1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
30 #include <sys/syscall.h>
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
52 #include "event-loop.h"
53 #include "event-top.h"
55 #include <sys/types.h>
57 #include "xml-support.h"
61 #include "linux-osdata.h"
62 #include "linux-tdep.h"
65 #include "tracepoint.h"
66 #include "exceptions.h"
68 #include "target-descriptions.h"
69 #include "filestuff.h"
72 #define SPUFS_MAGIC 0x23c9b64e
75 #ifdef HAVE_PERSONALITY
76 # include <sys/personality.h>
77 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
78 # define ADDR_NO_RANDOMIZE 0x0040000
80 #endif /* HAVE_PERSONALITY */
82 /* This comment documents high-level logic of this file.
84 Waiting for events in sync mode
85 ===============================
87 When waiting for an event in a specific thread, we just use waitpid, passing
88 the specific pid, and not passing WNOHANG.
90 When waiting for an event in all threads, waitpid is not quite good. Prior to
91 version 2.4, Linux can either wait for event in main thread, or in secondary
92 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
93 miss an event. The solution is to use non-blocking waitpid, together with
94 sigsuspend. First, we use non-blocking waitpid to get an event in the main
95 process, if any. Second, we use non-blocking waitpid with the __WCLONED
96 flag to check for events in cloned processes. If nothing is found, we use
97 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
98 happened to a child process -- and SIGCHLD will be delivered both for events
99 in main debugged process and in cloned processes. As soon as we know there's
100 an event, we get back to calling nonblocking waitpid with and without
103 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
104 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
105 blocked, the signal becomes pending and sigsuspend immediately
106 notices it and returns.
108 Waiting for events in async mode
109 ================================
111 In async mode, GDB should always be ready to handle both user input
112 and target events, so neither blocking waitpid nor sigsuspend are
113 viable options. Instead, we should asynchronously notify the GDB main
114 event loop whenever there's an unprocessed event from the target. We
115 detect asynchronous target events by handling SIGCHLD signals. To
116 notify the event loop about target events, the self-pipe trick is used
117 --- a pipe is registered as waitable event source in the event loop,
118 the event loop select/poll's on the read end of this pipe (as well on
119 other event sources, e.g., stdin), and the SIGCHLD handler writes a
120 byte to this pipe. This is more portable than relying on
121 pselect/ppoll, since on kernels that lack those syscalls, libc
122 emulates them with select/poll+sigprocmask, and that is racy
123 (a.k.a. plain broken).
125 Obviously, if we fail to notify the event loop if there's a target
126 event, it's bad. OTOH, if we notify the event loop when there's no
127 event from the target, linux_nat_wait will detect that there's no real
128 event to report, and return event of type TARGET_WAITKIND_IGNORE.
129 This is mostly harmless, but it will waste time and is better avoided.
131 The main design point is that every time GDB is outside linux-nat.c,
132 we have a SIGCHLD handler installed that is called when something
133 happens to the target and notifies the GDB event loop. Whenever GDB
134 core decides to handle the event, and calls into linux-nat.c, we
135 process things as in sync mode, except that the we never block in
138 While processing an event, we may end up momentarily blocked in
139 waitpid calls. Those waitpid calls, while blocking, are guarantied to
140 return quickly. E.g., in all-stop mode, before reporting to the core
141 that an LWP hit a breakpoint, all LWPs are stopped by sending them
142 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
143 Note that this is different from blocking indefinitely waiting for the
144 next event --- here, we're already handling an event.
149 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
150 signal is not entirely significant; we just need for a signal to be delivered,
151 so that we can intercept it. SIGSTOP's advantage is that it can not be
152 blocked. A disadvantage is that it is not a real-time signal, so it can only
153 be queued once; we do not keep track of other sources of SIGSTOP.
155 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
156 use them, because they have special behavior when the signal is generated -
157 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
158 kills the entire thread group.
160 A delivered SIGSTOP would stop the entire thread group, not just the thread we
161 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
162 cancel it (by PTRACE_CONT without passing SIGSTOP).
164 We could use a real-time signal instead. This would solve those problems; we
165 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
166 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
167 generates it, and there are races with trying to find a signal that is not
171 #define O_LARGEFILE 0
174 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
175 the use of the multi-threaded target. */
176 static struct target_ops
*linux_ops
;
177 static struct target_ops linux_ops_saved
;
179 /* The method to call, if any, when a new thread is attached. */
180 static void (*linux_nat_new_thread
) (struct lwp_info
*);
182 /* The method to call, if any, when a new fork is attached. */
183 static linux_nat_new_fork_ftype
*linux_nat_new_fork
;
185 /* The method to call, if any, when a process is no longer
187 static linux_nat_forget_process_ftype
*linux_nat_forget_process_hook
;
189 /* Hook to call prior to resuming a thread. */
190 static void (*linux_nat_prepare_to_resume
) (struct lwp_info
*);
192 /* The method to call, if any, when the siginfo object needs to be
193 converted between the layout returned by ptrace, and the layout in
194 the architecture of the inferior. */
195 static int (*linux_nat_siginfo_fixup
) (siginfo_t
*,
199 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
200 Called by our to_xfer_partial. */
201 static target_xfer_partial_ftype
*super_xfer_partial
;
203 static unsigned int debug_linux_nat
;
205 show_debug_linux_nat (struct ui_file
*file
, int from_tty
,
206 struct cmd_list_element
*c
, const char *value
)
208 fprintf_filtered (file
, _("Debugging of GNU/Linux lwp module is %s.\n"),
212 struct simple_pid_list
216 struct simple_pid_list
*next
;
218 struct simple_pid_list
*stopped_pids
;
220 /* Async mode support. */
222 /* The read/write ends of the pipe registered as waitable file in the
224 static int linux_nat_event_pipe
[2] = { -1, -1 };
226 /* Flush the event pipe. */
229 async_file_flush (void)
236 ret
= read (linux_nat_event_pipe
[0], &buf
, 1);
238 while (ret
>= 0 || (ret
== -1 && errno
== EINTR
));
241 /* Put something (anything, doesn't matter what, or how much) in event
242 pipe, so that the select/poll in the event-loop realizes we have
243 something to process. */
246 async_file_mark (void)
250 /* It doesn't really matter what the pipe contains, as long we end
251 up with something in it. Might as well flush the previous
257 ret
= write (linux_nat_event_pipe
[1], "+", 1);
259 while (ret
== -1 && errno
== EINTR
);
261 /* Ignore EAGAIN. If the pipe is full, the event loop will already
262 be awakened anyway. */
265 static void linux_nat_async (void (*callback
)
266 (enum inferior_event_type event_type
,
269 static int kill_lwp (int lwpid
, int signo
);
271 static int stop_callback (struct lwp_info
*lp
, void *data
);
273 static void block_child_signals (sigset_t
*prev_mask
);
274 static void restore_child_signals_mask (sigset_t
*prev_mask
);
277 static struct lwp_info
*add_lwp (ptid_t ptid
);
278 static void purge_lwp_list (int pid
);
279 static void delete_lwp (ptid_t ptid
);
280 static struct lwp_info
*find_lwp_pid (ptid_t ptid
);
283 /* Trivial list manipulation functions to keep track of a list of
284 new stopped processes. */
286 add_to_pid_list (struct simple_pid_list
**listp
, int pid
, int status
)
288 struct simple_pid_list
*new_pid
= xmalloc (sizeof (struct simple_pid_list
));
291 new_pid
->status
= status
;
292 new_pid
->next
= *listp
;
297 in_pid_list_p (struct simple_pid_list
*list
, int pid
)
299 struct simple_pid_list
*p
;
301 for (p
= list
; p
!= NULL
; p
= p
->next
)
308 pull_pid_from_list (struct simple_pid_list
**listp
, int pid
, int *statusp
)
310 struct simple_pid_list
**p
;
312 for (p
= listp
; *p
!= NULL
; p
= &(*p
)->next
)
313 if ((*p
)->pid
== pid
)
315 struct simple_pid_list
*next
= (*p
)->next
;
317 *statusp
= (*p
)->status
;
325 /* Initialize ptrace warnings and check for supported ptrace
326 features given PID. */
329 linux_init_ptrace (pid_t pid
)
331 linux_enable_event_reporting (pid
);
332 linux_ptrace_init_warnings ();
336 linux_child_post_attach (int pid
)
338 linux_init_ptrace (pid
);
342 linux_child_post_startup_inferior (ptid_t ptid
)
344 linux_init_ptrace (ptid_get_pid (ptid
));
347 /* Return the number of known LWPs in the tgid given by PID. */
355 for (lp
= lwp_list
; lp
; lp
= lp
->next
)
356 if (ptid_get_pid (lp
->ptid
) == pid
)
362 /* Call delete_lwp with prototype compatible for make_cleanup. */
365 delete_lwp_cleanup (void *lp_voidp
)
367 struct lwp_info
*lp
= lp_voidp
;
369 delete_lwp (lp
->ptid
);
373 linux_child_follow_fork (struct target_ops
*ops
, int follow_child
,
377 int parent_pid
, child_pid
;
379 has_vforked
= (inferior_thread ()->pending_follow
.kind
380 == TARGET_WAITKIND_VFORKED
);
381 parent_pid
= ptid_get_lwp (inferior_ptid
);
383 parent_pid
= ptid_get_pid (inferior_ptid
);
385 = ptid_get_pid (inferior_thread ()->pending_follow
.value
.related_pid
);
388 && !non_stop
/* Non-stop always resumes both branches. */
389 && (!target_is_async_p () || sync_execution
)
390 && !(follow_child
|| detach_fork
|| sched_multi
))
392 /* The parent stays blocked inside the vfork syscall until the
393 child execs or exits. If we don't let the child run, then
394 the parent stays blocked. If we're telling the parent to run
395 in the foreground, the user will not be able to ctrl-c to get
396 back the terminal, effectively hanging the debug session. */
397 fprintf_filtered (gdb_stderr
, _("\
398 Can not resume the parent process over vfork in the foreground while\n\
399 holding the child stopped. Try \"set detach-on-fork\" or \
400 \"set schedule-multiple\".\n"));
401 /* FIXME output string > 80 columns. */
407 struct lwp_info
*child_lp
= NULL
;
409 /* We're already attached to the parent, by default. */
411 /* Detach new forked process? */
414 struct cleanup
*old_chain
;
416 /* Before detaching from the child, remove all breakpoints
417 from it. If we forked, then this has already been taken
418 care of by infrun.c. If we vforked however, any
419 breakpoint inserted in the parent is visible in the
420 child, even those added while stopped in a vfork
421 catchpoint. This will remove the breakpoints from the
422 parent also, but they'll be reinserted below. */
425 /* keep breakpoints list in sync. */
426 remove_breakpoints_pid (ptid_get_pid (inferior_ptid
));
429 if (info_verbose
|| debug_linux_nat
)
431 target_terminal_ours ();
432 fprintf_filtered (gdb_stdlog
,
433 "Detaching after fork from "
434 "child process %d.\n",
438 old_chain
= save_inferior_ptid ();
439 inferior_ptid
= ptid_build (child_pid
, child_pid
, 0);
441 child_lp
= add_lwp (inferior_ptid
);
442 child_lp
->stopped
= 1;
443 child_lp
->last_resume_kind
= resume_stop
;
444 make_cleanup (delete_lwp_cleanup
, child_lp
);
446 if (linux_nat_prepare_to_resume
!= NULL
)
447 linux_nat_prepare_to_resume (child_lp
);
448 ptrace (PTRACE_DETACH
, child_pid
, 0, 0);
450 do_cleanups (old_chain
);
454 struct inferior
*parent_inf
, *child_inf
;
455 struct cleanup
*old_chain
;
457 /* Add process to GDB's tables. */
458 child_inf
= add_inferior (child_pid
);
460 parent_inf
= current_inferior ();
461 child_inf
->attach_flag
= parent_inf
->attach_flag
;
462 copy_terminal_info (child_inf
, parent_inf
);
463 child_inf
->gdbarch
= parent_inf
->gdbarch
;
464 copy_inferior_target_desc_info (child_inf
, parent_inf
);
466 old_chain
= save_inferior_ptid ();
467 save_current_program_space ();
469 inferior_ptid
= ptid_build (child_pid
, child_pid
, 0);
470 add_thread (inferior_ptid
);
471 child_lp
= add_lwp (inferior_ptid
);
472 child_lp
->stopped
= 1;
473 child_lp
->last_resume_kind
= resume_stop
;
474 child_inf
->symfile_flags
= SYMFILE_NO_READ
;
476 /* If this is a vfork child, then the address-space is
477 shared with the parent. */
480 child_inf
->pspace
= parent_inf
->pspace
;
481 child_inf
->aspace
= parent_inf
->aspace
;
483 /* The parent will be frozen until the child is done
484 with the shared region. Keep track of the
486 child_inf
->vfork_parent
= parent_inf
;
487 child_inf
->pending_detach
= 0;
488 parent_inf
->vfork_child
= child_inf
;
489 parent_inf
->pending_detach
= 0;
493 child_inf
->aspace
= new_address_space ();
494 child_inf
->pspace
= add_program_space (child_inf
->aspace
);
495 child_inf
->removable
= 1;
496 set_current_program_space (child_inf
->pspace
);
497 clone_program_space (child_inf
->pspace
, parent_inf
->pspace
);
499 /* Let the shared library layer (solib-svr4) learn about
500 this new process, relocate the cloned exec, pull in
501 shared libraries, and install the solib event
502 breakpoint. If a "cloned-VM" event was propagated
503 better throughout the core, this wouldn't be
505 solib_create_inferior_hook (0);
508 /* Let the thread_db layer learn about this new process. */
509 check_for_thread_db ();
511 do_cleanups (old_chain
);
516 struct lwp_info
*parent_lp
;
517 struct inferior
*parent_inf
;
519 parent_inf
= current_inferior ();
521 /* If we detached from the child, then we have to be careful
522 to not insert breakpoints in the parent until the child
523 is done with the shared memory region. However, if we're
524 staying attached to the child, then we can and should
525 insert breakpoints, so that we can debug it. A
526 subsequent child exec or exit is enough to know when does
527 the child stops using the parent's address space. */
528 parent_inf
->waiting_for_vfork_done
= detach_fork
;
529 parent_inf
->pspace
->breakpoints_not_allowed
= detach_fork
;
531 parent_lp
= find_lwp_pid (pid_to_ptid (parent_pid
));
532 gdb_assert (linux_supports_tracefork () >= 0);
534 if (linux_supports_tracevforkdone ())
537 fprintf_unfiltered (gdb_stdlog
,
538 "LCFF: waiting for VFORK_DONE on %d\n",
540 parent_lp
->stopped
= 1;
542 /* We'll handle the VFORK_DONE event like any other
543 event, in target_wait. */
547 /* We can't insert breakpoints until the child has
548 finished with the shared memory region. We need to
549 wait until that happens. Ideal would be to just
551 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
552 - waitpid (parent_pid, &status, __WALL);
553 However, most architectures can't handle a syscall
554 being traced on the way out if it wasn't traced on
557 We might also think to loop, continuing the child
558 until it exits or gets a SIGTRAP. One problem is
559 that the child might call ptrace with PTRACE_TRACEME.
561 There's no simple and reliable way to figure out when
562 the vforked child will be done with its copy of the
563 shared memory. We could step it out of the syscall,
564 two instructions, let it go, and then single-step the
565 parent once. When we have hardware single-step, this
566 would work; with software single-step it could still
567 be made to work but we'd have to be able to insert
568 single-step breakpoints in the child, and we'd have
569 to insert -just- the single-step breakpoint in the
570 parent. Very awkward.
