[Ada] Make the symbol cache per-program-space.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
25 #include <string.h>
26 #include "gdb_wait.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
29 #include <unistd.h>
30 #include <sys/syscall.h>
31 #endif
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62 #include "linux-tdep.h"
63 #include "symfile.h"
64 #include "agent.h"
65 #include "tracepoint.h"
66 #include "exceptions.h"
67 #include "buffer.h"
68 #include "target-descriptions.h"
69 #include "filestuff.h"
70
71 #ifndef SPUFS_MAGIC
72 #define SPUFS_MAGIC 0x23c9b64e
73 #endif
74
75 #ifdef HAVE_PERSONALITY
76 # include <sys/personality.h>
77 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
78 # define ADDR_NO_RANDOMIZE 0x0040000
79 # endif
80 #endif /* HAVE_PERSONALITY */
81
82 /* This comment documents high-level logic of this file.
83
84 Waiting for events in sync mode
85 ===============================
86
87 When waiting for an event in a specific thread, we just use waitpid, passing
88 the specific pid, and not passing WNOHANG.
89
90 When waiting for an event in all threads, waitpid is not quite good. Prior to
91 version 2.4, Linux can either wait for event in main thread, or in secondary
92 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
93 miss an event. The solution is to use non-blocking waitpid, together with
94 sigsuspend. First, we use non-blocking waitpid to get an event in the main
95 process, if any. Second, we use non-blocking waitpid with the __WCLONED
96 flag to check for events in cloned processes. If nothing is found, we use
97 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
98 happened to a child process -- and SIGCHLD will be delivered both for events
99 in main debugged process and in cloned processes. As soon as we know there's
100 an event, we get back to calling nonblocking waitpid with and without
101 __WCLONED.
102
103 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
104 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
105 blocked, the signal becomes pending and sigsuspend immediately
106 notices it and returns.
107
108 Waiting for events in async mode
109 ================================
110
111 In async mode, GDB should always be ready to handle both user input
112 and target events, so neither blocking waitpid nor sigsuspend are
113 viable options. Instead, we should asynchronously notify the GDB main
114 event loop whenever there's an unprocessed event from the target. We
115 detect asynchronous target events by handling SIGCHLD signals. To
116 notify the event loop about target events, the self-pipe trick is used
117 --- a pipe is registered as waitable event source in the event loop,
118 the event loop select/poll's on the read end of this pipe (as well on
119 other event sources, e.g., stdin), and the SIGCHLD handler writes a
120 byte to this pipe. This is more portable than relying on
121 pselect/ppoll, since on kernels that lack those syscalls, libc
122 emulates them with select/poll+sigprocmask, and that is racy
123 (a.k.a. plain broken).
124
125 Obviously, if we fail to notify the event loop if there's a target
126 event, it's bad. OTOH, if we notify the event loop when there's no
127 event from the target, linux_nat_wait will detect that there's no real
128 event to report, and return event of type TARGET_WAITKIND_IGNORE.
129 This is mostly harmless, but it will waste time and is better avoided.
130
131 The main design point is that every time GDB is outside linux-nat.c,
132 we have a SIGCHLD handler installed that is called when something
133 happens to the target and notifies the GDB event loop. Whenever GDB
134 core decides to handle the event, and calls into linux-nat.c, we
135 process things as in sync mode, except that the we never block in
136 sigsuspend.
137
138 While processing an event, we may end up momentarily blocked in
139 waitpid calls. Those waitpid calls, while blocking, are guarantied to
140 return quickly. E.g., in all-stop mode, before reporting to the core
141 that an LWP hit a breakpoint, all LWPs are stopped by sending them
142 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
143 Note that this is different from blocking indefinitely waiting for the
144 next event --- here, we're already handling an event.
145
146 Use of signals
147 ==============
148
149 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
150 signal is not entirely significant; we just need for a signal to be delivered,
151 so that we can intercept it. SIGSTOP's advantage is that it can not be
152 blocked. A disadvantage is that it is not a real-time signal, so it can only
153 be queued once; we do not keep track of other sources of SIGSTOP.
154
155 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
156 use them, because they have special behavior when the signal is generated -
157 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
158 kills the entire thread group.
159
160 A delivered SIGSTOP would stop the entire thread group, not just the thread we
161 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
162 cancel it (by PTRACE_CONT without passing SIGSTOP).
163
164 We could use a real-time signal instead. This would solve those problems; we
165 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
166 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
167 generates it, and there are races with trying to find a signal that is not
168 blocked. */
169
170 #ifndef O_LARGEFILE
171 #define O_LARGEFILE 0
172 #endif
173
174 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
175 the use of the multi-threaded target. */
176 static struct target_ops *linux_ops;
177 static struct target_ops linux_ops_saved;
178
179 /* The method to call, if any, when a new thread is attached. */
180 static void (*linux_nat_new_thread) (struct lwp_info *);
181
182 /* The method to call, if any, when a new fork is attached. */
183 static linux_nat_new_fork_ftype *linux_nat_new_fork;
184
185 /* The method to call, if any, when a process is no longer
186 attached. */
187 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
188
189 /* Hook to call prior to resuming a thread. */
190 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
191
192 /* The method to call, if any, when the siginfo object needs to be
193 converted between the layout returned by ptrace, and the layout in
194 the architecture of the inferior. */
195 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
196 gdb_byte *,
197 int);
198
199 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
200 Called by our to_xfer_partial. */
201 static target_xfer_partial_ftype *super_xfer_partial;
202
203 static unsigned int debug_linux_nat;
204 static void
205 show_debug_linux_nat (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
209 value);
210 }
211
212 struct simple_pid_list
213 {
214 int pid;
215 int status;
216 struct simple_pid_list *next;
217 };
218 struct simple_pid_list *stopped_pids;
219
220 /* Async mode support. */
221
222 /* The read/write ends of the pipe registered as waitable file in the
223 event loop. */
224 static int linux_nat_event_pipe[2] = { -1, -1 };
225
226 /* Flush the event pipe. */
227
228 static void
229 async_file_flush (void)
230 {
231 int ret;
232 char buf;
233
234 do
235 {
236 ret = read (linux_nat_event_pipe[0], &buf, 1);
237 }
238 while (ret >= 0 || (ret == -1 && errno == EINTR));
239 }
240
241 /* Put something (anything, doesn't matter what, or how much) in event
242 pipe, so that the select/poll in the event-loop realizes we have
243 something to process. */
244
245 static void
246 async_file_mark (void)
247 {
248 int ret;
249
250 /* It doesn't really matter what the pipe contains, as long we end
251 up with something in it. Might as well flush the previous
252 left-overs. */
253 async_file_flush ();
254
255 do
256 {
257 ret = write (linux_nat_event_pipe[1], "+", 1);
258 }
259 while (ret == -1 && errno == EINTR);
260
261 /* Ignore EAGAIN. If the pipe is full, the event loop will already
262 be awakened anyway. */
263 }
264
265 static void linux_nat_async (void (*callback)
266 (enum inferior_event_type event_type,
267 void *context),
268 void *context);
269 static int kill_lwp (int lwpid, int signo);
270
271 static int stop_callback (struct lwp_info *lp, void *data);
272
273 static void block_child_signals (sigset_t *prev_mask);
274 static void restore_child_signals_mask (sigset_t *prev_mask);
275
276 struct lwp_info;
277 static struct lwp_info *add_lwp (ptid_t ptid);
278 static void purge_lwp_list (int pid);
279 static void delete_lwp (ptid_t ptid);
280 static struct lwp_info *find_lwp_pid (ptid_t ptid);
281
282 \f
283 /* Trivial list manipulation functions to keep track of a list of
284 new stopped processes. */
285 static void
286 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
287 {
288 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
289
290 new_pid->pid = pid;
291 new_pid->status = status;
292 new_pid->next = *listp;
293 *listp = new_pid;
294 }
295
296 static int
297 in_pid_list_p (struct simple_pid_list *list, int pid)
298 {
299 struct simple_pid_list *p;
300
301 for (p = list; p != NULL; p = p->next)
302 if (p->pid == pid)
303 return 1;
304 return 0;
305 }
306
307 static int
308 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
309 {
310 struct simple_pid_list **p;
311
312 for (p = listp; *p != NULL; p = &(*p)->next)
313 if ((*p)->pid == pid)
314 {
315 struct simple_pid_list *next = (*p)->next;
316
317 *statusp = (*p)->status;
318 xfree (*p);
319 *p = next;
320 return 1;
321 }
322 return 0;
323 }
324
325 /* Initialize ptrace warnings and check for supported ptrace
326 features given PID. */
327
328 static void
329 linux_init_ptrace (pid_t pid)
330 {
331 linux_enable_event_reporting (pid);
332 linux_ptrace_init_warnings ();
333 }
334
335 static void
336 linux_child_post_attach (int pid)
337 {
338 linux_init_ptrace (pid);
339 }
340
341 static void
342 linux_child_post_startup_inferior (ptid_t ptid)
343 {
344 linux_init_ptrace (ptid_get_pid (ptid));
345 }
346
347 /* Return the number of known LWPs in the tgid given by PID. */
348
349 static int
350 num_lwps (int pid)
351 {
352 int count = 0;
353 struct lwp_info *lp;
354
355 for (lp = lwp_list; lp; lp = lp->next)
356 if (ptid_get_pid (lp->ptid) == pid)
357 count++;
358
359 return count;
360 }
361
362 /* Call delete_lwp with prototype compatible for make_cleanup. */
363
364 static void
365 delete_lwp_cleanup (void *lp_voidp)
366 {
367 struct lwp_info *lp = lp_voidp;
368
369 delete_lwp (lp->ptid);
370 }
371
372 static int
373 linux_child_follow_fork (struct target_ops *ops, int follow_child,
374 int detach_fork)
375 {
376 int has_vforked;
377 int parent_pid, child_pid;
378
379 has_vforked = (inferior_thread ()->pending_follow.kind
380 == TARGET_WAITKIND_VFORKED);
381 parent_pid = ptid_get_lwp (inferior_ptid);
382 if (parent_pid == 0)
383 parent_pid = ptid_get_pid (inferior_ptid);
384 child_pid
385 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
386
387 if (has_vforked
388 && !non_stop /* Non-stop always resumes both branches. */
389 && (!target_is_async_p () || sync_execution)
390 && !(follow_child || detach_fork || sched_multi))
391 {
392 /* The parent stays blocked inside the vfork syscall until the
393 child execs or exits. If we don't let the child run, then
394 the parent stays blocked. If we're telling the parent to run
395 in the foreground, the user will not be able to ctrl-c to get
396 back the terminal, effectively hanging the debug session. */
397 fprintf_filtered (gdb_stderr, _("\
398 Can not resume the parent process over vfork in the foreground while\n\
399 holding the child stopped. Try \"set detach-on-fork\" or \
400 \"set schedule-multiple\".\n"));
401 /* FIXME output string > 80 columns. */
402 return 1;
403 }
404
405 if (! follow_child)
406 {
407 struct lwp_info *child_lp = NULL;
408
409 /* We're already attached to the parent, by default. */
410
411 /* Detach new forked process? */
412 if (detach_fork)
413 {
414 struct cleanup *old_chain;
415
416 /* Before detaching from the child, remove all breakpoints
417 from it. If we forked, then this has already been taken
418 care of by infrun.c. If we vforked however, any
419 breakpoint inserted in the parent is visible in the
420 child, even those added while stopped in a vfork
421 catchpoint. This will remove the breakpoints from the
422 parent also, but they'll be reinserted below. */
423 if (has_vforked)
424 {
425 /* keep breakpoints list in sync. */
426 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
427 }
428
429 if (info_verbose || debug_linux_nat)
430 {
431 target_terminal_ours ();
432 fprintf_filtered (gdb_stdlog,
433 "Detaching after fork from "
434 "child process %d.\n",
435 child_pid);
436 }
437
438 old_chain = save_inferior_ptid ();
439 inferior_ptid = ptid_build (child_pid, child_pid, 0);
440
441 child_lp = add_lwp (inferior_ptid);
442 child_lp->stopped = 1;
443 child_lp->last_resume_kind = resume_stop;
444 make_cleanup (delete_lwp_cleanup, child_lp);
445
446 if (linux_nat_prepare_to_resume != NULL)
447 linux_nat_prepare_to_resume (child_lp);
448 ptrace (PTRACE_DETACH, child_pid, 0, 0);
449
450 do_cleanups (old_chain);
451 }
452 else
453 {
454 struct inferior *parent_inf, *child_inf;
455 struct cleanup *old_chain;
456
457 /* Add process to GDB's tables. */
458 child_inf = add_inferior (child_pid);
459
460 parent_inf = current_inferior ();
461 child_inf->attach_flag = parent_inf->attach_flag;
462 copy_terminal_info (child_inf, parent_inf);
463 child_inf->gdbarch = parent_inf->gdbarch;
464 copy_inferior_target_desc_info (child_inf, parent_inf);
465
466 old_chain = save_inferior_ptid ();
467 save_current_program_space ();
468
469 inferior_ptid = ptid_build (child_pid, child_pid, 0);
470 add_thread (inferior_ptid);
471 child_lp = add_lwp (inferior_ptid);
472 child_lp->stopped = 1;
473 child_lp->last_resume_kind = resume_stop;
474 child_inf->symfile_flags = SYMFILE_NO_READ;
475
476 /* If this is a vfork child, then the address-space is
477 shared with the parent. */
478 if (has_vforked)
479 {
480 child_inf->pspace = parent_inf->pspace;
481 child_inf->aspace = parent_inf->aspace;
482
483 /* The parent will be frozen until the child is done
484 with the shared region. Keep track of the
485 parent. */
486 child_inf->vfork_parent = parent_inf;
487 child_inf->pending_detach = 0;
488 parent_inf->vfork_child = child_inf;
489 parent_inf->pending_detach = 0;
490 }
491 else
492 {
493 child_inf->aspace = new_address_space ();
494 child_inf->pspace = add_program_space (child_inf->aspace);
495 child_inf->removable = 1;
496 set_current_program_space (child_inf->pspace);
497 clone_program_space (child_inf->pspace, parent_inf->pspace);
498
499 /* Let the shared library layer (solib-svr4) learn about
500 this new process, relocate the cloned exec, pull in
501 shared libraries, and install the solib event
502 breakpoint. If a "cloned-VM" event was propagated
503 better throughout the core, this wouldn't be
504 required. */
505 solib_create_inferior_hook (0);
506 }
507
508 /* Let the thread_db layer learn about this new process. */
509 check_for_thread_db ();
510
511 do_cleanups (old_chain);
512 }
513
514 if (has_vforked)
515 {
516 struct lwp_info *parent_lp;
517 struct inferior *parent_inf;
518
519 parent_inf = current_inferior ();
520
521 /* If we detached from the child, then we have to be careful
522 to not insert breakpoints in the parent until the child
523 is done with the shared memory region. However, if we're
524 staying attached to the child, then we can and should
525 insert breakpoints, so that we can debug it. A
526 subsequent child exec or exit is enough to know when does
527 the child stops using the parent's address space. */
528 parent_inf->waiting_for_vfork_done = detach_fork;
529 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
530
531 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
532 gdb_assert (linux_supports_tracefork () >= 0);
533
534 if (linux_supports_tracevforkdone ())
535 {
536 if (debug_linux_nat)
537 fprintf_unfiltered (gdb_stdlog,
538 "LCFF: waiting for VFORK_DONE on %d\n",
539 parent_pid);
540 parent_lp->stopped = 1;
541
542 /* We'll handle the VFORK_DONE event like any other
543 event, in target_wait. */
544 }
545 else
546 {
547 /* We can't insert breakpoints until the child has
548 finished with the shared memory region. We need to
549 wait until that happens. Ideal would be to just
550 call:
551 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
552 - waitpid (parent_pid, &status, __WALL);
553 However, most architectures can't handle a syscall
554 being traced on the way out if it wasn't traced on
555 the way in.
556
557 We might also think to loop, continuing the child
558 until it exits or gets a SIGTRAP. One problem is
559 that the child might call ptrace with PTRACE_TRACEME.
560
561 There's no simple and reliable way to figure out when
562 the vforked child will be done with its copy of the
563 shared memory. We could step it out of the syscall,
564 two instructions, let it go, and then single-step the
565 parent once. When we have hardware single-step, this
566 would work; with software single-step it could still
567 be made to work but we'd have to be able to insert
568 single-step breakpoints in the child, and we'd have
569 to insert -just- the single-step breakpoint in the
570 parent. Very awkward.
571
572 In the end, the best we can do is to make sure it
573 runs for a little while. Hopefully it will be out of
574 range of any breakpoints we reinsert. Usually this
575 is only the single-step breakpoint at vfork's return
576 point. */
577
578 if (debug_linux_nat)
579 fprintf_unfiltered (gdb_stdlog,
580 "LCFF: no VFORK_DONE "
581 "support, sleeping a bit\n");
582
583 usleep (10000);
584
585 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
586 and leave it pending. The next linux_nat_resume call
587 will notice a pending event, and bypasses actually
588 resuming the inferior. */
589 parent_lp->status = 0;
590 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
591 parent_lp->stopped = 1;
592
593 /* If we're in async mode, need to tell the event loop
594 there's something here to process. */
595 if (target_can_async_p ())
596 async_file_mark ();
597 }
598 }
599 }
600 else
601 {
602 struct inferior *parent_inf, *child_inf;
603 struct lwp_info *child_lp;
604 struct program_space *parent_pspace;
605
606 if (info_verbose || debug_linux_nat)
607 {
608 target_terminal_ours ();
609 if (has_vforked)
610 fprintf_filtered (gdb_stdlog,
611 _("Attaching after process %d "
612 "vfork to child process %d.\n"),
613 parent_pid, child_pid);
614 else
615 fprintf_filtered (gdb_stdlog,
616 _("Attaching after process %d "
617 "fork to child process %d.\n"),
618 parent_pid, child_pid);
619 }
620
621 /* Add the new inferior first, so that the target_detach below
622 doesn't unpush the target. */
623
624 child_inf = add_inferior (child_pid);
625
626 parent_inf = current_inferior ();
627 child_inf->attach_flag = parent_inf->attach_flag;
628 copy_terminal_info (child_inf, parent_inf);
629 child_inf->gdbarch = parent_inf->gdbarch;
630 copy_inferior_target_desc_info (child_inf, parent_inf);
631
632 parent_pspace = parent_inf->pspace;
633
634 /* If we're vforking, we want to hold on to the parent until the
635 child exits or execs. At child exec or exit time we can
636 remove the old breakpoints from the parent and detach or
637 resume debugging it. Otherwise, detach the parent now; we'll
638 want to reuse it's program/address spaces, but we can't set
639 them to the child before removing breakpoints from the
640 parent, otherwise, the breakpoints module could decide to
641 remove breakpoints from the wrong process (since they'd be
642 assigned to the same address space). */
643
644 if (has_vforked)
645 {
646 gdb_assert (child_inf->vfork_parent == NULL);
647 gdb_assert (parent_inf->vfork_child == NULL);
648 child_inf->vfork_parent = parent_inf;
649 child_inf->pending_detach = 0;
650 parent_inf->vfork_child = child_inf;
651 parent_inf->pending_detach = detach_fork;
652 parent_inf->waiting_for_vfork_done = 0;
653 }
654 else if (detach_fork)
655 target_detach (NULL, 0);
656
657 /* Note that the detach above makes PARENT_INF dangling. */
658
659 /* Add the child thread to the appropriate lists, and switch to
660 this new thread, before cloning the program space, and
661 informing the solib layer about this new process. */
662
663 inferior_ptid = ptid_build (child_pid, child_pid, 0);
664 add_thread (inferior_ptid);
665 child_lp = add_lwp (inferior_ptid);
666 child_lp->stopped = 1;
667 child_lp->last_resume_kind = resume_stop;
668
669 /* If this is a vfork child, then the address-space is shared
670 with the parent. If we detached from the parent, then we can
671 reuse the parent's program/address spaces. */
672 if (has_vforked || detach_fork)
673 {
674 child_inf->pspace = parent_pspace;
675 child_inf->aspace = child_inf->pspace->aspace;
676 }
677 else
678 {
679 child_inf->aspace = new_address_space ();
680 child_inf->pspace = add_program_space (child_inf->aspace);
681 child_inf->removable = 1;
682 child_inf->symfile_flags = SYMFILE_NO_READ;
683 set_current_program_space (child_inf->pspace);
684 clone_program_space (child_inf->pspace, parent_pspace);
685
686 /* Let the shared library layer (solib-svr4) learn about
687 this new process, relocate the cloned exec, pull in
688 shared libraries, and install the solib event breakpoint.
