
2155 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2156 "from LWP %ld: ignoring\n",
2157 ptid_get_lwp (lp->ptid));
2158 return 1;
2159 }
2160
2161 internal_error (__FILE__, __LINE__,
2162 _("unknown ptrace event %d"), event);
2163 }
2164
2165 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2166 exited. */
2167
2168 static int
2169 wait_lwp (struct lwp_info *lp)
2170 {
2171 pid_t pid;
2172 int status = 0;
2173 int thread_dead = 0;
2174 sigset_t prev_mask;
2175
2176 gdb_assert (!lp->stopped);
2177 gdb_assert (lp->status == 0);
2178
2179 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2180 block_child_signals (&prev_mask);
2181
2182 for (;;)
2183 {
2184 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2185 if (pid == -1 && errno == ECHILD)
2186 {
2187 /* The thread has previously exited. We need to delete it
2188 now because if this was a non-leader thread execing, we
2189 won't get an exit event. See comments on exec events at
2190 the top of the file. */
2191 thread_dead = 1;
2192 if (debug_linux_nat)
2193 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2194 target_pid_to_str (lp->ptid));
2195 }
2196 if (pid != 0)
2197 break;
2198
2199 /* Bugs 10970, 12702.
2200 Thread group leader may have exited in which case we'll lock up in
2201 waitpid if there are other threads, even if they are all zombies too.
2202 Basically, we're not supposed to use waitpid this way.
2203 tkill(pid,0) cannot be used here as it gets ESRCH for both
2204 for zombie and running processes.
2205
2206 As a workaround, check if we're waiting for the thread group leader and
2207 if it's a zombie, and avoid calling waitpid if it is.
2208
2209 This is racy, what if the tgl becomes a zombie right after we check?
2210 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2211 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2212
2213 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2214 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2215 {
2216 thread_dead = 1;
2217 if (debug_linux_nat)
2218 fprintf_unfiltered (gdb_stdlog,
2219 "WL: Thread group leader %s vanished.\n",
2220 target_pid_to_str (lp->ptid));
2221 break;
2222 }
2223
2224 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2225 get invoked despite our caller had them intentionally blocked by
2226 block_child_signals. This is sensitive only to the loop of
2227 linux_nat_wait_1 and there if we get called my_waitpid gets called
2228 again before it gets to sigsuspend so we can safely let the handlers
2229 get executed here. */
2230
2231 if (debug_linux_nat)
2232 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2233 sigsuspend (&suspend_mask);
2234 }
2235
2236 restore_child_signals_mask (&prev_mask);
2237
2238 if (!thread_dead)
2239 {
2240 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2241
2242 if (debug_linux_nat)
2243 {
2244 fprintf_unfiltered (gdb_stdlog,
2245 "WL: waitpid %s received %s\n",
2246 target_pid_to_str (lp->ptid),
2247 status_to_str (status));
2248 }
2249
2250 /* Check if the thread has exited. */
2251 if (WIFEXITED (status) || WIFSIGNALED (status))
2252 {
2253 if (report_thread_events
2254 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2255 {
2256 if (debug_linux_nat)
2257 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2258 ptid_get_pid (lp->ptid));
2259
2260 /* If this is the leader exiting, it means the whole
2261 process is gone. Store the status to report to the
2262 core. Store it in lp->waitstatus, because lp->status
2263 would be ambiguous (W_EXITCODE(0,0) == 0). */
2264 store_waitstatus (&lp->waitstatus, status);
2265 return 0;
2266 }
2267
2268 thread_dead = 1;
2269 if (debug_linux_nat)
2270 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2271 target_pid_to_str (lp->ptid));
2272 }
2273 }
2274
2275 if (thread_dead)
2276 {
2277 exit_lwp (lp);
2278 return 0;
2279 }
2280
2281 gdb_assert (WIFSTOPPED (status));
2282 lp->stopped = 1;
2283
2284 if (lp->must_set_ptrace_flags)
2285 {
2286 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2287 int options = linux_nat_ptrace_options (inf->attach_flag);
2288
2289 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2290 lp->must_set_ptrace_flags = 0;
2291 }
2292
2293 /* Handle GNU/Linux's syscall SIGTRAPs. */
2294 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2295 {
2296 /* No longer need the sysgood bit. The ptrace event ends up
2297 recorded in lp->waitstatus if we care for it. We can carry
2298 on handling the event like a regular SIGTRAP from here
2299 on. */
2300 status = W_STOPCODE (SIGTRAP);
2301 if (linux_handle_syscall_trap (lp, 1))
2302 return wait_lwp (lp);
2303 }
2304 else
2305 {
2306 /* Almost all other ptrace-stops are known to be outside of system
2307 calls, with further exceptions in linux_handle_extended_wait. */
2308 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2309 }
2310
2311 /* Handle GNU/Linux's extended waitstatus for trace events. */
2312 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2313 && linux_is_extended_waitstatus (status))
2314 {
2315 if (debug_linux_nat)
2316 fprintf_unfiltered (gdb_stdlog,
2317 "WL: Handling extended status 0x%06x\n",
2318 status);
2319 linux_handle_extended_wait (lp, status);
2320 return 0;
2321 }
2322
2323 return status;
2324 }
2325
2326 /* Send a SIGSTOP to LP. */
2327
2328 static int
2329 stop_callback (struct lwp_info *lp, void *data)
2330 {
2331 if (!lp->stopped && !lp->signalled)
2332 {
2333 int ret;
2334
2335 if (debug_linux_nat)
2336 {
2337 fprintf_unfiltered (gdb_stdlog,
2338 "SC: kill %s **<SIGSTOP>**\n",
2339 target_pid_to_str (lp->ptid));
2340 }
2341 errno = 0;
2342 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2343 if (debug_linux_nat)
2344 {
2345 fprintf_unfiltered (gdb_stdlog,
2346 "SC: lwp kill %d %s\n",
2347 ret,
2348 errno ? safe_strerror (errno) : "ERRNO-OK");
2349 }
2350
2351 lp->signalled = 1;
2352 gdb_assert (lp->status == 0);
2353 }
2354
2355 return 0;
2356 }
2357
2358 /* Request a stop on LWP. */
2359
2360 void
2361 linux_stop_lwp (struct lwp_info *lwp)
2362 {
2363 stop_callback (lwp, NULL);
2364 }
2365
2366 /* See linux-nat.h */
2367
2368 void
2369 linux_stop_and_wait_all_lwps (void)
2370 {
2371 /* Stop all LWP's ... */
2372 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2373
2374 /* ... and wait until all of them have reported back that
2375 they're no longer running. */
2376 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2377 }
2378
2379 /* See linux-nat.h */
2380
2381 void
2382 linux_unstop_all_lwps (void)
2383 {
2384 iterate_over_lwps (minus_one_ptid,
2385 resume_stopped_resumed_lwps, &minus_one_ptid);
2386 }
2387
2388 /* Return non-zero if LWP PID has a pending SIGINT. */
2389
2390 static int
2391 linux_nat_has_pending_sigint (int pid)
2392 {
2393 sigset_t pending, blocked, ignored;
2394
2395 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2396
2397 if (sigismember (&pending, SIGINT)
2398 && !sigismember (&ignored, SIGINT))
2399 return 1;
2400
2401 return 0;
2402 }
2403
2404 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2405
2406 static int
2407 set_ignore_sigint (struct lwp_info *lp, void *data)
2408 {
2409 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2410 flag to consume the next one. */
2411 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2412 && WSTOPSIG (lp->status) == SIGINT)
2413 lp->status = 0;
2414 else
2415 lp->ignore_sigint = 1;
2416
2417 return 0;
2418 }
2419
2420 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2421 This function is called after we know the LWP has stopped; if the LWP
2422 stopped before the expected SIGINT was delivered, then it will never have
2423 arrived. Also, if the signal was delivered to a shared queue and consumed
2424 by a different thread, it will never be delivered to this LWP. */
2425
2426 static void
2427 maybe_clear_ignore_sigint (struct lwp_info *lp)
2428 {
2429 if (!lp->ignore_sigint)
2430 return;
2431
2432 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2433 {
2434 if (debug_linux_nat)
2435 fprintf_unfiltered (gdb_stdlog,
2436 "MCIS: Clearing bogus flag for %s\n",
2437 target_pid_to_str (lp->ptid));
2438 lp->ignore_sigint = 0;