572 In the end, the best we can do is to make sure it
573 runs for a little while. Hopefully it will be out of
574 range of any breakpoints we reinsert. Usually this
575 is only the single-step breakpoint at vfork's return
579 fprintf_unfiltered (gdb_stdlog
,
580 "LCFF: no VFORK_DONE "
581 "support, sleeping a bit\n");
585 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
586 and leave it pending. The next linux_nat_resume call
587 will notice a pending event, and bypasses actually
588 resuming the inferior. */
589 parent_lp
->status
= 0;
590 parent_lp
->waitstatus
.kind
= TARGET_WAITKIND_VFORK_DONE
;
591 parent_lp
->stopped
= 1;
593 /* If we're in async mode, need to tell the event loop
594 there's something here to process. */
595 if (target_can_async_p ())
602 struct inferior
*parent_inf
, *child_inf
;
603 struct lwp_info
*child_lp
;
604 struct program_space
*parent_pspace
;
606 if (info_verbose
|| debug_linux_nat
)
608 target_terminal_ours ();
610 fprintf_filtered (gdb_stdlog
,
611 _("Attaching after process %d "
612 "vfork to child process %d.\n"),
613 parent_pid
, child_pid
);
615 fprintf_filtered (gdb_stdlog
,
616 _("Attaching after process %d "
617 "fork to child process %d.\n"),
618 parent_pid
, child_pid
);
621 /* Add the new inferior first, so that the target_detach below
622 doesn't unpush the target. */
624 child_inf
= add_inferior (child_pid
);
626 parent_inf
= current_inferior ();
627 child_inf
->attach_flag
= parent_inf
->attach_flag
;
628 copy_terminal_info (child_inf
, parent_inf
);
629 child_inf
->gdbarch
= parent_inf
->gdbarch
;
630 copy_inferior_target_desc_info (child_inf
, parent_inf
);
632 parent_pspace
= parent_inf
->pspace
;
634 /* If we're vforking, we want to hold on to the parent until the
635 child exits or execs. At child exec or exit time we can
636 remove the old breakpoints from the parent and detach or
637 resume debugging it. Otherwise, detach the parent now; we'll
638 want to reuse it's program/address spaces, but we can't set
639 them to the child before removing breakpoints from the
640 parent, otherwise, the breakpoints module could decide to
641 remove breakpoints from the wrong process (since they'd be
642 assigned to the same address space). */
646 gdb_assert (child_inf
->vfork_parent
== NULL
);
647 gdb_assert (parent_inf
->vfork_child
== NULL
);
648 child_inf
->vfork_parent
= parent_inf
;
649 child_inf
->pending_detach
= 0;
650 parent_inf
->vfork_child
= child_inf
;
651 parent_inf
->pending_detach
= detach_fork
;
652 parent_inf
->waiting_for_vfork_done
= 0;
654 else if (detach_fork
)
655 target_detach (NULL
, 0);
657 /* Note that the detach above makes PARENT_INF dangling. */
659 /* Add the child thread to the appropriate lists, and switch to
660 this new thread, before cloning the program space, and
661 informing the solib layer about this new process. */
663 inferior_ptid
= ptid_build (child_pid
, child_pid
, 0);
664 add_thread (inferior_ptid
);
665 child_lp
= add_lwp (inferior_ptid
);
666 child_lp
->stopped
= 1;
667 child_lp
->last_resume_kind
= resume_stop
;
669 /* If this is a vfork child, then the address-space is shared
670 with the parent. If we detached from the parent, then we can
671 reuse the parent's program/address spaces. */
672 if (has_vforked
|| detach_fork
)
674 child_inf
->pspace
= parent_pspace
;
675 child_inf
->aspace
= child_inf
->pspace
->aspace
;
679 child_inf
->aspace
= new_address_space ();
680 child_inf
->pspace
= add_program_space (child_inf
->aspace
);
681 child_inf
->removable
= 1;
682 child_inf
->symfile_flags
= SYMFILE_NO_READ
;
683 set_current_program_space (child_inf
->pspace
);
684 clone_program_space (child_inf
->pspace
, parent_pspace
);
686 /* Let the shared library layer (solib-svr4) learn about
687 this new process, relocate the cloned exec, pull in
688 shared libraries, and install the solib event breakpoint.
689 If a "cloned-VM" event was propagated better throughout
690 the core, this wouldn't be required. */
691 solib_create_inferior_hook (0);
694 /* Let the thread_db layer learn about this new process. */
695 check_for_thread_db ();
703 linux_child_insert_fork_catchpoint (int pid
)
705 return !linux_supports_tracefork ();
709 linux_child_remove_fork_catchpoint (int pid
)
715 linux_child_insert_vfork_catchpoint (int pid
)
717 return !linux_supports_tracefork ();
721 linux_child_remove_vfork_catchpoint (int pid
)
727 linux_child_insert_exec_catchpoint (int pid
)
729 return !linux_supports_tracefork ();
733 linux_child_remove_exec_catchpoint (int pid
)
739 linux_child_set_syscall_catchpoint (int pid
, int needed
, int any_count
,
740 int table_size
, int *table
)
742 if (!linux_supports_tracesysgood ())
745 /* On GNU/Linux, we ignore the arguments. It means that we only
746 enable the syscall catchpoints, but do not disable them.
748 Also, we do not use the `table' information because we do not
749 filter system calls here. We let GDB do the logic for us. */
753 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
754 are processes sharing the same VM space. A multi-threaded process
755 is basically a group of such processes. However, such a grouping
756 is almost entirely a user-space issue; the kernel doesn't enforce
757 such a grouping at all (this might change in the future). In
758 general, we'll rely on the threads library (i.e. the GNU/Linux
759 Threads library) to provide such a grouping.
761 It is perfectly well possible to write a multi-threaded application
762 without the assistance of a threads library, by using the clone
763 system call directly. This module should be able to give some
764 rudimentary support for debugging such applications if developers
765 specify the CLONE_PTRACE flag in the clone system call, and are
766 using the Linux kernel 2.4 or above.
768 Note that there are some peculiarities in GNU/Linux that affect
771 - In general one should specify the __WCLONE flag to waitpid in
772 order to make it report events for any of the cloned processes
773 (and leave it out for the initial process). However, if a cloned
774 process has exited the exit status is only reported if the
775 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
776 we cannot use it since GDB must work on older systems too.
778 - When a traced, cloned process exits and is waited for by the
779 debugger, the kernel reassigns it to the original parent and
780 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
781 library doesn't notice this, which leads to the "zombie problem":
782 When debugged a multi-threaded process that spawns a lot of
783 threads will run out of processes, even if the threads exit,
784 because the "zombies" stay around. */
786 /* List of known LWPs. */
787 struct lwp_info
*lwp_list
;
790 /* Original signal mask. */
791 static sigset_t normal_mask
;
793 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
794 _initialize_linux_nat. */
795 static sigset_t suspend_mask
;
797 /* Signals to block to make that sigsuspend work. */
798 static sigset_t blocked_mask
;
800 /* SIGCHLD action. */
801 struct sigaction sigchld_action
;
803 /* Block child signals (SIGCHLD and linux threads signals), and store
804 the previous mask in PREV_MASK. */
807 block_child_signals (sigset_t
*prev_mask
)
809 /* Make sure SIGCHLD is blocked. */
810 if (!sigismember (&blocked_mask
, SIGCHLD
))
811 sigaddset (&blocked_mask
, SIGCHLD
);
813 sigprocmask (SIG_BLOCK
, &blocked_mask
, prev_mask
);
816 /* Restore child signals mask, previously returned by
817 block_child_signals. */
820 restore_child_signals_mask (sigset_t
*prev_mask
)
822 sigprocmask (SIG_SETMASK
, prev_mask
, NULL
);
825 /* Mask of signals to pass directly to the inferior. */
826 static sigset_t pass_mask
;
828 /* Update signals to pass to the inferior. */
830 linux_nat_pass_signals (int numsigs
, unsigned char *pass_signals
)
834 sigemptyset (&pass_mask
);
836 for (signo
= 1; signo
< NSIG
; signo
++)
838 int target_signo
= gdb_signal_from_host (signo
);
839 if (target_signo
< numsigs
&& pass_signals
[target_signo
])
840 sigaddset (&pass_mask
, signo
);
846 /* Prototypes for local functions. */
847 static int stop_wait_callback (struct lwp_info
*lp
, void *data
);
848 static int linux_thread_alive (ptid_t ptid
);
849 static char *linux_child_pid_to_exec_file (int pid
);
852 /* Convert wait status STATUS to a string. Used for printing debug
856 status_to_str (int status
)
860 if (WIFSTOPPED (status
))
862 if (WSTOPSIG (status
) == SYSCALL_SIGTRAP
)
863 snprintf (buf
, sizeof (buf
), "%s (stopped at syscall)",
864 strsignal (SIGTRAP
));
866 snprintf (buf
, sizeof (buf
), "%s (stopped)",
867 strsignal (WSTOPSIG (status
)));
869 else if (WIFSIGNALED (status
))
870 snprintf (buf
, sizeof (buf
), "%s (terminated)",
871 strsignal (WTERMSIG (status
)));
873 snprintf (buf
, sizeof (buf
), "%d (exited)", WEXITSTATUS (status
));
878 /* Destroy and free LP. */
881 lwp_free (struct lwp_info
*lp
)
883 xfree (lp
->arch_private
);
887 /* Remove all LWPs belong to PID from the lwp list. */
890 purge_lwp_list (int pid
)
892 struct lwp_info
*lp
, *lpprev
, *lpnext
;
896 for (lp
= lwp_list
; lp
; lp
= lpnext
)
900 if (ptid_get_pid (lp
->ptid
) == pid
)
905 lpprev
->next
= lp
->next
;
914 /* Add the LWP specified by PTID to the list. PTID is the first LWP
915 in the process. Return a pointer to the structure describing the
918 This differs from add_lwp in that we don't let the arch specific
919 bits know about this new thread. Current clients of this callback
920 take the opportunity to install watchpoints in the new thread, and
921 we shouldn't do that for the first thread. If we're spawning a
922 child ("run"), the thread executes the shell wrapper first, and we
923 shouldn't touch it until it execs the program we want to debug.
924 For "attach", it'd be okay to call the callback, but it's not
925 necessary, because watchpoints can't yet have been inserted into
928 static struct lwp_info
*
929 add_initial_lwp (ptid_t ptid
)
933 gdb_assert (ptid_lwp_p (ptid
));
935 lp
= (struct lwp_info
*) xmalloc (sizeof (struct lwp_info
));
937 memset (lp
, 0, sizeof (struct lwp_info
));
939 lp
->last_resume_kind
= resume_continue
;
940 lp
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
951 /* Add the LWP specified by PID to the list. Return a pointer to the
952 structure describing the new LWP. The LWP should already be
955 static struct lwp_info
*
956 add_lwp (ptid_t ptid
)
960 lp
= add_initial_lwp (ptid
);
962 /* Let the arch specific bits know about this new thread. Current
963 clients of this callback take the opportunity to install
964 watchpoints in the new thread. We don't do this for the first
965 thread though. See add_initial_lwp. */
966 if (linux_nat_new_thread
!= NULL
)
967 linux_nat_new_thread (lp
);
972 /* Remove the LWP specified by PID from the list. */
975 delete_lwp (ptid_t ptid
)
977 struct lwp_info
*lp
, *lpprev
;
981 for (lp
= lwp_list
; lp
; lpprev
= lp
, lp
= lp
->next
)
982 if (ptid_equal (lp
->ptid
, ptid
))
989 lpprev
->next
= lp
->next
;
996 /* Return a pointer to the structure describing the LWP corresponding
997 to PID. If no corresponding LWP could be found, return NULL. */
999 static struct lwp_info
*
1000 find_lwp_pid (ptid_t ptid
)
1002 struct lwp_info
*lp
;
1005 if (ptid_lwp_p (ptid
))
1006 lwp
= ptid_get_lwp (ptid
);
1008 lwp
= ptid_get_pid (ptid
);
1010 for (lp
= lwp_list
; lp
; lp
= lp
->next
)
1011 if (lwp
== ptid_get_lwp (lp
->ptid
))
1017 /* Call CALLBACK with its second argument set to DATA for every LWP in
1018 the list. If CALLBACK returns 1 for a particular LWP, return a
1019 pointer to the structure describing that LWP immediately.
1020 Otherwise return NULL. */
1023 iterate_over_lwps (ptid_t filter
,
1024 int (*callback
) (struct lwp_info
*, void *),
1027 struct lwp_info
*lp
, *lpnext
;
1029 for (lp
= lwp_list
; lp
; lp
= lpnext
)
1033 if (ptid_match (lp
->ptid
, filter
))
1035 if ((*callback
) (lp
, data
))
1043 /* Update our internal state when changing from one checkpoint to
1044 another indicated by NEW_PTID. We can only switch single-threaded
1045 applications, so we only create one new LWP, and the previous list
1049 linux_nat_switch_fork (ptid_t new_ptid
)
1051 struct lwp_info
*lp
;
1053 purge_lwp_list (ptid_get_pid (inferior_ptid
));
1055 lp
= add_lwp (new_ptid
);
1058 /* This changes the thread's ptid while preserving the gdb thread
1059 num. Also changes the inferior pid, while preserving the
1061 thread_change_ptid (inferior_ptid
, new_ptid
);
1063 /* We've just told GDB core that the thread changed target id, but,
1064 in fact, it really is a different thread, with different register
1066 registers_changed ();
1069 /* Handle the exit of a single thread LP. */
1072 exit_lwp (struct lwp_info
*lp
)
1074 struct thread_info
*th
= find_thread_ptid (lp
->ptid
);
1078 if (print_thread_events
)
1079 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp
->ptid
));
1081 delete_thread (lp
->ptid
);
1084 delete_lwp (lp
->ptid
);
1087 /* Wait for the LWP specified by LP, which we have just attached to.
1088 Returns a wait status for that LWP, to cache. */
1091 linux_nat_post_attach_wait (ptid_t ptid
, int first
, int *cloned
,
1094 pid_t new_pid
, pid
= ptid_get_lwp (ptid
);
1097 if (linux_proc_pid_is_stopped (pid
))
1099 if (debug_linux_nat
)
1100 fprintf_unfiltered (gdb_stdlog
,
1101 "LNPAW: Attaching to a stopped process\n");
1103 /* The process is definitely stopped. It is in a job control
1104 stop, unless the kernel predates the TASK_STOPPED /
1105 TASK_TRACED distinction, in which case it might be in a
1106 ptrace stop. Make sure it is in a ptrace stop; from there we
1107 can kill it, signal it, et cetera.