689 If a "cloned-VM" event was propagated better throughout
690 the core, this wouldn't be required. */
691 solib_create_inferior_hook (0);
692 }
693
694 /* Let the thread_db layer learn about this new process. */
695 check_for_thread_db ();
696 }
697
698 return 0;
699 }
700
701 \f
702 static int
703 linux_child_insert_fork_catchpoint (int pid)
704 {
705 return !linux_supports_tracefork ();
706 }
707
708 static int
709 linux_child_remove_fork_catchpoint (int pid)
710 {
711 return 0;
712 }
713
714 static int
715 linux_child_insert_vfork_catchpoint (int pid)
716 {
717 return !linux_supports_tracefork ();
718 }
719
720 static int
721 linux_child_remove_vfork_catchpoint (int pid)
722 {
723 return 0;
724 }
725
726 static int
727 linux_child_insert_exec_catchpoint (int pid)
728 {
729 return !linux_supports_tracefork ();
730 }
731
732 static int
733 linux_child_remove_exec_catchpoint (int pid)
734 {
735 return 0;
736 }
737
738 static int
739 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
740 int table_size, int *table)
741 {
742 if (!linux_supports_tracesysgood ())
743 return 1;
744
745 /* On GNU/Linux, we ignore the arguments. It means that we only
746 enable the syscall catchpoints, but do not disable them.
747
748 Also, we do not use the `table' information because we do not
749 filter system calls here. We let GDB do the logic for us. */
750 return 0;
751 }
752
753 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
754 are processes sharing the same VM space. A multi-threaded process
755 is basically a group of such processes. However, such a grouping
756 is almost entirely a user-space issue; the kernel doesn't enforce
757 such a grouping at all (this might change in the future). In
758 general, we'll rely on the threads library (i.e. the GNU/Linux
759 Threads library) to provide such a grouping.
760
761 It is perfectly well possible to write a multi-threaded application
762 without the assistance of a threads library, by using the clone
763 system call directly. This module should be able to give some
764 rudimentary support for debugging such applications if developers
765 specify the CLONE_PTRACE flag in the clone system call, and are
766 using the Linux kernel 2.4 or above.
767
768 Note that there are some peculiarities in GNU/Linux that affect
769 this code:
770
771 - In general one should specify the __WCLONE flag to waitpid in
772 order to make it report events for any of the cloned processes
773 (and leave it out for the initial process). However, if a cloned
774 process has exited the exit status is only reported if the
775 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
776 we cannot use it since GDB must work on older systems too.
777
778 - When a traced, cloned process exits and is waited for by the
779 debugger, the kernel reassigns it to the original parent and
780 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
781 library doesn't notice this, which leads to the "zombie problem":
782 When debugged a multi-threaded process that spawns a lot of
783 threads will run out of processes, even if the threads exit,
784 because the "zombies" stay around. */
785
786 /* List of known LWPs. */
787 struct lwp_info *lwp_list;
788 \f
789
790 /* Original signal mask. */
791 static sigset_t normal_mask;
792
793 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
794 _initialize_linux_nat. */
795 static sigset_t suspend_mask;
796
797 /* Signals to block to make that sigsuspend work. */
798 static sigset_t blocked_mask;
799
800 /* SIGCHLD action. */
801 struct sigaction sigchld_action;
802
803 /* Block child signals (SIGCHLD and linux threads signals), and store
804 the previous mask in PREV_MASK. */
805
806 static void
807 block_child_signals (sigset_t *prev_mask)
808 {
809 /* Make sure SIGCHLD is blocked. */
810 if (!sigismember (&blocked_mask, SIGCHLD))
811 sigaddset (&blocked_mask, SIGCHLD);
812
813 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
814 }
815
816 /* Restore child signals mask, previously returned by
817 block_child_signals. */
818
819 static void
820 restore_child_signals_mask (sigset_t *prev_mask)
821 {
822 sigprocmask (SIG_SETMASK, prev_mask, NULL);
823 }
824
825 /* Mask of signals to pass directly to the inferior. */
826 static sigset_t pass_mask;
827
828 /* Update signals to pass to the inferior. */
829 static void
830 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
831 {
832 int signo;
833
834 sigemptyset (&pass_mask);
835
836 for (signo = 1; signo < NSIG; signo++)
837 {
838 int target_signo = gdb_signal_from_host (signo);
839 if (target_signo < numsigs && pass_signals[target_signo])
840 sigaddset (&pass_mask, signo);
841 }
842 }
843
844 \f
845
846 /* Prototypes for local functions. */
847 static int stop_wait_callback (struct lwp_info *lp, void *data);
848 static int linux_thread_alive (ptid_t ptid);
849 static char *linux_child_pid_to_exec_file (int pid);
850
851 \f
852 /* Convert wait status STATUS to a string. Used for printing debug
853 messages only. */
854
855 static char *
856 status_to_str (int status)
857 {
858 static char buf[64];
859
860 if (WIFSTOPPED (status))
861 {
862 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
863 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
864 strsignal (SIGTRAP));
865 else
866 snprintf (buf, sizeof (buf), "%s (stopped)",
867 strsignal (WSTOPSIG (status)));
868 }
869 else if (WIFSIGNALED (status))
870 snprintf (buf, sizeof (buf), "%s (terminated)",
871 strsignal (WTERMSIG (status)));
872 else
873 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
874
875 return buf;
876 }
877
878 /* Destroy and free LP. */
879
880 static void
881 lwp_free (struct lwp_info *lp)
882 {
883 xfree (lp->arch_private);
884 xfree (lp);
885 }
886
887 /* Remove all LWPs belong to PID from the lwp list. */
888
889 static void
890 purge_lwp_list (int pid)
891 {
892 struct lwp_info *lp, *lpprev, *lpnext;
893
894 lpprev = NULL;
895
896 for (lp = lwp_list; lp; lp = lpnext)
897 {
898 lpnext = lp->next;
899
900 if (ptid_get_pid (lp->ptid) == pid)
901 {
902 if (lp == lwp_list)
903 lwp_list = lp->next;
904 else
905 lpprev->next = lp->next;
906
907 lwp_free (lp);
908 }
909 else
910 lpprev = lp;
911 }
912 }
913
914 /* Add the LWP specified by PTID to the list. PTID is the first LWP
915 in the process. Return a pointer to the structure describing the
916 new LWP.
917
918 This differs from add_lwp in that we don't let the arch specific
919 bits know about this new thread. Current clients of this callback
920 take the opportunity to install watchpoints in the new thread, and
921 we shouldn't do that for the first thread. If we're spawning a
922 child ("run"), the thread executes the shell wrapper first, and we
923 shouldn't touch it until it execs the program we want to debug.
924 For "attach", it'd be okay to call the callback, but it's not
925 necessary, because watchpoints can't yet have been inserted into
926 the inferior. */
927
928 static struct lwp_info *
929 add_initial_lwp (ptid_t ptid)
930 {
931 struct lwp_info *lp;
932
933 gdb_assert (ptid_lwp_p (ptid));
934
935 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
936
937 memset (lp, 0, sizeof (struct lwp_info));
938
939 lp->last_resume_kind = resume_continue;
940 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
941
942 lp->ptid = ptid;
943 lp->core = -1;
944
945 lp->next = lwp_list;
946 lwp_list = lp;
947
948 return lp;
949 }
950
951 /* Add the LWP specified by PID to the list. Return a pointer to the
952 structure describing the new LWP. The LWP should already be
953 stopped. */
954
955 static struct lwp_info *
956 add_lwp (ptid_t ptid)
957 {
958 struct lwp_info *lp;
959
960 lp = add_initial_lwp (ptid);
961
962 /* Let the arch specific bits know about this new thread. Current
963 clients of this callback take the opportunity to install
964 watchpoints in the new thread. We don't do this for the first
965 thread though. See add_initial_lwp. */
966 if (linux_nat_new_thread != NULL)
967 linux_nat_new_thread (lp);
968
969 return lp;
970 }
971
972 /* Remove the LWP specified by PID from the list. */
973
974 static void
975 delete_lwp (ptid_t ptid)
976 {
977 struct lwp_info *lp, *lpprev;
978
979 lpprev = NULL;
980
981 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
982 if (ptid_equal (lp->ptid, ptid))
983 break;
984
985 if (!lp)
986 return;
987
988 if (lpprev)
989 lpprev->next = lp->next;
990 else
991 lwp_list = lp->next;
992
993 lwp_free (lp);
994 }
995
996 /* Return a pointer to the structure describing the LWP corresponding
997 to PID. If no corresponding LWP could be found, return NULL. */
998
999 static struct lwp_info *
1000 find_lwp_pid (ptid_t ptid)
1001 {
1002 struct lwp_info *lp;
1003 int lwp;
1004
1005 if (ptid_lwp_p (ptid))
1006 lwp = ptid_get_lwp (ptid);
1007 else
1008 lwp = ptid_get_pid (ptid);
1009
1010 for (lp = lwp_list; lp; lp = lp->next)
1011 if (lwp == ptid_get_lwp (lp->ptid))
1012 return lp;
1013
1014 return NULL;
1015 }
1016
1017 /* Call CALLBACK with its second argument set to DATA for every LWP in
1018 the list. If CALLBACK returns 1 for a particular LWP, return a
1019 pointer to the structure describing that LWP immediately.
1020 Otherwise return NULL. */
1021
1022 struct lwp_info *
1023 iterate_over_lwps (ptid_t filter,
1024 int (*callback) (struct lwp_info *, void *),
1025 void *data)
1026 {
1027 struct lwp_info *lp, *lpnext;
1028
1029 for (lp = lwp_list; lp; lp = lpnext)
1030 {
1031 lpnext = lp->next;
1032
1033 if (ptid_match (lp->ptid, filter))
1034 {
1035 if ((*callback) (lp, data))
1036 return lp;
1037 }
1038 }
1039
1040 return NULL;
1041 }
1042
1043 /* Update our internal state when changing from one checkpoint to
1044 another indicated by NEW_PTID. We can only switch single-threaded
1045 applications, so we only create one new LWP, and the previous list
1046 is discarded. */
1047
1048 void
1049 linux_nat_switch_fork (ptid_t new_ptid)
1050 {
1051 struct lwp_info *lp;
1052
1053 purge_lwp_list (ptid_get_pid (inferior_ptid));
1054
1055 lp = add_lwp (new_ptid);
1056 lp->stopped = 1;
1057
1058 /* This changes the thread's ptid while preserving the gdb thread
1059 num. Also changes the inferior pid, while preserving the
1060 inferior num. */
1061 thread_change_ptid (inferior_ptid, new_ptid);
1062
1063 /* We've just told GDB core that the thread changed target id, but,
1064 in fact, it really is a different thread, with different register
1065 contents. */
1066 registers_changed ();
1067 }
1068
1069 /* Handle the exit of a single thread LP. */
1070
1071 static void
1072 exit_lwp (struct lwp_info *lp)
1073 {
1074 struct thread_info *th = find_thread_ptid (lp->ptid);
1075
1076 if (th)
1077 {
1078 if (print_thread_events)
1079 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1080
1081 delete_thread (lp->ptid);
1082 }
1083
1084 delete_lwp (lp->ptid);
1085 }
1086
1087 /* Wait for the LWP specified by LP, which we have just attached to.
1088 Returns a wait status for that LWP, to cache. */
1089
1090 static int
1091 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1092 int *signalled)
1093 {
1094 pid_t new_pid, pid = ptid_get_lwp (ptid);
1095 int status;
1096
1097 if (linux_proc_pid_is_stopped (pid))
1098 {
1099 if (debug_linux_nat)
1100 fprintf_unfiltered (gdb_stdlog,
1101 "LNPAW: Attaching to a stopped process\n");
1102
1103 /* The process is definitely stopped. It is in a job control
1104 stop, unless the kernel predates the TASK_STOPPED /
1105 TASK_TRACED distinction, in which case it might be in a
1106 ptrace stop. Make sure it is in a ptrace stop; from there we
1107 can kill it, signal it, et cetera.
1108
1109 First make sure there is a pending SIGSTOP. Since we are
1110 already attached, the process can not transition from stopped
1111 to running without a PTRACE_CONT; so we know this signal will
1112 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1113 probably already in the queue (unless this kernel is old
1114 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1115 is not an RT signal, it can only be queued once. */
1116 kill_lwp (pid, SIGSTOP);
1117
1118 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1119 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1120 ptrace (PTRACE_CONT, pid, 0, 0);
1121 }
1122
1123 /* Make sure the initial process is stopped. The user-level threads
1124 layer might want to poke around in the inferior, and that won't
1125 work if things haven't stabilized yet. */
1126 new_pid = my_waitpid (pid, &status, 0);
1127 if (new_pid == -1 && errno == ECHILD)
1128 {
1129 if (first)
1130 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1131
1132 /* Try again with __WCLONE to check cloned processes. */
1133 new_pid = my_waitpid (pid, &status, __WCLONE);
1134 *cloned = 1;
1135 }
1136
1137 gdb_assert (pid == new_pid);
1138
1139 if (!WIFSTOPPED (status))
1140 {
1141 /* The pid we tried to attach has apparently just exited. */
1142 if (debug_linux_nat)
1143 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1144 pid, status_to_str (status));
1145 return status;
1146 }
1147
1148 if (WSTOPSIG (status) != SIGSTOP)
1149 {
1150 *signalled = 1;
1151 if (debug_linux_nat)
1152 fprintf_unfiltered (gdb_stdlog,
1153 "LNPAW: Received %s after attaching\n",
1154 status_to_str (status));
1155 }
1156
1157 return status;
1158 }
1159
1160 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1161 the new LWP could not be attached, or 1 if we're already auto
1162 attached to this thread, but haven't processed the
1163 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1164 its existance, without considering it an error. */
1165
1166 int
1167 lin_lwp_attach_lwp (ptid_t ptid)
1168 {
1169 struct lwp_info *lp;
1170 int lwpid;
1171
1172 gdb_assert (ptid_lwp_p (ptid));
1173
1174 lp = find_lwp_pid (ptid);
1175 lwpid = ptid_get_lwp (ptid);
1176
1177 /* We assume that we're already attached to any LWP that has an id
1178 equal to the overall process id, and to any LWP that is already
1179 in our list of LWPs. If we're not seeing exit events from threads
1180 and we've had PID wraparound since we last tried to stop all threads,
1181 this assumption might be wrong; fortunately, this is very unlikely
1182 to happen. */
1183 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1184 {
1185 int status, cloned = 0, signalled = 0;
1186
1187 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1188 {
1189 if (linux_supports_tracefork ())
1190 {
1191 /* If we haven't stopped all threads when we get here,
1192 we may have seen a thread listed in thread_db's list,
1193 but not processed the PTRACE_EVENT_CLONE yet. If
1194 that's the case, ignore this new thread, and let
1195 normal event handling discover it later. */
1196 if (in_pid_list_p (stopped_pids, lwpid))
1197 {
1198 /* We've already seen this thread stop, but we
1199 haven't seen the PTRACE_EVENT_CLONE extended
1200 event yet. */
1201 return 0;
1202 }
1203 else
1204 {
1205 int new_pid;
1206 int status;
1207
1208 /* See if we've got a stop for this new child
1209 pending. If so, we're already attached. */
1210 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1211 if (new_pid == -1 && errno == ECHILD)
1212 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1213 if (new_pid != -1)
1214 {
1215 if (WIFSTOPPED (status))
1216 add_to_pid_list (&stopped_pids, lwpid, status);
1217 return 1;
1218 }
1219 }
1220 }
1221
1222 /* If we fail to attach to the thread, issue a warning,
1223 but continue. One way this can happen is if thread
1224 creation is interrupted; as of Linux kernel 2.6.19, a
1225 bug may place threads in the thread list and then fail
1226 to create them. */
1227 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1228 safe_strerror (errno));
1229 return -1;
1230 }
1231
1232 if (debug_linux_nat)
1233 fprintf_unfiltered (gdb_stdlog,
1234 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1235 target_pid_to_str (ptid));
1236
1237 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1238 if (!WIFSTOPPED (status))
1239 return 1;
1240
1241 lp = add_lwp (ptid);
1242 lp->stopped = 1;
1243 lp->cloned = cloned;
1244 lp->signalled = signalled;
1245 if (WSTOPSIG (status) != SIGSTOP)
1246 {
1247 lp->resumed = 1;
1248 lp->status = status;
1249 }
1250
1251 target_post_attach (ptid_get_lwp (lp->ptid));
1252
1253 if (debug_linux_nat)
1254 {
1255 fprintf_unfiltered (gdb_stdlog,
1256 "LLAL: waitpid %s received %s\n",
1257 target_pid_to_str (ptid),
1258 status_to_str (status));
1259 }
1260 }
1261 else
1262 {
1263 /* We assume that the LWP representing the original process is
1264 already stopped. Mark it as stopped in the data structure
1265 that the GNU/linux ptrace layer uses to keep track of
1266 threads. Note that this won't have already been done since
1267 the main thread will have, we assume, been stopped by an
1268 attach from a different layer. */
1269 if (lp == NULL)
1270 lp = add_lwp (ptid);
1271 lp->stopped = 1;
1272 }
1273
1274 lp->last_resume_kind = resume_stop;
1275 return 0;
1276 }
1277
1278 static void
1279 linux_nat_create_inferior (struct target_ops *ops,
1280 char *exec_file, char *allargs, char **env,
1281 int from_tty)
1282 {
1283 #ifdef HAVE_PERSONALITY
1284 int personality_orig = 0, personality_set = 0;
1285 #endif /* HAVE_PERSONALITY */
1286
1287 /* The fork_child mechanism is synchronous and calls target_wait, so
1288 we have to mask the async mode. */
1289
1290 #ifdef HAVE_PERSONALITY
1291 if (disable_randomization)
1292 {
1293 errno = 0;
1294 personality_orig = personality (0xffffffff);
1295 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1296 {
1297 personality_set = 1;
1298 personality (personality_orig | ADDR_NO_RANDOMIZE);
1299 }
1300 if (errno != 0 || (personality_set
1301 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1302 warning (_("Error disabling address space randomization: %s"),
1303 safe_strerror (errno));
1304 }
1305 #endif /* HAVE_PERSONALITY */
1306
1307 /* Make sure we report all signals during startup. */
1308 linux_nat_pass_signals (0, NULL);
1309
1310 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1311
1312 #ifdef HAVE_PERSONALITY
1313 if (personality_set)
1314 {
1315 errno = 0;
1316 personality (personality_orig);
1317 if (errno != 0)
1318 warning (_("Error restoring address space randomization: %s"),
1319 safe_strerror (errno));
1320 }
1321 #endif /* HAVE_PERSONALITY */
1322 }
1323
1324 static void
1325 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1326 {
1327 struct lwp_info *lp;
1328 int status;
1329 ptid_t ptid;
1330 volatile struct gdb_exception ex;
1331
1332 /* Make sure we report all signals during attach. */
1333 linux_nat_pass_signals (0, NULL);
1334
1335 TRY_CATCH (ex, RETURN_MASK_ERROR)
1336 {
1337 linux_ops->to_attach (ops, args, from_tty);
1338 }
1339 if (ex.reason < 0)
1340 {
1341 pid_t pid = parse_pid_to_attach (args);
1342 struct buffer buffer;
1343 char *message, *buffer_s;
1344
1345 message = xstrdup (ex.message);
1346 make_cleanup (xfree, message);
1347
1348 buffer_init (&buffer);
1349 linux_ptrace_attach_warnings (pid, &buffer);
1350
1351 buffer_grow_str0 (&buffer, "");
1352 buffer_s = buffer_finish (&buffer);
1353 make_cleanup (xfree, buffer_s);
1354
1355 throw_error (ex.error, "%s%s", buffer_s, message);
1356 }
1357
1358 /* The ptrace base target adds the main thread with (pid,0,0)
1359 format. Decorate it with lwp info. */
1360 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1361 ptid_get_pid (inferior_ptid),
1362 0);
1363 thread_change_ptid (inferior_ptid, ptid);
1364
1365 /* Add the initial process as the first LWP to the list. */
1366 lp = add_initial_lwp (ptid);
1367
1368 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1369 &lp->signalled);
1370 if (!WIFSTOPPED (status))
1371 {
1372 if (WIFEXITED (status))
1373 {
1374 int exit_code = WEXITSTATUS (status);
1375
1376 target_terminal_ours ();
1377 target_mourn_inferior ();
1378 if (exit_code == 0)
1379 error (_("Unable to attach: program exited normally."));
1380 else
1381 error (_("Unable to attach: program exited with code %d."),
1382 exit_code);
1383 }
1384 else if (WIFSIGNALED (status))
1385 {
1386 enum gdb_signal signo;
1387
1388 target_terminal_ours ();
1389 target_mourn_inferior ();
1390
1391 signo = gdb_signal_from_host (WTERMSIG (status));
1392 error (_("Unable to attach: program terminated with signal "
1393 "%s, %s."),
1394 gdb_signal_to_name (signo),
1395 gdb_signal_to_string (signo));
1396 }
1397
1398 internal_error (__FILE__, __LINE__,
1399 _("unexpected status %d for PID %ld"),
1400 status, (long) ptid_get_lwp (ptid));
1401 }
1402
1403 lp->stopped = 1;
1404
1405 /* Save the wait status to report later. */
1406 lp->resumed = 1;
1407 if (debug_linux_nat)
1408 fprintf_unfiltered (gdb_stdlog,
1409 "LNA: waitpid %ld, saving status %s\n",
1410 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1411
1412 lp->status = status;
1413
1414 if (target_can_async_p ())
1415 target_async (inferior_event_handler, 0);
1416 }
1417
1418 /* Get pending status of LP. */
1419 static int
1420 get_pending_status (struct lwp_info *lp, int *status)
1421 {
1422 enum gdb_signal signo = GDB_SIGNAL_0;
1423
1424 /* If we paused threads momentarily, we may have stored pending
1425 events in lp->status or lp->waitstatus (see stop_wait_callback),
1426 and GDB core hasn't seen any signal for those threads.