2439 }
2440 }
2441
2442 /* Fetch the possible triggered data watchpoint info and store it in
2443 LP.
2444
2445 On some archs, like x86, that use debug registers to set
2446 watchpoints, it's possible that the way to know which watched
2447 address trapped, is to check the register that is used to select
2448 which address to watch. Problem is, between setting the watchpoint
2449 and reading back which data address trapped, the user may change
2450 the set of watchpoints, and, as a consequence, GDB changes the
2451 debug registers in the inferior. To avoid reading back a stale
2452 stopped-data-address when that happens, we cache in LP the fact
2453 that a watchpoint trapped, and the corresponding data address, as
2454 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2455 registers meanwhile, we have the cached data we can rely on. */
2456
2457 static int
2458 check_stopped_by_watchpoint (struct lwp_info *lp)
2459 {
2460 if (linux_ops->to_stopped_by_watchpoint == NULL)
2461 return 0;
2462
2463 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2464 inferior_ptid = lp->ptid;
2465
2466 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2467 {
2468 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2469
2470 if (linux_ops->to_stopped_data_address != NULL)
2471 lp->stopped_data_address_p =
2472 linux_ops->to_stopped_data_address (&current_target,
2473 &lp->stopped_data_address);
2474 else
2475 lp->stopped_data_address_p = 0;
2476 }
2477
2478 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2479 }
2480
2481 /* Returns true if the LWP had stopped for a watchpoint. */
2482
2483 static int
2484 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2485 {
2486 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2487
2488 gdb_assert (lp != NULL);
2489
2490 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2491 }
2492
2493 static int
2494 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2495 {
2496 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2497
2498 gdb_assert (lp != NULL);
2499
2500 *addr_p = lp->stopped_data_address;
2501
2502 return lp->stopped_data_address_p;
2503 }
2504
2505 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2506
2507 static int
2508 sigtrap_is_event (int status)
2509 {
2510 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2511 }
2512
2513 /* Set alternative SIGTRAP-like events recognizer. If
2514 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2515 applied. */
2516
2517 void
2518 linux_nat_set_status_is_event (struct target_ops *t,
2519 int (*status_is_event) (int status))
2520 {
2521 linux_nat_status_is_event = status_is_event;
2522 }
2523
2524 /* Wait until LP is stopped. */
2525
2526 static int
2527 stop_wait_callback (struct lwp_info *lp, void *data)
2528 {
2529 struct inferior *inf = find_inferior_ptid (lp->ptid);
2530
2531 /* If this is a vfork parent, bail out, it is not going to report
2532 any SIGSTOP until the vfork is done with. */
2533 if (inf->vfork_child != NULL)
2534 return 0;
2535
2536 if (!lp->stopped)
2537 {
2538 int status;
2539
2540 status = wait_lwp (lp);
2541 if (status == 0)
2542 return 0;
2543
2544 if (lp->ignore_sigint && WIFSTOPPED (status)
2545 && WSTOPSIG (status) == SIGINT)
2546 {
2547 lp->ignore_sigint = 0;
2548
2549 errno = 0;
2550 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2551 lp->stopped = 0;
2552 if (debug_linux_nat)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "PTRACE_CONT %s, 0, 0 (%s) "
2555 "(discarding SIGINT)\n",
2556 target_pid_to_str (lp->ptid),
2557 errno ? safe_strerror (errno) : "OK");
2558
2559 return stop_wait_callback (lp, NULL);
2560 }
2561
2562 maybe_clear_ignore_sigint (lp);
2563
2564 if (WSTOPSIG (status) != SIGSTOP)
2565 {
2566 /* The thread was stopped with a signal other than SIGSTOP. */
2567
2568 if (debug_linux_nat)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "SWC: Pending event %s in %s\n",
2571 status_to_str ((int) status),
2572 target_pid_to_str (lp->ptid));
2573
2574 /* Save the sigtrap event. */
2575 lp->status = status;
2576 gdb_assert (lp->signalled);
2577 save_stop_reason (lp);
2578 }
2579 else
2580 {
2581 /* We caught the SIGSTOP that we intended to catch, so
2582 there's no SIGSTOP pending. */
2583
2584 if (debug_linux_nat)
2585 fprintf_unfiltered (gdb_stdlog,
2586 "SWC: Expected SIGSTOP caught for %s.\n",
2587 target_pid_to_str (lp->ptid));
2588
2589 /* Reset SIGNALLED only after the stop_wait_callback call
2590 above as it does gdb_assert on SIGNALLED. */
2591 lp->signalled = 0;
2592 }
2593 }
2594
2595 return 0;
2596 }
2597
2598 /* Return non-zero if LP has a wait status pending. Discard the
2599 pending event and resume the LWP if the event that originally
2600 caused the stop became uninteresting. */
2601
2602 static int
2603 status_callback (struct lwp_info *lp, void *data)
2604 {
2605 /* Only report a pending wait status if we pretend that this has
2606 indeed been resumed. */
2607 if (!lp->resumed)
2608 return 0;
2609
2610 if (!lwp_status_pending_p (lp))
2611 return 0;
2612
2613 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2614 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2615 {
2616 struct regcache *regcache = get_thread_regcache (lp->ptid);
2617 CORE_ADDR pc;
2618 int discard = 0;
2619
2620 pc = regcache_read_pc (regcache);
2621
2622 if (pc != lp->stop_pc)
2623 {
2624 if (debug_linux_nat)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "SC: PC of %s changed. was=%s, now=%s\n",
2627 target_pid_to_str (lp->ptid),
2628 paddress (target_gdbarch (), lp->stop_pc),
2629 paddress (target_gdbarch (), pc));
2630 discard = 1;
2631 }
2632
2633 #if !USE_SIGTRAP_SIGINFO
2634 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2635 {
2636 if (debug_linux_nat)
2637 fprintf_unfiltered (gdb_stdlog,
2638 "SC: previous breakpoint of %s, at %s gone\n",
2639 target_pid_to_str (lp->ptid),
2640 paddress (target_gdbarch (), lp->stop_pc));
2641
2642 discard = 1;
2643 }
2644 #endif
2645
2646 if (discard)
2647 {
2648 if (debug_linux_nat)
2649 fprintf_unfiltered (gdb_stdlog,
2650 "SC: pending event of %s cancelled.\n",
2651 target_pid_to_str (lp->ptid));
2652
2653 lp->status = 0;
2654 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2655 return 0;
2656 }
2657 }
2658
2659 return 1;
2660 }
2661
2662 /* Count the LWP's that have had events. */
2663
2664 static int
2665 count_events_callback (struct lwp_info *lp, void *data)
2666 {
2667 int *count = (int *) data;
2668
2669 gdb_assert (count != NULL);
2670
2671 /* Select only resumed LWPs that have an event pending. */
2672 if (lp->resumed && lwp_status_pending_p (lp))
2673 (*count)++;
2674
2675 return 0;
2676 }
2677
2678 /* Select the LWP (if any) that is currently being single-stepped. */
2679
2680 static int
2681 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2682 {
2683 if (lp->last_resume_kind == resume_step
2684 && lp->status != 0)
2685 return 1;
2686 else
2687 return 0;
2688 }
2689
2690 /* Returns true if LP has a status pending. */
2691
2692 static int
2693 lwp_status_pending_p (struct lwp_info *lp)
2694 {
2695 /* We check for lp->waitstatus in addition to lp->status, because we
2696 can have pending process exits recorded in lp->status and
2697 W_EXITCODE(0,0) happens to be 0. */
2698 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2699 }
2700
2701 /* Select the Nth LWP that has had an event. */
2702
2703 static int
2704 select_event_lwp_callback (struct lwp_info *lp, void *data)
2705 {
2706 int *selector = (int *) data;
2707
2708 gdb_assert (selector != NULL);
2709
2710 /* Select only resumed LWPs that have an event pending. */
2711 if (lp->resumed && lwp_status_pending_p (lp))
2712 if ((*selector)-- == 0)
2713 return 1;
2714
2715 return 0;
2716 }
2717
2718 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2719 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2720 and save the result in the LWP's stop_reason field. If it stopped
2721 for a breakpoint, decrement the PC if necessary on the lwp's
2722 architecture. */
2723
2724 static void
2725 save_stop_reason (struct lwp_info *lp)
2726 {
2727 struct regcache *regcache;
2728 struct gdbarch *gdbarch;
2729 CORE_ADDR pc;
2730 CORE_ADDR sw_bp_pc;
2731 #if USE_SIGTRAP_SIGINFO
2732 siginfo_t siginfo;
2733 #endif
2734
2735 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2736 gdb_assert (lp->status != 0);
2737
2738 if (!linux_nat_status_is_event (lp->status))
2739 return;
2740
2741 regcache = get_thread_regcache (lp->ptid);
2742 gdbarch = get_regcache_arch (regcache);
2743
2744 pc = regcache_read_pc (regcache);
2745 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2746
2747 #if USE_SIGTRAP_SIGINFO
2748 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2749 {
2750 if (siginfo.si_signo == SIGTRAP)
2751 {
2752 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2753 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2754 {
2755 /* The si_code is ambiguous on this arch -- check debug
2756 registers. */
2757 if (!check_stopped_by_watchpoint (lp))
2758 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2759 }
2760 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2761 {
2762 /* If we determine the LWP stopped for a SW breakpoint,
2763 trust it. Particularly don't check watchpoint
2764 registers, because at least on s390, we'd find
2765 stopped-by-watchpoint as long as there's a watchpoint
2766 set. */
2767 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2768 }
2769 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2770 {
2771 /* This can indicate either a hardware breakpoint or
2772 hardware watchpoint. Check debug registers. */
2773 if (!check_stopped_by_watchpoint (lp))
2774 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2775 }
2776 else if (siginfo.si_code == TRAP_TRACE)
2777 {
2778 if (debug_linux_nat)
2779 fprintf_unfiltered (gdb_stdlog,
2780 "CSBB: %s stopped by trace\n",
2781 target_pid_to_str (lp->ptid));
2782
2783 /* We may have single stepped an instruction that
2784 triggered a watchpoint. In that case, on some
2785 architectures (such as x86), instead of TRAP_HWBKPT,
2786 si_code indicates TRAP_TRACE, and we need to check
2787 the debug registers separately. */
2788 check_stopped_by_watchpoint (lp);
2789 }
2790 }
2791 }
2792 #else
2793 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2794 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2795 sw_bp_pc))
2796 {
2797 /* The LWP was either continued, or stepped a software
2798 breakpoint instruction. */
2799 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2800 }
2801
2802 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2803 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2804
2805 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2806 check_stopped_by_watchpoint (lp);
2807 #endif
2808
2809 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2810 {
2811 if (debug_linux_nat)
2812 fprintf_unfiltered (gdb_stdlog,
2813 "CSBB: %s stopped by software breakpoint\n",
2814 target_pid_to_str (lp->ptid));
2815
2816 /* Back up the PC if necessary. */
2817 if (pc != sw_bp_pc)
2818 regcache_write_pc (regcache, sw_bp_pc);
2819
2820 /* Update this so we record the correct stop PC below. */
2821 pc = sw_bp_pc;
2822 }
2823 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2824 {
2825 if (debug_linux_nat)
2826 fprintf_unfiltered (gdb_stdlog,
2827 "CSBB: %s stopped by hardware breakpoint\n",
2828 target_pid_to_str (lp->ptid));
2829 }
2830 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2831 {
2832 if (debug_linux_nat)
2833 fprintf_unfiltered (gdb_stdlog,
2834 "CSBB: %s stopped by hardware watchpoint\n",
2835 target_pid_to_str (lp->ptid));
2836 }
2837
2838 lp->stop_pc = pc;
2839 }
2840
2841
2842 /* Returns true if the LWP had stopped for a software breakpoint. */
2843
2844 static int
2845 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2846 {
2847 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2848
2849 gdb_assert (lp != NULL);
2850
2851 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2852 }
2853
2854 /* Implement the supports_stopped_by_sw_breakpoint method. */
2855
2856 static int
2857 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2858 {
2859 return USE_SIGTRAP_SIGINFO;
2860 }
2861
2862 /* Returns true if the LWP had stopped for a hardware
2863 breakpoint/watchpoint. */
2864
2865 static int
2866 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2867 {
2868 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2869
2870 gdb_assert (lp != NULL);
2871
2872 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2873 }
2874
2875 /* Implement the supports_stopped_by_hw_breakpoint method. */
2876
2877 static int
2878 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2879 {
2880 return USE_SIGTRAP_SIGINFO;
2881 }
2882
2883 /* Select one LWP out of those that have events pending. */
2884
2885 static void
2886 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2887 {
2888 int num_events = 0;
2889 int random_selector;
2890 struct lwp_info *event_lp = NULL;
2891
2892 /* Record the wait status for the original LWP. */
2893 (*orig_lp)->status = *status;
2894
2895 /* In all-stop, give preference to the LWP that is being
2896 single-stepped. There will be at most one, and it will be the
2897 LWP that the core is most interested in. If we didn't do this,
2898 then we'd have to handle pending step SIGTRAPs somehow in case
2899 the core later continues the previously-stepped thread, as
2900 otherwise we'd report the pending SIGTRAP then, and the core, not
2901 having stepped the thread, wouldn't understand what the trap was
2902 for, and therefore would report it to the user as a random
2903 signal. */
2904 if (!target_is_non_stop_p ())
2905 {
2906 event_lp = iterate_over_lwps (filter,
2907 select_singlestep_lwp_callback, NULL);
2908 if (event_lp != NULL)
2909 {
2910 if (debug_linux_nat)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "SEL: Select single-step %s\n",
2913 target_pid_to_str (event_lp->ptid));
2914 }
2915 }
2916
2917 if (event_lp == NULL)
2918 {
2919 /* Pick one at random, out of those which have had events. */
2920
2921 /* First see how many events we have. */
2922 iterate_over_lwps (filter, count_events_callback, &num_events);
2923 gdb_assert (num_events > 0);
2924
2925 /* Now randomly pick a LWP out of those that have had
2926 events. */
2927 random_selector = (int)
2928 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2929
2930 if (debug_linux_nat && num_events > 1)
2931 fprintf_unfiltered (gdb_stdlog,
2932 "SEL: Found %d events, selecting #%d\n",
2933 num_events, random_selector);
2934
2935 event_lp = iterate_over_lwps (filter,
2936 select_event_lwp_callback,
2937 &random_selector);
2938 }
2939
2940 if (event_lp != NULL)
2941 {
2942 /* Switch the event LWP. */
2943 *orig_lp = event_lp;
2944 *status = event_lp->status;
2945 }
2946
2947 /* Flush the wait status for the event LWP. */
2948 (*orig_lp)->status = 0;
2949 }
2950
2951 /* Return non-zero if LP has been resumed. */
2952
2953 static int
2954 resumed_callback (struct lwp_info *lp, void *data)
2955 {
2956 return lp->resumed;
2957 }
2958
2959 /* Check if we should go on and pass this event to common code.