1109 First make sure there is a pending SIGSTOP. Since we are
1110 already attached, the process can not transition from stopped
1111 to running without a PTRACE_CONT; so we know this signal will
1112 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1113 probably already in the queue (unless this kernel is old
1114 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1115 is not an RT signal, it can only be queued once. */
1116 kill_lwp (pid
, SIGSTOP
);
1118 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1119 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1120 ptrace (PTRACE_CONT
, pid
, 0, 0);
1123 /* Make sure the initial process is stopped. The user-level threads
1124 layer might want to poke around in the inferior, and that won't
1125 work if things haven't stabilized yet. */
1126 new_pid
= my_waitpid (pid
, &status
, 0);
1127 if (new_pid
== -1 && errno
== ECHILD
)
1130 warning (_("%s is a cloned process"), target_pid_to_str (ptid
));
1132 /* Try again with __WCLONE to check cloned processes. */
1133 new_pid
= my_waitpid (pid
, &status
, __WCLONE
);
1137 gdb_assert (pid
== new_pid
);
1139 if (!WIFSTOPPED (status
))
1141 /* The pid we tried to attach has apparently just exited. */
1142 if (debug_linux_nat
)
1143 fprintf_unfiltered (gdb_stdlog
, "LNPAW: Failed to stop %d: %s",
1144 pid
, status_to_str (status
));
1148 if (WSTOPSIG (status
) != SIGSTOP
)
1151 if (debug_linux_nat
)
1152 fprintf_unfiltered (gdb_stdlog
,
1153 "LNPAW: Received %s after attaching\n",
1154 status_to_str (status
));
1160 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1161 the new LWP could not be attached, or 1 if we're already auto
1162 attached to this thread, but haven't processed the
1163 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1164 its existance, without considering it an error. */
1167 lin_lwp_attach_lwp (ptid_t ptid
)
1169 struct lwp_info
*lp
;
1172 gdb_assert (ptid_lwp_p (ptid
));
1174 lp
= find_lwp_pid (ptid
);
1175 lwpid
= ptid_get_lwp (ptid
);
1177 /* We assume that we're already attached to any LWP that has an id
1178 equal to the overall process id, and to any LWP that is already
1179 in our list of LWPs. If we're not seeing exit events from threads
1180 and we've had PID wraparound since we last tried to stop all threads,
1181 this assumption might be wrong; fortunately, this is very unlikely
1183 if (lwpid
!= ptid_get_pid (ptid
) && lp
== NULL
)
1185 int status
, cloned
= 0, signalled
= 0;
1187 if (ptrace (PTRACE_ATTACH
, lwpid
, 0, 0) < 0)
1189 if (linux_supports_tracefork ())
1191 /* If we haven't stopped all threads when we get here,
1192 we may have seen a thread listed in thread_db's list,
1193 but not processed the PTRACE_EVENT_CLONE yet. If
1194 that's the case, ignore this new thread, and let
1195 normal event handling discover it later. */
1196 if (in_pid_list_p (stopped_pids
, lwpid
))
1198 /* We've already seen this thread stop, but we
1199 haven't seen the PTRACE_EVENT_CLONE extended
1208 /* See if we've got a stop for this new child
1209 pending. If so, we're already attached. */
1210 new_pid
= my_waitpid (lwpid
, &status
, WNOHANG
);
1211 if (new_pid
== -1 && errno
== ECHILD
)
1212 new_pid
= my_waitpid (lwpid
, &status
, __WCLONE
| WNOHANG
);
1215 if (WIFSTOPPED (status
))
1216 add_to_pid_list (&stopped_pids
, lwpid
, status
);
1222 /* If we fail to attach to the thread, issue a warning,
1223 but continue. One way this can happen is if thread
1224 creation is interrupted; as of Linux kernel 2.6.19, a
1225 bug may place threads in the thread list and then fail
1227 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid
),
1228 safe_strerror (errno
));
1232 if (debug_linux_nat
)
1233 fprintf_unfiltered (gdb_stdlog
,
1234 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1235 target_pid_to_str (ptid
));
1237 status
= linux_nat_post_attach_wait (ptid
, 0, &cloned
, &signalled
);
1238 if (!WIFSTOPPED (status
))
1241 lp
= add_lwp (ptid
);
1243 lp
->cloned
= cloned
;
1244 lp
->signalled
= signalled
;
1245 if (WSTOPSIG (status
) != SIGSTOP
)
1248 lp
->status
= status
;
1251 target_post_attach (ptid_get_lwp (lp
->ptid
));
1253 if (debug_linux_nat
)
1255 fprintf_unfiltered (gdb_stdlog
,
1256 "LLAL: waitpid %s received %s\n",
1257 target_pid_to_str (ptid
),
1258 status_to_str (status
));
1263 /* We assume that the LWP representing the original process is
1264 already stopped. Mark it as stopped in the data structure
1265 that the GNU/linux ptrace layer uses to keep track of
1266 threads. Note that this won't have already been done since
1267 the main thread will have, we assume, been stopped by an
1268 attach from a different layer. */
1270 lp
= add_lwp (ptid
);
1274 lp
->last_resume_kind
= resume_stop
;
1279 linux_nat_create_inferior (struct target_ops
*ops
,
1280 char *exec_file
, char *allargs
, char **env
,
1283 #ifdef HAVE_PERSONALITY
1284 int personality_orig
= 0, personality_set
= 0;
1285 #endif /* HAVE_PERSONALITY */
1287 /* The fork_child mechanism is synchronous and calls target_wait, so
1288 we have to mask the async mode. */
1290 #ifdef HAVE_PERSONALITY
1291 if (disable_randomization
)
1294 personality_orig
= personality (0xffffffff);
1295 if (errno
== 0 && !(personality_orig
& ADDR_NO_RANDOMIZE
))
1297 personality_set
= 1;
1298 personality (personality_orig
| ADDR_NO_RANDOMIZE
);
1300 if (errno
!= 0 || (personality_set
1301 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE
)))
1302 warning (_("Error disabling address space randomization: %s"),
1303 safe_strerror (errno
));
1305 #endif /* HAVE_PERSONALITY */
1307 /* Make sure we report all signals during startup. */
1308 linux_nat_pass_signals (0, NULL
);
1310 linux_ops
->to_create_inferior (ops
, exec_file
, allargs
, env
, from_tty
);
1312 #ifdef HAVE_PERSONALITY
1313 if (personality_set
)
1316 personality (personality_orig
);
1318 warning (_("Error restoring address space randomization: %s"),
1319 safe_strerror (errno
));
1321 #endif /* HAVE_PERSONALITY */
1325 linux_nat_attach (struct target_ops
*ops
, char *args
, int from_tty
)
1327 struct lwp_info
*lp
;
1330 volatile struct gdb_exception ex
;
1332 /* Make sure we report all signals during attach. */
1333 linux_nat_pass_signals (0, NULL
);
1335 TRY_CATCH (ex
, RETURN_MASK_ERROR
)
1337 linux_ops
->to_attach (ops
, args
, from_tty
);
1341 pid_t pid
= parse_pid_to_attach (args
);
1342 struct buffer buffer
;
1343 char *message
, *buffer_s
;
1345 message
= xstrdup (ex
.message
);
1346 make_cleanup (xfree
, message
);
1348 buffer_init (&buffer
);
1349 linux_ptrace_attach_warnings (pid
, &buffer
);
1351 buffer_grow_str0 (&buffer
, "");
1352 buffer_s
= buffer_finish (&buffer
);
1353 make_cleanup (xfree
, buffer_s
);
1355 throw_error (ex
.error
, "%s%s", buffer_s
, message
);
1358 /* The ptrace base target adds the main thread with (pid,0,0)
1359 format. Decorate it with lwp info. */
1360 ptid
= ptid_build (ptid_get_pid (inferior_ptid
),
1361 ptid_get_pid (inferior_ptid
),
1363 thread_change_ptid (inferior_ptid
, ptid
);
1365 /* Add the initial process as the first LWP to the list. */
1366 lp
= add_initial_lwp (ptid
);
1368 status
= linux_nat_post_attach_wait (lp
->ptid
, 1, &lp
->cloned
,
1370 if (!WIFSTOPPED (status
))
1372 if (WIFEXITED (status
))
1374 int exit_code
= WEXITSTATUS (status
);
1376 target_terminal_ours ();
1377 target_mourn_inferior ();
1379 error (_("Unable to attach: program exited normally."));
1381 error (_("Unable to attach: program exited with code %d."),
1384 else if (WIFSIGNALED (status
))
1386 enum gdb_signal signo
;
1388 target_terminal_ours ();
1389 target_mourn_inferior ();
1391 signo
= gdb_signal_from_host (WTERMSIG (status
));
1392 error (_("Unable to attach: program terminated with signal "
1394 gdb_signal_to_name (signo
),
1395 gdb_signal_to_string (signo
));
1398 internal_error (__FILE__
, __LINE__
,
1399 _("unexpected status %d for PID %ld"),
1400 status
, (long) ptid_get_lwp (ptid
));
1405 /* Save the wait status to report later. */
1407 if (debug_linux_nat
)
1408 fprintf_unfiltered (gdb_stdlog
,
1409 "LNA: waitpid %ld, saving status %s\n",
1410 (long) ptid_get_pid (lp
->ptid
), status_to_str (status
));
1412 lp
->status
= status
;
1414 if (target_can_async_p ())
1415 target_async (inferior_event_handler
, 0);
1418 /* Get pending status of LP. */
1420 get_pending_status (struct lwp_info
*lp
, int *status
)
1422 enum gdb_signal signo
= GDB_SIGNAL_0
;
1424 /* If we paused threads momentarily, we may have stored pending
1425 events in lp->status or lp->waitstatus (see stop_wait_callback),
1426 and GDB core hasn't seen any signal for those threads.
1427 Otherwise, the last signal reported to the core is found in the
1428 thread object's stop_signal.
1430 There's a corner case that isn't handled here at present. Only
1431 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1432 stop_signal make sense as a real signal to pass to the inferior.
1433 Some catchpoint related events, like
1434 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1435 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1436 those traps are debug API (ptrace in our case) related and
1437 induced; the inferior wouldn't see them if it wasn't being
1438 traced. Hence, we should never pass them to the inferior, even
1439 when set to pass state. Since this corner case isn't handled by
1440 infrun.c when proceeding with a signal, for consistency, neither
1441 do we handle it here (or elsewhere in the file we check for
1442 signal pass state). Normally SIGTRAP isn't set to pass state, so
1443 this is really a corner case. */
1445 if (lp
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
1446 signo
= GDB_SIGNAL_0
; /* a pending ptrace event, not a real signal. */
1447 else if (lp
->status
)
1448 signo
= gdb_signal_from_host (WSTOPSIG (lp
->status
));
1449 else if (non_stop
&& !is_executing (lp
->ptid
))
1451 struct thread_info
*tp
= find_thread_ptid (lp
->ptid
);
1453 signo
= tp
->suspend
.stop_signal
;
1457 struct target_waitstatus last
;
1460 get_last_target_status (&last_ptid
, &last
);
1462 if (ptid_get_lwp (lp
->ptid
) == ptid_get_lwp (last_ptid
))
1464 struct thread_info
*tp
= find_thread_ptid (lp
->ptid
);
1466 signo
= tp
->suspend
.stop_signal
;
1472 if (signo
== GDB_SIGNAL_0
)
1474 if (debug_linux_nat
)
1475 fprintf_unfiltered (gdb_stdlog
,
1476 "GPT: lwp %s has no pending signal\n",
1477 target_pid_to_str (lp
->ptid
));
1479 else if (!signal_pass_state (signo
))
1481 if (debug_linux_nat
)
1482 fprintf_unfiltered (gdb_stdlog
,
1483 "GPT: lwp %s had signal %s, "
1484 "but it is in no pass state\n",
1485 target_pid_to_str (lp
->ptid
),
1486 gdb_signal_to_string (signo
));
1490 *status
= W_STOPCODE (gdb_signal_to_host (signo
));
1492 if (debug_linux_nat
)
1493 fprintf_unfiltered (gdb_stdlog
,
1494 "GPT: lwp %s has pending signal %s\n",
1495 target_pid_to_str (lp
->ptid
),
1496 gdb_signal_to_string (signo
));
1503 detach_callback (struct lwp_info
*lp
, void *data
)
1505 gdb_assert (lp
->status
== 0 || WIFSTOPPED (lp
->status
));
1507 if (debug_linux_nat
&& lp
->status
)
1508 fprintf_unfiltered (gdb_stdlog
, "DC: Pending %s for %s on detach.\n",
1509 strsignal (WSTOPSIG (lp
->status
)),
1510 target_pid_to_str (lp
->ptid
));
1512 /* If there is a pending SIGSTOP, get rid of it. */
1515 if (debug_linux_nat
)
1516 fprintf_unfiltered (gdb_stdlog
,
1517 "DC: Sending SIGCONT to %s\n",
1518 target_pid_to_str (lp
->ptid
));
1520 kill_lwp (ptid_get_lwp (lp
->ptid
), SIGCONT
);
1524 /* We don't actually detach from the LWP that has an id equal to the
1525 overall process id just yet. */
1526 if (ptid_get_lwp (lp
->ptid
) != ptid_get_pid (lp
->ptid
))
1530 /* Pass on any pending signal for this LWP. */
1531 get_pending_status (lp
, &status
);
1533 if (linux_nat_prepare_to_resume
!= NULL
)
1534 linux_nat_prepare_to_resume (lp
);
1536 if (ptrace (PTRACE_DETACH
, ptid_get_lwp (lp
->ptid
), 0,
1537 WSTOPSIG (status
)) < 0)
1538 error (_("Can't detach %s: %s"), target_pid_to_str (lp
->ptid
),
1539 safe_strerror (errno
));
1541 if (debug_linux_nat
)
1542 fprintf_unfiltered (gdb_stdlog
,
1543 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1544 target_pid_to_str (lp
->ptid
),
1545 strsignal (WSTOPSIG (status
)));
1547 delete_lwp (lp
->ptid
);
1554 linux_nat_detach (struct target_ops
*ops
, const char *args
, int from_tty
)
1558 struct lwp_info
*main_lwp
;
1560 pid
= ptid_get_pid (inferior_ptid
);
1562 /* Don't unregister from the event loop, as there may be other
1563 inferiors running. */
1565 /* Stop all threads before detaching. ptrace requires that the
1566 thread is stopped to sucessfully detach. */
1567 iterate_over_lwps (pid_to_ptid (pid
), stop_callback
, NULL
);
1568 /* ... and wait until all of them have reported back that
1569 they're no longer running. */
1570 iterate_over_lwps (pid_to_ptid (pid
), stop_wait_callback
, NULL
);
1572 iterate_over_lwps (pid_to_ptid (pid
), detach_callback
, NULL
);
1574 /* Only the initial process should be left right now. */
1575 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid
)) == 1);
1577 main_lwp
= find_lwp_pid (pid_to_ptid (pid
));
1579 /* Pass on any pending signal for the last LWP. */
1580 if ((args
== NULL
|| *args
== '\0')
1581 && get_pending_status (main_lwp
, &status
) != -1
1582 && WIFSTOPPED (status
))
1586 /* Put the signal number in ARGS so that inf_ptrace_detach will
1587 pass it along with PTRACE_DETACH. */
1589 xsnprintf (tem
, 8, "%d", (int) WSTOPSIG (status
));
1591 if (debug_linux_nat
)
1592 fprintf_unfiltered (gdb_stdlog
,
1593 "LND: Sending signal %s to %s\n",
1595 target_pid_to_str (main_lwp
->ptid
));
1598 if (linux_nat_prepare_to_resume
!= NULL
)
1599 linux_nat_prepare_to_resume (main_lwp
);
1600 delete_lwp (main_lwp
->ptid
);
1602 if (forks_exist_p ())
1604 /* Multi-fork case. The current inferior_ptid is being detached
1605 from, but there are other viable forks to debug. Detach from
1606 the current fork, and context-switch to the first
1608 linux_fork_detach (args
, from_tty
);
1611 linux_ops
->to_detach (ops
, args
, from_tty
);
1617 resume_lwp (struct lwp_info
*lp
, int step
, enum gdb_signal signo
)
1621 struct inferior
*inf
= find_inferior_pid (ptid_get_pid (lp
->ptid
));
1623 if (inf
->vfork_child
!= NULL
)
1625 if (debug_linux_nat
)
1626 fprintf_unfiltered (gdb_stdlog