1427 Otherwise, the last signal reported to the core is found in the
1428 thread object's stop_signal.
1429
1430 There's a corner case that isn't handled here at present. Only
1431 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1432 stop_signal make sense as a real signal to pass to the inferior.
1433 Some catchpoint related events, like
1434 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1435 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1436 those traps are debug API (ptrace in our case) related and
1437 induced; the inferior wouldn't see them if it wasn't being
1438 traced. Hence, we should never pass them to the inferior, even
1439 when set to pass state. Since this corner case isn't handled by
1440 infrun.c when proceeding with a signal, for consistency, neither
1441 do we handle it here (or elsewhere in the file we check for
1442 signal pass state). Normally SIGTRAP isn't set to pass state, so
1443 this is really a corner case. */
1444
1445 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1446 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1447 else if (lp->status)
1448 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1449 else if (non_stop && !is_executing (lp->ptid))
1450 {
1451 struct thread_info *tp = find_thread_ptid (lp->ptid);
1452
1453 signo = tp->suspend.stop_signal;
1454 }
1455 else if (!non_stop)
1456 {
1457 struct target_waitstatus last;
1458 ptid_t last_ptid;
1459
1460 get_last_target_status (&last_ptid, &last);
1461
1462 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1463 {
1464 struct thread_info *tp = find_thread_ptid (lp->ptid);
1465
1466 signo = tp->suspend.stop_signal;
1467 }
1468 }
1469
1470 *status = 0;
1471
1472 if (signo == GDB_SIGNAL_0)
1473 {
1474 if (debug_linux_nat)
1475 fprintf_unfiltered (gdb_stdlog,
1476 "GPT: lwp %s has no pending signal\n",
1477 target_pid_to_str (lp->ptid));
1478 }
1479 else if (!signal_pass_state (signo))
1480 {
1481 if (debug_linux_nat)
1482 fprintf_unfiltered (gdb_stdlog,
1483 "GPT: lwp %s had signal %s, "
1484 "but it is in no pass state\n",
1485 target_pid_to_str (lp->ptid),
1486 gdb_signal_to_string (signo));
1487 }
1488 else
1489 {
1490 *status = W_STOPCODE (gdb_signal_to_host (signo));
1491
1492 if (debug_linux_nat)
1493 fprintf_unfiltered (gdb_stdlog,
1494 "GPT: lwp %s has pending signal %s\n",
1495 target_pid_to_str (lp->ptid),
1496 gdb_signal_to_string (signo));
1497 }
1498
1499 return 0;
1500 }
1501
1502 static int
1503 detach_callback (struct lwp_info *lp, void *data)
1504 {
1505 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1506
1507 if (debug_linux_nat && lp->status)
1508 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1509 strsignal (WSTOPSIG (lp->status)),
1510 target_pid_to_str (lp->ptid));
1511
1512 /* If there is a pending SIGSTOP, get rid of it. */
1513 if (lp->signalled)
1514 {
1515 if (debug_linux_nat)
1516 fprintf_unfiltered (gdb_stdlog,
1517 "DC: Sending SIGCONT to %s\n",
1518 target_pid_to_str (lp->ptid));
1519
1520 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1521 lp->signalled = 0;
1522 }
1523
1524 /* We don't actually detach from the LWP that has an id equal to the
1525 overall process id just yet. */
1526 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1527 {
1528 int status = 0;
1529
1530 /* Pass on any pending signal for this LWP. */
1531 get_pending_status (lp, &status);
1532
1533 if (linux_nat_prepare_to_resume != NULL)
1534 linux_nat_prepare_to_resume (lp);
1535 errno = 0;
1536 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1537 WSTOPSIG (status)) < 0)
1538 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1539 safe_strerror (errno));
1540
1541 if (debug_linux_nat)
1542 fprintf_unfiltered (gdb_stdlog,
1543 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1544 target_pid_to_str (lp->ptid),
1545 strsignal (WSTOPSIG (status)));
1546
1547 delete_lwp (lp->ptid);
1548 }
1549
1550 return 0;
1551 }
1552
1553 static void
1554 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1555 {
1556 int pid;
1557 int status;
1558 struct lwp_info *main_lwp;
1559
1560 pid = ptid_get_pid (inferior_ptid);
1561
1562 /* Don't unregister from the event loop, as there may be other
1563 inferiors running. */
1564
1565 /* Stop all threads before detaching. ptrace requires that the
1566 thread is stopped to sucessfully detach. */
1567 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1568 /* ... and wait until all of them have reported back that
1569 they're no longer running. */
1570 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1571
1572 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1573
1574 /* Only the initial process should be left right now. */
1575 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1576
1577 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1578
1579 /* Pass on any pending signal for the last LWP. */
1580 if ((args == NULL || *args == '\0')
1581 && get_pending_status (main_lwp, &status) != -1
1582 && WIFSTOPPED (status))
1583 {
1584 char *tem;
1585
1586 /* Put the signal number in ARGS so that inf_ptrace_detach will
1587 pass it along with PTRACE_DETACH. */
1588 tem = alloca (8);
1589 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1590 args = tem;
1591 if (debug_linux_nat)
1592 fprintf_unfiltered (gdb_stdlog,
1593 "LND: Sending signal %s to %s\n",
1594 args,
1595 target_pid_to_str (main_lwp->ptid));
1596 }
1597
1598 if (linux_nat_prepare_to_resume != NULL)
1599 linux_nat_prepare_to_resume (main_lwp);
1600 delete_lwp (main_lwp->ptid);
1601
1602 if (forks_exist_p ())
1603 {
1604 /* Multi-fork case. The current inferior_ptid is being detached
1605 from, but there are other viable forks to debug. Detach from
1606 the current fork, and context-switch to the first
1607 available. */
1608 linux_fork_detach (args, from_tty);
1609 }
1610 else
1611 linux_ops->to_detach (ops, args, from_tty);
1612 }
1613
1614 /* Resume LP. */
1615
1616 static void
1617 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1618 {
1619 if (lp->stopped)
1620 {
1621 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1622
1623 if (inf->vfork_child != NULL)
1624 {
1625 if (debug_linux_nat)
1626 fprintf_unfiltered (gdb_stdlog,
1627 "RC: Not resuming %s (vfork parent)\n",
1628 target_pid_to_str (lp->ptid));
1629 }
1630 else if (lp->status == 0
1631 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1632 {
1633 if (debug_linux_nat)
1634 fprintf_unfiltered (gdb_stdlog,
1635 "RC: Resuming sibling %s, %s, %s\n",
1636 target_pid_to_str (lp->ptid),
1637 (signo != GDB_SIGNAL_0
1638 ? strsignal (gdb_signal_to_host (signo))
1639 : "0"),
1640 step ? "step" : "resume");
1641
1642 if (linux_nat_prepare_to_resume != NULL)
1643 linux_nat_prepare_to_resume (lp);
1644 linux_ops->to_resume (linux_ops,
1645 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1646 step, signo);
1647 lp->stopped = 0;
1648 lp->step = step;
1649 lp->stopped_by_watchpoint = 0;
1650 }
1651 else
1652 {
1653 if (debug_linux_nat)
1654 fprintf_unfiltered (gdb_stdlog,
1655 "RC: Not resuming sibling %s (has pending)\n",
1656 target_pid_to_str (lp->ptid));
1657 }
1658 }
1659 else
1660 {
1661 if (debug_linux_nat)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "RC: Not resuming sibling %s (not stopped)\n",
1664 target_pid_to_str (lp->ptid));
1665 }
1666 }
1667
1668 /* Resume LWP, with the last stop signal, if it is in pass state. */
1669
1670 static int
1671 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1672 {
1673 enum gdb_signal signo = GDB_SIGNAL_0;
1674
1675 if (lp->stopped)
1676 {
1677 struct thread_info *thread;
1678
1679 thread = find_thread_ptid (lp->ptid);
1680 if (thread != NULL)
1681 {
1682 if (signal_pass_state (thread->suspend.stop_signal))
1683 signo = thread->suspend.stop_signal;
1684 thread->suspend.stop_signal = GDB_SIGNAL_0;
1685 }
1686 }
1687
1688 resume_lwp (lp, 0, signo);
1689 return 0;
1690 }
1691
1692 static int
1693 resume_clear_callback (struct lwp_info *lp, void *data)
1694 {
1695 lp->resumed = 0;
1696 lp->last_resume_kind = resume_stop;
1697 return 0;
1698 }
1699
1700 static int
1701 resume_set_callback (struct lwp_info *lp, void *data)
1702 {
1703 lp->resumed = 1;
1704 lp->last_resume_kind = resume_continue;
1705 return 0;
1706 }
1707
1708 static void
1709 linux_nat_resume (struct target_ops *ops,
1710 ptid_t ptid, int step, enum gdb_signal signo)
1711 {
1712 struct lwp_info *lp;
1713 int resume_many;
1714
1715 if (debug_linux_nat)
1716 fprintf_unfiltered (gdb_stdlog,
1717 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1718 step ? "step" : "resume",
1719 target_pid_to_str (ptid),
1720 (signo != GDB_SIGNAL_0
1721 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1722 target_pid_to_str (inferior_ptid));
1723
1724 /* A specific PTID means `step only this process id'. */
1725 resume_many = (ptid_equal (minus_one_ptid, ptid)
1726 || ptid_is_pid (ptid));
1727
1728 /* Mark the lwps we're resuming as resumed. */
1729 iterate_over_lwps (ptid, resume_set_callback, NULL);
1730
1731 /* See if it's the current inferior that should be handled
1732 specially. */
1733 if (resume_many)
1734 lp = find_lwp_pid (inferior_ptid);
1735 else
1736 lp = find_lwp_pid (ptid);
1737 gdb_assert (lp != NULL);
1738
1739 /* Remember if we're stepping. */
1740 lp->step = step;
1741 lp->last_resume_kind = step ? resume_step : resume_continue;
1742
1743 /* If we have a pending wait status for this thread, there is no
1744 point in resuming the process. But first make sure that
1745 linux_nat_wait won't preemptively handle the event - we
1746 should never take this short-circuit if we are going to
1747 leave LP running, since we have skipped resuming all the
1748 other threads. This bit of code needs to be synchronized
1749 with linux_nat_wait. */
1750
1751 if (lp->status && WIFSTOPPED (lp->status))
1752 {
1753 if (!lp->step
1754 && WSTOPSIG (lp->status)
1755 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1756 {
1757 if (debug_linux_nat)
1758 fprintf_unfiltered (gdb_stdlog,
1759 "LLR: Not short circuiting for ignored "
1760 "status 0x%x\n", lp->status);
1761
1762 /* FIXME: What should we do if we are supposed to continue
1763 this thread with a signal? */
1764 gdb_assert (signo == GDB_SIGNAL_0);
1765 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1766 lp->status = 0;
1767 }
1768 }
1769
1770 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1771 {
1772 /* FIXME: What should we do if we are supposed to continue
1773 this thread with a signal? */
1774 gdb_assert (signo == GDB_SIGNAL_0);
1775
1776 if (debug_linux_nat)
1777 fprintf_unfiltered (gdb_stdlog,
1778 "LLR: Short circuiting for status 0x%x\n",
1779 lp->status);
1780
1781 if (target_can_async_p ())
1782 {
1783 target_async (inferior_event_handler, 0);
1784 /* Tell the event loop we have something to process. */
1785 async_file_mark ();
1786 }
1787 return;
1788 }
1789
1790 /* Mark LWP as not stopped to prevent it from being continued by
1791 linux_nat_resume_callback. */
1792 lp->stopped = 0;
1793
1794 if (resume_many)
1795 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1796
1797 /* Convert to something the lower layer understands. */
1798 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1799
1800 if (linux_nat_prepare_to_resume != NULL)
1801 linux_nat_prepare_to_resume (lp);
1802 linux_ops->to_resume (linux_ops, ptid, step, signo);
1803 lp->stopped_by_watchpoint = 0;
1804
1805 if (debug_linux_nat)
1806 fprintf_unfiltered (gdb_stdlog,
1807 "LLR: %s %s, %s (resume event thread)\n",
1808 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1809 target_pid_to_str (ptid),
1810 (signo != GDB_SIGNAL_0
1811 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1812
1813 if (target_can_async_p ())
1814 target_async (inferior_event_handler, 0);
1815 }
1816
1817 /* Send a signal to an LWP. */
1818
1819 static int
1820 kill_lwp (int lwpid, int signo)
1821 {
1822 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1823 fails, then we are not using nptl threads and we should be using kill. */
1824
1825 #ifdef HAVE_TKILL_SYSCALL
1826 {
1827 static int tkill_failed;
1828
1829 if (!tkill_failed)
1830 {
1831 int ret;
1832
1833 errno = 0;
1834 ret = syscall (__NR_tkill, lwpid, signo);
1835 if (errno != ENOSYS)
1836 return ret;
1837 tkill_failed = 1;
1838 }
1839 }
1840 #endif
1841
1842 return kill (lwpid, signo);
1843 }
1844
1845 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1846 event, check if the core is interested in it: if not, ignore the
1847 event, and keep waiting; otherwise, we need to toggle the LWP's
1848 syscall entry/exit status, since the ptrace event itself doesn't
1849 indicate it, and report the trap to higher layers. */
1850
1851 static int
1852 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1853 {
1854 struct target_waitstatus *ourstatus = &lp->waitstatus;
1855 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1856 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1857
1858 if (stopping)
1859 {
1860 /* If we're stopping threads, there's a SIGSTOP pending, which
1861 makes it so that the LWP reports an immediate syscall return,
1862 followed by the SIGSTOP. Skip seeing that "return" using
1863 PTRACE_CONT directly, and let stop_wait_callback collect the
1864 SIGSTOP. Later when the thread is resumed, a new syscall
1865 entry event. If we didn't do this (and returned 0), we'd
1866 leave a syscall entry pending, and our caller, by using
1867 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1868 itself. Later, when the user re-resumes this LWP, we'd see
1869 another syscall entry event and we'd mistake it for a return.