2960 Return the affected lwp if we are, or NULL otherwise. */
2961
2962 static struct lwp_info *
2963 linux_nat_filter_event (int lwpid, int status)
2964 {
2965 struct lwp_info *lp;
2966 int event = linux_ptrace_get_extended_event (status);
2967
2968 lp = find_lwp_pid (pid_to_ptid (lwpid));
2969
2970 /* Check for stop events reported by a process we didn't already
2971 know about - anything not already in our LWP list.
2972
2973 If we're expecting to receive stopped processes after
2974 fork, vfork, and clone events, then we'll just add the
2975 new one to our list and go back to waiting for the event
2976 to be reported - the stopped process might be returned
2977 from waitpid before or after the event is.
2978
2979 But note the case of a non-leader thread exec'ing after the
2980 leader having exited, and gone from our lists. The non-leader
2981 thread changes its tid to the tgid. */
2982
2983 if (WIFSTOPPED (status) && lp == NULL
2984 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2985 {
2986 /* A multi-thread exec after we had seen the leader exiting. */
2987 if (debug_linux_nat)
2988 fprintf_unfiltered (gdb_stdlog,
2989 "LLW: Re-adding thread group leader LWP %d.\n",
2990 lwpid);
2991
2992 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2993 lp->stopped = 1;
2994 lp->resumed = 1;
2995 add_thread (lp->ptid);
2996 }
2997
2998 if (WIFSTOPPED (status) && !lp)
2999 {
3000 if (debug_linux_nat)
3001 fprintf_unfiltered (gdb_stdlog,
3002 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3003 (long) lwpid, status_to_str (status));
3004 add_to_pid_list (&stopped_pids, lwpid, status);
3005 return NULL;
3006 }
3007
3008 /* Make sure we don't report an event for the exit of an LWP not in
3009 our list, i.e. not part of the current process. This can happen
3010 if we detach from a program we originally forked and then it
3011 exits. */
3012 if (!WIFSTOPPED (status) && !lp)
3013 return NULL;
3014
3015 /* This LWP is stopped now. (And if dead, this prevents it from
3016 ever being continued.) */
3017 lp->stopped = 1;
3018
3019 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3020 {
3021 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3022 int options = linux_nat_ptrace_options (inf->attach_flag);
3023
3024 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3025 lp->must_set_ptrace_flags = 0;
3026 }
3027
3028 /* Handle GNU/Linux's syscall SIGTRAPs. */
3029 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3030 {
3031 /* No longer need the sysgood bit. The ptrace event ends up
3032 recorded in lp->waitstatus if we care for it. We can carry
3033 on handling the event like a regular SIGTRAP from here
3034 on. */
3035 status = W_STOPCODE (SIGTRAP);
3036 if (linux_handle_syscall_trap (lp, 0))
3037 return NULL;
3038 }
3039 else
3040 {
3041 /* Almost all other ptrace-stops are known to be outside of system
3042 calls, with further exceptions in linux_handle_extended_wait. */
3043 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3044 }
3045
3046 /* Handle GNU/Linux's extended waitstatus for trace events. */
3047 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3048 && linux_is_extended_waitstatus (status))
3049 {
3050 if (debug_linux_nat)
3051 fprintf_unfiltered (gdb_stdlog,
3052 "LLW: Handling extended status 0x%06x\n",
3053 status);
3054 if (linux_handle_extended_wait (lp, status))
3055 return NULL;
3056 }
3057
3058 /* Check if the thread has exited. */
3059 if (WIFEXITED (status) || WIFSIGNALED (status))
3060 {
3061 if (!report_thread_events
3062 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3063 {
3064 if (debug_linux_nat)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "LLW: %s exited.\n",
3067 target_pid_to_str (lp->ptid));
3068
3069 /* If there is at least one more LWP, then the exit signal
3070 was not the end of the debugged application and should be
3071 ignored. */
3072 exit_lwp (lp);
3073 return NULL;
3074 }
3075
3076 /* Note that even if the leader was ptrace-stopped, it can still
3077 exit, if e.g., some other thread brings down the whole
3078 process (calls `exit'). So don't assert that the lwp is
3079 resumed. */
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LWP %ld exited (resumed=%d)\n",
3083 ptid_get_lwp (lp->ptid), lp->resumed);
3084
3085 /* Dead LWP's aren't expected to reported a pending sigstop. */
3086 lp->signalled = 0;
3087
3088 /* Store the pending event in the waitstatus, because
3089 W_EXITCODE(0,0) == 0. */
3090 store_waitstatus (&lp->waitstatus, status);
3091 return lp;
3092 }
3093
3094 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3095 an attempt to stop an LWP. */
3096 if (lp->signalled
3097 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3098 {
3099 lp->signalled = 0;
3100
3101 if (lp->last_resume_kind == resume_stop)
3102 {
3103 if (debug_linux_nat)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "LLW: resume_stop SIGSTOP caught for %s.\n",
3106 target_pid_to_str (lp->ptid));
3107 }
3108 else
3109 {
3110 /* This is a delayed SIGSTOP. Filter out the event. */
3111
3112 if (debug_linux_nat)
3113 fprintf_unfiltered (gdb_stdlog,
3114 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3115 lp->step ?
3116 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3117 target_pid_to_str (lp->ptid));
3118
3119 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3120 gdb_assert (lp->resumed);
3121 return NULL;
3122 }
3123 }
3124
3125 /* Make sure we don't report a SIGINT that we have already displayed
3126 for another thread. */
3127 if (lp->ignore_sigint
3128 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3129 {
3130 if (debug_linux_nat)
3131 fprintf_unfiltered (gdb_stdlog,
3132 "LLW: Delayed SIGINT caught for %s.\n",
3133 target_pid_to_str (lp->ptid));
3134
3135 /* This is a delayed SIGINT. */
3136 lp->ignore_sigint = 0;
3137
3138 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3139 if (debug_linux_nat)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3142 lp->step ?
3143 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3144 target_pid_to_str (lp->ptid));
3145 gdb_assert (lp->resumed);
3146
3147 /* Discard the event. */
3148 return NULL;
3149 }
3150
3151 /* Don't report signals that GDB isn't interested in, such as
3152 signals that are neither printed nor stopped upon. Stopping all
3153 threads can be a bit time-consuming so if we want decent
3154 performance with heavily multi-threaded programs, especially when
3155 they're using a high frequency timer, we'd better avoid it if we
3156 can. */
3157 if (WIFSTOPPED (status))
3158 {
3159 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3160
3161 if (!target_is_non_stop_p ())
3162 {
3163 /* Only do the below in all-stop, as we currently use SIGSTOP
3164 to implement target_stop (see linux_nat_stop) in
3165 non-stop. */
3166 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3167 {
3168 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3169 forwarded to the entire process group, that is, all LWPs
3170 will receive it - unless they're using CLONE_THREAD to
3171 share signals. Since we only want to report it once, we
3172 mark it as ignored for all LWPs except this one. */
3173 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3174 set_ignore_sigint, NULL);
3175 lp->ignore_sigint = 0;
3176 }
3177 else
3178 maybe_clear_ignore_sigint (lp);
3179 }
3180
3181 /* When using hardware single-step, we need to report every signal.
3182 Otherwise, signals in pass_mask may be short-circuited
3183 except signals that might be caused by a breakpoint. */
3184 if (!lp->step
3185 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3186 && !linux_wstatus_maybe_breakpoint (status))
3187 {
3188 linux_resume_one_lwp (lp, lp->step, signo);
3189 if (debug_linux_nat)
3190 fprintf_unfiltered (gdb_stdlog,
3191 "LLW: %s %s, %s (preempt 'handle')\n",
3192 lp->step ?
3193 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3194 target_pid_to_str (lp->ptid),
3195 (signo != GDB_SIGNAL_0
3196 ? strsignal (gdb_signal_to_host (signo))
3197 : "0"));
3198 return NULL;
3199 }
3200 }
3201
3202 /* An interesting event. */
3203 gdb_assert (lp);
3204 lp->status = status;
3205 save_stop_reason (lp);
3206 return lp;
3207 }
3208
3209 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3210 their exits until all other threads in the group have exited. */
3211
3212 static void
3213 check_zombie_leaders (void)
3214 {
3215 struct inferior *inf;
3216
3217 ALL_INFERIORS (inf)
3218 {
3219 struct lwp_info *leader_lp;
3220
3221 if (inf->pid == 0)
3222 continue;
3223
3224 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3225 if (leader_lp != NULL
3226 /* Check if there are other threads in the group, as we may
3227 have raced with the inferior simply exiting. */
3228 && num_lwps (inf->pid) > 1
3229 && linux_proc_pid_is_zombie (inf->pid))
3230 {
3231 if (debug_linux_nat)
3232 fprintf_unfiltered (gdb_stdlog,
3233 "CZL: Thread group leader %d zombie "
3234 "(it exited, or another thread execd).\n",
3235 inf->pid);
3236
3237 /* A leader zombie can mean one of two things:
3238
3239 - It exited, and there's an exit status pending
3240 available, or only the leader exited (not the whole
3241 program). In the latter case, we can't waitpid the
3242 leader's exit status until all other threads are gone.