,
1627 "RC: Not resuming %s (vfork parent)\n",
1628 target_pid_to_str (lp
->ptid
));
1630 else if (lp
->status
== 0
1631 && lp
->waitstatus
.kind
== TARGET_WAITKIND_IGNORE
)
1633 if (debug_linux_nat
)
1634 fprintf_unfiltered (gdb_stdlog
,
1635 "RC: Resuming sibling %s, %s, %s\n",
1636 target_pid_to_str (lp
->ptid
),
1637 (signo
!= GDB_SIGNAL_0
1638 ? strsignal (gdb_signal_to_host (signo
))
1640 step
? "step" : "resume");
1642 if (linux_nat_prepare_to_resume
!= NULL
)
1643 linux_nat_prepare_to_resume (lp
);
1644 linux_ops
->to_resume (linux_ops
,
1645 pid_to_ptid (ptid_get_lwp (lp
->ptid
)),
1649 lp
->stopped_by_watchpoint
= 0;
1653 if (debug_linux_nat
)
1654 fprintf_unfiltered (gdb_stdlog
,
1655 "RC: Not resuming sibling %s (has pending)\n",
1656 target_pid_to_str (lp
->ptid
));
1661 if (debug_linux_nat
)
1662 fprintf_unfiltered (gdb_stdlog
,
1663 "RC: Not resuming sibling %s (not stopped)\n",
1664 target_pid_to_str (lp
->ptid
));
1668 /* Resume LWP, with the last stop signal, if it is in pass state. */
1671 linux_nat_resume_callback (struct lwp_info
*lp
, void *data
)
1673 enum gdb_signal signo
= GDB_SIGNAL_0
;
1677 struct thread_info
*thread
;
1679 thread
= find_thread_ptid (lp
->ptid
);
1682 if (signal_pass_state (thread
->suspend
.stop_signal
))
1683 signo
= thread
->suspend
.stop_signal
;
1684 thread
->suspend
.stop_signal
= GDB_SIGNAL_0
;
1688 resume_lwp (lp
, 0, signo
);
1693 resume_clear_callback (struct lwp_info
*lp
, void *data
)
1696 lp
->last_resume_kind
= resume_stop
;
1701 resume_set_callback (struct lwp_info
*lp
, void *data
)
1704 lp
->last_resume_kind
= resume_continue
;
1709 linux_nat_resume (struct target_ops
*ops
,
1710 ptid_t ptid
, int step
, enum gdb_signal signo
)
1712 struct lwp_info
*lp
;
1715 if (debug_linux_nat
)
1716 fprintf_unfiltered (gdb_stdlog
,
1717 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1718 step
? "step" : "resume",
1719 target_pid_to_str (ptid
),
1720 (signo
!= GDB_SIGNAL_0
1721 ? strsignal (gdb_signal_to_host (signo
)) : "0"),
1722 target_pid_to_str (inferior_ptid
));
1724 /* A specific PTID means `step only this process id'. */
1725 resume_many
= (ptid_equal (minus_one_ptid
, ptid
)
1726 || ptid_is_pid (ptid
));
1728 /* Mark the lwps we're resuming as resumed. */
1729 iterate_over_lwps (ptid
, resume_set_callback
, NULL
);
1731 /* See if it's the current inferior that should be handled
1734 lp
= find_lwp_pid (inferior_ptid
);
1736 lp
= find_lwp_pid (ptid
);
1737 gdb_assert (lp
!= NULL
);
1739 /* Remember if we're stepping. */
1741 lp
->last_resume_kind
= step
? resume_step
: resume_continue
;
1743 /* If we have a pending wait status for this thread, there is no
1744 point in resuming the process. But first make sure that
1745 linux_nat_wait won't preemptively handle the event - we
1746 should never take this short-circuit if we are going to
1747 leave LP running, since we have skipped resuming all the
1748 other threads. This bit of code needs to be synchronized
1749 with linux_nat_wait. */
1751 if (lp
->status
&& WIFSTOPPED (lp
->status
))
1754 && WSTOPSIG (lp
->status
)
1755 && sigismember (&pass_mask
, WSTOPSIG (lp
->status
)))
1757 if (debug_linux_nat
)
1758 fprintf_unfiltered (gdb_stdlog
,
1759 "LLR: Not short circuiting for ignored "
1760 "status 0x%x\n", lp
->status
);
1762 /* FIXME: What should we do if we are supposed to continue
1763 this thread with a signal? */
1764 gdb_assert (signo
== GDB_SIGNAL_0
);
1765 signo
= gdb_signal_from_host (WSTOPSIG (lp
->status
));
1770 if (lp
->status
|| lp
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
1772 /* FIXME: What should we do if we are supposed to continue
1773 this thread with a signal? */
1774 gdb_assert (signo
== GDB_SIGNAL_0
);
1776 if (debug_linux_nat
)
1777 fprintf_unfiltered (gdb_stdlog
,
1778 "LLR: Short circuiting for status 0x%x\n",
1781 if (target_can_async_p ())
1783 target_async (inferior_event_handler
, 0);
1784 /* Tell the event loop we have something to process. */
1790 /* Mark LWP as not stopped to prevent it from being continued by
1791 linux_nat_resume_callback. */
1795 iterate_over_lwps (ptid
, linux_nat_resume_callback
, NULL
);
1797 /* Convert to something the lower layer understands. */
1798 ptid
= pid_to_ptid (ptid_get_lwp (lp
->ptid
));
1800 if (linux_nat_prepare_to_resume
!= NULL
)
1801 linux_nat_prepare_to_resume (lp
);
1802 linux_ops
->to_resume (linux_ops
, ptid
, step
, signo
);
1803 lp
->stopped_by_watchpoint
= 0;
1805 if (debug_linux_nat
)
1806 fprintf_unfiltered (gdb_stdlog
,
1807 "LLR: %s %s, %s (resume event thread)\n",
1808 step
? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1809 target_pid_to_str (ptid
),
1810 (signo
!= GDB_SIGNAL_0
1811 ? strsignal (gdb_signal_to_host (signo
)) : "0"));
1813 if (target_can_async_p ())
1814 target_async (inferior_event_handler
, 0);
1817 /* Send a signal to an LWP. */
1820 kill_lwp (int lwpid
, int signo
)
1822 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1823 fails, then we are not using nptl threads and we should be using kill. */
1825 #ifdef HAVE_TKILL_SYSCALL
1827 static int tkill_failed
;
1834 ret
= syscall (__NR_tkill
, lwpid
, signo
);
1835 if (errno
!= ENOSYS
)
1842 return kill (lwpid
, signo
);
1845 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1846 event, check if the core is interested in it: if not, ignore the
1847 event, and keep waiting; otherwise, we need to toggle the LWP's
1848 syscall entry/exit status, since the ptrace event itself doesn't
1849 indicate it, and report the trap to higher layers. */
1852 linux_handle_syscall_trap (struct lwp_info
*lp
, int stopping
)
1854 struct target_waitstatus
*ourstatus
= &lp
->waitstatus
;
1855 struct gdbarch
*gdbarch
= target_thread_architecture (lp
->ptid
);
1856 int syscall_number
= (int) gdbarch_get_syscall_number (gdbarch
, lp
->ptid
);
1860 /* If we're stopping threads, there's a SIGSTOP pending, which
1861 makes it so that the LWP reports an immediate syscall return,
1862 followed by the SIGSTOP. Skip seeing that "return" using
1863 PTRACE_CONT directly, and let stop_wait_callback collect the
1864 SIGSTOP. Later when the thread is resumed, a new syscall
1865 entry event. If we didn't do this (and returned 0), we'd
1866 leave a syscall entry pending, and our caller, by using
1867 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1868 itself. Later, when the user re-resumes this LWP, we'd see
1869 another syscall entry event and we'd mistake it for a return.
1871 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1872 (leaving immediately with LWP->signalled set, without issuing
1873 a PTRACE_CONT), it would still be problematic to leave this
1874 syscall enter pending, as later when the thread is resumed,
1875 it would then see the same syscall exit mentioned above,
1876 followed by the delayed SIGSTOP, while the syscall didn't
1877 actually get to execute. It seems it would be even more
1878 confusing to the user. */
1880 if (debug_linux_nat
)
1881 fprintf_unfiltered (gdb_stdlog
,
1882 "LHST: ignoring syscall %d "
1883 "for LWP %ld (stopping threads), "
1884 "resuming with PTRACE_CONT for SIGSTOP\n",
1886 ptid_get_lwp (lp
->ptid
));
1888 lp
->syscall_state
= TARGET_WAITKIND_IGNORE
;
1889 ptrace (PTRACE_CONT
, ptid_get_lwp (lp
->ptid
), 0, 0);
1893 if (catch_syscall_enabled ())
1895 /* Always update the entry/return state, even if this particular
1896 syscall isn't interesting to the core now. In async mode,
1897 the user could install a new catchpoint for this syscall
1898 between syscall enter/return, and we'll need to know to
1899 report a syscall return if that happens. */
1900 lp
->syscall_state
= (lp
->syscall_state
== TARGET_WAITKIND_SYSCALL_ENTRY
1901 ? TARGET_WAITKIND_SYSCALL_RETURN
1902 : TARGET_WAITKIND_SYSCALL_ENTRY
);
1904 if (catching_syscall_number (syscall_number
))
1906 /* Alright, an event to report. */
1907 ourstatus
->kind
= lp
->syscall_state
;
1908 ourstatus
->value
.syscall_number
= syscall_number
;
1910 if (debug_linux_nat
)
1911 fprintf_unfiltered (gdb_stdlog
,
1912 "LHST: stopping for %s of syscall %d"
1915 == TARGET_WAITKIND_SYSCALL_ENTRY
1916 ? "entry" : "return",
1918 ptid_get_lwp (lp
->ptid
));
1922 if (debug_linux_nat
)
1923 fprintf_unfiltered (gdb_stdlog
,
1924 "LHST: ignoring %s of syscall %d "
1926 lp
->syscall_state
== TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? "entry" : "return",
1929 ptid_get_lwp (lp
->ptid
));
1933 /* If we had been syscall tracing, and hence used PT_SYSCALL
1934 before on this LWP, it could happen that the user removes all
1935 syscall catchpoints before we get to process this event.
1936 There are two noteworthy issues here:
1938 - When stopped at a syscall entry event, resuming with
1939 PT_STEP still resumes executing the syscall and reports a
1942 - Only PT_SYSCALL catches syscall enters. If we last
1943 single-stepped this thread, then this event can't be a
1944 syscall enter. If we last single-stepped this thread, this
1945 has to be a syscall exit.
1947 The points above mean that the next resume, be it PT_STEP or
1948 PT_CONTINUE, can not trigger a syscall trace event. */
1949 if (debug_linux_nat
)
1950 fprintf_unfiltered (gdb_stdlog
,
1951 "LHST: caught syscall event "
1952 "with no syscall catchpoints."
1953 " %d for LWP %ld, ignoring\n",
1955 ptid_get_lwp (lp
->ptid
));
1956 lp
->syscall_state
= TARGET_WAITKIND_IGNORE
;
1959 /* The core isn't interested in this event. For efficiency, avoid
1960 stopping all threads only to have the core resume them all again.
1961 Since we're not stopping threads, if we're still syscall tracing
1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1963 subsequent syscall. Simply resume using the inf-ptrace layer,
1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1966 /* Note that gdbarch_get_syscall_number may access registers, hence
1968 registers_changed ();
1969 if (linux_nat_prepare_to_resume
!= NULL
)
1970 linux_nat_prepare_to_resume (lp
);
1971 linux_ops
->to_resume (linux_ops
, pid_to_ptid (ptid_get_lwp (lp
->ptid
)),
1972 lp
->step
, GDB_SIGNAL_0
);
1976 /* Handle a GNU/Linux extended wait response. If we see a clone
1977 event, we need to add the new LWP to our list (and not report the
1978 trap to higher layers). This function returns non-zero if the
1979 event should be ignored and we should wait again. If STOPPING is
1980 true, the new LWP remains stopped, otherwise it is continued. */
1983 linux_handle_extended_wait (struct lwp_info
*lp
, int status
,
1986 int pid
= ptid_get_lwp (lp
->ptid
);
1987 struct target_waitstatus
*ourstatus
= &lp
->waitstatus
;
1988 int event
= status
>> 16;
1990 if (event
== PTRACE_EVENT_FORK
|| event
== PTRACE_EVENT_VFORK
1991 || event
== PTRACE_EVENT_CLONE
)
1993 unsigned long new_pid
;
1996 ptrace (PTRACE_GETEVENTMSG
, pid
, 0, &new_pid
);
1998 /* If we haven't already seen the new PID stop, wait for it now. */
1999 if (! pull_pid_from_list (&stopped_pids
, new_pid
, &status
))
2001 /* The new child has a pending SIGSTOP. We can't affect it until it
2002 hits the SIGSTOP, but we're already attached. */
2003 ret
= my_waitpid (new_pid
, &status
,
2004 (event
== PTRACE_EVENT_CLONE
) ? __WCLONE
: 0);
2006 perror_with_name (_("waiting for new child"));
2007 else if (ret
!= new_pid
)
2008 internal_error (__FILE__
, __LINE__
,
2009 _("wait returned unexpected PID %d"), ret
);
2010 else if (!WIFSTOPPED (status
))
2011 internal_error (__FILE__
, __LINE__
,
2012 _("wait returned unexpected status 0x%x"), status
);
2015 ourstatus
->value
.related_pid
= ptid_build (new_pid
, new_pid
, 0);
2017 if (event
== PTRACE_EVENT_FORK
|| event
== PTRACE_EVENT_VFORK
)
2019 /* The arch-specific native code may need to know about new
2020 forks even if those end up never mapped to an
2022 if (linux_nat_new_fork
!= NULL
)
2023 linux_nat_new_fork (lp
, new_pid
);
2026 if (event
== PTRACE_EVENT_FORK
2027 && linux_fork_checkpointing_p (ptid_get_pid (lp
->ptid
)))
2029 /* Handle checkpointing by linux-fork.c here as a special
2030 case. We don't want the follow-fork-mode or 'catch fork'
2031 to interfere with this. */
2033 /* This won't actually modify the breakpoint list, but will
2034 physically remove the breakpoints from the child. */
2035 detach_breakpoints (ptid_build (new_pid
, new_pid
, 0));
2037 /* Retain child fork in ptrace (stopped) state. */
2038 if (!find_fork_pid (new_pid
))
2041 /* Report as spurious, so that infrun doesn't want to follow
2042 this fork. We're actually doing an infcall in
2044 ourstatus
->kind
= TARGET_WAITKIND_SPURIOUS
;
2046 /* Report the stop to the core. */
2050 if (event
== PTRACE_EVENT_FORK
)
2051 ourstatus
->kind
= TARGET_WAITKIND_FORKED
;
2052 else if (event
== PTRACE_EVENT_VFORK
)
2053 ourstatus
->kind
= TARGET_WAITKIND_VFORKED
;
2056 struct lwp_info
*new_lp
;
2058 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
2060 if (debug_linux_nat
)
2061 fprintf_unfiltered (gdb_stdlog
,
2062 "LHEW: Got clone event "
2063 "from LWP %d, new child is LWP %ld\n",
2066 new_lp
= add_lwp (ptid_build (ptid_get_pid (lp
->ptid
), new_pid
, 0));
2068 new_lp
->stopped
= 1;
2070 if (WSTOPSIG (status
) != SIGSTOP
)
2072 /* This can happen if someone starts sending signals to
2073 the new thread before it gets a chance to run, which
2074 have a lower number than SIGSTOP (e.g. SIGUSR1).
2075 This is an unlikely case, and harder to handle for
2076 fork / vfork than for clone, so we do not try - but
2077 we handle it for clone events here. We'll send
2078 the other signal on to the thread below. */
2080 new_lp
->signalled
= 1;
2084 struct thread_info
*tp
;
2086 /* When we stop for an event in some other thread, and
2087 pull the thread list just as this thread has cloned,
2088 we'll have seen the new thread in the thread_db list
2089 before handling the CLONE event (glibc's
2090 pthread_create adds the new thread to the thread list
2091 before clone'ing, and has the kernel fill in the
2092 thread's tid on the clone call with
2093 CLONE_PARENT_SETTID). If that happened, and the core
2094 had requested the new thread to stop, we'll have
2095 killed it with SIGSTOP. But since SIGSTOP is not an
2096 RT signal, it can only be queued once. We need to be
2097 careful to not resume the LWP if we wanted it to
2098 stop. In that case, we'll leave the SIGSTOP pending.