1870
1871 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1872 (leaving immediately with LWP->signalled set, without issuing
1873 a PTRACE_CONT), it would still be problematic to leave this
1874 syscall enter pending, as later when the thread is resumed,
1875 it would then see the same syscall exit mentioned above,
1876 followed by the delayed SIGSTOP, while the syscall didn't
1877 actually get to execute. It seems it would be even more
1878 confusing to the user. */
1879
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "LHST: ignoring syscall %d "
1883 "for LWP %ld (stopping threads), "
1884 "resuming with PTRACE_CONT for SIGSTOP\n",
1885 syscall_number,
1886 ptid_get_lwp (lp->ptid));
1887
1888 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1889 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1890 return 1;
1891 }
1892
1893 if (catch_syscall_enabled ())
1894 {
1895 /* Always update the entry/return state, even if this particular
1896 syscall isn't interesting to the core now. In async mode,
1897 the user could install a new catchpoint for this syscall
1898 between syscall enter/return, and we'll need to know to
1899 report a syscall return if that happens. */
1900 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1901 ? TARGET_WAITKIND_SYSCALL_RETURN
1902 : TARGET_WAITKIND_SYSCALL_ENTRY);
1903
1904 if (catching_syscall_number (syscall_number))
1905 {
1906 /* Alright, an event to report. */
1907 ourstatus->kind = lp->syscall_state;
1908 ourstatus->value.syscall_number = syscall_number;
1909
1910 if (debug_linux_nat)
1911 fprintf_unfiltered (gdb_stdlog,
1912 "LHST: stopping for %s of syscall %d"
1913 " for LWP %ld\n",
1914 lp->syscall_state
1915 == TARGET_WAITKIND_SYSCALL_ENTRY
1916 ? "entry" : "return",
1917 syscall_number,
1918 ptid_get_lwp (lp->ptid));
1919 return 0;
1920 }
1921
1922 if (debug_linux_nat)
1923 fprintf_unfiltered (gdb_stdlog,
1924 "LHST: ignoring %s of syscall %d "
1925 "for LWP %ld\n",
1926 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? "entry" : "return",
1928 syscall_number,
1929 ptid_get_lwp (lp->ptid));
1930 }
1931 else
1932 {
1933 /* If we had been syscall tracing, and hence used PT_SYSCALL
1934 before on this LWP, it could happen that the user removes all
1935 syscall catchpoints before we get to process this event.
1936 There are two noteworthy issues here:
1937
1938 - When stopped at a syscall entry event, resuming with
1939 PT_STEP still resumes executing the syscall and reports a
1940 syscall return.
1941
1942 - Only PT_SYSCALL catches syscall enters. If we last
1943 single-stepped this thread, then this event can't be a
1944 syscall enter. If we last single-stepped this thread, this
1945 has to be a syscall exit.
1946
1947 The points above mean that the next resume, be it PT_STEP or
1948 PT_CONTINUE, can not trigger a syscall trace event. */
1949 if (debug_linux_nat)
1950 fprintf_unfiltered (gdb_stdlog,
1951 "LHST: caught syscall event "
1952 "with no syscall catchpoints."
1953 " %d for LWP %ld, ignoring\n",
1954 syscall_number,
1955 ptid_get_lwp (lp->ptid));
1956 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1957 }
1958
1959 /* The core isn't interested in this event. For efficiency, avoid
1960 stopping all threads only to have the core resume them all again.
1961 Since we're not stopping threads, if we're still syscall tracing
1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1963 subsequent syscall. Simply resume using the inf-ptrace layer,
1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1965
1966 /* Note that gdbarch_get_syscall_number may access registers, hence
1967 fill a regcache. */
1968 registers_changed ();
1969 if (linux_nat_prepare_to_resume != NULL)
1970 linux_nat_prepare_to_resume (lp);
1971 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1972 lp->step, GDB_SIGNAL_0);
1973 return 1;
1974 }
1975
1976 /* Handle a GNU/Linux extended wait response. If we see a clone
1977 event, we need to add the new LWP to our list (and not report the
1978 trap to higher layers). This function returns non-zero if the
1979 event should be ignored and we should wait again. If STOPPING is
1980 true, the new LWP remains stopped, otherwise it is continued. */
1981
1982 static int
1983 linux_handle_extended_wait (struct lwp_info *lp, int status,
1984 int stopping)
1985 {
1986 int pid = ptid_get_lwp (lp->ptid);
1987 struct target_waitstatus *ourstatus = &lp->waitstatus;
1988 int event = status >> 16;
1989
1990 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1991 || event == PTRACE_EVENT_CLONE)
1992 {
1993 unsigned long new_pid;
1994 int ret;
1995
1996 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1997
1998 /* If we haven't already seen the new PID stop, wait for it now. */
1999 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2000 {
2001 /* The new child has a pending SIGSTOP. We can't affect it until it
2002 hits the SIGSTOP, but we're already attached. */
2003 ret = my_waitpid (new_pid, &status,
2004 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2005 if (ret == -1)
2006 perror_with_name (_("waiting for new child"));
2007 else if (ret != new_pid)
2008 internal_error (__FILE__, __LINE__,
2009 _("wait returned unexpected PID %d"), ret);
2010 else if (!WIFSTOPPED (status))
2011 internal_error (__FILE__, __LINE__,
2012 _("wait returned unexpected status 0x%x"), status);
2013 }
2014
2015 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2016
2017 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2018 {
2019 /* The arch-specific native code may need to know about new
2020 forks even if those end up never mapped to an
2021 inferior. */
2022 if (linux_nat_new_fork != NULL)
2023 linux_nat_new_fork (lp, new_pid);
2024 }
2025
2026 if (event == PTRACE_EVENT_FORK
2027 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2028 {
2029 /* Handle checkpointing by linux-fork.c here as a special
2030 case. We don't want the follow-fork-mode or 'catch fork'
2031 to interfere with this. */
2032
2033 /* This won't actually modify the breakpoint list, but will
2034 physically remove the breakpoints from the child. */
2035 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2036
2037 /* Retain child fork in ptrace (stopped) state. */
2038 if (!find_fork_pid (new_pid))
2039 add_fork (new_pid);
2040
2041 /* Report as spurious, so that infrun doesn't want to follow
2042 this fork. We're actually doing an infcall in
2043 linux-fork.c. */
2044 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2045
2046 /* Report the stop to the core. */
2047 return 0;
2048 }
2049
2050 if (event == PTRACE_EVENT_FORK)
2051 ourstatus->kind = TARGET_WAITKIND_FORKED;
2052 else if (event == PTRACE_EVENT_VFORK)
2053 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2054 else
2055 {
2056 struct lwp_info *new_lp;
2057
2058 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2059
2060 if (debug_linux_nat)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "LHEW: Got clone event "
2063 "from LWP %d, new child is LWP %ld\n",
2064 pid, new_pid);
2065
2066 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2067 new_lp->cloned = 1;
2068 new_lp->stopped = 1;
2069
2070 if (WSTOPSIG (status) != SIGSTOP)
2071 {
2072 /* This can happen if someone starts sending signals to
2073 the new thread before it gets a chance to run, which
2074 have a lower number than SIGSTOP (e.g. SIGUSR1).
2075 This is an unlikely case, and harder to handle for
2076 fork / vfork than for clone, so we do not try - but
2077 we handle it for clone events here. We'll send
2078 the other signal on to the thread below. */
2079
2080 new_lp->signalled = 1;
2081 }
2082 else
2083 {
2084 struct thread_info *tp;
2085
2086 /* When we stop for an event in some other thread, and
2087 pull the thread list just as this thread has cloned,
2088 we'll have seen the new thread in the thread_db list
2089 before handling the CLONE event (glibc's
2090 pthread_create adds the new thread to the thread list
2091 before clone'ing, and has the kernel fill in the
2092 thread's tid on the clone call with
2093 CLONE_PARENT_SETTID). If that happened, and the core
2094 had requested the new thread to stop, we'll have
2095 killed it with SIGSTOP. But since SIGSTOP is not an
2096 RT signal, it can only be queued once. We need to be
2097 careful to not resume the LWP if we wanted it to
2098 stop. In that case, we'll leave the SIGSTOP pending.
2099 It will later be reported as GDB_SIGNAL_0. */
2100 tp = find_thread_ptid (new_lp->ptid);
2101 if (tp != NULL && tp->stop_requested)
2102 new_lp->last_resume_kind = resume_stop;
2103 else
2104 status = 0;
2105 }
2106
2107 if (non_stop)
2108 {
2109 /* Add the new thread to GDB's lists as soon as possible
2110 so that:
2111
2112 1) the frontend doesn't have to wait for a stop to
2113 display them, and,
2114
2115 2) we tag it with the correct running state. */
2116
2117 /* If the thread_db layer is active, let it know about
2118 this new thread, and add it to GDB's list. */
2119 if (!thread_db_attach_lwp (new_lp->ptid))
2120 {
2121 /* We're not using thread_db. Add it to GDB's
2122 list. */
2123 target_post_attach (ptid_get_lwp (new_lp->ptid));
2124 add_thread (new_lp->ptid);
2125 }
2126
2127 if (!stopping)
2128 {
2129 set_running (new_lp->ptid, 1);
2130 set_executing (new_lp->ptid, 1);
2131 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2132 resume_stop. */
2133 new_lp->last_resume_kind = resume_continue;
2134 }
2135 }
2136
2137 if (status != 0)
2138 {
2139 /* We created NEW_LP so it cannot yet contain STATUS. */
2140 gdb_assert (new_lp->status == 0);
2141
2142 /* Save the wait status to report later. */
2143 if (debug_linux_nat)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "LHEW: waitpid of new LWP %ld, "
2146 "saving status %s\n",
2147 (long) ptid_get_lwp (new_lp->ptid),
2148 status_to_str (status));
2149 new_lp->status = status;
2150 }
2151
2152 /* Note the need to use the low target ops to resume, to
2153 handle resuming with PT_SYSCALL if we have syscall
2154 catchpoints. */
2155 if (!stopping)
2156 {
2157 new_lp->resumed = 1;
2158
2159 if (status == 0)
2160 {
2161 gdb_assert (new_lp->last_resume_kind == resume_continue);
2162 if (debug_linux_nat)
2163 fprintf_unfiltered (gdb_stdlog,
2164 "LHEW: resuming new LWP %ld\n",
2165 ptid_get_lwp (new_lp->ptid));
2166 if (linux_nat_prepare_to_resume != NULL)
2167 linux_nat_prepare_to_resume (new_lp);
2168 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2169 0, GDB_SIGNAL_0);
2170 new_lp->stopped = 0;
2171 }
2172 }
2173
2174 if (debug_linux_nat)
2175 fprintf_unfiltered (gdb_stdlog,
2176 "LHEW: resuming parent LWP %d\n", pid);
2177 if (linux_nat_prepare_to_resume != NULL)
2178 linux_nat_prepare_to_resume (lp);
2179 linux_ops->to_resume (linux_ops,
2180 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2181 0, GDB_SIGNAL_0);
2182
2183 return 1;
2184 }
2185
2186 return 0;
2187 }
2188
2189 if (event == PTRACE_EVENT_EXEC)
2190 {
2191 if (debug_linux_nat)
2192 fprintf_unfiltered (gdb_stdlog,
2193 "LHEW: Got exec event from LWP %ld\n",
2194 ptid_get_lwp (lp->ptid));
2195
2196 ourstatus->kind = TARGET_WAITKIND_EXECD;
2197 ourstatus->value.execd_pathname
2198 = xstrdup (linux_child_pid_to_exec_file (pid));
2199
2200 return 0;
2201 }
2202
2203 if (event == PTRACE_EVENT_VFORK_DONE)
2204 {
2205 if (current_inferior ()->waiting_for_vfork_done)
2206 {
2207 if (debug_linux_nat)
2208 fprintf_unfiltered (gdb_stdlog,
2209 "LHEW: Got expected PTRACE_EVENT_"
2210 "VFORK_DONE from LWP %ld: stopping\n",
2211 ptid_get_lwp (lp->ptid));
2212
2213 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2214 return 0;
2215 }
2216
2217 if (debug_linux_nat)
2218 fprintf_unfiltered (gdb_stdlog,
2219 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2220 "from LWP %ld: resuming\n",
2221 ptid_get_lwp (lp->ptid));
2222 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2223 return 1;
2224 }
2225
2226 internal_error (__FILE__, __LINE__,
2227 _("unknown ptrace event %d"), event);
2228 }
2229
2230 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2231 exited. */
2232
2233 static int
2234 wait_lwp (struct lwp_info *lp)
2235 {
2236 pid_t pid;
2237 int status = 0;
2238 int thread_dead = 0;
2239 sigset_t prev_mask;
2240
2241 gdb_assert (!lp->stopped);
2242 gdb_assert (lp->status == 0);
2243
2244 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2245 block_child_signals (&prev_mask);
2246
2247 for (;;)
2248 {
2249 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2250 was right and we should just call sigsuspend. */
2251
2252 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2253 if (pid == -1 && errno == ECHILD)
2254 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2255 if (pid == -1 && errno == ECHILD)
2256 {
2257 /* The thread has previously exited. We need to delete it
2258 now because, for some vendor 2.4 kernels with NPTL
2259 support backported, there won't be an exit event unless
2260 it is the main thread. 2.6 kernels will report an exit
2261 event for each thread that exits, as expected. */
2262 thread_dead = 1;
2263 if (debug_linux_nat)
2264 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2265 target_pid_to_str (lp->ptid));
2266 }
2267 if (pid != 0)
2268 break;
2269
2270 /* Bugs 10970, 12702.
2271 Thread group leader may have exited in which case we'll lock up in
2272 waitpid if there are other threads, even if they are all zombies too.
2273 Basically, we're not supposed to use waitpid this way.
2274 __WCLONE is not applicable for the leader so we can't use that.
2275 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2276 process; it gets ESRCH both for the zombie and for running processes.
2277
2278 As a workaround, check if we're waiting for the thread group leader and
2279 if it's a zombie, and avoid calling waitpid if it is.
2280
2281 This is racy, what if the tgl becomes a zombie right after we check?
2282 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2283 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2284
2285 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2286 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2287 {
2288 thread_dead = 1;
2289 if (debug_linux_nat)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "WL: Thread group leader %s vanished.\n",
2292 target_pid_to_str (lp->ptid));
2293 break;
2294 }
2295
2296 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2297 get invoked despite our caller had them intentionally blocked by
2298 block_child_signals. This is sensitive only to the loop of
2299 linux_nat_wait_1 and there if we get called my_waitpid gets called
2300 again before it gets to sigsuspend so we can safely let the handlers
2301 get executed here. */
2302
2303 sigsuspend (&suspend_mask);
2304 }
2305
2306 restore_child_signals_mask (&prev_mask);
2307
2308 if (!thread_dead)
2309 {
2310 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2311
2312 if (debug_linux_nat)
2313 {
2314 fprintf_unfiltered (gdb_stdlog,
2315 "WL: waitpid %s received %s\n",
2316 target_pid_to_str (lp->ptid),
2317 status_to_str (status));
2318 }
2319
2320 /* Check if the thread has exited. */
2321 if (WIFEXITED (status) || WIFSIGNALED (status))
2322 {
2323 thread_dead = 1;
2324 if (debug_linux_nat)
2325 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2326 target_pid_to_str (lp->ptid));
2327 }
2328 }
2329
2330 if (thread_dead)
2331 {
2332 exit_lwp (lp);
2333 return 0;
2334 }
2335
2336 gdb_assert (WIFSTOPPED (status));
2337
2338 /* Handle GNU/Linux's syscall SIGTRAPs. */
2339 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2340 {
2341 /* No longer need the sysgood bit. The ptrace event ends up
2342 recorded in lp->waitstatus if we care for it. We can carry
2343 on handling the event like a regular SIGTRAP from here
2344 on. */
2345 status = W_STOPCODE (SIGTRAP);
2346 if (linux_handle_syscall_trap (lp, 1))
2347 return wait_lwp (lp);
2348 }
2349
2350 /* Handle GNU/Linux's extended waitstatus for trace events. */
2351 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2352 {
2353 if (debug_linux_nat)
2354 fprintf_unfiltered (gdb_stdlog,
2355 "WL: Handling extended status 0x%06x\n",
2356 status);
2357 if (linux_handle_extended_wait (lp, status, 1))
2358 return wait_lwp (lp);
2359 }
2360
2361 return status;
2362 }
2363
2364 /* Send a SIGSTOP to LP. */
2365
2366 static int
2367 stop_callback (struct lwp_info *lp, void *data)
2368 {
2369 if (!lp->stopped && !lp->signalled)
2370 {
2371 int ret;
2372
2373 if (debug_linux_nat)
2374 {
2375 fprintf_unfiltered (gdb_stdlog,
2376 "SC: kill %s **<SIGSTOP>**\n",
2377 target_pid_to_str (lp->ptid));
2378 }
2379 errno = 0;
2380 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2381 if (debug_linux_nat)
2382 {
2383 fprintf_unfiltered (gdb_stdlog,
2384 "SC: lwp kill %d %s\n",
2385 ret,
2386 errno ? safe_strerror (errno) : "ERRNO-OK");
2387 }
2388
2389 lp->signalled = 1;
2390 gdb_assert (lp->status == 0);
2391 }
2392
2393 return 0;
2394 }
2395
2396 /* Request a stop on LWP. */
2397
2398 void
2399 linux_stop_lwp (struct lwp_info *lwp)
2400 {
2401 stop_callback (lwp, NULL);
2402 }
2403
2404 /* Return non-zero if LWP PID has a pending SIGINT. */
2405
2406 static int
2407 linux_nat_has_pending_sigint (int pid)
2408 {
2409 sigset_t pending, blocked, ignored;
2410
2411 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2412
2413 if (sigismember (&pending, SIGINT)
2414 && !sigismember (&ignored, SIGINT))
2415 return 1;
2416
2417 return 0;
2418 }
2419
2420 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2421
2422 static int
2423 set_ignore_sigint (struct lwp_info *lp, void *data)
2424 {
2425 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2426 flag to consume the next one. */
2427 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2428 && WSTOPSIG (lp->status) == SIGINT)
2429 lp->status = 0;
2430 else
2431 lp->ignore_sigint = 1;
2432
2433 return 0;
2434 }
2435
2436 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2437 This function is called after we know the LWP has stopped; if the LWP
2438 stopped before the expected SIGINT was delivered, then it will never have
2439 arrived. Also, if the signal was delivered to a shared queue and consumed
2440 by a different thread, it will never be delivered to this LWP. */
2441
2442 static void
2443 maybe_clear_ignore_sigint (struct lwp_info *lp)
2444 {
2445 if (!lp->ignore_sigint)
2446 return;
2447
2448 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2449 {
2450 if (debug_linux_nat)
2451 fprintf_unfiltered (gdb_stdlog,
2452 "MCIS: Clearing bogus flag for %s\n",
2453 target_pid_to_str (lp->ptid));
2454 lp->ignore_sigint = 0;