3243
3244 - There are 3 or more threads in the group, and a thread
3245 other than the leader exec'd. See comments on exec
3246 events at the top of the file. We could try
3247 distinguishing the exit and exec cases, by waiting once
3248 more, and seeing if something comes out, but it doesn't
3249 sound useful. The previous leader _does_ go away, and
3250 we'll re-add the new one once we see the exec event
3251 (which is just the same as what would happen if the
3252 previous leader did exit voluntarily before some other
3253 thread execs). */
3254
3255 if (debug_linux_nat)
3256 fprintf_unfiltered (gdb_stdlog,
3257 "CZL: Thread group leader %d vanished.\n",
3258 inf->pid);
3259 exit_lwp (leader_lp);
3260 }
3261 }
3262 }
3263
3264 /* Convenience function that is called when the kernel reports an exit
3265 event. This decides whether to report the event to GDB as a
3266 process exit event, a thread exit event, or to suppress the
3267 event. */
3268
3269 static ptid_t
3270 filter_exit_event (struct lwp_info *event_child,
3271 struct target_waitstatus *ourstatus)
3272 {
3273 ptid_t ptid = event_child->ptid;
3274
3275 if (num_lwps (ptid_get_pid (ptid)) > 1)
3276 {
3277 if (report_thread_events)
3278 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3279 else
3280 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3281
3282 exit_lwp (event_child);
3283 }
3284
3285 return ptid;
3286 }
3287
3288 static ptid_t
3289 linux_nat_wait_1 (struct target_ops *ops,
3290 ptid_t ptid, struct target_waitstatus *ourstatus,
3291 int target_options)
3292 {
3293 sigset_t prev_mask;
3294 enum resume_kind last_resume_kind;
3295 struct lwp_info *lp;
3296 int status;
3297
3298 if (debug_linux_nat)
3299 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3300
3301 /* The first time we get here after starting a new inferior, we may
3302 not have added it to the LWP list yet - this is the earliest
3303 moment at which we know its PID. */
3304 if (ptid_is_pid (inferior_ptid))
3305 {
3306 /* Upgrade the main thread's ptid. */
3307 thread_change_ptid (inferior_ptid,
3308 ptid_build (ptid_get_pid (inferior_ptid),
3309 ptid_get_pid (inferior_ptid), 0));
3310
3311 lp = add_initial_lwp (inferior_ptid);
3312 lp->resumed = 1;
3313 }
3314
3315 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3316 block_child_signals (&prev_mask);
3317
3318 /* First check if there is a LWP with a wait status pending. */
3319 lp = iterate_over_lwps (ptid, status_callback, NULL);
3320 if (lp != NULL)
3321 {
3322 if (debug_linux_nat)
3323 fprintf_unfiltered (gdb_stdlog,
3324 "LLW: Using pending wait status %s for %s.\n",
3325 status_to_str (lp->status),
3326 target_pid_to_str (lp->ptid));
3327 }
3328
3329 /* But if we don't find a pending event, we'll have to wait. Always
3330 pull all events out of the kernel. We'll randomly select an
3331 event LWP out of all that have events, to prevent starvation. */
3332
3333 while (lp == NULL)
3334 {
3335 pid_t lwpid;
3336
3337 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3338 quirks:
3339
3340 - If the thread group leader exits while other threads in the
3341 thread group still exist, waitpid(TGID, ...) hangs. That
3342 waitpid won't return an exit status until the other threads
3343 in the group are reapped.
3344
3345 - When a non-leader thread execs, that thread just vanishes
3346 without reporting an exit (so we'd hang if we waited for it
3347 explicitly in that case). The exec event is reported to
3348 the TGID pid. */
3349
3350 errno = 0;
3351 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3352
3353 if (debug_linux_nat)
3354 fprintf_unfiltered (gdb_stdlog,
3355 "LNW: waitpid(-1, ...) returned %d, %s\n",
3356 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3357
3358 if (lwpid > 0)
3359 {
3360 if (debug_linux_nat)
3361 {
3362 fprintf_unfiltered (gdb_stdlog,
3363 "LLW: waitpid %ld received %s\n",
3364 (long) lwpid, status_to_str (status));
3365 }
3366
3367 linux_nat_filter_event (lwpid, status);
3368 /* Retry until nothing comes out of waitpid. A single
3369 SIGCHLD can indicate more than one child stopped. */
3370 continue;
3371 }
3372
3373 /* Now that we've pulled all events out of the kernel, resume
3374 LWPs that don't have an interesting event to report. */
3375 iterate_over_lwps (minus_one_ptid,
3376 resume_stopped_resumed_lwps, &minus_one_ptid);
3377
3378 /* ... and find an LWP with a status to report to the core, if
3379 any. */
3380 lp = iterate_over_lwps (ptid, status_callback, NULL);
3381 if (lp != NULL)
3382 break;
3383
3384 /* Check for zombie thread group leaders. Those can't be reaped
3385 until all other threads in the thread group are. */
3386 check_zombie_leaders ();
3387
3388 /* If there are no resumed children left, bail. We'd be stuck
3389 forever in the sigsuspend call below otherwise. */
3390 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3391 {
3392 if (debug_linux_nat)
3393 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3394
3395 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3396
3397 restore_child_signals_mask (&prev_mask);
3398 return minus_one_ptid;
3399 }
3400
3401 /* No interesting event to report to the core. */
3402
3403 if (target_options & TARGET_WNOHANG)
3404 {
3405 if (debug_linux_nat)
3406 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3407
3408 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3409 restore_child_signals_mask (&prev_mask);
3410 return minus_one_ptid;
3411 }
3412
3413 /* We shouldn't end up here unless we want to try again. */
3414 gdb_assert (lp == NULL);
3415
3416 /* Block until we get an event reported with SIGCHLD. */
3417 if (debug_linux_nat)
3418 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3419 sigsuspend (&suspend_mask);
3420 }
3421
3422 gdb_assert (lp);
3423
3424 status = lp->status;
3425 lp->status = 0;
3426
3427 if (!target_is_non_stop_p ())
3428 {
3429 /* Now stop all other LWP's ... */
3430 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3431
3432 /* ... and wait until all of them have reported back that
3433 they're no longer running. */
3434 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3435 }
3436
3437 /* If we're not waiting for a specific LWP, choose an event LWP from
3438 among those that have had events. Giving equal priority to all
3439 LWPs that have had events helps prevent starvation. */
3440 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3441 select_event_lwp (ptid, &lp, &status);
3442
3443 gdb_assert (lp != NULL);
3444
3445 /* Now that we've selected our final event LWP, un-adjust its PC if
3446 it was a software breakpoint, and we can't reliably support the
3447 "stopped by software breakpoint" stop reason. */
3448 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3449 && !USE_SIGTRAP_SIGINFO)
3450 {
3451 struct regcache *regcache = get_thread_regcache (lp->ptid);
3452 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3453 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3454
3455 if (decr_pc != 0)
3456 {
3457 CORE_ADDR pc;
3458
3459 pc = regcache_read_pc (regcache);
3460 regcache_write_pc (regcache, pc + decr_pc);
3461 }
3462 }
3463
3464 /* We'll need this to determine whether to report a SIGSTOP as
3465 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3466 clears it. */
3467 last_resume_kind = lp->last_resume_kind;
3468
3469 if (!target_is_non_stop_p ())
3470 {
3471 /* In all-stop, from the core's perspective, all LWPs are now
3472 stopped until a new resume action is sent over. */
3473 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3474 }
3475 else
3476 {
3477 resume_clear_callback (lp, NULL);
3478 }
3479
3480 if (linux_nat_status_is_event (status))
3481 {
3482 if (debug_linux_nat)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "LLW: trap ptid is %s.\n",
3485 target_pid_to_str (lp->ptid));
3486 }
3487
3488 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3489 {
3490 *ourstatus = lp->waitstatus;
3491 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3492 }
3493 else
3494 store_waitstatus (ourstatus, status);
3495
3496 if (debug_linux_nat)
3497 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3498
3499 restore_child_signals_mask (&prev_mask);
3500
3501 if (last_resume_kind == resume_stop
3502 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3503 && WSTOPSIG (status) == SIGSTOP)
3504 {
3505 /* A thread that has been requested to stop by GDB with
3506 target_stop, and it stopped cleanly, so report as SIG0. The
3507 use of SIGSTOP is an implementation detail. */
3508 ourstatus->value.sig = GDB_SIGNAL_0;
3509 }
3510
3511 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3512 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3513 lp->core = -1;
3514 else
3515 lp->core = linux_common_core_of_thread (lp->ptid);
3516
3517 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3518 return filter_exit_event (lp, ourstatus);
3519
3520 return lp->ptid;
3521 }
3522
3523 /* Resume LWPs that are currently stopped without any pending status
3524 to report, but are resumed from the core's perspective. */
3525
3526 static int
3527 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3528 {
3529 ptid_t *wait_ptid_p = (ptid_t *) data;
3530
3531 if (!lp->stopped)
3532 {
3533 if (debug_linux_nat)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "RSRL: NOT resuming LWP %s, not stopped\n",
3536 target_pid_to_str (lp->ptid));
3537 }
3538 else if (!lp->resumed)
3539 {
3540 if (debug_linux_nat)
3541 fprintf_unfiltered (gdb_stdlog,
3542 "RSRL: NOT resuming LWP %s, not resumed\n",
3543 target_pid_to_str (lp->ptid));
3544 }
3545 else if (lwp_status_pending_p (lp))
3546 {
3547 if (debug_linux_nat)
3548 fprintf_unfiltered (gdb_stdlog,
3549 "RSRL: NOT resuming LWP %s, has pending status\n",
3550 target_pid_to_str (lp->ptid));
3551 }
3552 else
3553 {
3554 struct regcache *regcache = get_thread_regcache (lp->ptid);
3555 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3556