2099 It will later be reported as GDB_SIGNAL_0. */
2100 tp
= find_thread_ptid (new_lp
->ptid
);
2101 if (tp
!= NULL
&& tp
->stop_requested
)
2102 new_lp
->last_resume_kind
= resume_stop
;
2109 /* Add the new thread to GDB's lists as soon as possible
2112 1) the frontend doesn't have to wait for a stop to
2115 2) we tag it with the correct running state. */
2117 /* If the thread_db layer is active, let it know about
2118 this new thread, and add it to GDB's list. */
2119 if (!thread_db_attach_lwp (new_lp
->ptid
))
2121 /* We're not using thread_db. Add it to GDB's
2123 target_post_attach (ptid_get_lwp (new_lp
->ptid
));
2124 add_thread (new_lp
->ptid
);
2129 set_running (new_lp
->ptid
, 1);
2130 set_executing (new_lp
->ptid
, 1);
2131 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2133 new_lp
->last_resume_kind
= resume_continue
;
2139 /* We created NEW_LP so it cannot yet contain STATUS. */
2140 gdb_assert (new_lp
->status
== 0);
2142 /* Save the wait status to report later. */
2143 if (debug_linux_nat
)
2144 fprintf_unfiltered (gdb_stdlog
,
2145 "LHEW: waitpid of new LWP %ld, "
2146 "saving status %s\n",
2147 (long) ptid_get_lwp (new_lp
->ptid
),
2148 status_to_str (status
));
2149 new_lp
->status
= status
;
2152 /* Note the need to use the low target ops to resume, to
2153 handle resuming with PT_SYSCALL if we have syscall
2157 new_lp
->resumed
= 1;
2161 gdb_assert (new_lp
->last_resume_kind
== resume_continue
);
2162 if (debug_linux_nat
)
2163 fprintf_unfiltered (gdb_stdlog
,
2164 "LHEW: resuming new LWP %ld\n",
2165 ptid_get_lwp (new_lp
->ptid
));
2166 if (linux_nat_prepare_to_resume
!= NULL
)
2167 linux_nat_prepare_to_resume (new_lp
);
2168 linux_ops
->to_resume (linux_ops
, pid_to_ptid (new_pid
),
2170 new_lp
->stopped
= 0;
2174 if (debug_linux_nat
)
2175 fprintf_unfiltered (gdb_stdlog
,
2176 "LHEW: resuming parent LWP %d\n", pid
);
2177 if (linux_nat_prepare_to_resume
!= NULL
)
2178 linux_nat_prepare_to_resume (lp
);
2179 linux_ops
->to_resume (linux_ops
,
2180 pid_to_ptid (ptid_get_lwp (lp
->ptid
)),
2189 if (event
== PTRACE_EVENT_EXEC
)
2191 if (debug_linux_nat
)
2192 fprintf_unfiltered (gdb_stdlog
,
2193 "LHEW: Got exec event from LWP %ld\n",
2194 ptid_get_lwp (lp
->ptid
));
2196 ourstatus
->kind
= TARGET_WAITKIND_EXECD
;
2197 ourstatus
->value
.execd_pathname
2198 = xstrdup (linux_child_pid_to_exec_file (pid
));
2203 if (event
== PTRACE_EVENT_VFORK_DONE
)
2205 if (current_inferior ()->waiting_for_vfork_done
)
2207 if (debug_linux_nat
)
2208 fprintf_unfiltered (gdb_stdlog
,
2209 "LHEW: Got expected PTRACE_EVENT_"
2210 "VFORK_DONE from LWP %ld: stopping\n",
2211 ptid_get_lwp (lp
->ptid
));
2213 ourstatus
->kind
= TARGET_WAITKIND_VFORK_DONE
;
2217 if (debug_linux_nat
)
2218 fprintf_unfiltered (gdb_stdlog
,
2219 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2220 "from LWP %ld: resuming\n",
2221 ptid_get_lwp (lp
->ptid
));
2222 ptrace (PTRACE_CONT
, ptid_get_lwp (lp
->ptid
), 0, 0);
2226 internal_error (__FILE__
, __LINE__
,
2227 _("unknown ptrace event %d"), event
);
2230 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2234 wait_lwp (struct lwp_info
*lp
)
2238 int thread_dead
= 0;
2241 gdb_assert (!lp
->stopped
);
2242 gdb_assert (lp
->status
== 0);
2244 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2245 block_child_signals (&prev_mask
);
2249 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2250 was right and we should just call sigsuspend. */
2252 pid
= my_waitpid (ptid_get_lwp (lp
->ptid
), &status
, WNOHANG
);
2253 if (pid
== -1 && errno
== ECHILD
)
2254 pid
= my_waitpid (ptid_get_lwp (lp
->ptid
), &status
, __WCLONE
| WNOHANG
);
2255 if (pid
== -1 && errno
== ECHILD
)
2257 /* The thread has previously exited. We need to delete it
2258 now because, for some vendor 2.4 kernels with NPTL
2259 support backported, there won't be an exit event unless
2260 it is the main thread. 2.6 kernels will report an exit
2261 event for each thread that exits, as expected. */
2263 if (debug_linux_nat
)
2264 fprintf_unfiltered (gdb_stdlog
, "WL: %s vanished.\n",
2265 target_pid_to_str (lp
->ptid
));
2270 /* Bugs 10970, 12702.
2271 Thread group leader may have exited in which case we'll lock up in
2272 waitpid if there are other threads, even if they are all zombies too.
2273 Basically, we're not supposed to use waitpid this way.
2274 __WCLONE is not applicable for the leader so we can't use that.
2275 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2276 process; it gets ESRCH both for the zombie and for running processes.
2278 As a workaround, check if we're waiting for the thread group leader and
2279 if it's a zombie, and avoid calling waitpid if it is.
2281 This is racy, what if the tgl becomes a zombie right after we check?
2282 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2283 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2285 if (ptid_get_pid (lp
->ptid
) == ptid_get_lwp (lp
->ptid
)
2286 && linux_proc_pid_is_zombie (ptid_get_lwp (lp
->ptid
)))
2289 if (debug_linux_nat
)
2290 fprintf_unfiltered (gdb_stdlog
,
2291 "WL: Thread group leader %s vanished.\n",
2292 target_pid_to_str (lp
->ptid
));
2296 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2297 get invoked despite our caller had them intentionally blocked by
2298 block_child_signals. This is sensitive only to the loop of
2299 linux_nat_wait_1 and there if we get called my_waitpid gets called
2300 again before it gets to sigsuspend so we can safely let the handlers
2301 get executed here. */
2303 sigsuspend (&suspend_mask
);
2306 restore_child_signals_mask (&prev_mask
);
2310 gdb_assert (pid
== ptid_get_lwp (lp
->ptid
));
2312 if (debug_linux_nat
)
2314 fprintf_unfiltered (gdb_stdlog
,
2315 "WL: waitpid %s received %s\n",
2316 target_pid_to_str (lp
->ptid
),
2317 status_to_str (status
));
2320 /* Check if the thread has exited. */
2321 if (WIFEXITED (status
) || WIFSIGNALED (status
))
2324 if (debug_linux_nat
)
2325 fprintf_unfiltered (gdb_stdlog
, "WL: %s exited.\n",
2326 target_pid_to_str (lp
->ptid
));
2336 gdb_assert (WIFSTOPPED (status
));
2338 /* Handle GNU/Linux's syscall SIGTRAPs. */
2339 if (WIFSTOPPED (status
) && WSTOPSIG (status
) == SYSCALL_SIGTRAP
)
2341 /* No longer need the sysgood bit. The ptrace event ends up
2342 recorded in lp->waitstatus if we care for it. We can carry
2343 on handling the event like a regular SIGTRAP from here
2345 status
= W_STOPCODE (SIGTRAP
);
2346 if (linux_handle_syscall_trap (lp
, 1))
2347 return wait_lwp (lp
);
2350 /* Handle GNU/Linux's extended waitstatus for trace events. */
2351 if (WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGTRAP
&& status
>> 16 != 0)
2353 if (debug_linux_nat
)
2354 fprintf_unfiltered (gdb_stdlog
,
2355 "WL: Handling extended status 0x%06x\n",
2357 if (linux_handle_extended_wait (lp
, status
, 1))
2358 return wait_lwp (lp
);
2364 /* Send a SIGSTOP to LP. */
2367 stop_callback (struct lwp_info
*lp
, void *data
)
2369 if (!lp
->stopped
&& !lp
->signalled
)
2373 if (debug_linux_nat
)
2375 fprintf_unfiltered (gdb_stdlog
,
2376 "SC: kill %s **<SIGSTOP>**\n",
2377 target_pid_to_str (lp
->ptid
));
2380 ret
= kill_lwp (ptid_get_lwp (lp
->ptid
), SIGSTOP
);
2381 if (debug_linux_nat
)
2383 fprintf_unfiltered (gdb_stdlog
,
2384 "SC: lwp kill %d %s\n",
2386 errno
? safe_strerror (errno
) : "ERRNO-OK");
2390 gdb_assert (lp
->status
== 0);
2396 /* Request a stop on LWP. */
2399 linux_stop_lwp (struct lwp_info
*lwp
)
2401 stop_callback (lwp
, NULL
);
2404 /* Return non-zero if LWP PID has a pending SIGINT. */
2407 linux_nat_has_pending_sigint (int pid
)
2409 sigset_t pending
, blocked
, ignored
;
2411 linux_proc_pending_signals (pid
, &pending
, &blocked
, &ignored
);
2413 if (sigismember (&pending
, SIGINT
)
2414 && !sigismember (&ignored
, SIGINT
))
2420 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2423 set_ignore_sigint (struct lwp_info
*lp
, void *data
)
2425 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2426 flag to consume the next one. */
2427 if (lp
->stopped
&& lp
->status
!= 0 && WIFSTOPPED (lp
->status
)
2428 && WSTOPSIG (lp
->status
) == SIGINT
)
2431 lp
->ignore_sigint
= 1;
2436 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2437 This function is called after we know the LWP has stopped; if the LWP
2438 stopped before the expected SIGINT was delivered, then it will never have
2439 arrived. Also, if the signal was delivered to a shared queue and consumed
2440 by a different thread, it will never be delivered to this LWP. */
2443 maybe_clear_ignore_sigint (struct lwp_info
*lp
)
2445 if (!lp
->ignore_sigint
)
2448 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp
->ptid
)))
2450 if (debug_linux_nat
)
2451 fprintf_unfiltered (gdb_stdlog
,
2452 "MCIS: Clearing bogus flag for %s\n",
2453 target_pid_to_str (lp
->ptid
));
2454 lp
->ignore_sigint
= 0;
2458 /* Fetch the possible triggered data watchpoint info and store it in
2461 On some archs, like x86, that use debug registers to set
2462 watchpoints, it's possible that the way to know which watched
2463 address trapped, is to check the register that is used to select
2464 which address to watch. Problem is, between setting the watchpoint
2465 and reading back which data address trapped, the user may change
2466 the set of watchpoints, and, as a consequence, GDB changes the
2467 debug registers in the inferior. To avoid reading back a stale
2468 stopped-data-address when that happens, we cache in LP the fact
2469 that a watchpoint trapped, and the corresponding data address, as
2470 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2471 registers meanwhile, we have the cached data we can rely on. */
2474 save_sigtrap (struct lwp_info
*lp
)
2476 struct cleanup
*old_chain
;
2478 if (linux_ops
->to_stopped_by_watchpoint
== NULL
)
2480 lp
->stopped_by_watchpoint
= 0;
2484 old_chain
= save_inferior_ptid ();
2485 inferior_ptid
= lp
->ptid
;
2487 lp
->stopped_by_watchpoint
= linux_ops
->to_stopped_by_watchpoint ();
2489 if (lp
->stopped_by_watchpoint
)
2491 if (linux_ops
->to_stopped_data_address
!= NULL
)
2492 lp
->stopped_data_address_p
=
2493 linux_ops
->to_stopped_data_address (¤t_target
,
2494 &lp
->stopped_data_address
);
2496 lp
->stopped_data_address_p
= 0;
2499 do_cleanups (old_chain
);
2502 /* See save_sigtrap. */
2505 linux_nat_stopped_by_watchpoint (void)
2507 struct lwp_info
*lp
= find_lwp_pid (inferior_ptid
);
2509 gdb_assert (lp
!= NULL
);
2511 return lp
->stopped_by_watchpoint
;
2515 linux_nat_stopped_data_address (struct target_ops
*ops
, CORE_ADDR
*addr_p
)
2517 struct lwp_info
*lp
= find_lwp_pid (inferior_ptid
);
2519 gdb_assert (lp
!= NULL
);
2521 *addr_p
= lp
->stopped_data_address
;
2523 return lp
->stopped_data_address_p
;
2526 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2529 sigtrap_is_event (int status
)
2531 return WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGTRAP
;
2534 /* SIGTRAP-like events recognizer. */
2536 static int (*linux_nat_status_is_event
) (int status
) = sigtrap_is_event
;
2538 /* Check for SIGTRAP-like events in LP. */
2541 linux_nat_lp_status_is_event (struct lwp_info
*lp
)
2543 /* We check for lp->waitstatus in addition to lp->status, because we can
2544 have pending process exits recorded in lp->status
2545 and W_EXITCODE(0,0) == 0. We should probably have an additional
2546 lp->status_p flag. */
2548 return (lp
->waitstatus
.kind
== TARGET_WAITKIND_IGNORE
2549 && linux_nat_status_is_event (lp
->status
));
2552 /* Set alternative SIGTRAP-like events recognizer. If
2553 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2557 linux_nat_set_status_is_event (struct target_ops
*t
,
2558 int (*status_is_event
) (int status
))
2560 linux_nat_status_is_event
= status_is_event
;
2563 /* Wait until LP is stopped. */
2566 stop_wait_callback (struct lwp_info
*lp
, void *data
)
2568 struct inferior
*inf
= find_inferior_pid (ptid_get_pid (lp
->ptid
));
2570 /* If this is a vfork parent, bail out, it is not going to report
2571 any SIGSTOP until the vfork is done with. */
2572 if (inf
->vfork_child
!= NULL
)
2579 status
= wait_lwp (lp
);
2583 if (lp
->ignore_sigint
&& WIFSTOPPED (status
)
2584 && WSTOPSIG (status
) == SIGINT
)
2586 lp
->ignore_sigint
= 0;
2589 ptrace (PTRACE_CONT
, ptid_get_lwp (lp
->ptid
), 0, 0);
2590 if (debug_linux_nat
)
2591 fprintf_unfiltered (gdb_stdlog
,
2592 "PTRACE_CONT %s, 0, 0 (%s) "
2593 "(discarding SIGINT)\n",
2594 target_pid_to_str (lp
->ptid
),
2595 errno
? safe_strerror (errno
) : "OK");
2597 return stop_wait_callback (lp
, NULL
);
2600 maybe_clear_ignore_sigint (lp
);
2602 if (WSTOPSIG (status
) != SIGSTOP
)
2604 /* The thread was stopped with a signal other than SIGSTOP. */
2608 if (debug_linux_nat
)
2609 fprintf_unfiltered (gdb_stdlog
,
2610 "SWC: Pending event %s in %s\n",
2611 status_to_str ((int) status
),
2612 target_pid_to_str (lp
->ptid
));
2614 /* Save the sigtrap event. */
2615 lp
->status
= status
;
2616 gdb_assert (!lp
->stopped
);
2617 gdb_assert (lp
->signalled
);
2622 /* We caught the SIGSTOP that we intended to catch, so
2623 there's no SIGSTOP pending. */
2625 if (debug_linux_nat
)
2626 fprintf_unfiltered (gdb_stdlog
,
2627 "SWC: Delayed SIGSTOP caught for %s.\n",
2628 target_pid_to_str (lp
->ptid
));
2632 /* Reset SIGNALLED only after the stop_wait_callback call
2633 above as it does gdb_assert on SIGNALLED. */
2641 /* Return non-zero if LP has a wait status pending. */
2644 status_callback (struct lwp_info
*lp
, void *data
)
2646 /* Only report a pending wait status if we pretend that this has
2647 indeed been resumed. */
2651 if (lp
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
2653 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2654 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2655 0', so a clean process exit can not be stored pending in
2656 lp->status, it is indistinguishable from
2657 no-pending-status. */
2661 if (lp
->status
!= 0)
2667 /* Return non-zero if LP isn't stopped. */
2670 running_callback (struct lwp_info
*lp
, void *data
)
2672 return (!lp
->stopped
2673 || ((lp
->status
!= 0
2674 || lp
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
2678 /* Count the LWP's that have had events. */
2681 count_events_callback (struct lwp_info
*lp
, void *data
)
2685 gdb_assert (count
!= NULL
);
2687 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2688 if (lp
->resumed
&& linux_nat_lp_status_is_event (lp
))
2694 /* Select the LWP (if any) that is currently being single-stepped. */
2697 select_singlestep_lwp_callback (struct lwp_info
*lp
, void *data
)
2699 if (lp
->last_resume_kind
== resume_step
2706 /* Select the Nth LWP that has had a SIGTRAP event. */
2709 select_event_lwp_callback (struct lwp_info
*lp
, void *data
)
2711 int *selector
= data
;
2713 gdb_assert (selector
!= NULL
);
2715 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2716 if (lp
->resumed
&& linux_nat_lp_status_is_event (lp
))
2717 if ((*selector
)-- == 0)
2724 cancel_breakpoint (struct lwp_info
*lp
)
2726 /* Arrange for a breakpoint to be hit again later. We don't keep
2727 the SIGTRAP status and don't forward the SIGTRAP signal to the
2728 LWP. We will handle the current event, eventually we will resume
2729 this LWP, and this breakpoint will trap again.
2731 If we do not do this, then we run the risk that the user will
2732 delete or disable the breakpoint, but the LWP will have already
2735 struct regcache
*regcache
= get_thread_regcache (lp
->ptid
);
2736 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
2739 pc
= regcache_read_pc (regcache
) - target_decr_pc_after_break (gdbarch
);
2740 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache
), pc
))
2742 if (debug_linux_nat
)
2743 fprintf_unfiltered (gdb_stdlog
,
2744 "CB: Push back breakpoint for %s\n",
2745 target_pid_to_str (lp
->ptid
));
2747 /* Back up the PC if necessary. */
2748 if (target_decr_pc_after_break (gdbarch
))
2749 regcache_write_pc (regcache
, pc
);
2757 cancel_breakpoints_callback (struct lwp_info
*lp
, void *data
)
2759 struct lwp_info
*event_lp
= data
;
2761 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2765 /* If a LWP other than the LWP that we're reporting an event for has
2766 hit a GDB breakpoint (as opposed to some random trap signal),
2767 then just arrange for it to hit it again later. We don't keep
2768 the SIGTRAP status and don't forward the SIGTRAP signal to the
2769 LWP. We will handle the current event, eventually we will resume
2770 all LWPs, and this one will get its breakpoint trap again.