2455 }
2456 }
2457
2458 /* Fetch the possible triggered data watchpoint info and store it in
2459 LP.
2460
2461 On some archs, like x86, that use debug registers to set
2462 watchpoints, it's possible that the way to know which watched
2463 address trapped, is to check the register that is used to select
2464 which address to watch. Problem is, between setting the watchpoint
2465 and reading back which data address trapped, the user may change
2466 the set of watchpoints, and, as a consequence, GDB changes the
2467 debug registers in the inferior. To avoid reading back a stale
2468 stopped-data-address when that happens, we cache in LP the fact
2469 that a watchpoint trapped, and the corresponding data address, as
2470 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2471 registers meanwhile, we have the cached data we can rely on. */
2472
2473 static void
2474 save_sigtrap (struct lwp_info *lp)
2475 {
2476 struct cleanup *old_chain;
2477
2478 if (linux_ops->to_stopped_by_watchpoint == NULL)
2479 {
2480 lp->stopped_by_watchpoint = 0;
2481 return;
2482 }
2483
2484 old_chain = save_inferior_ptid ();
2485 inferior_ptid = lp->ptid;
2486
2487 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2488
2489 if (lp->stopped_by_watchpoint)
2490 {
2491 if (linux_ops->to_stopped_data_address != NULL)
2492 lp->stopped_data_address_p =
2493 linux_ops->to_stopped_data_address (&current_target,
2494 &lp->stopped_data_address);
2495 else
2496 lp->stopped_data_address_p = 0;
2497 }
2498
2499 do_cleanups (old_chain);
2500 }
2501
2502 /* See save_sigtrap. */
2503
2504 static int
2505 linux_nat_stopped_by_watchpoint (void)
2506 {
2507 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2508
2509 gdb_assert (lp != NULL);
2510
2511 return lp->stopped_by_watchpoint;
2512 }
2513
2514 static int
2515 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2516 {
2517 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2518
2519 gdb_assert (lp != NULL);
2520
2521 *addr_p = lp->stopped_data_address;
2522
2523 return lp->stopped_data_address_p;
2524 }
2525
2526 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2527
2528 static int
2529 sigtrap_is_event (int status)
2530 {
2531 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2532 }
2533
2534 /* SIGTRAP-like events recognizer. */
2535
2536 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2537
2538 /* Check for SIGTRAP-like events in LP. */
2539
2540 static int
2541 linux_nat_lp_status_is_event (struct lwp_info *lp)
2542 {
2543 /* We check for lp->waitstatus in addition to lp->status, because we can
2544 have pending process exits recorded in lp->status
2545 and W_EXITCODE(0,0) == 0. We should probably have an additional
2546 lp->status_p flag. */
2547
2548 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2549 && linux_nat_status_is_event (lp->status));
2550 }
2551
2552 /* Set alternative SIGTRAP-like events recognizer. If
2553 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2554 applied. */
2555
2556 void
2557 linux_nat_set_status_is_event (struct target_ops *t,
2558 int (*status_is_event) (int status))
2559 {
2560 linux_nat_status_is_event = status_is_event;
2561 }
2562
2563 /* Wait until LP is stopped. */
2564
2565 static int
2566 stop_wait_callback (struct lwp_info *lp, void *data)
2567 {
2568 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2569
2570 /* If this is a vfork parent, bail out, it is not going to report
2571 any SIGSTOP until the vfork is done with. */
2572 if (inf->vfork_child != NULL)
2573 return 0;
2574
2575 if (!lp->stopped)
2576 {
2577 int status;
2578
2579 status = wait_lwp (lp);
2580 if (status == 0)
2581 return 0;
2582
2583 if (lp->ignore_sigint && WIFSTOPPED (status)
2584 && WSTOPSIG (status) == SIGINT)
2585 {
2586 lp->ignore_sigint = 0;
2587
2588 errno = 0;
2589 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2590 if (debug_linux_nat)
2591 fprintf_unfiltered (gdb_stdlog,
2592 "PTRACE_CONT %s, 0, 0 (%s) "
2593 "(discarding SIGINT)\n",
2594 target_pid_to_str (lp->ptid),
2595 errno ? safe_strerror (errno) : "OK");
2596
2597 return stop_wait_callback (lp, NULL);
2598 }
2599
2600 maybe_clear_ignore_sigint (lp);
2601
2602 if (WSTOPSIG (status) != SIGSTOP)
2603 {
2604 /* The thread was stopped with a signal other than SIGSTOP. */
2605
2606 save_sigtrap (lp);
2607
2608 if (debug_linux_nat)
2609 fprintf_unfiltered (gdb_stdlog,
2610 "SWC: Pending event %s in %s\n",
2611 status_to_str ((int) status),
2612 target_pid_to_str (lp->ptid));
2613
2614 /* Save the sigtrap event. */
2615 lp->status = status;
2616 gdb_assert (!lp->stopped);
2617 gdb_assert (lp->signalled);
2618 lp->stopped = 1;
2619 }
2620 else
2621 {
2622 /* We caught the SIGSTOP that we intended to catch, so
2623 there's no SIGSTOP pending. */
2624
2625 if (debug_linux_nat)
2626 fprintf_unfiltered (gdb_stdlog,
2627 "SWC: Delayed SIGSTOP caught for %s.\n",
2628 target_pid_to_str (lp->ptid));
2629
2630 lp->stopped = 1;
2631
2632 /* Reset SIGNALLED only after the stop_wait_callback call
2633 above as it does gdb_assert on SIGNALLED. */
2634 lp->signalled = 0;
2635 }
2636 }
2637
2638 return 0;
2639 }
2640
2641 /* Return non-zero if LP has a wait status pending. */
2642
2643 static int
2644 status_callback (struct lwp_info *lp, void *data)
2645 {
2646 /* Only report a pending wait status if we pretend that this has
2647 indeed been resumed. */
2648 if (!lp->resumed)
2649 return 0;
2650
2651 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2652 {
2653 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2654 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2655 0', so a clean process exit can not be stored pending in
2656 lp->status, it is indistinguishable from
2657 no-pending-status. */
2658 return 1;
2659 }
2660
2661 if (lp->status != 0)
2662 return 1;
2663
2664 return 0;
2665 }
2666
2667 /* Return non-zero if LP isn't stopped. */
2668
2669 static int
2670 running_callback (struct lwp_info *lp, void *data)
2671 {
2672 return (!lp->stopped
2673 || ((lp->status != 0
2674 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2675 && lp->resumed));
2676 }
2677
2678 /* Count the LWP's that have had events. */
2679
2680 static int
2681 count_events_callback (struct lwp_info *lp, void *data)
2682 {
2683 int *count = data;
2684
2685 gdb_assert (count != NULL);
2686
2687 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2688 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2689 (*count)++;
2690
2691 return 0;
2692 }
2693
2694 /* Select the LWP (if any) that is currently being single-stepped. */
2695
2696 static int
2697 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2698 {
2699 if (lp->last_resume_kind == resume_step
2700 && lp->status != 0)
2701 return 1;
2702 else
2703 return 0;
2704 }
2705
2706 /* Select the Nth LWP that has had a SIGTRAP event. */
2707
2708 static int
2709 select_event_lwp_callback (struct lwp_info *lp, void *data)
2710 {
2711 int *selector = data;
2712
2713 gdb_assert (selector != NULL);
2714
2715 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2716 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2717 if ((*selector)-- == 0)
2718 return 1;
2719
2720 return 0;
2721 }
2722
2723 static int
2724 cancel_breakpoint (struct lwp_info *lp)
2725 {
2726 /* Arrange for a breakpoint to be hit again later. We don't keep
2727 the SIGTRAP status and don't forward the SIGTRAP signal to the
2728 LWP. We will handle the current event, eventually we will resume
2729 this LWP, and this breakpoint will trap again.
2730
2731 If we do not do this, then we run the risk that the user will
2732 delete or disable the breakpoint, but the LWP will have already
2733 tripped on it. */
2734
2735 struct regcache *regcache = get_thread_regcache (lp->ptid);
2736 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2737 CORE_ADDR pc;
2738
2739 pc = regcache_read_pc (regcache) - target_decr_pc_after_break (gdbarch);
2740 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2741 {
2742 if (debug_linux_nat)
2743 fprintf_unfiltered (gdb_stdlog,
2744 "CB: Push back breakpoint for %s\n",
2745 target_pid_to_str (lp->ptid));
2746
2747 /* Back up the PC if necessary. */
2748 if (target_decr_pc_after_break (gdbarch))
2749 regcache_write_pc (regcache, pc);
2750
2751 return 1;
2752 }
2753 return 0;
2754 }
2755
2756 static int
2757 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2758 {
2759 struct lwp_info *event_lp = data;
2760
2761 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2762 if (lp == event_lp)
2763 return 0;
2764
2765 /* If a LWP other than the LWP that we're reporting an event for has
2766 hit a GDB breakpoint (as opposed to some random trap signal),
2767 then just arrange for it to hit it again later. We don't keep
2768 the SIGTRAP status and don't forward the SIGTRAP signal to the
2769 LWP. We will handle the current event, eventually we will resume
2770 all LWPs, and this one will get its breakpoint trap again.
2771
2772 If we do not do this, then we run the risk that the user will
2773 delete or disable the breakpoint, but the LWP will have already
2774 tripped on it. */
2775
2776 if (linux_nat_lp_status_is_event (lp)
2777 && cancel_breakpoint (lp))
2778 /* Throw away the SIGTRAP. */
2779 lp->status = 0;
2780
2781 return 0;
2782 }
2783
2784 /* Select one LWP out of those that have events pending. */
2785
2786 static void
2787 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2788 {
2789 int num_events = 0;
2790 int random_selector;
2791 struct lwp_info *event_lp;
2792
2793 /* Record the wait status for the original LWP. */
2794 (*orig_lp)->status = *status;
2795
2796 /* Give preference to any LWP that is being single-stepped. */
2797 event_lp = iterate_over_lwps (filter,
2798 select_singlestep_lwp_callback, NULL);
2799 if (event_lp != NULL)
2800 {
2801 if (debug_linux_nat)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "SEL: Select single-step %s\n",
2804 target_pid_to_str (event_lp->ptid));
2805 }
2806 else
2807 {
2808 /* No single-stepping LWP. Select one at random, out of those
2809 which have had SIGTRAP events. */
2810
2811 /* First see how many SIGTRAP events we have. */
2812 iterate_over_lwps (filter, count_events_callback, &num_events);
2813
2814 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2815 random_selector = (int)
2816 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2817
2818 if (debug_linux_nat && num_events > 1)
2819 fprintf_unfiltered (gdb_stdlog,
2820 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2821 num_events, random_selector);
2822
2823 event_lp = iterate_over_lwps (filter,
2824 select_event_lwp_callback,
2825 &random_selector);
2826 }
2827
2828 if (event_lp != NULL)
2829 {
2830 /* Switch the event LWP. */
2831 *orig_lp = event_lp;
2832 *status = event_lp->status;
2833 }
2834
2835 /* Flush the wait status for the event LWP. */
2836 (*orig_lp)->status = 0;
2837 }
2838
2839 /* Return non-zero if LP has been resumed. */
2840
2841 static int
2842 resumed_callback (struct lwp_info *lp, void *data)
2843 {
2844 return lp->resumed;
2845 }
2846
2847 /* Stop an active thread, verify it still exists, then resume it. If
2848 the thread ends up with a pending status, then it is not resumed,
2849 and *DATA (really a pointer to int), is set. */
2850
2851 static int
2852 stop_and_resume_callback (struct lwp_info *lp, void *data)
2853 {
2854 int *new_pending_p = data;
2855
2856 if (!lp->stopped)
2857 {
2858 ptid_t ptid = lp->ptid;
2859
2860 stop_callback (lp, NULL);
2861 stop_wait_callback (lp, NULL);
2862
2863 /* Resume if the lwp still exists, and the core wanted it
2864 running. */
2865 lp = find_lwp_pid (ptid);
2866 if (lp != NULL)
2867 {
2868 if (lp->last_resume_kind == resume_stop
2869 && lp->status == 0)
2870 {
2871 /* The core wanted the LWP to stop. Even if it stopped
2872 cleanly (with SIGSTOP), leave the event pending. */
2873 if (debug_linux_nat)
2874 fprintf_unfiltered (gdb_stdlog,
2875 "SARC: core wanted LWP %ld stopped "
2876 "(leaving SIGSTOP pending)\n",
2877 ptid_get_lwp (lp->ptid));
2878 lp->status = W_STOPCODE (SIGSTOP);
2879 }
2880
2881 if (lp->status == 0)
2882 {
2883 if (debug_linux_nat)
2884 fprintf_unfiltered (gdb_stdlog,
2885 "SARC: re-resuming LWP %ld\n",
2886 ptid_get_lwp (lp->ptid));
2887 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2888 }
2889 else
2890 {
2891 if (debug_linux_nat)
2892 fprintf_unfiltered (gdb_stdlog,
2893 "SARC: not re-resuming LWP %ld "
2894 "(has pending)\n",
2895 ptid_get_lwp (lp->ptid));
2896 if (new_pending_p)
2897 *new_pending_p = 1;
2898 }
2899 }
2900 }
2901 return 0;
2902 }
2903
2904 /* Check if we should go on and pass this event to common code.
2905 Return the affected lwp if we are, or NULL otherwise. If we stop
2906 all lwps temporarily, we may end up with new pending events in some
2907 other lwp. In that case set *NEW_PENDING_P to true. */
2908
2909 static struct lwp_info *
2910 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2911 {
2912 struct lwp_info *lp;
2913
2914 *new_pending_p = 0;
2915
2916 lp = find_lwp_pid (pid_to_ptid (lwpid));
2917
2918 /* Check for stop events reported by a process we didn't already
2919 know about - anything not already in our LWP list.
2920
2921 If we're expecting to receive stopped processes after
2922 fork, vfork, and clone events, then we'll just add the
2923 new one to our list and go back to waiting for the event
2924 to be reported - the stopped process might be returned
2925 from waitpid before or after the event is.
2926
2927 But note the case of a non-leader thread exec'ing after the
2928 leader having exited, and gone from our lists. The non-leader
2929 thread changes its tid to the tgid. */
2930
2931 if (WIFSTOPPED (status) && lp == NULL
2932 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2933 {
2934 /* A multi-thread exec after we had seen the leader exiting. */
2935 if (debug_linux_nat)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "LLW: Re-adding thread group leader LWP %d.\n",
2938 lwpid);
2939
2940 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2941 lp->stopped = 1;
2942 lp->resumed = 1;
2943 add_thread (lp->ptid);
2944 }
2945
2946 if (WIFSTOPPED (status) && !lp)
2947 {
2948 add_to_pid_list (&stopped_pids, lwpid, status);
2949 return NULL;
2950 }
2951
2952 /* Make sure we don't report an event for the exit of an LWP not in
2953 our list, i.e. not part of the current process. This can happen
2954 if we detach from a program we originally forked and then it
2955 exits. */
2956 if (!WIFSTOPPED (status) && !lp)
2957 return NULL;
2958
2959 /* Handle GNU/Linux's syscall SIGTRAPs. */
2960 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2961 {
2962 /* No longer need the sysgood bit. The ptrace event ends up
2963 recorded in lp->waitstatus if we care for it. We can carry
2964 on handling the event like a regular SIGTRAP from here
2965 on. */
2966 status = W_STOPCODE (SIGTRAP);
2967 if (linux_handle_syscall_trap (lp, 0))
2968 return NULL;
2969 }
2970
2971 /* Handle GNU/Linux's extended waitstatus for trace events. */
2972 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2973 {
2974 if (debug_linux_nat)
2975 fprintf_unfiltered (gdb_stdlog,
2976 "LLW: Handling extended status 0x%06x\n",
2977 status);
2978 if (linux_handle_extended_wait (lp, status, 0))
2979 return NULL;
2980 }
2981
2982 if (linux_nat_status_is_event (status))
2983 save_sigtrap (lp);
2984
2985 /* Check if the thread has exited. */
2986 if ((WIFEXITED (status) || WIFSIGNALED (status))
2987 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2988 {
2989 /* If this is the main thread, we must stop all threads and verify
2990 if they are still alive. This is because in the nptl thread model
2991 on Linux 2.4, there is no signal issued for exiting LWPs
2992 other than the main thread. We only get the main thread exit
2993 signal once all child threads have already exited. If we
2994 stop all the threads and use the stop_wait_callback to check
2995 if they have exited we can determine whether this signal
2996 should be ignored or whether it means the end of the debugged
2997 application, regardless of which threading model is being
2998 used. */
2999 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3000 {
3001 lp->stopped = 1;
3002 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3003 stop_and_resume_callback, new_pending_p);
3004 }
3005
3006 if (debug_linux_nat)
3007 fprintf_unfiltered (gdb_stdlog,
3008 "LLW: %s exited.\n",
3009 target_pid_to_str (lp->ptid));
3010
3011 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3012 {
3013 /* If there is at least one more LWP, then the exit signal
3014 was not the end of the debugged application and should be
3015 ignored. */
3016 exit_lwp (lp);
3017 return NULL;
3018 }
3019 }
3020
3021 /* Check if the current LWP has previously exited. In the nptl
3022 thread model, LWPs other than the main thread do not issue
3023 signals when they exit so we must check whenever the thread has
3024 stopped. A similar check is made in stop_wait_callback(). */
3025 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3026 {
3027 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3028
3029 if (debug_linux_nat)
3030 fprintf_unfiltered (gdb_stdlog,
3031 "LLW: %s exited.\n",
3032 target_pid_to_str (lp->ptid));
3033
3034 exit_lwp (lp);
3035
3036 /* Make sure there is at least one thread running. */
3037 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3038
3039 /* Discard the event. */
3040 return NULL;
3041 }
3042
3043 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3044 an attempt to stop an LWP. */
3045 if (lp->signalled
3046 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3047 {
3048 if (debug_linux_nat)
3049 fprintf_unfiltered (gdb_stdlog,
3050 "LLW: Delayed SIGSTOP caught for %s.\n",
3051 target_pid_to_str (lp->ptid));
3052
3053 lp->signalled = 0;
3054
3055 if (lp->last_resume_kind != resume_stop)
3056 {
3057 /* This is a delayed SIGSTOP. */
3058
3059 registers_changed ();
3060
3061 if (linux_nat_prepare_to_resume != NULL)
3062 linux_nat_prepare_to_resume (lp);
3063 linux_ops->to_resume (linux_ops,
3064 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3065 lp->step, GDB_SIGNAL_0);
3066 if (debug_linux_nat)
3067 fprintf_unfiltered (gdb_stdlog,
3068 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3069 lp->step ?
3070 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3071 target_pid_to_str (lp->ptid));
3072
3073 lp->stopped = 0;
3074 gdb_assert (lp->resumed);
3075
3076 /* Discard the event. */
3077 return NULL;
3078 }
3079 }
3080
3081 /* Make sure we don't report a SIGINT that we have already displayed
3082 for another thread. */
3083 if (lp->ignore_sigint
3084 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3085 {
3086 if (debug_linux_nat)
3087 fprintf_unfiltered (gdb_stdlog,
3088 "LLW: Delayed SIGINT caught for %s.\n",
3089 target_pid_to_str (lp->ptid));
3090
3091 /* This is a delayed SIGINT. */
3092 lp->ignore_sigint = 0;
3093
3094 registers_changed ();
3095 if (linux_nat_prepare_to_resume != NULL)
3096 linux_nat_prepare_to_resume (lp);
3097 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3098 lp->step, GDB_SIGNAL_0);
3099 if (debug_linux_nat)
3100 fprintf_unfiltered (gdb_stdlog,
3101 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3102 lp->step ?