3557 TRY
3558 {
3559 CORE_ADDR pc = regcache_read_pc (regcache);
3560 int leave_stopped = 0;
3561
3562 /* Don't bother if there's a breakpoint at PC that we'd hit
3563 immediately, and we're not waiting for this LWP. */
3564 if (!ptid_match (lp->ptid, *wait_ptid_p))
3565 {
3566 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3567 leave_stopped = 1;
3568 }
3569
3570 if (!leave_stopped)
3571 {
3572 if (debug_linux_nat)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "RSRL: resuming stopped-resumed LWP %s at "
3575 "%s: step=%d\n",
3576 target_pid_to_str (lp->ptid),
3577 paddress (gdbarch, pc),
3578 lp->step);
3579
3580 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3581 }
3582 }
3583 CATCH (ex, RETURN_MASK_ERROR)
3584 {
3585 if (!check_ptrace_stopped_lwp_gone (lp))
3586 throw_exception (ex);
3587 }
3588 END_CATCH
3589 }
3590
3591 return 0;
3592 }
3593
3594 static ptid_t
3595 linux_nat_wait (struct target_ops *ops,
3596 ptid_t ptid, struct target_waitstatus *ourstatus,
3597 int target_options)
3598 {
3599 ptid_t event_ptid;
3600
3601 if (debug_linux_nat)
3602 {
3603 char *options_string;
3604
3605 options_string = target_options_to_string (target_options);
3606 fprintf_unfiltered (gdb_stdlog,
3607 "linux_nat_wait: [%s], [%s]\n",
3608 target_pid_to_str (ptid),
3609 options_string);
3610 xfree (options_string);
3611 }
3612
3613 /* Flush the async file first. */
3614 if (target_is_async_p ())
3615 async_file_flush ();
3616
3617 /* Resume LWPs that are currently stopped without any pending status
3618 to report, but are resumed from the core's perspective. LWPs get
3619 in this state if we find them stopping at a time we're not
3620 interested in reporting the event (target_wait on a
3621 specific_process, for example, see linux_nat_wait_1), and
3622 meanwhile the event became uninteresting. Don't bother resuming
3623 LWPs we're not going to wait for if they'd stop immediately. */
3624 if (target_is_non_stop_p ())
3625 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3626
3627 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3628
3629 /* If we requested any event, and something came out, assume there
3630 may be more. If we requested a specific lwp or process, also
3631 assume there may be more. */
3632 if (target_is_async_p ()
3633 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3634 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3635 || !ptid_equal (ptid, minus_one_ptid)))
3636 async_file_mark ();
3637
3638 return event_ptid;
3639 }
3640
3641 /* Kill one LWP. */
3642
3643 static void
3644 kill_one_lwp (pid_t pid)
3645 {
3646 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3647
3648 errno = 0;
3649 kill_lwp (pid, SIGKILL);
3650 if (debug_linux_nat)
3651 {
3652 int save_errno = errno;
3653
3654 fprintf_unfiltered (gdb_stdlog,
3655 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3656 save_errno ? safe_strerror (save_errno) : "OK");
3657 }
3658
3659 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3660
3661 errno = 0;
3662 ptrace (PTRACE_KILL, pid, 0, 0);
3663 if (debug_linux_nat)
3664 {
3665 int save_errno = errno;
3666
3667 fprintf_unfiltered (gdb_stdlog,
3668 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3669 save_errno ? safe_strerror (save_errno) : "OK");
3670 }
3671 }
3672
3673 /* Wait for an LWP to die. */
3674
3675 static void
3676 kill_wait_one_lwp (pid_t pid)
3677 {
3678 pid_t res;
3679
3680 /* We must make sure that there are no pending events (delayed
3681 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3682 program doesn't interfere with any following debugging session. */
3683
3684 do
3685 {
3686 res = my_waitpid (pid, NULL, __WALL);
3687 if (res != (pid_t) -1)
3688 {
3689 if (debug_linux_nat)
3690 fprintf_unfiltered (gdb_stdlog,
3691 "KWC: wait %ld received unknown.\n",
3692 (long) pid);
3693 /* The Linux kernel sometimes fails to kill a thread
3694 completely after PTRACE_KILL; that goes from the stop
3695 point in do_fork out to the one in get_signal_to_deliver
3696 and waits again. So kill it again. */
3697 kill_one_lwp (pid);
3698 }
3699 }
3700 while (res == pid);
3701
3702 gdb_assert (res == -1 && errno == ECHILD);
3703 }
3704
3705 /* Callback for iterate_over_lwps. */
3706
3707 static int
3708 kill_callback (struct lwp_info *lp, void *data)
3709 {
3710 kill_one_lwp (ptid_get_lwp (lp->ptid));
3711 return 0;
3712 }
3713
3714 /* Callback for iterate_over_lwps. */
3715
3716 static int
3717 kill_wait_callback (struct lwp_info *lp, void *data)
3718 {
3719 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3720 return 0;
3721 }
3722
3723 /* Kill the fork children of any threads of inferior INF that are
3724 stopped at a fork event. */
3725
3726 static void
3727 kill_unfollowed_fork_children (struct inferior *inf)
3728 {
3729 struct thread_info *thread;
3730
3731 ALL_NON_EXITED_THREADS (thread)
3732 if (thread->inf == inf)
3733 {
3734 struct target_waitstatus *ws = &thread->pending_follow;
3735
3736 if (ws->kind == TARGET_WAITKIND_FORKED
3737 || ws->kind == TARGET_WAITKIND_VFORKED)
3738 {
3739 ptid_t child_ptid = ws->value.related_pid;
3740 int child_pid = ptid_get_pid (child_ptid);
3741 int child_lwp = ptid_get_lwp (child_ptid);
3742
3743 kill_one_lwp (child_lwp);
3744 kill_wait_one_lwp (child_lwp);
3745
3746 /* Let the arch-specific native code know this process is
3747 gone. */
3748 linux_nat_forget_process (child_pid);
3749 }
3750 }
3751 }
3752
3753 static void
3754 linux_nat_kill (struct target_ops *ops)
3755 {
3756 /* If we're stopped while forking and we haven't followed yet,
3757 kill the other task. We need to do this first because the
3758 parent will be sleeping if this is a vfork. */
3759 kill_unfollowed_fork_children (current_inferior ());
3760
3761 if (forks_exist_p ())
3762 linux_fork_killall ();
3763 else
3764 {
3765 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3766
3767 /* Stop all threads before killing them, since ptrace requires
3768 that the thread is stopped to sucessfully PTRACE_KILL. */
3769 iterate_over_lwps (ptid, stop_callback, NULL);
3770 /* ... and wait until all of them have reported back that
3771 they're no longer running. */
3772 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3773
3774 /* Kill all LWP's ... */
3775 iterate_over_lwps (ptid, kill_callback, NULL);
3776
3777 /* ... and wait until we've flushed all events. */
3778 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3779 }
3780
3781 target_mourn_inferior (inferior_ptid);
3782 }
3783
3784 static void
3785 linux_nat_mourn_inferior (struct target_ops *ops)
3786 {
3787 int pid = ptid_get_pid (inferior_ptid);
3788
3789 purge_lwp_list (pid);
3790
3791 if (! forks_exist_p ())
3792 /* Normal case, no other forks available. */
3793 linux_ops->to_mourn_inferior (ops);
3794 else
3795 /* Multi-fork case. The current inferior_ptid has exited, but
3796 there are other viable forks to debug. Delete the exiting
3797 one and context-switch to the first available. */
3798 linux_fork_mourn_inferior ();
3799
3800 /* Let the arch-specific native code know this process is gone. */
3801 linux_nat_forget_process (pid);
3802 }
3803
3804 /* Convert a native/host siginfo object, into/from the siginfo in the
3805 layout of the inferiors' architecture. */
3806
3807 static void
3808 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3809 {
3810 int done = 0;
3811
3812 if (linux_nat_siginfo_fixup != NULL)
3813 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3814
3815 /* If there was no callback, or the callback didn't do anything,
3816 then just do a straight memcpy. */
3817 if (!done)
3818 {
3819 if (direction == 1)
3820 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3821 else
3822 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3823 }
3824 }
3825
3826 static enum target_xfer_status
3827 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3828 const char *annex, gdb_byte *readbuf,
3829 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3830 ULONGEST *xfered_len)
3831 {
3832 int pid;
3833 siginfo_t siginfo;
3834 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3835
3836 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3837 gdb_assert (readbuf || writebuf);
3838
3839 pid = ptid_get_lwp (inferior_ptid);
3840 if (pid == 0)
3841 pid = ptid_get_pid (inferior_ptid);
3842
3843 if (offset > sizeof (siginfo))
3844 return TARGET_XFER_E_IO;
3845
3846 errno = 0;
3847 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3848 if (errno != 0)
3849 return TARGET_XFER_E_IO;
3850
3851 /* When GDB is built as a 64-bit application, ptrace writes into
3852 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3853 inferior with a 64-bit GDB should look the same as debugging it
3854 with a 32-bit GDB, we need to convert it. GDB core always sees
3855 the converted layout, so any read/write will have to be done
3856 post-conversion. */
3857 siginfo_fixup (&siginfo, inf_siginfo, 0);
3858
3859 if (offset + len > sizeof (siginfo))
3860 len = sizeof (siginfo) - offset;
3861
3862 if (readbuf != NULL)
3863 memcpy (readbuf, inf_siginfo + offset, len);
3864 else
3865 {
3866 memcpy (inf_siginfo + offset, writebuf, len);
3867
3868 /* Convert back to ptrace layout before flushing it out. */
3869 siginfo_fixup (&siginfo, inf_siginfo, 1);
3870
3871 errno = 0;
3872 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3873 if (errno != 0)
3874 return TARGET_XFER_E_IO;
3875 }
3876
3877 *xfered_len = len;
3878 return TARGET_XFER_OK;
3879 }
3880
3881 static enum target_xfer_status
3882 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3883 const char *annex, gdb_byte *readbuf,
3884 const gdb_byte *writebuf,
3885 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3886 {
3887 enum target_xfer_status xfer;
3888
3889 if (object == TARGET_OBJECT_SIGNAL_INFO)
3890 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3891 offset, len, xfered_len);
3892