2772 If we do not do this, then we run the risk that the user will
2773 delete or disable the breakpoint, but the LWP will have already
2776 if (linux_nat_lp_status_is_event (lp
)
2777 && cancel_breakpoint (lp
))
2778 /* Throw away the SIGTRAP. */
2784 /* Select one LWP out of those that have events pending. */
2787 select_event_lwp (ptid_t filter
, struct lwp_info
**orig_lp
, int *status
)
2790 int random_selector
;
2791 struct lwp_info
*event_lp
;
2793 /* Record the wait status for the original LWP. */
2794 (*orig_lp
)->status
= *status
;
2796 /* Give preference to any LWP that is being single-stepped. */
2797 event_lp
= iterate_over_lwps (filter
,
2798 select_singlestep_lwp_callback
, NULL
);
2799 if (event_lp
!= NULL
)
2801 if (debug_linux_nat
)
2802 fprintf_unfiltered (gdb_stdlog
,
2803 "SEL: Select single-step %s\n",
2804 target_pid_to_str (event_lp
->ptid
));
2808 /* No single-stepping LWP. Select one at random, out of those
2809 which have had SIGTRAP events. */
2811 /* First see how many SIGTRAP events we have. */
2812 iterate_over_lwps (filter
, count_events_callback
, &num_events
);
2814 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2815 random_selector
= (int)
2816 ((num_events
* (double) rand ()) / (RAND_MAX
+ 1.0));
2818 if (debug_linux_nat
&& num_events
> 1)
2819 fprintf_unfiltered (gdb_stdlog
,
2820 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2821 num_events
, random_selector
);
2823 event_lp
= iterate_over_lwps (filter
,
2824 select_event_lwp_callback
,
2828 if (event_lp
!= NULL
)
2830 /* Switch the event LWP. */
2831 *orig_lp
= event_lp
;
2832 *status
= event_lp
->status
;
2835 /* Flush the wait status for the event LWP. */
2836 (*orig_lp
)->status
= 0;
2839 /* Return non-zero if LP has been resumed. */
2842 resumed_callback (struct lwp_info
*lp
, void *data
)
2847 /* Stop an active thread, verify it still exists, then resume it. If
2848 the thread ends up with a pending status, then it is not resumed,
2849 and *DATA (really a pointer to int), is set. */
2852 stop_and_resume_callback (struct lwp_info
*lp
, void *data
)
2854 int *new_pending_p
= data
;
2858 ptid_t ptid
= lp
->ptid
;
2860 stop_callback (lp
, NULL
);
2861 stop_wait_callback (lp
, NULL
);
2863 /* Resume if the lwp still exists, and the core wanted it
2865 lp
= find_lwp_pid (ptid
);
2868 if (lp
->last_resume_kind
== resume_stop
2871 /* The core wanted the LWP to stop. Even if it stopped
2872 cleanly (with SIGSTOP), leave the event pending. */
2873 if (debug_linux_nat
)
2874 fprintf_unfiltered (gdb_stdlog
,
2875 "SARC: core wanted LWP %ld stopped "
2876 "(leaving SIGSTOP pending)\n",
2877 ptid_get_lwp (lp
->ptid
));
2878 lp
->status
= W_STOPCODE (SIGSTOP
);
2881 if (lp
->status
== 0)
2883 if (debug_linux_nat
)
2884 fprintf_unfiltered (gdb_stdlog
,
2885 "SARC: re-resuming LWP %ld\n",
2886 ptid_get_lwp (lp
->ptid
));
2887 resume_lwp (lp
, lp
->step
, GDB_SIGNAL_0
);
2891 if (debug_linux_nat
)
2892 fprintf_unfiltered (gdb_stdlog
,
2893 "SARC: not re-resuming LWP %ld "
2895 ptid_get_lwp (lp
->ptid
));
2904 /* Check if we should go on and pass this event to common code.
2905 Return the affected lwp if we are, or NULL otherwise. If we stop
2906 all lwps temporarily, we may end up with new pending events in some
2907 other lwp. In that case set *NEW_PENDING_P to true. */
2909 static struct lwp_info
*
2910 linux_nat_filter_event (int lwpid
, int status
, int *new_pending_p
)
2912 struct lwp_info
*lp
;
2916 lp
= find_lwp_pid (pid_to_ptid (lwpid
));
2918 /* Check for stop events reported by a process we didn't already
2919 know about - anything not already in our LWP list.
2921 If we're expecting to receive stopped processes after
2922 fork, vfork, and clone events, then we'll just add the
2923 new one to our list and go back to waiting for the event
2924 to be reported - the stopped process might be returned
2925 from waitpid before or after the event is.
2927 But note the case of a non-leader thread exec'ing after the
2928 leader having exited, and gone from our lists. The non-leader
2929 thread changes its tid to the tgid. */
2931 if (WIFSTOPPED (status
) && lp
== NULL
2932 && (WSTOPSIG (status
) == SIGTRAP
&& status
>> 16 == PTRACE_EVENT_EXEC
))
2934 /* A multi-thread exec after we had seen the leader exiting. */
2935 if (debug_linux_nat
)
2936 fprintf_unfiltered (gdb_stdlog
,
2937 "LLW: Re-adding thread group leader LWP %d.\n",
2940 lp
= add_lwp (ptid_build (lwpid
, lwpid
, 0));
2943 add_thread (lp
->ptid
);
2946 if (WIFSTOPPED (status
) && !lp
)
2948 add_to_pid_list (&stopped_pids
, lwpid
, status
);
2952 /* Make sure we don't report an event for the exit of an LWP not in
2953 our list, i.e. not part of the current process. This can happen
2954 if we detach from a program we originally forked and then it
2956 if (!WIFSTOPPED (status
) && !lp
)
2959 /* Handle GNU/Linux's syscall SIGTRAPs. */
2960 if (WIFSTOPPED (status
) && WSTOPSIG (status
) == SYSCALL_SIGTRAP
)
2962 /* No longer need the sysgood bit. The ptrace event ends up
2963 recorded in lp->waitstatus if we care for it. We can carry
2964 on handling the event like a regular SIGTRAP from here
2966 status
= W_STOPCODE (SIGTRAP
);
2967 if (linux_handle_syscall_trap (lp
, 0))
2971 /* Handle GNU/Linux's extended waitstatus for trace events. */
2972 if (WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGTRAP
&& status
>> 16 != 0)
2974 if (debug_linux_nat
)
2975 fprintf_unfiltered (gdb_stdlog
,
2976 "LLW: Handling extended status 0x%06x\n",
2978 if (linux_handle_extended_wait (lp
, status
, 0))
2982 if (linux_nat_status_is_event (status
))
2985 /* Check if the thread has exited. */
2986 if ((WIFEXITED (status
) || WIFSIGNALED (status
))
2987 && num_lwps (ptid_get_pid (lp
->ptid
)) > 1)
2989 /* If this is the main thread, we must stop all threads and verify
2990 if they are still alive. This is because in the nptl thread model
2991 on Linux 2.4, there is no signal issued for exiting LWPs
2992 other than the main thread. We only get the main thread exit
2993 signal once all child threads have already exited. If we
2994 stop all the threads and use the stop_wait_callback to check
2995 if they have exited we can determine whether this signal
2996 should be ignored or whether it means the end of the debugged
2997 application, regardless of which threading model is being
2999 if (ptid_get_pid (lp
->ptid
) == ptid_get_lwp (lp
->ptid
))
3002 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp
->ptid
)),
3003 stop_and_resume_callback
, new_pending_p
);
3006 if (debug_linux_nat
)
3007 fprintf_unfiltered (gdb_stdlog
,
3008 "LLW: %s exited.\n",
3009 target_pid_to_str (lp
->ptid
));
3011 if (num_lwps (ptid_get_pid (lp
->ptid
)) > 1)
3013 /* If there is at least one more LWP, then the exit signal
3014 was not the end of the debugged application and should be
3021 /* Check if the current LWP has previously exited. In the nptl
3022 thread model, LWPs other than the main thread do not issue
3023 signals when they exit so we must check whenever the thread has
3024 stopped. A similar check is made in stop_wait_callback(). */
3025 if (num_lwps (ptid_get_pid (lp
->ptid
)) > 1 && !linux_thread_alive (lp
->ptid
))
3027 ptid_t ptid
= pid_to_ptid (ptid_get_pid (lp
->ptid
));
3029 if (debug_linux_nat
)
3030 fprintf_unfiltered (gdb_stdlog
,
3031 "LLW: %s exited.\n",
3032 target_pid_to_str (lp
->ptid
));
3036 /* Make sure there is at least one thread running. */
3037 gdb_assert (iterate_over_lwps (ptid
, running_callback
, NULL
));
3039 /* Discard the event. */
3043 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3044 an attempt to stop an LWP. */
3046 && WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGSTOP
)
3048 if (debug_linux_nat
)
3049 fprintf_unfiltered (gdb_stdlog
,
3050 "LLW: Delayed SIGSTOP caught for %s.\n",
3051 target_pid_to_str (lp
->ptid
));
3055 if (lp
->last_resume_kind
!= resume_stop
)
3057 /* This is a delayed SIGSTOP. */
3059 registers_changed ();
3061 if (linux_nat_prepare_to_resume
!= NULL
)
3062 linux_nat_prepare_to_resume (lp
);
3063 linux_ops
->to_resume (linux_ops
,
3064 pid_to_ptid (ptid_get_lwp (lp
->ptid
)),
3065 lp
->step
, GDB_SIGNAL_0
);
3066 if (debug_linux_nat
)
3067 fprintf_unfiltered (gdb_stdlog
,
3068 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3070 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3071 target_pid_to_str (lp
->ptid
));
3074 gdb_assert (lp
->resumed
);
3076 /* Discard the event. */
3081 /* Make sure we don't report a SIGINT that we have already displayed
3082 for another thread. */
3083 if (lp
->ignore_sigint
3084 && WIFSTOPPED (status
) && WSTOPSIG (status
) == SIGINT
)
3086 if (debug_linux_nat
)
3087 fprintf_unfiltered (gdb_stdlog
,
3088 "LLW: Delayed SIGINT caught for %s.\n",
3089 target_pid_to_str (lp
->ptid
));
3091 /* This is a delayed SIGINT. */
3092 lp
->ignore_sigint
= 0;
3094 registers_changed ();
3095 if (linux_nat_prepare_to_resume
!= NULL
)
3096 linux_nat_prepare_to_resume (lp
);
3097 linux_ops
->to_resume (linux_ops
, pid_to_ptid (ptid_get_lwp (lp
->ptid
)),
3098 lp
->step
, GDB_SIGNAL_0
);
3099 if (debug_linux_nat
)
3100 fprintf_unfiltered (gdb_stdlog
,
3101 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3103 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3104 target_pid_to_str (lp
->ptid
));
3107 gdb_assert (lp
->resumed
);
3109 /* Discard the event. */
3113 /* An interesting event. */
3115 lp
->status
= status
;
3119 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3120 their exits until all other threads in the group have exited. */
3123 check_zombie_leaders (void)
3125 struct inferior
*inf
;
3129 struct lwp_info
*leader_lp
;
3134 leader_lp
= find_lwp_pid (pid_to_ptid (inf
->pid
));
3135 if (leader_lp
!= NULL
3136 /* Check if there are other threads in the group, as we may
3137 have raced with the inferior simply exiting. */
3138 && num_lwps (inf
->pid
) > 1
3139 && linux_proc_pid_is_zombie (inf
->pid
))
3141 if (debug_linux_nat
)
3142 fprintf_unfiltered (gdb_stdlog
,
3143 "CZL: Thread group leader %d zombie "
3144 "(it exited, or another thread execd).\n",
3147 /* A leader zombie can mean one of two things:
3149 - It exited, and there's an exit status pending
3150 available, or only the leader exited (not the whole
3151 program). In the latter case, we can't waitpid the
3152 leader's exit status until all other threads are gone.
3154 - There are 3 or more threads in the group, and a thread
3155 other than the leader exec'd. On an exec, the Linux
3156 kernel destroys all other threads (except the execing
3157 one) in the thread group, and resets the execing thread's
3158 tid to the tgid. No exit notification is sent for the
3159 execing thread -- from the ptracer's perspective, it
3160 appears as though the execing thread just vanishes.
3161 Until we reap all other threads except the leader and the
3162 execing thread, the leader will be zombie, and the
3163 execing thread will be in `D (disc sleep)'. As soon as
3164 all other threads are reaped, the execing thread changes
3165 it's tid to the tgid, and the previous (zombie) leader
3166 vanishes, giving place to the "new" leader. We could try
3167 distinguishing the exit and exec cases, by waiting once
3168 more, and seeing if something comes out, but it doesn't
3169 sound useful. The previous leader _does_ go away, and
3170 we'll re-add the new one once we see the exec event
3171 (which is just the same as what would happen if the
3172 previous leader did exit voluntarily before some other
3175 if (debug_linux_nat
)
3176 fprintf_unfiltered (gdb_stdlog
,
3177 "CZL: Thread group leader %d vanished.\n",
3179 exit_lwp (leader_lp
);
3185 linux_nat_wait_1 (struct target_ops
*ops
,
3186 ptid_t ptid
, struct target_waitstatus
*ourstatus
,
3189 static sigset_t prev_mask
;
3190 enum resume_kind last_resume_kind
;
3191 struct lwp_info
*lp
;
3194 if (debug_linux_nat
)
3195 fprintf_unfiltered (gdb_stdlog
, "LLW: enter\n");
3197 /* The first time we get here after starting a new inferior, we may
3198 not have added it to the LWP list yet - this is the earliest
3199 moment at which we know its PID. */
3200 if (ptid_is_pid (inferior_ptid
))
3202 /* Upgrade the main thread's ptid. */
3203 thread_change_ptid (inferior_ptid
,
3204 ptid_build (ptid_get_pid (inferior_ptid
),
3205 ptid_get_pid (inferior_ptid
), 0));
3207 lp
= add_initial_lwp (inferior_ptid
);
3211 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3212 block_child_signals (&prev_mask
);
3218 /* First check if there is a LWP with a wait status pending. */
3219 if (ptid_equal (ptid
, minus_one_ptid
) || ptid_is_pid (ptid
))
3221 /* Any LWP in the PTID group that's been resumed will do. */
3222 lp
= iterate_over_lwps (ptid
, status_callback
, NULL
);
3225 if (debug_linux_nat
&& lp
->status
)
3226 fprintf_unfiltered (gdb_stdlog
,
3227 "LLW: Using pending wait status %s for %s.\n",
3228 status_to_str (lp
->status
),
3229 target_pid_to_str (lp
->ptid
));
3232 else if (ptid_lwp_p (ptid
))
3234 if (debug_linux_nat
)
3235 fprintf_unfiltered (gdb_stdlog
,
3236 "LLW: Waiting for specific LWP %s.\n",
3237 target_pid_to_str (ptid
));
3239 /* We have a specific LWP to check. */
3240 lp
= find_lwp_pid (ptid
);
3243 if (debug_linux_nat
&& lp
->status
)
3244 fprintf_unfiltered (gdb_stdlog
,
3245 "LLW: Using pending wait status %s for %s.\n",
3246 status_to_str (lp
->status
),
3247 target_pid_to_str (lp
->ptid
));
3249 /* We check for lp->waitstatus in addition to lp->status,
3250 because we can have pending process exits recorded in
3251 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3252 an additional lp->status_p flag. */
3253 if (lp
->status
== 0 && lp
->waitstatus
.kind
== TARGET_WAITKIND_IGNORE
)
3257 if (!target_can_async_p ())
3259 /* Causes SIGINT to be passed on to the attached process. */
3263 /* But if we don't find a pending event, we'll have to wait. */
3269 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3272 - If the thread group leader exits while other threads in the
3273 thread group still exist, waitpid(TGID, ...) hangs. That
3274 waitpid won't return an exit status until the other threads
3275 in the group are reapped.