3103 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3104 target_pid_to_str (lp->ptid));
3105
3106 lp->stopped = 0;
3107 gdb_assert (lp->resumed);
3108
3109 /* Discard the event. */
3110 return NULL;
3111 }
3112
3113 /* An interesting event. */
3114 gdb_assert (lp);
3115 lp->status = status;
3116 return lp;
3117 }
3118
3119 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3120 their exits until all other threads in the group have exited. */
3121
3122 static void
3123 check_zombie_leaders (void)
3124 {
3125 struct inferior *inf;
3126
3127 ALL_INFERIORS (inf)
3128 {
3129 struct lwp_info *leader_lp;
3130
3131 if (inf->pid == 0)
3132 continue;
3133
3134 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3135 if (leader_lp != NULL
3136 /* Check if there are other threads in the group, as we may
3137 have raced with the inferior simply exiting. */
3138 && num_lwps (inf->pid) > 1
3139 && linux_proc_pid_is_zombie (inf->pid))
3140 {
3141 if (debug_linux_nat)
3142 fprintf_unfiltered (gdb_stdlog,
3143 "CZL: Thread group leader %d zombie "
3144 "(it exited, or another thread execd).\n",
3145 inf->pid);
3146
3147 /* A leader zombie can mean one of two things:
3148
3149 - It exited, and there's an exit status pending
3150 available, or only the leader exited (not the whole
3151 program). In the latter case, we can't waitpid the
3152 leader's exit status until all other threads are gone.
3153
3154 - There are 3 or more threads in the group, and a thread
3155 other than the leader exec'd. On an exec, the Linux
3156 kernel destroys all other threads (except the execing
3157 one) in the thread group, and resets the execing thread's
3158 tid to the tgid. No exit notification is sent for the
3159 execing thread -- from the ptracer's perspective, it
3160 appears as though the execing thread just vanishes.
3161 Until we reap all other threads except the leader and the
3162 execing thread, the leader will be zombie, and the
3163 execing thread will be in `D (disc sleep)'. As soon as
3164 all other threads are reaped, the execing thread changes
3165 it's tid to the tgid, and the previous (zombie) leader
3166 vanishes, giving place to the "new" leader. We could try
3167 distinguishing the exit and exec cases, by waiting once
3168 more, and seeing if something comes out, but it doesn't
3169 sound useful. The previous leader _does_ go away, and
3170 we'll re-add the new one once we see the exec event
3171 (which is just the same as what would happen if the
3172 previous leader did exit voluntarily before some other
3173 thread execs). */
3174
3175 if (debug_linux_nat)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "CZL: Thread group leader %d vanished.\n",
3178 inf->pid);
3179 exit_lwp (leader_lp);
3180 }
3181 }
3182 }
3183
3184 static ptid_t
3185 linux_nat_wait_1 (struct target_ops *ops,
3186 ptid_t ptid, struct target_waitstatus *ourstatus,
3187 int target_options)
3188 {
3189 static sigset_t prev_mask;
3190 enum resume_kind last_resume_kind;
3191 struct lwp_info *lp;
3192 int status;
3193
3194 if (debug_linux_nat)
3195 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3196
3197 /* The first time we get here after starting a new inferior, we may
3198 not have added it to the LWP list yet - this is the earliest
3199 moment at which we know its PID. */
3200 if (ptid_is_pid (inferior_ptid))
3201 {
3202 /* Upgrade the main thread's ptid. */
3203 thread_change_ptid (inferior_ptid,
3204 ptid_build (ptid_get_pid (inferior_ptid),
3205 ptid_get_pid (inferior_ptid), 0));
3206
3207 lp = add_initial_lwp (inferior_ptid);
3208 lp->resumed = 1;
3209 }
3210
3211 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3212 block_child_signals (&prev_mask);
3213
3214 retry:
3215 lp = NULL;
3216 status = 0;
3217
3218 /* First check if there is a LWP with a wait status pending. */
3219 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3220 {
3221 /* Any LWP in the PTID group that's been resumed will do. */
3222 lp = iterate_over_lwps (ptid, status_callback, NULL);
3223 if (lp)
3224 {
3225 if (debug_linux_nat && lp->status)
3226 fprintf_unfiltered (gdb_stdlog,
3227 "LLW: Using pending wait status %s for %s.\n",
3228 status_to_str (lp->status),
3229 target_pid_to_str (lp->ptid));
3230 }
3231 }
3232 else if (ptid_lwp_p (ptid))
3233 {
3234 if (debug_linux_nat)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "LLW: Waiting for specific LWP %s.\n",
3237 target_pid_to_str (ptid));
3238
3239 /* We have a specific LWP to check. */
3240 lp = find_lwp_pid (ptid);
3241 gdb_assert (lp);
3242
3243 if (debug_linux_nat && lp->status)
3244 fprintf_unfiltered (gdb_stdlog,
3245 "LLW: Using pending wait status %s for %s.\n",
3246 status_to_str (lp->status),
3247 target_pid_to_str (lp->ptid));
3248
3249 /* We check for lp->waitstatus in addition to lp->status,
3250 because we can have pending process exits recorded in
3251 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3252 an additional lp->status_p flag. */
3253 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3254 lp = NULL;
3255 }
3256
3257 if (!target_can_async_p ())
3258 {
3259 /* Causes SIGINT to be passed on to the attached process. */
3260 set_sigint_trap ();
3261 }
3262
3263 /* But if we don't find a pending event, we'll have to wait. */
3264
3265 while (lp == NULL)
3266 {
3267 pid_t lwpid;
3268
3269 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3270 quirks:
3271
3272 - If the thread group leader exits while other threads in the
3273 thread group still exist, waitpid(TGID, ...) hangs. That
3274 waitpid won't return an exit status until the other threads
3275 in the group are reapped.
3276
3277 - When a non-leader thread execs, that thread just vanishes
3278 without reporting an exit (so we'd hang if we waited for it
3279 explicitly in that case). The exec event is reported to
3280 the TGID pid. */
3281
3282 errno = 0;
3283 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3284 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3285 lwpid = my_waitpid (-1, &status, WNOHANG);
3286
3287 if (debug_linux_nat)
3288 fprintf_unfiltered (gdb_stdlog,
3289 "LNW: waitpid(-1, ...) returned %d, %s\n",
3290 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3291
3292 if (lwpid > 0)
3293 {
3294 /* If this is true, then we paused LWPs momentarily, and may
3295 now have pending events to handle. */
3296 int new_pending;
3297
3298 if (debug_linux_nat)
3299 {
3300 fprintf_unfiltered (gdb_stdlog,
3301 "LLW: waitpid %ld received %s\n",
3302 (long) lwpid, status_to_str (status));
3303 }
3304
3305 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3306
3307 /* STATUS is now no longer valid, use LP->STATUS instead. */
3308 status = 0;
3309
3310 if (lp && !ptid_match (lp->ptid, ptid))
3311 {
3312 gdb_assert (lp->resumed);
3313
3314 if (debug_linux_nat)
3315 fprintf (stderr,
3316 "LWP %ld got an event %06x, leaving pending.\n",
3317 ptid_get_lwp (lp->ptid), lp->status);
3318
3319 if (WIFSTOPPED (lp->status))
3320 {
3321 if (WSTOPSIG (lp->status) != SIGSTOP)
3322 {
3323 /* Cancel breakpoint hits. The breakpoint may
3324 be removed before we fetch events from this
3325 process to report to the core. It is best
3326 not to assume the moribund breakpoints
3327 heuristic always handles these cases --- it
3328 could be too many events go through to the
3329 core before this one is handled. All-stop
3330 always cancels breakpoint hits in all
3331 threads. */
3332 if (non_stop
3333 && linux_nat_lp_status_is_event (lp)
3334 && cancel_breakpoint (lp))
3335 {
3336 /* Throw away the SIGTRAP. */
3337 lp->status = 0;
3338
3339 if (debug_linux_nat)
3340 fprintf (stderr,
3341 "LLW: LWP %ld hit a breakpoint while"
3342 " waiting for another process;"
3343 " cancelled it\n",
3344 ptid_get_lwp (lp->ptid));
3345 }
3346 lp->stopped = 1;
3347 }
3348 else
3349 {
3350 lp->stopped = 1;
3351 lp->signalled = 0;
3352 }
3353 }
3354 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3355 {
3356 if (debug_linux_nat)
3357 fprintf (stderr,
3358 "Process %ld exited while stopping LWPs\n",
3359 ptid_get_lwp (lp->ptid));
3360
3361 /* This was the last lwp in the process. Since
3362 events are serialized to GDB core, and we can't
3363 report this one right now, but GDB core and the
3364 other target layers will want to be notified
3365 about the exit code/signal, leave the status
3366 pending for the next time we're able to report
3367 it. */
3368
3369 /* Prevent trying to stop this thread again. We'll
3370 never try to resume it because it has a pending
3371 status. */
3372 lp->stopped = 1;
3373
3374 /* Dead LWP's aren't expected to reported a pending
3375 sigstop. */
3376 lp->signalled = 0;
3377
3378 /* Store the pending event in the waitstatus as
3379 well, because W_EXITCODE(0,0) == 0. */
3380 store_waitstatus (&lp->waitstatus, lp->status);
3381 }
3382
3383 /* Keep looking. */
3384 lp = NULL;
3385 }
3386
3387 if (new_pending)
3388 {
3389 /* Some LWP now has a pending event. Go all the way
3390 back to check it. */
3391 goto retry;
3392 }
3393
3394 if (lp)
3395 {
3396 /* We got an event to report to the core. */
3397 break;
3398 }
3399
3400 /* Retry until nothing comes out of waitpid. A single
3401 SIGCHLD can indicate more than one child stopped. */
3402 continue;
3403 }
3404
3405 /* Check for zombie thread group leaders. Those can't be reaped
3406 until all other threads in the thread group are. */
3407 check_zombie_leaders ();
3408
3409 /* If there are no resumed children left, bail. We'd be stuck
3410 forever in the sigsuspend call below otherwise. */
3411 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3412 {
3413 if (debug_linux_nat)
3414 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3415
3416 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3417
3418 if (!target_can_async_p ())
3419 clear_sigint_trap ();
3420
3421 restore_child_signals_mask (&prev_mask);
3422 return minus_one_ptid;
3423 }
3424
3425 /* No interesting event to report to the core. */
3426
3427 if (target_options & TARGET_WNOHANG)
3428 {
3429 if (debug_linux_nat)
3430 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3431
3432 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3433 restore_child_signals_mask (&prev_mask);
3434 return minus_one_ptid;
3435 }
3436
3437 /* We shouldn't end up here unless we want to try again. */
3438 gdb_assert (lp == NULL);
3439
3440 /* Block until we get an event reported with SIGCHLD. */
3441 sigsuspend (&suspend_mask);
3442 }
3443
3444 if (!target_can_async_p ())
3445 clear_sigint_trap ();
3446
3447 gdb_assert (lp);
3448
3449 status = lp->status;
3450 lp->status = 0;
3451
3452 /* Don't report signals that GDB isn't interested in, such as
3453 signals that are neither printed nor stopped upon. Stopping all
3454 threads can be a bit time-consuming so if we want decent
3455 performance with heavily multi-threaded programs, especially when
3456 they're using a high frequency timer, we'd better avoid it if we
3457 can. */
3458
3459 if (WIFSTOPPED (status))
3460 {
3461 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3462
3463 /* When using hardware single-step, we need to report every signal.
3464 Otherwise, signals in pass_mask may be short-circuited. */
3465 if (!lp->step
3466 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3467 {
3468 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3469 here? It is not clear we should. GDB may not expect
3470 other threads to run. On the other hand, not resuming
3471 newly attached threads may cause an unwanted delay in
3472 getting them running. */
3473 registers_changed ();
3474 if (linux_nat_prepare_to_resume != NULL)
3475 linux_nat_prepare_to_resume (lp);
3476 linux_ops->to_resume (linux_ops,
3477 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3478 lp->step, signo);
3479 if (debug_linux_nat)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "LLW: %s %s, %s (preempt 'handle')\n",
3482 lp->step ?
3483 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3484 target_pid_to_str (lp->ptid),
3485 (signo != GDB_SIGNAL_0
3486 ? strsignal (gdb_signal_to_host (signo))
3487 : "0"));
3488 lp->stopped = 0;
3489 goto retry;
3490 }
3491
3492 if (!non_stop)
3493 {
3494 /* Only do the below in all-stop, as we currently use SIGINT
3495 to implement target_stop (see linux_nat_stop) in
3496 non-stop. */
3497 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3498 {
3499 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3500 forwarded to the entire process group, that is, all LWPs
3501 will receive it - unless they're using CLONE_THREAD to
3502 share signals. Since we only want to report it once, we
3503 mark it as ignored for all LWPs except this one. */
3504 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3505 set_ignore_sigint, NULL);
3506 lp->ignore_sigint = 0;
3507 }
3508 else
3509 maybe_clear_ignore_sigint (lp);
3510 }
3511 }
3512
3513 /* This LWP is stopped now. */
3514 lp->stopped = 1;
3515
3516 if (debug_linux_nat)
3517 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3518 status_to_str (status), target_pid_to_str (lp->ptid));
3519
3520 if (!non_stop)
3521 {
3522 /* Now stop all other LWP's ... */
3523 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3524
3525 /* ... and wait until all of them have reported back that
3526 they're no longer running. */
3527 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3528
3529 /* If we're not waiting for a specific LWP, choose an event LWP
3530 from among those that have had events. Giving equal priority
3531 to all LWPs that have had events helps prevent
3532 starvation. */
3533 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3534 select_event_lwp (ptid, &lp, &status);
3535
3536 /* Now that we've selected our final event LWP, cancel any
3537 breakpoints in other LWPs that have hit a GDB breakpoint.
3538 See the comment in cancel_breakpoints_callback to find out
3539 why. */
3540 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3541
3542 /* We'll need this to determine whether to report a SIGSTOP as
3543 TARGET_WAITKIND_0. Need to take a copy because
3544 resume_clear_callback clears it. */
3545 last_resume_kind = lp->last_resume_kind;
3546
3547 /* In all-stop, from the core's perspective, all LWPs are now
3548 stopped until a new resume action is sent over. */
3549 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3550 }
3551 else
3552 {
3553 /* See above. */
3554 last_resume_kind = lp->last_resume_kind;
3555 resume_clear_callback (lp, NULL);
3556 }
3557
3558 if (linux_nat_status_is_event (status))
3559 {
3560 if (debug_linux_nat)
3561 fprintf_unfiltered (gdb_stdlog,
3562 "LLW: trap ptid is %s.\n",
3563 target_pid_to_str (lp->ptid));
3564 }
3565
3566 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3567 {
3568 *ourstatus = lp->waitstatus;
3569 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3570 }
3571 else
3572 store_waitstatus (ourstatus, status);
3573
3574 if (debug_linux_nat)
3575 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3576
3577 restore_child_signals_mask (&prev_mask);
3578
3579 if (last_resume_kind == resume_stop
3580 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3581 && WSTOPSIG (status) == SIGSTOP)
3582 {
3583 /* A thread that has been requested to stop by GDB with
3584 target_stop, and it stopped cleanly, so report as SIG0. The
3585 use of SIGSTOP is an implementation detail. */
3586 ourstatus->value.sig = GDB_SIGNAL_0;
3587 }
3588
3589 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3590 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3591 lp->core = -1;
3592 else
3593 lp->core = linux_common_core_of_thread (lp->ptid);
3594
3595 return lp->ptid;
3596 }
3597
3598 /* Resume LWPs that are currently stopped without any pending status
3599 to report, but are resumed from the core's perspective. */
3600
3601 static int
3602 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3603 {
3604 ptid_t *wait_ptid_p = data;
3605
3606 if (lp->stopped
3607 && lp->resumed
3608 && lp->status == 0
3609 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3610 {
3611 struct regcache *regcache = get_thread_regcache (lp->ptid);
3612 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3613 CORE_ADDR pc = regcache_read_pc (regcache);
3614
3615 gdb_assert (is_executing (lp->ptid));
3616
3617 /* Don't bother if there's a breakpoint at PC that we'd hit
3618 immediately, and we're not waiting for this LWP. */
3619 if (!ptid_match (lp->ptid, *wait_ptid_p))
3620 {
3621 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3622 return 0;
3623 }
3624
3625 if (debug_linux_nat)
3626 fprintf_unfiltered (gdb_stdlog,
3627 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3628 target_pid_to_str (lp->ptid),
3629 paddress (gdbarch, pc),
3630 lp->step);
3631
3632 registers_changed ();
3633 if (linux_nat_prepare_to_resume != NULL)
3634 linux_nat_prepare_to_resume (lp);
3635 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3636 lp->step, GDB_SIGNAL_0);
3637 lp->stopped = 0;
3638 lp->stopped_by_watchpoint = 0;
3639 }
3640
3641 return 0;
3642 }
3643
3644 static ptid_t
3645 linux_nat_wait (struct target_ops *ops,
3646 ptid_t ptid, struct target_waitstatus *ourstatus,
3647 int target_options)
3648 {
3649 ptid_t event_ptid;
3650
3651 if (debug_linux_nat)
3652 {
3653 char *options_string;
3654
3655 options_string = target_options_to_string (target_options);
3656 fprintf_unfiltered (gdb_stdlog,
3657 "linux_nat_wait: [%s], [%s]\n",
3658 target_pid_to_str (ptid),
3659 options_string);
3660 xfree (options_string);
3661 }
3662
3663 /* Flush the async file first. */
3664 if (target_can_async_p ())
3665 async_file_flush ();
3666
3667 /* Resume LWPs that are currently stopped without any pending status
3668 to report, but are resumed from the core's perspective. LWPs get
3669 in this state if we find them stopping at a time we're not
3670 interested in reporting the event (target_wait on a
3671 specific_process, for example, see linux_nat_wait_1), and
3672 meanwhile the event became uninteresting. Don't bother resuming
3673 LWPs we're not going to wait for if they'd stop immediately. */
3674 if (non_stop)
3675 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3676
3677 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3678
3679 /* If we requested any event, and something came out, assume there
3680 may be more. If we requested a specific lwp or process, also
3681 assume there may be more. */
3682 if (target_can_async_p ()
3683 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3684 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3685 || !ptid_equal (ptid, minus_one_ptid)))
3686 async_file_mark ();
3687
3688 /* Get ready for the next event. */
3689 if (target_can_async_p ())
3690 target_async (inferior_event_handler, 0);
3691
3692 return event_ptid;
3693 }
3694
3695 static int
3696 kill_callback (struct lwp_info *lp, void *data)
3697 {
3698 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3699