3893 /* The target is connected but no live inferior is selected. Pass
3894 this request down to a lower stratum (e.g., the executable
3895 file). */
3896 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3897 return TARGET_XFER_EOF;
3898
3899 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3900 offset, len, xfered_len);
3901
3902 return xfer;
3903 }
3904
3905 static int
3906 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3907 {
3908 /* As long as a PTID is in lwp list, consider it alive. */
3909 return find_lwp_pid (ptid) != NULL;
3910 }
3911
3912 /* Implement the to_update_thread_list target method for this
3913 target. */
3914
3915 static void
3916 linux_nat_update_thread_list (struct target_ops *ops)
3917 {
3918 struct lwp_info *lwp;
3919
3920 /* We add/delete threads from the list as clone/exit events are
3921 processed, so just try deleting exited threads still in the
3922 thread list. */
3923 delete_exited_threads ();
3924
3925 /* Update the processor core that each lwp/thread was last seen
3926 running on. */
3927 ALL_LWPS (lwp)
3928 {
3929 /* Avoid accessing /proc if the thread hasn't run since we last
3930 time we fetched the thread's core. Accessing /proc becomes
3931 noticeably expensive when we have thousands of LWPs. */
3932 if (lwp->core == -1)
3933 lwp->core = linux_common_core_of_thread (lwp->ptid);
3934 }
3935 }
3936
3937 static const char *
3938 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3939 {
3940 static char buf[64];
3941
3942 if (ptid_lwp_p (ptid)
3943 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3944 || num_lwps (ptid_get_pid (ptid)) > 1))
3945 {
3946 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3947 return buf;
3948 }
3949
3950 return normal_pid_to_str (ptid);
3951 }
3952
3953 static const char *
3954 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3955 {
3956 return linux_proc_tid_get_name (thr->ptid);
3957 }
3958
3959 /* Accepts an integer PID; Returns a string representing a file that
3960 can be opened to get the symbols for the child process. */
3961
3962 static char *
3963 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3964 {
3965 return linux_proc_pid_to_exec_file (pid);
3966 }
3967
3968 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3969 Because we can use a single read/write call, this can be much more
3970 efficient than banging away at PTRACE_PEEKTEXT. */
3971
3972 static enum target_xfer_status
3973 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3974 const char *annex, gdb_byte *readbuf,
3975 const gdb_byte *writebuf,
3976 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3977 {
3978 LONGEST ret;
3979 int fd;
3980 char filename[64];
3981
3982 if (object != TARGET_OBJECT_MEMORY)
3983 return TARGET_XFER_EOF;
3984
3985 /* Don't bother for one word. */
3986 if (len < 3 * sizeof (long))
3987 return TARGET_XFER_EOF;
3988
3989 /* We could keep this file open and cache it - possibly one per
3990 thread. That requires some juggling, but is even faster. */
3991 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3992 ptid_get_lwp (inferior_ptid));
3993 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3994 | O_LARGEFILE), 0);
3995 if (fd == -1)
3996 return TARGET_XFER_EOF;
3997
3998 /* Use pread64/pwrite64 if available, since they save a syscall and can
3999 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4000 debugging a SPARC64 application). */
4001 #ifdef HAVE_PREAD64
4002 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4003 : pwrite64 (fd, writebuf, len, offset));
4004 #else
4005 ret = lseek (fd, offset, SEEK_SET);
4006 if (ret != -1)
4007 ret = (readbuf ? read (fd, readbuf, len)
4008 : write (fd, writebuf, len));
4009 #endif
4010
4011 close (fd);
4012
4013 if (ret == -1 || ret == 0)
4014 return TARGET_XFER_EOF;
4015 else
4016 {
4017 *xfered_len = ret;
4018 return TARGET_XFER_OK;
4019 }
4020 }
4021
4022
4023 /* Enumerate spufs IDs for process PID. */
4024 static LONGEST
4025 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4026 {
4027 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4028 LONGEST pos = 0;
4029 LONGEST written = 0;
4030 char path[128];
4031 DIR *dir;
4032 struct dirent *entry;
4033
4034 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4035 dir = opendir (path);
4036 if (!dir)
4037 return -1;
4038
4039 rewinddir (dir);
4040 while ((entry = readdir (dir)) != NULL)
4041 {
4042 struct stat st;
4043 struct statfs stfs;
4044 int fd;
4045
4046 fd = atoi (entry->d_name);
4047 if (!fd)
4048 continue;
4049
4050 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4051 if (stat (path, &st) != 0)
4052 continue;
4053 if (!S_ISDIR (st.st_mode))
4054 continue;
4055
4056 if (statfs (path, &stfs) != 0)
4057 continue;
4058 if (stfs.f_type != SPUFS_MAGIC)
4059 continue;
4060
4061 if (pos >= offset && pos + 4 <= offset + len)
4062 {
4063 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4064 written += 4;
4065 }
4066 pos += 4;
4067 }
4068
4069 closedir (dir);
4070 return written;
4071 }
4072
4073 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4074 object type, using the /proc file system. */
4075
4076 static enum target_xfer_status
4077 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4078 const char *annex, gdb_byte *readbuf,
4079 const gdb_byte *writebuf,
4080 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4081 {
4082 char buf[128];
4083 int fd = 0;
4084 int ret = -1;
4085 int pid = ptid_get_lwp (inferior_ptid);
4086
4087 if (!annex)
4088 {
4089 if (!readbuf)
4090 return TARGET_XFER_E_IO;
4091 else
4092 {
4093 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4094
4095 if (l < 0)
4096 return TARGET_XFER_E_IO;
4097 else if (l == 0)
4098 return TARGET_XFER_EOF;
4099 else
4100 {
4101 *xfered_len = (ULONGEST) l;
4102 return TARGET_XFER_OK;
4103 }
4104 }
4105 }
4106
4107 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4108 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4109 if (fd <= 0)
4110 return TARGET_XFER_E_IO;
4111
4112 if (offset != 0
4113 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4114 {
4115 close (fd);
4116 return TARGET_XFER_EOF;
4117 }
4118
4119 if (writebuf)
4120 ret = write (fd, writebuf, (size_t) len);
4121 else if (readbuf)
4122 ret = read (fd, readbuf, (size_t) len);
4123
4124 close (fd);
4125
4126 if (ret < 0)
4127 return TARGET_XFER_E_IO;
4128 else if (ret == 0)
4129 return TARGET_XFER_EOF;
4130 else
4131 {
4132 *xfered_len = (ULONGEST) ret;
4133 return TARGET_XFER_OK;
4134 }
4135 }
4136
4137
4138 /* Parse LINE as a signal set and add its set bits to SIGS. */
4139
4140 static void
4141 add_line_to_sigset (const char *line, sigset_t *sigs)
4142 {
4143 int len = strlen (line) - 1;
4144 const char *p;
4145 int signum;
4146
4147 if (line[len] != '\n')
4148 error (_("Could not parse signal set: %s"), line);
4149
4150 p = line;
4151 signum = len * 4;
4152 while (len-- > 0)
4153 {
4154 int digit;
4155
4156 if (*p >= '0' && *p <= '9')
4157 digit = *p - '0';
4158 else if (*p >= 'a' && *p <= 'f')
4159 digit = *p - 'a' + 10;
4160 else
4161 error (_("Could not parse signal set: %s"), line);
4162
4163 signum -= 4;
4164
4165 if (digit & 1)
4166 sigaddset (sigs, signum + 1);
4167 if (digit & 2)
4168 sigaddset (sigs, signum + 2);
4169 if (digit & 4)
4170 sigaddset (sigs, signum + 3);
4171 if (digit & 8)
4172 sigaddset (sigs, signum + 4);
4173
4174 p++;
4175 }
4176 }
4177
4178 /* Find process PID's pending signals from /proc/pid/status and set
4179 SIGS to match. */
4180
4181 void
4182 linux_proc_pending_signals (int pid, sigset_t *pending,
4183 sigset_t *blocked, sigset_t *ignored)
4184 {
4185 char buffer[PATH_MAX], fname[PATH_MAX];
4186
4187 sigemptyset (pending);
4188 sigemptyset (blocked);
4189 sigemptyset (ignored);
4190 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4191 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4192 if (procfile == NULL)
4193 error (_("Could not open %s"), fname);
4194
4195 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4196 {
4197 /* Normal queued signals are on the SigPnd line in the status
4198 file. However, 2.6 kernels also have a "shared" pending
4199 queue for delivering signals to a thread group, so check for
4200 a ShdPnd line also.
4201
4202 Unfortunately some Red Hat kernels include the shared pending
4203 queue but not the ShdPnd status field. */
4204
4205 if (startswith (buffer, "SigPnd:\t"))
4206 add_line_to_sigset (buffer + 8, pending);
4207 else if (startswith (buffer, "ShdPnd:\t"))
4208 add_line_to_sigset (buffer + 8, pending);
4209 else if (startswith (buffer, "SigBlk:\t"))
4210 add_line_to_sigset (buffer + 8, blocked);
4211 else if (startswith (buffer, "SigIgn:\t"))
4212 add_line_to_sigset (buffer + 8, ignored);
4213 }
4214 }
4215
4216 static enum target_xfer_status
4217 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4218 const char *annex, gdb_byte *readbuf,
4219 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4220 ULONGEST *xfered_len)
4221 {
4222 gdb_assert (object == TARGET_OBJECT_OSDATA);
4223
4224 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4225 if (*xfered_len == 0)
4226 return TARGET_XFER_EOF;
4227 else
4228 return TARGET_XFER_OK;
4229 }
4230
4231 static enum target_xfer_status
4232 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4233 const char *annex, gdb_byte *readbuf,
4234 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4235 ULONGEST *xfered_len)
4236 {
4237 enum target_xfer_status xfer;
4238
4239 if (object == TARGET_OBJECT_AUXV)
4240 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4241 offset, len, xfered_len);
4242
4243 if (object == TARGET_OBJECT_OSDATA)
4244 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4245 offset, len, xfered_len);
4246
4247 if (object == TARGET_OBJECT_SPU)
4248 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4249 offset, len, xfered_len);
4250
4251 /* GDB calculates all the addresses in possibly larget width of the address.