3277 - When a non-leader thread execs, that thread just vanishes
3278 without reporting an exit (so we'd hang if we waited for it
3279 explicitly in that case). The exec event is reported to
3283 lwpid
= my_waitpid (-1, &status
, __WCLONE
| WNOHANG
);
3284 if (lwpid
== 0 || (lwpid
== -1 && errno
== ECHILD
))
3285 lwpid
= my_waitpid (-1, &status
, WNOHANG
);
3287 if (debug_linux_nat
)
3288 fprintf_unfiltered (gdb_stdlog
,
3289 "LNW: waitpid(-1, ...) returned %d, %s\n",
3290 lwpid
, errno
? safe_strerror (errno
) : "ERRNO-OK");
3294 /* If this is true, then we paused LWPs momentarily, and may
3295 now have pending events to handle. */
3298 if (debug_linux_nat
)
3300 fprintf_unfiltered (gdb_stdlog
,
3301 "LLW: waitpid %ld received %s\n",
3302 (long) lwpid
, status_to_str (status
));
3305 lp
= linux_nat_filter_event (lwpid
, status
, &new_pending
);
3307 /* STATUS is now no longer valid, use LP->STATUS instead. */
3310 if (lp
&& !ptid_match (lp
->ptid
, ptid
))
3312 gdb_assert (lp
->resumed
);
3314 if (debug_linux_nat
)
3316 "LWP %ld got an event %06x, leaving pending.\n",
3317 ptid_get_lwp (lp
->ptid
), lp
->status
);
3319 if (WIFSTOPPED (lp
->status
))
3321 if (WSTOPSIG (lp
->status
) != SIGSTOP
)
3323 /* Cancel breakpoint hits. The breakpoint may
3324 be removed before we fetch events from this
3325 process to report to the core. It is best
3326 not to assume the moribund breakpoints
3327 heuristic always handles these cases --- it
3328 could be too many events go through to the
3329 core before this one is handled. All-stop
3330 always cancels breakpoint hits in all
3333 && linux_nat_lp_status_is_event (lp
)
3334 && cancel_breakpoint (lp
))
3336 /* Throw away the SIGTRAP. */
3339 if (debug_linux_nat
)
3341 "LLW: LWP %ld hit a breakpoint while"
3342 " waiting for another process;"
3344 ptid_get_lwp (lp
->ptid
));
3354 else if (WIFEXITED (lp
->status
) || WIFSIGNALED (lp
->status
))
3356 if (debug_linux_nat
)
3358 "Process %ld exited while stopping LWPs\n",
3359 ptid_get_lwp (lp
->ptid
));
3361 /* This was the last lwp in the process. Since
3362 events are serialized to GDB core, and we can't
3363 report this one right now, but GDB core and the
3364 other target layers will want to be notified
3365 about the exit code/signal, leave the status
3366 pending for the next time we're able to report
3369 /* Prevent trying to stop this thread again. We'll
3370 never try to resume it because it has a pending
3374 /* Dead LWP's aren't expected to reported a pending
3378 /* Store the pending event in the waitstatus as
3379 well, because W_EXITCODE(0,0) == 0. */
3380 store_waitstatus (&lp
->waitstatus
, lp
->status
);
3389 /* Some LWP now has a pending event. Go all the way
3390 back to check it. */
3396 /* We got an event to report to the core. */
3400 /* Retry until nothing comes out of waitpid. A single
3401 SIGCHLD can indicate more than one child stopped. */
3405 /* Check for zombie thread group leaders. Those can't be reaped
3406 until all other threads in the thread group are. */
3407 check_zombie_leaders ();
3409 /* If there are no resumed children left, bail. We'd be stuck
3410 forever in the sigsuspend call below otherwise. */
3411 if (iterate_over_lwps (ptid
, resumed_callback
, NULL
) == NULL
)
3413 if (debug_linux_nat
)
3414 fprintf_unfiltered (gdb_stdlog
, "LLW: exit (no resumed LWP)\n");
3416 ourstatus
->kind
= TARGET_WAITKIND_NO_RESUMED
;
3418 if (!target_can_async_p ())
3419 clear_sigint_trap ();
3421 restore_child_signals_mask (&prev_mask
);
3422 return minus_one_ptid
;
3425 /* No interesting event to report to the core. */
3427 if (target_options
& TARGET_WNOHANG
)
3429 if (debug_linux_nat
)
3430 fprintf_unfiltered (gdb_stdlog
, "LLW: exit (ignore)\n");
3432 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3433 restore_child_signals_mask (&prev_mask
);
3434 return minus_one_ptid
;
3437 /* We shouldn't end up here unless we want to try again. */
3438 gdb_assert (lp
== NULL
);
3440 /* Block until we get an event reported with SIGCHLD. */
3441 sigsuspend (&suspend_mask
);
3444 if (!target_can_async_p ())
3445 clear_sigint_trap ();
3449 status
= lp
->status
;
3452 /* Don't report signals that GDB isn't interested in, such as
3453 signals that are neither printed nor stopped upon. Stopping all
3454 threads can be a bit time-consuming so if we want decent
3455 performance with heavily multi-threaded programs, especially when
3456 they're using a high frequency timer, we'd better avoid it if we
3459 if (WIFSTOPPED (status
))
3461 enum gdb_signal signo
= gdb_signal_from_host (WSTOPSIG (status
));
3463 /* When using hardware single-step, we need to report every signal.
3464 Otherwise, signals in pass_mask may be short-circuited. */
3466 && WSTOPSIG (status
) && sigismember (&pass_mask
, WSTOPSIG (status
)))
3468 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3469 here? It is not clear we should. GDB may not expect
3470 other threads to run. On the other hand, not resuming
3471 newly attached threads may cause an unwanted delay in
3472 getting them running. */
3473 registers_changed ();
3474 if (linux_nat_prepare_to_resume
!= NULL
)
3475 linux_nat_prepare_to_resume (lp
);
3476 linux_ops
->to_resume (linux_ops
,
3477 pid_to_ptid (ptid_get_lwp (lp
->ptid
)),
3479 if (debug_linux_nat
)
3480 fprintf_unfiltered (gdb_stdlog
,
3481 "LLW: %s %s, %s (preempt 'handle')\n",
3483 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3484 target_pid_to_str (lp
->ptid
),
3485 (signo
!= GDB_SIGNAL_0
3486 ? strsignal (gdb_signal_to_host (signo
))
3494 /* Only do the below in all-stop, as we currently use SIGINT
3495 to implement target_stop (see linux_nat_stop) in
3497 if (signo
== GDB_SIGNAL_INT
&& signal_pass_state (signo
) == 0)
3499 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3500 forwarded to the entire process group, that is, all LWPs
3501 will receive it - unless they're using CLONE_THREAD to
3502 share signals. Since we only want to report it once, we
3503 mark it as ignored for all LWPs except this one. */
3504 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid
)),
3505 set_ignore_sigint
, NULL
);
3506 lp
->ignore_sigint
= 0;
3509 maybe_clear_ignore_sigint (lp
);
3513 /* This LWP is stopped now. */
3516 if (debug_linux_nat
)
3517 fprintf_unfiltered (gdb_stdlog
, "LLW: Candidate event %s in %s.\n",
3518 status_to_str (status
), target_pid_to_str (lp
->ptid
));
3522 /* Now stop all other LWP's ... */
3523 iterate_over_lwps (minus_one_ptid
, stop_callback
, NULL
);
3525 /* ... and wait until all of them have reported back that
3526 they're no longer running. */
3527 iterate_over_lwps (minus_one_ptid
, stop_wait_callback
, NULL
);
3529 /* If we're not waiting for a specific LWP, choose an event LWP
3530 from among those that have had events. Giving equal priority
3531 to all LWPs that have had events helps prevent
3533 if (ptid_equal (ptid
, minus_one_ptid
) || ptid_is_pid (ptid
))
3534 select_event_lwp (ptid
, &lp
, &status
);
3536 /* Now that we've selected our final event LWP, cancel any
3537 breakpoints in other LWPs that have hit a GDB breakpoint.
3538 See the comment in cancel_breakpoints_callback to find out
3540 iterate_over_lwps (minus_one_ptid
, cancel_breakpoints_callback
, lp
);
3542 /* We'll need this to determine whether to report a SIGSTOP as
3543 TARGET_WAITKIND_0. Need to take a copy because
3544 resume_clear_callback clears it. */
3545 last_resume_kind
= lp
->last_resume_kind
;
3547 /* In all-stop, from the core's perspective, all LWPs are now
3548 stopped until a new resume action is sent over. */
3549 iterate_over_lwps (minus_one_ptid
, resume_clear_callback
, NULL
);
3554 last_resume_kind
= lp
->last_resume_kind
;
3555 resume_clear_callback (lp
, NULL
);
3558 if (linux_nat_status_is_event (status
))
3560 if (debug_linux_nat
)
3561 fprintf_unfiltered (gdb_stdlog
,
3562 "LLW: trap ptid is %s.\n",
3563 target_pid_to_str (lp
->ptid
));
3566 if (lp
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
3568 *ourstatus
= lp
->waitstatus
;
3569 lp
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
3572 store_waitstatus (ourstatus
, status
);
3574 if (debug_linux_nat
)
3575 fprintf_unfiltered (gdb_stdlog
, "LLW: exit\n");
3577 restore_child_signals_mask (&prev_mask
);
3579 if (last_resume_kind
== resume_stop
3580 && ourstatus
->kind
== TARGET_WAITKIND_STOPPED
3581 && WSTOPSIG (status
) == SIGSTOP
)
3583 /* A thread that has been requested to stop by GDB with
3584 target_stop, and it stopped cleanly, so report as SIG0. The
3585 use of SIGSTOP is an implementation detail. */
3586 ourstatus
->value
.sig
= GDB_SIGNAL_0
;
3589 if (ourstatus
->kind
== TARGET_WAITKIND_EXITED
3590 || ourstatus
->kind
== TARGET_WAITKIND_SIGNALLED
)
3593 lp
->core
= linux_common_core_of_thread (lp
->ptid
);
3598 /* Resume LWPs that are currently stopped without any pending status
3599 to report, but are resumed from the core's perspective. */
3602 resume_stopped_resumed_lwps (struct lwp_info
*lp
, void *data
)
3604 ptid_t
*wait_ptid_p
= data
;
3609 && lp
->waitstatus
.kind
== TARGET_WAITKIND_IGNORE
)
3611 struct regcache
*regcache
= get_thread_regcache (lp
->ptid
);
3612 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
3613 CORE_ADDR pc
= regcache_read_pc (regcache
);
3615 gdb_assert (is_executing (lp
->ptid
));
3617 /* Don't bother if there's a breakpoint at PC that we'd hit
3618 immediately, and we're not waiting for this LWP. */
3619 if (!ptid_match (lp
->ptid
, *wait_ptid_p
))
3621 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache
), pc
))
3625 if (debug_linux_nat
)
3626 fprintf_unfiltered (gdb_stdlog
,
3627 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3628 target_pid_to_str (lp
->ptid
),
3629 paddress (gdbarch
, pc
),
3632 registers_changed ();
3633 if (linux_nat_prepare_to_resume
!= NULL
)
3634 linux_nat_prepare_to_resume (lp
);
3635 linux_ops
->to_resume (linux_ops
, pid_to_ptid (ptid_get_lwp (lp
->ptid
)),
3636 lp
->step
, GDB_SIGNAL_0
);
3638 lp
->stopped_by_watchpoint
= 0;
3645 linux_nat_wait (struct target_ops
*ops
,
3646 ptid_t ptid
, struct target_waitstatus
*ourstatus
,
3651 if (debug_linux_nat
)
3653 char *options_string
;
3655 options_string
= target_options_to_string (target_options
);
3656 fprintf_unfiltered (gdb_stdlog
,
3657 "linux_nat_wait: [%s], [%s]\n",
3658 target_pid_to_str (ptid
),
3660 xfree (options_string
);
3663 /* Flush the async file first. */
3664 if (target_can_async_p ())
3665 async_file_flush ();
3667 /* Resume LWPs that are currently stopped without any pending status
3668 to report, but are resumed from the core's perspective. LWPs get
3669 in this state if we find them stopping at a time we're not
3670 interested in reporting the event (target_wait on a
3671 specific_process, for example, see linux_nat_wait_1), and
3672 meanwhile the event became uninteresting. Don't bother resuming
3673 LWPs we're not going to wait for if they'd stop immediately. */
3675 iterate_over_lwps (minus_one_ptid
, resume_stopped_resumed_lwps
, &ptid
);
3677 event_ptid
= linux_nat_wait_1 (ops
, ptid
, ourstatus
, target_options
);
3679 /* If we requested any event, and something came out, assume there
3680 may be more. If we requested a specific lwp or process, also
3681 assume there may be more. */
3682 if (target_can_async_p ()
3683 && ((ourstatus
->kind
!= TARGET_WAITKIND_IGNORE
3684 && ourstatus
->kind
!= TARGET_WAITKIND_NO_RESUMED
)
3685 || !ptid_equal (ptid
, minus_one_ptid
)))
3688 /* Get ready for the next event. */
3689 if (target_can_async_p ())
3690 target_async (inferior_event_handler
, 0);
3696 kill_callback (struct lwp_info
*lp
, void *data
)
3698 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3701 kill (ptid_get_lwp (lp
->ptid
), SIGKILL
);
3702 if (debug_linux_nat
)
3703 fprintf_unfiltered (gdb_stdlog
,
3704 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3705 target_pid_to_str (lp
->ptid
),
3706 errno
? safe_strerror (errno
) : "OK");
3708 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3711 ptrace (PTRACE_KILL
, ptid_get_lwp (lp
->ptid
), 0, 0);
3712 if (debug_linux_nat
)
3713 fprintf_unfiltered (gdb_stdlog
,
3714 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3715 target_pid_to_str (lp
->ptid
),
3716 errno
? safe_strerror (errno
) : "OK");
3722 kill_wait_callback (struct lwp_info
*lp
, void *data
)
3726 /* We must make sure that there are no pending events (delayed
3727 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3728 program doesn't interfere with any following debugging session. */
3730 /* For cloned processes we must check both with __WCLONE and
3731 without, since the exit status of a cloned process isn't reported
3737 pid
= my_waitpid (ptid_get_lwp (lp
->ptid
), NULL
, __WCLONE
);
3738 if (pid
!= (pid_t
) -1)
3740 if (debug_linux_nat
)
3741 fprintf_unfiltered (gdb_stdlog
,
3742 "KWC: wait %s received unknown.\n",
3743 target_pid_to_str (lp
->ptid
));
3744 /* The Linux kernel sometimes fails to kill a thread
3745 completely after PTRACE_KILL; that goes from the stop
3746 point in do_fork out to the one in
3747 get_signal_to_deliever and waits again. So kill it
3749 kill_callback (lp
, NULL
);
3752 while (pid
== ptid_get_lwp (lp
->ptid
));
3754 gdb_assert (pid
== -1 && errno
== ECHILD
);
3759 pid
= my_waitpid (ptid_get_lwp (lp
->ptid
), NULL
, 0);
3760 if (pid
!= (pid_t
) -1)
3762 if (debug_linux_nat
)
3763 fprintf_unfiltered (gdb_stdlog
,
3764 "KWC: wait %s received unk.\n",
3765 target_pid_to_str (lp
->ptid
));
3766 /* See the call to kill_callback above. */
3767 kill_callback (lp
, NULL
);
3770 while (pid
== ptid_get_lwp (lp
->ptid
));
3772 gdb_assert (pid
== -1 && errno
== ECHILD
);
3777 linux_nat_kill (struct target_ops
*ops
)
3779 struct target_waitstatus last
;
3783 /* If we're stopped while forking and we haven't followed yet,
3784 kill the other task. We need to do this first because the
3785 parent will be sleeping if this is a vfork. */
3787 get_last_target_status (&last_ptid