3700 errno = 0;
3701 kill (ptid_get_lwp (lp->ptid), SIGKILL);
3702 if (debug_linux_nat)
3703 fprintf_unfiltered (gdb_stdlog,
3704 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3705 target_pid_to_str (lp->ptid),
3706 errno ? safe_strerror (errno) : "OK");
3707
3708 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3709
3710 errno = 0;
3711 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3712 if (debug_linux_nat)
3713 fprintf_unfiltered (gdb_stdlog,
3714 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3715 target_pid_to_str (lp->ptid),
3716 errno ? safe_strerror (errno) : "OK");
3717
3718 return 0;
3719 }
3720
3721 static int
3722 kill_wait_callback (struct lwp_info *lp, void *data)
3723 {
3724 pid_t pid;
3725
3726 /* We must make sure that there are no pending events (delayed
3727 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3728 program doesn't interfere with any following debugging session. */
3729
3730 /* For cloned processes we must check both with __WCLONE and
3731 without, since the exit status of a cloned process isn't reported
3732 with __WCLONE. */
3733 if (lp->cloned)
3734 {
3735 do
3736 {
3737 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3738 if (pid != (pid_t) -1)
3739 {
3740 if (debug_linux_nat)
3741 fprintf_unfiltered (gdb_stdlog,
3742 "KWC: wait %s received unknown.\n",
3743 target_pid_to_str (lp->ptid));
3744 /* The Linux kernel sometimes fails to kill a thread
3745 completely after PTRACE_KILL; that goes from the stop
3746 point in do_fork out to the one in
3747 get_signal_to_deliever and waits again. So kill it
3748 again. */
3749 kill_callback (lp, NULL);
3750 }
3751 }
3752 while (pid == ptid_get_lwp (lp->ptid));
3753
3754 gdb_assert (pid == -1 && errno == ECHILD);
3755 }
3756
3757 do
3758 {
3759 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3760 if (pid != (pid_t) -1)
3761 {
3762 if (debug_linux_nat)
3763 fprintf_unfiltered (gdb_stdlog,
3764 "KWC: wait %s received unk.\n",
3765 target_pid_to_str (lp->ptid));
3766 /* See the call to kill_callback above. */
3767 kill_callback (lp, NULL);
3768 }
3769 }
3770 while (pid == ptid_get_lwp (lp->ptid));
3771
3772 gdb_assert (pid == -1 && errno == ECHILD);
3773 return 0;
3774 }
3775
3776 static void
3777 linux_nat_kill (struct target_ops *ops)
3778 {
3779 struct target_waitstatus last;
3780 ptid_t last_ptid;
3781 int status;
3782
3783 /* If we're stopped while forking and we haven't followed yet,
3784 kill the other task. We need to do this first because the
3785 parent will be sleeping if this is a vfork. */
3786
3787 get_last_target_status (&last_ptid, &last);
3788
3789 if (last.kind == TARGET_WAITKIND_FORKED
3790 || last.kind == TARGET_WAITKIND_VFORKED)
3791 {
3792 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3793 wait (&status);
3794
3795 /* Let the arch-specific native code know this process is
3796 gone. */
3797 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3798 }
3799
3800 if (forks_exist_p ())
3801 linux_fork_killall ();
3802 else
3803 {
3804 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3805
3806 /* Stop all threads before killing them, since ptrace requires
3807 that the thread is stopped to sucessfully PTRACE_KILL. */
3808 iterate_over_lwps (ptid, stop_callback, NULL);
3809 /* ... and wait until all of them have reported back that
3810 they're no longer running. */
3811 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3812
3813 /* Kill all LWP's ... */
3814 iterate_over_lwps (ptid, kill_callback, NULL);
3815
3816 /* ... and wait until we've flushed all events. */
3817 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3818 }
3819
3820 target_mourn_inferior ();
3821 }
3822
3823 static void
3824 linux_nat_mourn_inferior (struct target_ops *ops)
3825 {
3826 int pid = ptid_get_pid (inferior_ptid);
3827
3828 purge_lwp_list (pid);
3829
3830 if (! forks_exist_p ())
3831 /* Normal case, no other forks available. */
3832 linux_ops->to_mourn_inferior (ops);
3833 else
3834 /* Multi-fork case. The current inferior_ptid has exited, but
3835 there are other viable forks to debug. Delete the exiting
3836 one and context-switch to the first available. */
3837 linux_fork_mourn_inferior ();
3838
3839 /* Let the arch-specific native code know this process is gone. */
3840 linux_nat_forget_process (pid);
3841 }
3842
3843 /* Convert a native/host siginfo object, into/from the siginfo in the
3844 layout of the inferiors' architecture. */
3845
3846 static void
3847 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3848 {
3849 int done = 0;
3850
3851 if (linux_nat_siginfo_fixup != NULL)
3852 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3853
3854 /* If there was no callback, or the callback didn't do anything,
3855 then just do a straight memcpy. */
3856 if (!done)
3857 {
3858 if (direction == 1)
3859 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3860 else
3861 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3862 }
3863 }
3864
3865 static LONGEST
3866 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3867 const char *annex, gdb_byte *readbuf,
3868 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len)
3869 {
3870 int pid;
3871 siginfo_t siginfo;
3872 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3873
3874 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3875 gdb_assert (readbuf || writebuf);
3876
3877 pid = ptid_get_lwp (inferior_ptid);
3878 if (pid == 0)
3879 pid = ptid_get_pid (inferior_ptid);
3880
3881 if (offset > sizeof (siginfo))
3882 return TARGET_XFER_E_IO;
3883
3884 errno = 0;
3885 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3886 if (errno != 0)
3887 return TARGET_XFER_E_IO;
3888
3889 /* When GDB is built as a 64-bit application, ptrace writes into
3890 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3891 inferior with a 64-bit GDB should look the same as debugging it
3892 with a 32-bit GDB, we need to convert it. GDB core always sees
3893 the converted layout, so any read/write will have to be done
3894 post-conversion. */
3895 siginfo_fixup (&siginfo, inf_siginfo, 0);
3896
3897 if (offset + len > sizeof (siginfo))
3898 len = sizeof (siginfo) - offset;
3899
3900 if (readbuf != NULL)
3901 memcpy (readbuf, inf_siginfo + offset, len);
3902 else
3903 {
3904 memcpy (inf_siginfo + offset, writebuf, len);
3905
3906 /* Convert back to ptrace layout before flushing it out. */
3907 siginfo_fixup (&siginfo, inf_siginfo, 1);
3908
3909 errno = 0;
3910 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3911 if (errno != 0)
3912 return TARGET_XFER_E_IO;
3913 }
3914
3915 return len;
3916 }
3917
3918 static LONGEST
3919 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3920 const char *annex, gdb_byte *readbuf,
3921 const gdb_byte *writebuf,
3922 ULONGEST offset, ULONGEST len)
3923 {
3924 struct cleanup *old_chain;
3925 LONGEST xfer;
3926
3927 if (object == TARGET_OBJECT_SIGNAL_INFO)
3928 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3929 offset, len);
3930
3931 /* The target is connected but no live inferior is selected. Pass
3932 this request down to a lower stratum (e.g., the executable
3933 file). */
3934 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3935 return 0;
3936
3937 old_chain = save_inferior_ptid ();
3938
3939 if (ptid_lwp_p (inferior_ptid))
3940 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3941
3942 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3943 offset, len);
3944
3945 do_cleanups (old_chain);
3946 return xfer;
3947 }
3948
3949 static int
3950 linux_thread_alive (ptid_t ptid)
3951 {
3952 int err, tmp_errno;
3953
3954 gdb_assert (ptid_lwp_p (ptid));
3955
3956 /* Send signal 0 instead of anything ptrace, because ptracing a
3957 running thread errors out claiming that the thread doesn't
3958 exist. */
3959 err = kill_lwp (ptid_get_lwp (ptid), 0);
3960 tmp_errno = errno;
3961 if (debug_linux_nat)
3962 fprintf_unfiltered (gdb_stdlog,
3963 "LLTA: KILL(SIG0) %s (%s)\n",
3964 target_pid_to_str (ptid),
3965 err ? safe_strerror (tmp_errno) : "OK");
3966
3967 if (err != 0)
3968 return 0;
3969
3970 return 1;
3971 }
3972
3973 static int
3974 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3975 {
3976 return linux_thread_alive (ptid);
3977 }
3978
3979 static char *
3980 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3981 {
3982 static char buf[64];
3983
3984 if (ptid_lwp_p (ptid)
3985 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3986 || num_lwps (ptid_get_pid (ptid)) > 1))
3987 {
3988 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3989 return buf;
3990 }
3991
3992 return normal_pid_to_str (ptid);
3993 }
3994
3995 static char *
3996 linux_nat_thread_name (struct thread_info *thr)
3997 {
3998 int pid = ptid_get_pid (thr->ptid);
3999 long lwp = ptid_get_lwp (thr->ptid);
4000 #define FORMAT "/proc/%d/task/%ld/comm"
4001 char buf[sizeof (FORMAT) + 30];
4002 FILE *comm_file;
4003 char *result = NULL;
4004
4005 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4006 comm_file = gdb_fopen_cloexec (buf, "r");
4007 if (comm_file)
4008 {
4009 /* Not exported by the kernel, so we define it here. */
4010 #define COMM_LEN 16
4011 static char line[COMM_LEN + 1];
4012
4013 if (fgets (line, sizeof (line), comm_file))
4014 {
4015 char *nl = strchr (line, '\n');
4016
4017 if (nl)
4018 *nl = '\0';
4019 if (*line != '\0')
4020 result = line;
4021 }
4022
4023 fclose (comm_file);
4024 }
4025
4026 #undef COMM_LEN
4027 #undef FORMAT
4028
4029 return result;
4030 }
4031
4032 /* Accepts an integer PID; Returns a string representing a file that
4033 can be opened to get the symbols for the child process. */
4034
4035 static char *
4036 linux_child_pid_to_exec_file (int pid)
4037 {
4038 char *name1, *name2;
4039
4040 name1 = xmalloc (PATH_MAX);
4041 name2 = xmalloc (PATH_MAX);
4042 make_cleanup (xfree, name1);
4043 make_cleanup (xfree, name2);
4044 memset (name2, 0, PATH_MAX);
4045
4046 xsnprintf (name1, PATH_MAX, "/proc/%d/exe", pid);
4047 if (readlink (name1, name2, PATH_MAX - 1) > 0)
4048 return name2;
4049 else
4050 return name1;
4051 }
4052
4053 /* Records the thread's register state for the corefile note
4054 section. */
4055
4056 static char *
4057 linux_nat_collect_thread_registers (const struct regcache *regcache,
4058 ptid_t ptid, bfd *obfd,
4059 char *note_data, int *note_size,
4060 enum gdb_signal stop_signal)
4061 {
4062 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4063 const struct regset *regset;
4064 int core_regset_p;
4065 gdb_gregset_t gregs;
4066 gdb_fpregset_t fpregs;
4067
4068 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4069
4070 if (core_regset_p
4071 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4072 sizeof (gregs)))
4073 != NULL && regset->collect_regset != NULL)
4074 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4075 else
4076 fill_gregset (regcache, &gregs, -1);
4077
4078 note_data = (char *) elfcore_write_prstatus
4079 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4080 gdb_signal_to_host (stop_signal), &gregs);
4081
4082 if (core_regset_p
4083 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4084 sizeof (fpregs)))
4085 != NULL && regset->collect_regset != NULL)
4086 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4087 else
4088 fill_fpregset (regcache, &fpregs, -1);
4089
4090 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4091 &fpregs, sizeof (fpregs));
4092
4093 return note_data;
4094 }
4095
4096 /* Fills the "to_make_corefile_note" target vector. Builds the note
4097 section for a corefile, and returns it in a malloc buffer. */
4098
4099 static char *
4100 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4101 {
4102 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4103 converted to gdbarch_core_regset_sections, this function can go away. */
4104 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4105 linux_nat_collect_thread_registers);
4106 }
4107
4108 /* Implement the to_xfer_partial interface for memory reads using the /proc
4109 filesystem. Because we can use a single read() call for /proc, this
4110 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4111 but it doesn't support writes. */
4112
4113 static LONGEST
4114 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4115 const char *annex, gdb_byte *readbuf,
4116 const gdb_byte *writebuf,
4117 ULONGEST offset, LONGEST len)
4118 {
4119 LONGEST ret;
4120 int fd;
4121 char filename[64];
4122
4123 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4124 return 0;
4125
4126 /* Don't bother for one word. */
4127 if (len < 3 * sizeof (long))
4128 return 0;
4129
4130 /* We could keep this file open and cache it - possibly one per
4131 thread. That requires some juggling, but is even faster. */
4132 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4133 ptid_get_pid (inferior_ptid));
4134 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4135 if (fd == -1)
4136 return 0;
4137
4138 /* If pread64 is available, use it. It's faster if the kernel
4139 supports it (only one syscall), and it's 64-bit safe even on
4140 32-bit platforms (for instance, SPARC debugging a SPARC64
4141 application). */
4142 #ifdef HAVE_PREAD64
4143 if (pread64 (fd, readbuf, len, offset) != len)
4144 #else
4145 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4146 #endif
4147 ret = 0;
4148 else
4149 ret = len;
4150
4151 close (fd);
4152 return ret;
4153 }
4154
4155
4156 /* Enumerate spufs IDs for process PID. */
4157 static LONGEST
4158 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4159 {
4160 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4161 LONGEST pos = 0;
4162 LONGEST written = 0;
4163 char path[128];
4164 DIR *dir;
4165 struct dirent *entry;
4166
4167 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4168 dir = opendir (path);
4169 if (!dir)
4170 return -1;
4171
4172 rewinddir (dir);
4173 while ((entry = readdir (dir)) != NULL)
4174 {
4175 struct stat st;
4176 struct statfs stfs;
4177 int fd;
4178
4179 fd = atoi (entry->d_name);
4180 if (!fd)
4181 continue;
4182
4183 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4184 if (stat (path, &st) != 0)
4185 continue;
4186 if (!S_ISDIR (st.st_mode))
4187 continue;
4188
4189 if (statfs (path, &stfs) != 0)
4190 continue;
4191 if (stfs.f_type != SPUFS_MAGIC)
4192 continue;
4193
4194 if (pos >= offset && pos + 4 <= offset + len)
4195 {
4196 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4197 written += 4;
4198 }
4199 pos += 4;
4200 }
4201
4202 closedir (dir);
4203 return written;
4204 }
4205
4206 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4207 object type, using the /proc file system. */
4208 static LONGEST
4209 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4210 const char *annex, gdb_byte *readbuf,
4211 const gdb_byte *writebuf,
4212 ULONGEST offset, ULONGEST len)
4213 {
4214 char buf[128];
4215 int fd = 0;
4216 int ret = -1;
4217 int pid = ptid_get_pid (inferior_ptid);
4218
4219 if (!annex)
4220 {
4221 if (!readbuf)
4222 return TARGET_XFER_E_IO;
4223 else
4224 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4225 }
4226
4227 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4228 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4229 if (fd <= 0)
4230 return TARGET_XFER_E_IO;
4231
4232 if (offset != 0
4233 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4234 {
4235 close (fd);
4236 return 0;
4237 }
4238
4239 if (writebuf)
4240 ret = write (fd, writebuf, (size_t) len);
4241 else if (readbuf)
4242 ret = read (fd, readbuf, (size_t) len);
4243
4244 close (fd);
4245 return ret;
4246 }
4247
4248
4249 /* Parse LINE as a signal set and add its set bits to SIGS. */
4250
4251 static void
4252 add_line_to_sigset (const char *line, sigset_t *sigs)
4253 {
4254 int len = strlen (line) - 1;
4255 const char *p;
4256 int signum;
4257
4258 if (line[len] != '\n')
4259 error (_("Could not parse signal set: %s"), line);
4260
4261 p = line;
4262 signum = len * 4;
4263 while (len-- > 0)
4264 {
4265 int digit;
4266
4267 if (*p >= '0' && *p <= '9')
4268 digit = *p - '0';
4269 else if (*p >= 'a' && *p <= 'f')
4270 digit = *p - 'a' + 10;
4271 else
4272 error (_("Could not parse signal set: %s"), line);
4273
4274 signum -= 4;
4275
4276 if (digit & 1)
4277 sigaddset (sigs, signum + 1);
4278 if (digit & 2)
4279 sigaddset (sigs, signum + 2);
4280 if (digit & 4)
4281 sigaddset (sigs, signum + 3);
4282 if (digit & 8)
4283 sigaddset (sigs, signum + 4);
4284
4285 p++;
4286 }
4287 }
4288
4289 /* Find process PID's pending signals from /proc/pid/status and set
4290 SIGS to match. */
4291
4292 void
4293 linux_proc_pending_signals (int pid, sigset_t *pending,
4294 sigset_t *blocked, sigset_t *ignored)
4295 {
4296 FILE *procfile;
4297 char buffer[PATH_MAX], fname[PATH_MAX];
4298 struct cleanup *cleanup;
4299
4300 sigemptyset (pending);
4301 sigemptyset (blocked);
4302 sigemptyset (ignored);
4303 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4304 procfile = gdb_fopen_cloexec (fname, "r");
4305 if (procfile == NULL)
4306 error (_("Could not open %s"), fname);
4307 cleanup = make_cleanup_fclose (procfile);
4308
4309 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4310 {
4311 /* Normal queued signals are on the SigPnd line in the status
4312 file. However, 2.6 kernels also have a "shared" pending
4313 queue for delivering signals to a thread group, so check for
4314 a ShdPnd line also.
4315
4316 Unfortunately some Red Hat kernels include the shared pending
4317 queue but not the ShdPnd status field. */
4318
4319 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4320 add_line_to_sigset (buffer + 8, pending);
4321 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4322 add_line_to_sigset (buffer + 8, pending);
4323 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4324 add_line_to_sigset (buffer + 8, blocked);
4325 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4326 add_line_to_sigset (buffer + 8, ignored);
4327 }
4328
4329 do_cleanups (cleanup);
4330 }
4331
4332 static LONGEST
4333 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4334 const char *annex, gdb_byte *readbuf,
4335 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len)
4336 {
4337 gdb_assert (object == TARGET_OBJECT_OSDATA);
4338
4339 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4340 }
4341
4342 static LONGEST
4343 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4344 const char *annex, gdb_byte *readbuf,
4345 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len)
4346 {
4347 LONGEST xfer;
4348
4349 if (object == TARGET_OBJECT_AUXV)
4350 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4351 offset, len);
4352
4353 if (object == TARGET_OBJECT_OSDATA)
4354 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4355 offset, len);
4356
4357 if (object == TARGET_OBJECT_SPU)
4358 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4359 offset, len);
4360
4361 /* GDB calculates all the addresses in possibly larget width of the address.