4252 Address width needs to be masked before its final use - either by
4253 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4254
4255 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4256
4257 if (object == TARGET_OBJECT_MEMORY)
4258 {
4259 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4260
4261 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4262 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4263 }
4264
4265 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4266 offset, len, xfered_len);
4267 if (xfer != TARGET_XFER_EOF)
4268 return xfer;
4269
4270 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4271 offset, len, xfered_len);
4272 }
4273
4274 static void
4275 cleanup_target_stop (void *arg)
4276 {
4277 ptid_t *ptid = (ptid_t *) arg;
4278
4279 gdb_assert (arg != NULL);
4280
4281 /* Unpause all */
4282 target_continue_no_signal (*ptid);
4283 }
4284
4285 static VEC(static_tracepoint_marker_p) *
4286 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4287 const char *strid)
4288 {
4289 char s[IPA_CMD_BUF_SIZE];
4290 struct cleanup *old_chain;
4291 int pid = ptid_get_pid (inferior_ptid);
4292 VEC(static_tracepoint_marker_p) *markers = NULL;
4293 struct static_tracepoint_marker *marker = NULL;
4294 char *p = s;
4295 ptid_t ptid = ptid_build (pid, 0, 0);
4296
4297 /* Pause all */
4298 target_stop (ptid);
4299
4300 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4301 s[sizeof ("qTfSTM")] = 0;
4302
4303 agent_run_command (pid, s, strlen (s) + 1);
4304
4305 old_chain = make_cleanup (free_current_marker, &marker);
4306 make_cleanup (cleanup_target_stop, &ptid);
4307
4308 while (*p++ == 'm')
4309 {
4310 if (marker == NULL)
4311 marker = XCNEW (struct static_tracepoint_marker);
4312
4313 do
4314 {
4315 parse_static_tracepoint_marker_definition (p, &p, marker);
4316
4317 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4318 {
4319 VEC_safe_push (static_tracepoint_marker_p,
4320 markers, marker);
4321 marker = NULL;
4322 }
4323 else
4324 {
4325 release_static_tracepoint_marker (marker);
4326 memset (marker, 0, sizeof (*marker));
4327 }
4328 }
4329 while (*p++ == ','); /* comma-separated list */
4330
4331 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4332 s[sizeof ("qTsSTM")] = 0;
4333 agent_run_command (pid, s, strlen (s) + 1);
4334 p = s;
4335 }
4336
4337 do_cleanups (old_chain);
4338
4339 return markers;
4340 }
4341
4342 /* Create a prototype generic GNU/Linux target. The client can override
4343 it with local methods. */
4344
4345 static void
4346 linux_target_install_ops (struct target_ops *t)
4347 {
4348 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4349 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4350 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4351 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4352 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4353 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4354 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4355 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4356 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4357 t->to_post_attach = linux_child_post_attach;
4358 t->to_follow_fork = linux_child_follow_fork;
4359
4360 super_xfer_partial = t->to_xfer_partial;
4361 t->to_xfer_partial = linux_xfer_partial;
4362
4363 t->to_static_tracepoint_markers_by_strid
4364 = linux_child_static_tracepoint_markers_by_strid;
4365 }
4366
4367 struct target_ops *
4368 linux_target (void)
4369 {
4370 struct target_ops *t;
4371
4372 t = inf_ptrace_target ();
4373 linux_target_install_ops (t);
4374
4375 return t;
4376 }
4377
4378 struct target_ops *
4379 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4380 {
4381 struct target_ops *t;
4382
4383 t = inf_ptrace_trad_target (register_u_offset);
4384 linux_target_install_ops (t);
4385
4386 return t;
4387 }
4388
4389 /* target_is_async_p implementation. */
4390
4391 static int
4392 linux_nat_is_async_p (struct target_ops *ops)
4393 {
4394 return linux_is_async_p ();
4395 }
4396
4397 /* target_can_async_p implementation. */
4398
4399 static int
4400 linux_nat_can_async_p (struct target_ops *ops)
4401 {
4402 /* We're always async, unless the user explicitly prevented it with the
4403 "maint set target-async" command. */
4404 return target_async_permitted;
4405 }
4406
4407 static int
4408 linux_nat_supports_non_stop (struct target_ops *self)
4409 {
4410 return 1;
4411 }
4412
4413 /* to_always_non_stop_p implementation. */
4414
4415 static int
4416 linux_nat_always_non_stop_p (struct target_ops *self)
4417 {
4418 return 1;
4419 }
4420
4421 /* True if we want to support multi-process. To be removed when GDB
4422 supports multi-exec. */
4423
4424 int linux_multi_process = 1;
4425
4426 static int
4427 linux_nat_supports_multi_process (struct target_ops *self)
4428 {
4429 return linux_multi_process;
4430 }
4431
4432 static int
4433 linux_nat_supports_disable_randomization (struct target_ops *self)
4434 {
4435 #ifdef HAVE_PERSONALITY
4436 return 1;
4437 #else
4438 return 0;
4439 #endif
4440 }
4441
4442 static int async_terminal_is_ours = 1;
4443
4444 /* target_terminal_inferior implementation.
4445
4446 This is a wrapper around child_terminal_inferior to add async support. */
4447
4448 static void
4449 linux_nat_terminal_inferior (struct target_ops *self)
4450 {
4451 child_terminal_inferior (self);
4452
4453 /* Calls to target_terminal_*() are meant to be idempotent. */
4454 if (!async_terminal_is_ours)
4455 return;
4456
4457 async_terminal_is_ours = 0;
4458 set_sigint_trap ();
4459 }
4460
4461 /* target_terminal::ours implementation.
4462
4463 This is a wrapper around child_terminal_ours to add async support (and
4464 implement the target_terminal::ours vs target_terminal::ours_for_output
4465 distinction). child_terminal_ours is currently no different than
4466 child_terminal_ours_for_output.
4467 We leave target_terminal::ours_for_output alone, leaving it to
4468 child_terminal_ours_for_output. */
4469
4470 static void
4471 linux_nat_terminal_ours (struct target_ops *self)
4472 {
4473 /* GDB should never give the terminal to the inferior if the
4474 inferior is running in the background (run&, continue&, etc.),
4475 but claiming it sure should. */
4476 child_terminal_ours (self);
4477
4478 if (async_terminal_is_ours)
4479 return;
4480
4481 clear_sigint_trap ();
4482 async_terminal_is_ours = 1;
4483 }
4484
4485 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4486 so we notice when any child changes state, and notify the
4487 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4488 above to wait for the arrival of a SIGCHLD. */
4489
4490 static void
4491 sigchld_handler (int signo)
4492 {
4493 int old_errno = errno;
4494
4495 if (debug_linux_nat)
4496 ui_file_write_async_safe (gdb_stdlog,
4497 "sigchld\n", sizeof ("sigchld\n") - 1);
4498
4499 if (signo == SIGCHLD
4500 && linux_nat_event_pipe[0] != -1)
4501 async_file_mark (); /* Let the event loop know that there are
4502 events to handle. */
4503
4504 errno = old_errno;
4505 }
4506
4507 /* Callback registered with the target events file descriptor. */
4508
4509 static void
4510 handle_target_event (int error, gdb_client_data client_data)
4511 {
4512 inferior_event_handler (INF_REG_EVENT, NULL);
4513 }
4514
4515 /* Create/destroy the target events pipe. Returns previous state. */
4516
4517 static int
4518 linux_async_pipe (int enable)
4519 {
4520 int previous = linux_is_async_p ();
4521
4522 if (previous != enable)
4523 {
4524 sigset_t prev_mask;
4525
4526 /* Block child signals while we create/destroy the pipe, as
4527 their handler writes to it. */
4528 block_child_signals (&prev_mask);
4529
4530 if (enable)
4531 {
4532 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4533 internal_error (__FILE__, __LINE__,
4534 "creating event pipe failed.");
4535
4536 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4537 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4538 }
4539 else
4540 {
4541 close (linux_nat_event_pipe[0]);
4542 close (linux_nat_event_pipe[1]);
4543 linux_nat_event_pipe[0] = -1;
4544 linux_nat_event_pipe[1] = -1;
4545 }
4546
4547 restore_child_signals_mask (&prev_mask);
4548 }
4549
4550 return previous;
4551 }
4552
4553 /* target_async implementation. */
4554
4555 static void
4556 linux_nat_async (struct target_ops *ops, int enable)
4557 {
4558 if (enable)
4559 {
4560 if (!linux_async_pipe (1))
4561 {
4562 add_file_handler (linux_nat_event_pipe[0],
4563 handle_target_event, NULL);
4564 /* There may be pending events to handle. Tell the event loop
4565 to poll them. */
4566 async_file_mark ();
4567 }
4568 }
4569 else
4570 {
4571 delete_file_handler (linux_nat_event_pipe[0]);
4572 linux_async_pipe (0);
4573 }
4574 return;
4575 }
4576
4577 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4578 event came out. */
4579
4580 static int
4581 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4582 {
4583 if (!lwp->stopped)
4584 {
4585 if (debug_linux_nat)
4586 fprintf_unfiltered (gdb_stdlog,
4587 "LNSL: running -> suspending %s\n",
4588 target_pid_to_str (lwp->ptid));
4589
4590
4591 if (lwp->last_resume_kind == resume_stop)
4592 {
4593 if (debug_linux_nat)
4594 fprintf_unfiltered (gdb_stdlog,
4595 "linux-nat: already stopping LWP %ld at "
4596 "GDB's request\n",
4597 ptid_get_lwp (lwp->ptid));
4598 return 0;
4599 }
4600
4601 stop_callback (lwp, NULL);
4602 lwp->last_resume_kind = resume_stop;
4603 }
4604 else
4605 {
4606 /* Already known to be stopped; do nothing. */
4607
4608 if (debug_linux_nat)
4609 {
4610 if (find_thread_ptid (lwp->ptid)->stop_requested)
4611 fprintf_unfiltered (gdb_stdlog,
4612 "LNSL: already stopped/stop_requested %s\n",
4613 target_pid_to_str (lwp->ptid));
4614 else
4615 fprintf_unfiltered (gdb_stdlog,
4616 "LNSL: already stopped/no "
4617 "stop_requested yet %s\n",
4618 target_pid_to_str (lwp->ptid));
4619 }
4620 }
4621 return 0;
4622 }
4623
4624 static void
4625 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4626 {
4627 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4628 }
4629
4630 static void
4631 linux_nat_close (struct target_ops *self)
4632 {
4633 /* Unregister from the event loop. */
4634 if (linux_nat_is_async_p (self))
4635 linux_nat_async (self, 0);
4636
4637 if (linux_ops->to_close)
4638 linux_ops->to_close (linux_ops);
4639
4640 super_close (self);
4641 }
4642
4643 /* When requests are passed down from the linux-nat layer to the
4644 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4645 used. The address space pointer is stored in the inferior object,
4646 but the common code that is passed such ptid can't tell whether
4647 lwpid is a "main" process id or not (it assumes so). We reverse
4648 look up the "main" process id from the lwp here. */
4649
4650 static struct address_space *
4651 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4652 {
4653 struct lwp_info *lwp;
4654 struct inferior *inf;
4655 int pid;
4656
4657 if (ptid_get_lwp (ptid) == 0)
4658 {
4659 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4660 tgid. */
4661 lwp = find_lwp_pid (ptid);
4662 pid = ptid_get_pid (lwp->ptid);
4663 }
4664 else
4665 {
4666 /* A (pid,lwpid,0) ptid. */
4667 pid = ptid_get_pid (ptid);
4668 }
4669
4670 inf = find_inferior_pid (pid);
4671 gdb_assert (inf != NULL);
4672 return inf->aspace;
4673 }
4674
4675 /* Return the cached value of the processor core for thread PTID. */
4676
4677 static int
4678 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4679 {
4680 struct lwp_info *info = find_lwp_pid (ptid);
4681
4682 if (info)
4683 return info->core;
4684 return -1;
4685 }
4686
4687 /* Implementation of to_filesystem_is_local. */
4688
4689 static int
4690 linux_nat_filesystem_is_local (struct target_ops *ops)
4691 {
4692 struct inferior *inf = current_inferior ();
4693
4694 if (inf->fake_pid_p || inf->pid == 0)
4695 return 1;
4696
4697 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4698 }
4699
4700 /* Convert the INF argument passed to a to_fileio_* method
4701 to a process ID suitable for passing to its corresponding
4702 linux_mntns_* function. If INF is non-NULL then the
4703 caller is requesting the filesystem seen by INF. If INF
4704 is NULL then the caller is requesting the filesystem seen
4705 by the GDB. We fall back to GDB's filesystem in the case
4706 that INF is non-NULL but its PID is unknown. */
4707
4708 static pid_t
4709 linux_nat_fileio_pid_of (struct inferior *inf)
4710 {
4711 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4712 return getpid ();
4713 else
4714 return inf->pid;
4715 }
4716
4717 /* Implementation of to_fileio_open. */
4718
4719 static int
4720 linux_nat_fileio_open (struct target_ops *self,
4721 struct inferior *inf, const char *filename,
4722 int flags, int mode, int warn_if_slow,
4723 int *target_errno)
4724 {
4725 int nat_flags;
4726 mode_t nat_mode;
4727 int fd;
4728
4729 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4730 || fileio_to_host_mode (mode, &nat_mode) == -1)
4731 {
4732 *target_errno = FILEIO_EINVAL;
4733 return -1;
4734 }
4735
4736 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4737 filename, nat_flags, nat_mode);
4738 if (fd == -1)
4739 *target_errno = host_to_fileio_error (errno);
4740
4741 return fd;
4742 }
4743
4744 /* Implementation of to_fileio_readlink. */
4745
4746 static char *
4747 linux_nat_fileio_readlink (struct target_ops *self,
4748 struct inferior *inf, const char *filename,
4749 int *target_errno)
4750 {
4751 char buf[PATH_MAX];
4752 int len;
4753 char *ret;
4754
4755 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4756 filename, buf, sizeof (buf));
4757 if (len < 0)
4758 {
4759 *target_errno = host_to_fileio_error (errno);
4760 return NULL;
4761 }
4762
4763 ret = (char *) xmalloc (len + 1);
4764 memcpy (ret, buf, len);
4765 ret[len] = '\0';
4766 return ret;
4767 }
4768
4769 /* Implementation of to_fileio_unlink. */
4770
4771 static int
4772 linux_nat_fileio_unlink (struct target_ops *self,
4773 struct inferior *inf, const char *filename,
4774 int *target_errno)
4775 {
4776 int ret;
4777
4778 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4779 filename);
4780 if (ret == -1)
4781 *target_errno = host_to_fileio_error (errno);
4782
4783 return ret;
4784 }
4785
4786 /* Implementation of the to_thread_events method. */
4787
4788 static void
4789 linux_nat_thread_events (struct target_ops *ops, int enable)
4790 {
4791 report_thread_events = enable;
4792 }
4793
4794 void
4795 linux_nat_add_target (struct target_ops *t)
4796 {
4797 /* Save the provided single-threaded target. We save this in a separate
4798 variable because another target we've inherited from (e.g. inf-ptrace)
4799 may have saved a pointer to T; we want to use it for the final
4800 process stratum target. */
4801 linux_ops_saved = *t;
4802 linux_ops = &linux_ops_saved;
4803
4804 /* Override some methods for multithreading. */
4805 t->to_create_inferior = linux_nat_create_inferior;
4806 t->to_attach = linux_nat_attach;
4807 t->to_detach = linux_nat_detach;
4808 t->to_resume = linux_nat_resume;
4809 t->to_wait = linux_nat_wait;
4810 t->to_pass_signals = linux_nat_pass_signals;
4811 t->to_xfer_partial = linux_nat_xfer_partial;
4812 t->to_kill = linux_nat_kill;
4813 t->to_mourn_inferior = linux_nat_mourn_inferior;
4814 t->to_thread_alive = linux_nat_thread_alive;
4815 t->to_update_thread_list = linux_nat_update_thread_list;
4816 t->to_pid_to_str = linux_nat_pid_to_str;
4817 t->to_thread_name = linux_nat_thread_name;
4818 t->to_has_thread_control = tc_schedlock;
4819 t->to_thread_address_space = linux_nat_thread_address_space;
4820 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4821 t->to_stopped_data_address = linux_nat_stopped_data_address;
4822 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4823 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4824 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4825 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4826 t->to_thread_events = linux_nat_thread_events;
4827
4828 t->to_can_async_p = linux_nat_can_async_p;
4829 t->to_is_async_p = linux_nat_is_async_p;
4830 t->to_supports_non_stop = linux_nat_supports_non_stop;
4831 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4832 t->to_async = linux_nat_async;
4833 t->to_terminal_inferior = linux_nat_terminal_inferior;
4834 t->to_terminal_ours = linux_nat_terminal_ours;
4835
4836 super_close = t->to_close;
4837 t->to_close = linux_nat_close;
4838
4839 t->to_stop = linux_nat_stop;
4840
4841 t->to_supports_multi_process = linux_nat_supports_multi_process;
4842
4843 t->to_supports_disable_randomization
4844 = linux_nat_supports_disable_randomization;
4845
4846 t->to_core_of_thread = linux_nat_core_of_thread;
4847
4848 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4849 t->to_fileio_open = linux_nat_fileio_open;
4850 t->to_fileio_readlink = linux_nat_fileio_readlink;
4851 t->to_fileio_unlink = linux_nat_fileio_unlink;
4852
4853 /* We don't change the stratum; this target will sit at
4854 process_stratum and thread_db will set at thread_stratum. This
4855 is a little strange, since this is a multi-threaded-capable
4856 target, but we want to be on the stack below thread_db, and we
4857 also want to be used for single-threaded processes. */
4858
4859 add_target (t);
4860 }
4861
4862 /* Register a method to call whenever a new thread is attached. */
4863 void
4864 linux_nat_set_new_thread (struct target_ops *t,
4865 void (*new_thread) (struct lwp_info *))
4866 {
4867 /* Save the pointer. We only support a single registered instance
4868 of the GNU/Linux native target, so we do not need to map this to
4869 T. */
4870 linux_nat_new_thread = new_thread;
4871 }
4872
4873 /* See declaration in linux-nat.h. */
4874
4875 void
4876 linux_nat_set_new_fork (struct target_ops *t,
4877 linux_nat_new_fork_ftype *new_fork)
4878 {
4879 /* Save the pointer. */
4880 linux_nat_new_fork = new_fork;
4881 }
4882
4883 /* See declaration in linux-nat.h. */
4884
4885 void
4886 linux_nat_set_forget_process (struct target_ops *t,
4887 linux_nat_forget_process_ftype *fn)
4888 {
4889 /* Save the pointer. */
4890 linux_nat_forget_process_hook = fn;
4891 }
4892
4893 /* See declaration in linux-nat.h. */
4894
4895 void
4896 linux_nat_forget_process (pid_t pid)
4897 {
4898 if (linux_nat_forget_process_hook != NULL)
4899 linux_nat_forget_process_hook (pid);
4900 }
4901
4902 /* Register a method that converts a siginfo object between the layout
4903 that ptrace returns, and the layout in the architecture of the
4904 inferior. */
4905 void
4906 linux_nat_set_siginfo_fixup (struct target_ops *t,
4907 int (*siginfo_fixup) (siginfo_t *,
4908 gdb_byte *,
4909 int))
4910 {
4911 /* Save the pointer. */
4912 linux_nat_siginfo_fixup = siginfo_fixup;
4913 }
4914
4915 /* Register a method to call prior to resuming a thread. */
4916
4917 void
4918 linux_nat_set_prepare_to_resume (struct target_ops *t,
4919 void (*prepare_to_resume) (struct lwp_info *))
4920 {
4921 /* Save the pointer. */
4922 linux_nat_prepare_to_resume = prepare_to_resume;
4923 }
4924
4925 /* See linux-nat.h. */
4926
4927 int
4928 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4929 {
4930 int pid;
4931
4932 pid = ptid_get_lwp (ptid);
4933 if (pid == 0)
4934 pid = ptid_get_pid (ptid);
4935
4936 errno = 0;
4937 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4938 if (errno != 0)
4939 {
4940 memset (siginfo, 0, sizeof (*siginfo));
4941 return 0;
4942 }
4943 return 1;
4944 }
4945
4946 /* See nat/linux-nat.h. */
4947
4948 ptid_t
4949 current_lwp_ptid (void)
4950 {
4951 gdb_assert (ptid_lwp_p (inferior_ptid));
4952 return inferior_ptid;
4953 }
4954
4955 void
4956 _initialize_linux_nat (void)
4957 {
4958 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4959 &debug_linux_nat, _("\
4960 Set debugging of GNU/Linux lwp module."), _("\
4961 Show debugging of GNU/Linux lwp module."), _("\
4962 Enables printf debugging output."),
4963 NULL,
4964 show_debug_linux_nat,
4965 &setdebuglist, &showdebuglist);
4966
4967 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4968 &debug_linux_namespaces, _("\
4969 Set debugging of GNU/Linux namespaces module."), _("\
4970 Show debugging of GNU/Linux namespaces module."), _("\
4971 Enables printf debugging output."),
4972 NULL,
4973 NULL,
4974 &setdebuglist, &showdebuglist);
4975
4976 /* Save this mask as the default. */
4977 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4978
4979 /* Install a SIGCHLD handler. */
4980 sigchld_action.sa_handler = sigchld_handler;
4981 sigemptyset (&sigchld_action.sa_mask);
4982 sigchld_action.sa_flags = SA_RESTART;
4983
4984 /* Make it the default. */
4985 sigaction (SIGCHLD, &sigchld_action, NULL);
4986
4987 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4988 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4989 sigdelset (&suspend_mask, SIGCHLD);
4990
4991 sigemptyset (&blocked_mask);
4992
4993 lwp_lwpid_htab_create ();
4994 }
4995 \f
4996
4997 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4998 the GNU/Linux Threads library and therefore doesn't really belong
4999 here. */
5000
5001 /* Return the set of signals used by the threads library in *SET. */
5002
5003 void
5004 lin_thread_get_thread_signals (sigset_t *set)
5005 {
5006 sigemptyset (set);
5007
5008 /* NPTL reserves the first two RT signals, but does not provide any
5009 way for the debugger to query the signal numbers - fortunately
5010 they don't change. */
5011 sigaddset (set, __SIGRTMIN);
5012 sigaddset (set, __SIGRTMIN + 1);
5013 }
This page took 0.121893 seconds and 3 git commands to generate.