4362 Address width needs to be masked before its final use - either by
4363 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4364
4365 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4366
4367 if (object == TARGET_OBJECT_MEMORY)
4368 {
4369 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4370
4371 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4372 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4373 }
4374
4375 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4376 offset, len);
4377 if (xfer != 0)
4378 return xfer;
4379
4380 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4381 offset, len);
4382 }
4383
4384 static void
4385 cleanup_target_stop (void *arg)
4386 {
4387 ptid_t *ptid = (ptid_t *) arg;
4388
4389 gdb_assert (arg != NULL);
4390
4391 /* Unpause all */
4392 target_resume (*ptid, 0, GDB_SIGNAL_0);
4393 }
4394
4395 static VEC(static_tracepoint_marker_p) *
4396 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4397 {
4398 char s[IPA_CMD_BUF_SIZE];
4399 struct cleanup *old_chain;
4400 int pid = ptid_get_pid (inferior_ptid);
4401 VEC(static_tracepoint_marker_p) *markers = NULL;
4402 struct static_tracepoint_marker *marker = NULL;
4403 char *p = s;
4404 ptid_t ptid = ptid_build (pid, 0, 0);
4405
4406 /* Pause all */
4407 target_stop (ptid);
4408
4409 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4410 s[sizeof ("qTfSTM")] = 0;
4411
4412 agent_run_command (pid, s, strlen (s) + 1);
4413
4414 old_chain = make_cleanup (free_current_marker, &marker);
4415 make_cleanup (cleanup_target_stop, &ptid);
4416
4417 while (*p++ == 'm')
4418 {
4419 if (marker == NULL)
4420 marker = XCNEW (struct static_tracepoint_marker);
4421
4422 do
4423 {
4424 parse_static_tracepoint_marker_definition (p, &p, marker);
4425
4426 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4427 {
4428 VEC_safe_push (static_tracepoint_marker_p,
4429 markers, marker);
4430 marker = NULL;
4431 }
4432 else
4433 {
4434 release_static_tracepoint_marker (marker);
4435 memset (marker, 0, sizeof (*marker));
4436 }
4437 }
4438 while (*p++ == ','); /* comma-separated list */
4439
4440 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4441 s[sizeof ("qTsSTM")] = 0;
4442 agent_run_command (pid, s, strlen (s) + 1);
4443 p = s;
4444 }
4445
4446 do_cleanups (old_chain);
4447
4448 return markers;
4449 }
4450
4451 /* Create a prototype generic GNU/Linux target. The client can override
4452 it with local methods. */
4453
4454 static void
4455 linux_target_install_ops (struct target_ops *t)
4456 {
4457 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4458 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4459 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4460 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4461 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4462 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4463 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4464 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4465 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4466 t->to_post_attach = linux_child_post_attach;
4467 t->to_follow_fork = linux_child_follow_fork;
4468 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4469
4470 super_xfer_partial = t->to_xfer_partial;
4471 t->to_xfer_partial = linux_xfer_partial;
4472
4473 t->to_static_tracepoint_markers_by_strid
4474 = linux_child_static_tracepoint_markers_by_strid;
4475 }
4476
4477 struct target_ops *
4478 linux_target (void)
4479 {
4480 struct target_ops *t;
4481
4482 t = inf_ptrace_target ();
4483 linux_target_install_ops (t);
4484
4485 return t;
4486 }
4487
4488 struct target_ops *
4489 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4490 {
4491 struct target_ops *t;
4492
4493 t = inf_ptrace_trad_target (register_u_offset);
4494 linux_target_install_ops (t);
4495
4496 return t;
4497 }
4498
4499 /* target_is_async_p implementation. */
4500
4501 static int
4502 linux_nat_is_async_p (void)
4503 {
4504 /* NOTE: palves 2008-03-21: We're only async when the user requests
4505 it explicitly with the "set target-async" command.
4506 Someday, linux will always be async. */
4507 return target_async_permitted;
4508 }
4509
4510 /* target_can_async_p implementation. */
4511
4512 static int
4513 linux_nat_can_async_p (void)
4514 {
4515 /* NOTE: palves 2008-03-21: We're only async when the user requests
4516 it explicitly with the "set target-async" command.
4517 Someday, linux will always be async. */
4518 return target_async_permitted;
4519 }
4520
4521 static int
4522 linux_nat_supports_non_stop (void)
4523 {
4524 return 1;
4525 }
4526
4527 /* True if we want to support multi-process. To be removed when GDB
4528 supports multi-exec. */
4529
4530 int linux_multi_process = 1;
4531
4532 static int
4533 linux_nat_supports_multi_process (void)
4534 {
4535 return linux_multi_process;
4536 }
4537
4538 static int
4539 linux_nat_supports_disable_randomization (void)
4540 {
4541 #ifdef HAVE_PERSONALITY
4542 return 1;
4543 #else
4544 return 0;
4545 #endif
4546 }
4547
4548 static int async_terminal_is_ours = 1;
4549
4550 /* target_terminal_inferior implementation. */
4551
4552 static void
4553 linux_nat_terminal_inferior (void)
4554 {
4555 if (!target_is_async_p ())
4556 {
4557 /* Async mode is disabled. */
4558 terminal_inferior ();
4559 return;
4560 }
4561
4562 terminal_inferior ();
4563
4564 /* Calls to target_terminal_*() are meant to be idempotent. */
4565 if (!async_terminal_is_ours)
4566 return;
4567
4568 delete_file_handler (input_fd);
4569 async_terminal_is_ours = 0;
4570 set_sigint_trap ();
4571 }
4572
4573 /* target_terminal_ours implementation. */
4574
4575 static void
4576 linux_nat_terminal_ours (void)
4577 {
4578 if (!target_is_async_p ())
4579 {
4580 /* Async mode is disabled. */
4581 terminal_ours ();
4582 return;
4583 }
4584
4585 /* GDB should never give the terminal to the inferior if the
4586 inferior is running in the background (run&, continue&, etc.),
4587 but claiming it sure should. */
4588 terminal_ours ();
4589
4590 if (async_terminal_is_ours)
4591 return;
4592
4593 clear_sigint_trap ();
4594 add_file_handler (input_fd, stdin_event_handler, 0);
4595 async_terminal_is_ours = 1;
4596 }
4597
4598 static void (*async_client_callback) (enum inferior_event_type event_type,
4599 void *context);
4600 static void *async_client_context;
4601
4602 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4603 so we notice when any child changes state, and notify the
4604 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4605 above to wait for the arrival of a SIGCHLD. */
4606
4607 static void
4608 sigchld_handler (int signo)
4609 {
4610 int old_errno = errno;
4611
4612 if (debug_linux_nat)
4613 ui_file_write_async_safe (gdb_stdlog,
4614 "sigchld\n", sizeof ("sigchld\n") - 1);
4615
4616 if (signo == SIGCHLD
4617 && linux_nat_event_pipe[0] != -1)
4618 async_file_mark (); /* Let the event loop know that there are
4619 events to handle. */
4620
4621 errno = old_errno;
4622 }
4623
4624 /* Callback registered with the target events file descriptor. */
4625
4626 static void
4627 handle_target_event (int error, gdb_client_data client_data)
4628 {
4629 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4630 }
4631
4632 /* Create/destroy the target events pipe. Returns previous state. */
4633
4634 static int
4635 linux_async_pipe (int enable)
4636 {
4637 int previous = (linux_nat_event_pipe[0] != -1);
4638
4639 if (previous != enable)
4640 {
4641 sigset_t prev_mask;
4642
4643 /* Block child signals while we create/destroy the pipe, as
4644 their handler writes to it. */
4645 block_child_signals (&prev_mask);
4646
4647 if (enable)
4648 {
4649 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4650 internal_error (__FILE__, __LINE__,
4651 "creating event pipe failed.");
4652
4653 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4654 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4655 }
4656 else
4657 {
4658 close (linux_nat_event_pipe[0]);
4659 close (linux_nat_event_pipe[1]);
4660 linux_nat_event_pipe[0] = -1;
4661 linux_nat_event_pipe[1] = -1;
4662 }
4663
4664 restore_child_signals_mask (&prev_mask);
4665 }
4666
4667 return previous;
4668 }
4669
4670 /* target_async implementation. */
4671
4672 static void
4673 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4674 void *context), void *context)
4675 {
4676 if (callback != NULL)
4677 {
4678 async_client_callback = callback;
4679 async_client_context = context;
4680 if (!linux_async_pipe (1))
4681 {
4682 add_file_handler (linux_nat_event_pipe[0],
4683 handle_target_event, NULL);
4684 /* There may be pending events to handle. Tell the event loop
4685 to poll them. */
4686 async_file_mark ();
4687 }
4688 }
4689 else
4690 {
4691 async_client_callback = callback;
4692 async_client_context = context;
4693 delete_file_handler (linux_nat_event_pipe[0]);
4694 linux_async_pipe (0);
4695 }
4696 return;
4697 }
4698
4699 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4700 event came out. */
4701
4702 static int
4703 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4704 {
4705 if (!lwp->stopped)
4706 {
4707 if (debug_linux_nat)
4708 fprintf_unfiltered (gdb_stdlog,
4709 "LNSL: running -> suspending %s\n",
4710 target_pid_to_str (lwp->ptid));
4711
4712
4713 if (lwp->last_resume_kind == resume_stop)
4714 {
4715 if (debug_linux_nat)
4716 fprintf_unfiltered (gdb_stdlog,
4717 "linux-nat: already stopping LWP %ld at "
4718 "GDB's request\n",
4719 ptid_get_lwp (lwp->ptid));
4720 return 0;
4721 }
4722
4723 stop_callback (lwp, NULL);
4724 lwp->last_resume_kind = resume_stop;
4725 }
4726 else
4727 {
4728 /* Already known to be stopped; do nothing. */
4729
4730 if (debug_linux_nat)
4731 {
4732 if (find_thread_ptid (lwp->ptid)->stop_requested)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "LNSL: already stopped/stop_requested %s\n",
4735 target_pid_to_str (lwp->ptid));
4736 else
4737 fprintf_unfiltered (gdb_stdlog,
4738 "LNSL: already stopped/no "
4739 "stop_requested yet %s\n",
4740 target_pid_to_str (lwp->ptid));
4741 }
4742 }
4743 return 0;
4744 }
4745
4746 static void
4747 linux_nat_stop (ptid_t ptid)
4748 {
4749 if (non_stop)
4750 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4751 else
4752 linux_ops->to_stop (ptid);
4753 }
4754
4755 static void
4756 linux_nat_close (void)
4757 {
4758 /* Unregister from the event loop. */
4759 if (linux_nat_is_async_p ())
4760 linux_nat_async (NULL, 0);
4761
4762 if (linux_ops->to_close)
4763 linux_ops->to_close ();
4764 }
4765
4766 /* When requests are passed down from the linux-nat layer to the
4767 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4768 used. The address space pointer is stored in the inferior object,
4769 but the common code that is passed such ptid can't tell whether
4770 lwpid is a "main" process id or not (it assumes so). We reverse
4771 look up the "main" process id from the lwp here. */
4772
4773 static struct address_space *
4774 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4775 {
4776 struct lwp_info *lwp;
4777 struct inferior *inf;
4778 int pid;
4779
4780 pid = ptid_get_lwp (ptid);
4781 if (ptid_get_lwp (ptid) == 0)
4782 {
4783 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4784 tgid. */
4785 lwp = find_lwp_pid (ptid);
4786 pid = ptid_get_pid (lwp->ptid);
4787 }
4788 else
4789 {
4790 /* A (pid,lwpid,0) ptid. */
4791 pid = ptid_get_pid (ptid);
4792 }
4793
4794 inf = find_inferior_pid (pid);
4795 gdb_assert (inf != NULL);
4796 return inf->aspace;
4797 }
4798
4799 /* Return the cached value of the processor core for thread PTID. */
4800
4801 static int
4802 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4803 {
4804 struct lwp_info *info = find_lwp_pid (ptid);
4805
4806 if (info)
4807 return info->core;
4808 return -1;
4809 }
4810
4811 void
4812 linux_nat_add_target (struct target_ops *t)
4813 {
4814 /* Save the provided single-threaded target. We save this in a separate
4815 variable because another target we've inherited from (e.g. inf-ptrace)
4816 may have saved a pointer to T; we want to use it for the final
4817 process stratum target. */
4818 linux_ops_saved = *t;
4819 linux_ops = &linux_ops_saved;
4820
4821 /* Override some methods for multithreading. */
4822 t->to_create_inferior = linux_nat_create_inferior;
4823 t->to_attach = linux_nat_attach;
4824 t->to_detach = linux_nat_detach;
4825 t->to_resume = linux_nat_resume;
4826 t->to_wait = linux_nat_wait;
4827 t->to_pass_signals = linux_nat_pass_signals;
4828 t->to_xfer_partial = linux_nat_xfer_partial;
4829 t->to_kill = linux_nat_kill;
4830 t->to_mourn_inferior = linux_nat_mourn_inferior;
4831 t->to_thread_alive = linux_nat_thread_alive;
4832 t->to_pid_to_str = linux_nat_pid_to_str;
4833 t->to_thread_name = linux_nat_thread_name;
4834 t->to_has_thread_control = tc_schedlock;
4835 t->to_thread_address_space = linux_nat_thread_address_space;
4836 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4837 t->to_stopped_data_address = linux_nat_stopped_data_address;
4838
4839 t->to_can_async_p = linux_nat_can_async_p;
4840 t->to_is_async_p = linux_nat_is_async_p;
4841 t->to_supports_non_stop = linux_nat_supports_non_stop;
4842 t->to_async = linux_nat_async;
4843 t->to_terminal_inferior = linux_nat_terminal_inferior;
4844 t->to_terminal_ours = linux_nat_terminal_ours;
4845 t->to_close = linux_nat_close;
4846
4847 /* Methods for non-stop support. */
4848 t->to_stop = linux_nat_stop;
4849
4850 t->to_supports_multi_process = linux_nat_supports_multi_process;
4851
4852 t->to_supports_disable_randomization
4853 = linux_nat_supports_disable_randomization;
4854
4855 t->to_core_of_thread = linux_nat_core_of_thread;
4856
4857 /* We don't change the stratum; this target will sit at
4858 process_stratum and thread_db will set at thread_stratum. This
4859 is a little strange, since this is a multi-threaded-capable
4860 target, but we want to be on the stack below thread_db, and we
4861 also want to be used for single-threaded processes. */
4862
4863 add_target (t);
4864 }
4865
4866 /* Register a method to call whenever a new thread is attached. */
4867 void
4868 linux_nat_set_new_thread (struct target_ops *t,
4869 void (*new_thread) (struct lwp_info *))
4870 {
4871 /* Save the pointer. We only support a single registered instance
4872 of the GNU/Linux native target, so we do not need to map this to
4873 T. */
4874 linux_nat_new_thread = new_thread;
4875 }
4876
4877 /* See declaration in linux-nat.h. */
4878
4879 void
4880 linux_nat_set_new_fork (struct target_ops *t,
4881 linux_nat_new_fork_ftype *new_fork)
4882 {
4883 /* Save the pointer. */
4884 linux_nat_new_fork = new_fork;
4885 }
4886
4887 /* See declaration in linux-nat.h. */
4888
4889 void
4890 linux_nat_set_forget_process (struct target_ops *t,
4891 linux_nat_forget_process_ftype *fn)
4892 {
4893 /* Save the pointer. */
4894 linux_nat_forget_process_hook = fn;
4895 }
4896
4897 /* See declaration in linux-nat.h. */
4898
4899 void
4900 linux_nat_forget_process (pid_t pid)
4901 {
4902 if (linux_nat_forget_process_hook != NULL)
4903 linux_nat_forget_process_hook (pid);
4904 }
4905
4906 /* Register a method that converts a siginfo object between the layout
4907 that ptrace returns, and the layout in the architecture of the
4908 inferior. */
4909 void
4910 linux_nat_set_siginfo_fixup (struct target_ops *t,
4911 int (*siginfo_fixup) (siginfo_t *,
4912 gdb_byte *,
4913 int))
4914 {
4915 /* Save the pointer. */
4916 linux_nat_siginfo_fixup = siginfo_fixup;
4917 }
4918
4919 /* Register a method to call prior to resuming a thread. */
4920
4921 void
4922 linux_nat_set_prepare_to_resume (struct target_ops *t,
4923 void (*prepare_to_resume) (struct lwp_info *))
4924 {
4925 /* Save the pointer. */
4926 linux_nat_prepare_to_resume = prepare_to_resume;
4927 }
4928
4929 /* See linux-nat.h. */
4930
4931 int
4932 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4933 {
4934 int pid;
4935
4936 pid = ptid_get_lwp (ptid);
4937 if (pid == 0)
4938 pid = ptid_get_pid (ptid);
4939
4940 errno = 0;
4941 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4942 if (errno != 0)
4943 {
4944 memset (siginfo, 0, sizeof (*siginfo));
4945 return 0;
4946 }
4947 return 1;
4948 }
4949
4950 /* Provide a prototype to silence -Wmissing-prototypes. */
4951 extern initialize_file_ftype _initialize_linux_nat;
4952
4953 void
4954 _initialize_linux_nat (void)
4955 {
4956 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4957 &debug_linux_nat, _("\
4958 Set debugging of GNU/Linux lwp module."), _("\
4959 Show debugging of GNU/Linux lwp module."), _("\
4960 Enables printf debugging output."),
4961 NULL,
4962 show_debug_linux_nat,
4963 &setdebuglist, &showdebuglist);
4964
4965 /* Save this mask as the default. */
4966 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4967
4968 /* Install a SIGCHLD handler. */
4969 sigchld_action.sa_handler = sigchld_handler;
4970 sigemptyset (&sigchld_action.sa_mask);
4971 sigchld_action.sa_flags = SA_RESTART;
4972
4973 /* Make it the default. */
4974 sigaction (SIGCHLD, &sigchld_action, NULL);
4975
4976 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4977 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4978 sigdelset (&suspend_mask, SIGCHLD);
4979
4980 sigemptyset (&blocked_mask);
4981 }
4982 \f
4983
4984 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4985 the GNU/Linux Threads library and therefore doesn't really belong
4986 here. */
4987
4988 /* Read variable NAME in the target and return its value if found.
4989 Otherwise return zero. It is assumed that the type of the variable
4990 is `int'. */
4991
4992 static int
4993 get_signo (const char *name)
4994 {
4995 struct minimal_symbol *ms;
4996 int signo;
4997
4998 ms = lookup_minimal_symbol (name, NULL, NULL);
4999 if (ms == NULL)
5000 return 0;
5001
5002 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5003 sizeof (signo)) != 0)
5004 return 0;
5005
5006 return signo;
5007 }
5008
5009 /* Return the set of signals used by the threads library in *SET. */
5010
5011 void
5012 lin_thread_get_thread_signals (sigset_t *set)
5013 {
5014 struct sigaction action;
5015 int restart, cancel;
5016
5017 sigemptyset (&blocked_mask);
5018 sigemptyset (set);
5019
5020 restart = get_signo ("__pthread_sig_restart");
5021 cancel = get_signo ("__pthread_sig_cancel");
5022
5023 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5024 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5025 not provide any way for the debugger to query the signal numbers -
5026 fortunately they don't change! */
5027
5028 if (restart == 0)
5029 restart = __SIGRTMIN;
5030
5031 if (cancel == 0)
5032 cancel = __SIGRTMIN + 1;
5033
5034 sigaddset (set, restart);
5035 sigaddset (set, cancel);
5036
5037 /* The GNU/Linux Threads library makes terminating threads send a
5038 special "cancel" signal instead of SIGCHLD. Make sure we catch
5039 those (to prevent them from terminating GDB itself, which is
5040 likely to be their default action) and treat them the same way as
5041 SIGCHLD. */
5042
5043 action.sa_handler = sigchld_handler;
5044 sigemptyset (&action.sa_mask);
5045 action.sa_flags = SA_RESTART;
5046 sigaction (cancel, &action, NULL);
5047
5048 /* We block the "cancel" signal throughout this code ... */
5049 sigaddset (&blocked_mask, cancel);
5050 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5051
5052 /* ... except during a sigsuspend. */
5053 sigdelset (&suspend_mask, cancel);
5054 }
This page took 0.130865 seconds and 4 git commands to generate.