, &last
);
3789 if (last
.kind
== TARGET_WAITKIND_FORKED
3790 || last
.kind
== TARGET_WAITKIND_VFORKED
)
3792 ptrace (PT_KILL
, ptid_get_pid (last
.value
.related_pid
), 0, 0);
3795 /* Let the arch-specific native code know this process is
3797 linux_nat_forget_process (ptid_get_pid (last
.value
.related_pid
));
3800 if (forks_exist_p ())
3801 linux_fork_killall ();
3804 ptid_t ptid
= pid_to_ptid (ptid_get_pid (inferior_ptid
));
3806 /* Stop all threads before killing them, since ptrace requires
3807 that the thread is stopped to sucessfully PTRACE_KILL. */
3808 iterate_over_lwps (ptid
, stop_callback
, NULL
);
3809 /* ... and wait until all of them have reported back that
3810 they're no longer running. */
3811 iterate_over_lwps (ptid
, stop_wait_callback
, NULL
);
3813 /* Kill all LWP's ... */
3814 iterate_over_lwps (ptid
, kill_callback
, NULL
);
3816 /* ... and wait until we've flushed all events. */
3817 iterate_over_lwps (ptid
, kill_wait_callback
, NULL
);
3820 target_mourn_inferior ();
3824 linux_nat_mourn_inferior (struct target_ops
*ops
)
3826 int pid
= ptid_get_pid (inferior_ptid
);
3828 purge_lwp_list (pid
);
3830 if (! forks_exist_p ())
3831 /* Normal case, no other forks available. */
3832 linux_ops
->to_mourn_inferior (ops
);
3834 /* Multi-fork case. The current inferior_ptid has exited, but
3835 there are other viable forks to debug. Delete the exiting
3836 one and context-switch to the first available. */
3837 linux_fork_mourn_inferior ();
3839 /* Let the arch-specific native code know this process is gone. */
3840 linux_nat_forget_process (pid
);
3843 /* Convert a native/host siginfo object, into/from the siginfo in the
3844 layout of the inferiors' architecture. */
3847 siginfo_fixup (siginfo_t
*siginfo
, gdb_byte
*inf_siginfo
, int direction
)
3851 if (linux_nat_siginfo_fixup
!= NULL
)
3852 done
= linux_nat_siginfo_fixup (siginfo
, inf_siginfo
, direction
);
3854 /* If there was no callback, or the callback didn't do anything,
3855 then just do a straight memcpy. */
3859 memcpy (siginfo
, inf_siginfo
, sizeof (siginfo_t
));
3861 memcpy (inf_siginfo
, siginfo
, sizeof (siginfo_t
));
3866 linux_xfer_siginfo (struct target_ops
*ops
, enum target_object object
,
3867 const char *annex
, gdb_byte
*readbuf
,
3868 const gdb_byte
*writebuf
, ULONGEST offset
, ULONGEST len
)
3872 gdb_byte inf_siginfo
[sizeof (siginfo_t
)];
3874 gdb_assert (object
== TARGET_OBJECT_SIGNAL_INFO
);
3875 gdb_assert (readbuf
|| writebuf
);
3877 pid
= ptid_get_lwp (inferior_ptid
);
3879 pid
= ptid_get_pid (inferior_ptid
);
3881 if (offset
> sizeof (siginfo
))
3882 return TARGET_XFER_E_IO
;
3885 ptrace (PTRACE_GETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, &siginfo
);
3887 return TARGET_XFER_E_IO
;
3889 /* When GDB is built as a 64-bit application, ptrace writes into
3890 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3891 inferior with a 64-bit GDB should look the same as debugging it
3892 with a 32-bit GDB, we need to convert it. GDB core always sees
3893 the converted layout, so any read/write will have to be done
3895 siginfo_fixup (&siginfo
, inf_siginfo
, 0);
3897 if (offset
+ len
> sizeof (siginfo
))
3898 len
= sizeof (siginfo
) - offset
;
3900 if (readbuf
!= NULL
)
3901 memcpy (readbuf
, inf_siginfo
+ offset
, len
);
3904 memcpy (inf_siginfo
+ offset
, writebuf
, len
);
3906 /* Convert back to ptrace layout before flushing it out. */
3907 siginfo_fixup (&siginfo
, inf_siginfo
, 1);
3910 ptrace (PTRACE_SETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, &siginfo
);
3912 return TARGET_XFER_E_IO
;
3919 linux_nat_xfer_partial (struct target_ops
*ops
, enum target_object object
,
3920 const char *annex
, gdb_byte
*readbuf
,
3921 const gdb_byte
*writebuf
,
3922 ULONGEST offset
, ULONGEST len
)
3924 struct cleanup
*old_chain
;
3927 if (object
== TARGET_OBJECT_SIGNAL_INFO
)
3928 return linux_xfer_siginfo (ops
, object
, annex
, readbuf
, writebuf
,
3931 /* The target is connected but no live inferior is selected. Pass
3932 this request down to a lower stratum (e.g., the executable
3934 if (object
== TARGET_OBJECT_MEMORY
&& ptid_equal (inferior_ptid
, null_ptid
))
3937 old_chain
= save_inferior_ptid ();
3939 if (ptid_lwp_p (inferior_ptid
))
3940 inferior_ptid
= pid_to_ptid (ptid_get_lwp (inferior_ptid
));
3942 xfer
= linux_ops
->to_xfer_partial (ops
, object
, annex
, readbuf
, writebuf
,
3945 do_cleanups (old_chain
);
3950 linux_thread_alive (ptid_t ptid
)
3954 gdb_assert (ptid_lwp_p (ptid
));
3956 /* Send signal 0 instead of anything ptrace, because ptracing a
3957 running thread errors out claiming that the thread doesn't
3959 err
= kill_lwp (ptid_get_lwp (ptid
), 0);
3961 if (debug_linux_nat
)
3962 fprintf_unfiltered (gdb_stdlog
,
3963 "LLTA: KILL(SIG0) %s (%s)\n",
3964 target_pid_to_str (ptid
),
3965 err
? safe_strerror (tmp_errno
) : "OK");
3974 linux_nat_thread_alive (struct target_ops
*ops
, ptid_t ptid
)
3976 return linux_thread_alive (ptid
);
3980 linux_nat_pid_to_str (struct target_ops
*ops
, ptid_t ptid
)
3982 static char buf
[64];
3984 if (ptid_lwp_p (ptid
)
3985 && (ptid_get_pid (ptid
) != ptid_get_lwp (ptid
)
3986 || num_lwps (ptid_get_pid (ptid
)) > 1))
3988 snprintf (buf
, sizeof (buf
), "LWP %ld", ptid_get_lwp (ptid
));
3992 return normal_pid_to_str (ptid
);
3996 linux_nat_thread_name (struct thread_info
*thr
)
3998 int pid
= ptid_get_pid (thr
->ptid
);
3999 long lwp
= ptid_get_lwp (thr
->ptid
);
4000 #define FORMAT "/proc/%d/task/%ld/comm"
4001 char buf
[sizeof (FORMAT
) + 30];
4003 char *result
= NULL
;
4005 snprintf (buf
, sizeof (buf
), FORMAT
, pid
, lwp
);
4006 comm_file
= gdb_fopen_cloexec (buf
, "r");
4009 /* Not exported by the kernel, so we define it here. */
4011 static char line
[COMM_LEN
+ 1];
4013 if (fgets (line
, sizeof (line
), comm_file
))
4015 char *nl
= strchr (line
, '\n');
4032 /* Accepts an integer PID; Returns a string representing a file that
4033 can be opened to get the symbols for the child process. */
4036 linux_child_pid_to_exec_file (int pid
)
4038 char *name1
, *name2
;
4040 name1
= xmalloc (PATH_MAX
);
4041 name2
= xmalloc (PATH_MAX
);
4042 make_cleanup (xfree
, name1
);
4043 make_cleanup (xfree
, name2
);
4044 memset (name2
, 0, PATH_MAX
);
4046 xsnprintf (name1
, PATH_MAX
, "/proc/%d/exe", pid
);
4047 if (readlink (name1
, name2
, PATH_MAX
- 1) > 0)
4053 /* Records the thread's register state for the corefile note
4057 linux_nat_collect_thread_registers (const struct regcache
*regcache
,
4058 ptid_t ptid
, bfd
*obfd
,
4059 char *note_data
, int *note_size
,
4060 enum gdb_signal stop_signal
)
4062 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
4063 const struct regset
*regset
;
4065 gdb_gregset_t gregs
;
4066 gdb_fpregset_t fpregs
;
4068 core_regset_p
= gdbarch_regset_from_core_section_p (gdbarch
);
4071 && (regset
= gdbarch_regset_from_core_section (gdbarch
, ".reg",
4073 != NULL
&& regset
->collect_regset
!= NULL
)
4074 regset
->collect_regset (regset
, regcache
, -1, &gregs
, sizeof (gregs
));
4076 fill_gregset (regcache
, &gregs
, -1);
4078 note_data
= (char *) elfcore_write_prstatus
4079 (obfd
, note_data
, note_size
, ptid_get_lwp (ptid
),
4080 gdb_signal_to_host (stop_signal
), &gregs
);
4083 && (regset
= gdbarch_regset_from_core_section (gdbarch
, ".reg2",
4085 != NULL
&& regset
->collect_regset
!= NULL
)
4086 regset
->collect_regset (regset
, regcache
, -1, &fpregs
, sizeof (fpregs
));
4088 fill_fpregset (regcache
, &fpregs
, -1);
4090 note_data
= (char *) elfcore_write_prfpreg (obfd
, note_data
, note_size
,
4091 &fpregs
, sizeof (fpregs
));
4096 /* Fills the "to_make_corefile_note" target vector. Builds the note
4097 section for a corefile, and returns it in a malloc buffer. */
4100 linux_nat_make_corefile_notes (bfd
*obfd
, int *note_size
)
4102 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4103 converted to gdbarch_core_regset_sections, this function can go away. */
4104 return linux_make_corefile_notes (target_gdbarch (), obfd
, note_size
,
4105 linux_nat_collect_thread_registers
);
4108 /* Implement the to_xfer_partial interface for memory reads using the /proc
4109 filesystem. Because we can use a single read() call for /proc, this
4110 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4111 but it doesn't support writes. */
4114 linux_proc_xfer_partial (struct target_ops
*ops
, enum target_object object
,
4115 const char *annex
, gdb_byte
*readbuf
,
4116 const gdb_byte
*writebuf
,
4117 ULONGEST offset
, LONGEST len
)
4123 if (object
!= TARGET_OBJECT_MEMORY
|| !readbuf
)
4126 /* Don't bother for one word. */
4127 if (len
< 3 * sizeof (long))
4130 /* We could keep this file open and cache it - possibly one per
4131 thread. That requires some juggling, but is even faster. */
4132 xsnprintf (filename
, sizeof filename
, "/proc/%d/mem",
4133 ptid_get_pid (inferior_ptid
));
4134 fd
= gdb_open_cloexec (filename
, O_RDONLY
| O_LARGEFILE
, 0);
4138 /* If pread64 is available, use it. It's faster if the kernel
4139 supports it (only one syscall), and it's 64-bit safe even on
4140 32-bit platforms (for instance, SPARC debugging a SPARC64
4143 if (pread64 (fd
, readbuf
, len
, offset
) != len
)
4145 if (lseek (fd
, offset
, SEEK_SET
) == -1 || read (fd
, readbuf
, len
) != len
)
4156 /* Enumerate spufs IDs for process PID. */
4158 spu_enumerate_spu_ids (int pid
, gdb_byte
*buf
, ULONGEST offset
, ULONGEST len
)
4160 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
4162 LONGEST written
= 0;
4165 struct dirent
*entry
;
4167 xsnprintf (path
, sizeof path
, "/proc/%d/fd", pid
);
4168 dir
= opendir (path
);
4173 while ((entry
= readdir (dir
)) != NULL
)
4179 fd
= atoi (entry
->d_name
);
4183 xsnprintf (path
, sizeof path
, "/proc/%d/fd/%d", pid
, fd
);
4184 if (stat (path
, &st
) != 0)
4186 if (!S_ISDIR (st
.st_mode
))
4189 if (statfs (path
, &stfs
) != 0)
4191 if (stfs
.f_type
!= SPUFS_MAGIC
)
4194 if (pos
>= offset
&& pos
+ 4 <= offset
+ len
)
4196 store_unsigned_integer (buf
+ pos
- offset
, 4, byte_order
, fd
);
4206 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4207 object type, using the /proc file system. */
4209 linux_proc_xfer_spu (struct target_ops
*ops
, enum target_object object
,
4210 const char *annex
, gdb_byte
*readbuf
,
4211 const gdb_byte
*writebuf
,
4212 ULONGEST offset
, ULONGEST len
)
4217 int pid
= ptid_get_pid (inferior_ptid
);
4222 return TARGET_XFER_E_IO
;
4224 return spu_enumerate_spu_ids (pid
, readbuf
, offset
, len
);
4227 xsnprintf (buf
, sizeof buf
, "/proc/%d/fd/%s", pid
, annex
);
4228 fd
= gdb_open_cloexec (buf
, writebuf
? O_WRONLY
: O_RDONLY
, 0);
4230 return TARGET_XFER_E_IO
;
4233 && lseek (fd
, (off_t
) offset
, SEEK_SET
) != (off_t
) offset
)
4240 ret
= write (fd
, writebuf
, (size_t) len
);
4242 ret
= read (fd
, readbuf
, (size_t) len
);
4249 /* Parse LINE as a signal set and add its set bits to SIGS. */
4252 add_line_to_sigset (const char *line
, sigset_t
*sigs
)
4254 int len
= strlen (line
) - 1;
4258 if (line
[len
] != '\n')
4259 error (_("Could not parse signal set: %s"), line
);
4267 if (*p
>= '0' && *p
<= '9')
4269 else if (*p
>= 'a' && *p
<= 'f')
4270 digit
= *p
- 'a' + 10;
4272 error (_("Could not parse signal set: %s"), line
);
4277 sigaddset (sigs
, signum
+ 1);
4279 sigaddset (sigs
, signum
+ 2);
4281 sigaddset (sigs
, signum
+ 3);
4283 sigaddset (sigs
, signum
+ 4);
4289 /* Find process PID's pending signals from /proc/pid/status and set
4293 linux_proc_pending_signals (int pid
, sigset_t
*pending
,
4294 sigset_t
*blocked
, sigset_t
*ignored
)
4297 char buffer
[PATH_MAX
], fname
[PATH_MAX
];
4298 struct cleanup
*cleanup
;
4300 sigemptyset (pending
);
4301 sigemptyset (blocked
);
4302 sigemptyset (ignored
);
4303 xsnprintf (fname
, sizeof fname
, "/proc/%d/status", pid
);
4304 procfile
= gdb_fopen_cloexec (fname
, "r");
4305 if (procfile
== NULL
)
4306 error (_("Could not open %s"), fname
);
4307 cleanup
= make_cleanup_fclose (procfile
);
4309 while (fgets (buffer
, PATH_MAX
, procfile
) != NULL
)
4311 /* Normal queued signals are on the SigPnd line in the status
4312 file. However, 2.6 kernels also have a "shared" pending
4313 queue for delivering signals to a thread group, so check for
4316 Unfortunately some Red Hat kernels include the shared pending
4317 queue but not the ShdPnd status field. */
4319 if (strncmp (buffer
, "SigPnd:\t", 8) == 0)
4320 add_line_to_sigset (buffer
+ 8, pending
);
4321 else if (strncmp (buffer
, "ShdPnd:\t", 8) == 0)
4322 add_line_to_sigset (buffer
+ 8, pending
);
4323 else if (strncmp (buffer
, "SigBlk:\t", 8) == 0)
4324 add_line_to_sigset (buffer
+ 8, blocked
);
4325 else if (strncmp (buffer
, "SigIgn:\t", 8) == 0)
4326 add_line_to_sigset (buffer
+ 8, ignored
);
4329 do_cleanups (cleanup
);
4333 linux_nat_xfer_osdata (struct target_ops
*ops
, enum target_object object
,
4334 const char *annex
, gdb_byte
*readbuf
,
4335 const gdb_byte
*writebuf
, ULONGEST offset
, ULONGEST len
)
4337 gdb_assert (object
== TARGET_OBJECT_OSDATA
);
4339 return linux_common_xfer_osdata (annex
, readbuf
, offset
, len
);
4343 linux_xfer_partial (struct target_ops
*ops
, enum target_object object
,
4344 const char *annex
, gdb_byte
*readbuf
,
4345 const gdb_byte
*writebuf
, ULONGEST offset
, ULONGEST len
)
4349 if (object
== TARGET_OBJECT_AUXV
)
4350 return memory_xfer_auxv (ops
, object
, annex
, readbuf
, writebuf
,
4353 if (object
== TARGET_OBJECT_OSDATA
)
4354 return linux_nat_xfer_osdata (ops
, object
, annex
, readbuf
, writebuf
,
4357 if (object
== TARGET_OBJECT_SPU
)
4358 return linux_proc_xfer_spu (ops
, object
, annex
, readbuf
, writebuf
,
4361 /* GDB calculates all the addresses in possibly larget width of the address.
4362 Address width needs to be masked before its final use - either by
4363 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4365 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4367 if (object
== TARGET_OBJECT_MEMORY
)
4369 int addr_bit
= gdbarch_addr_bit (target_gdbarch ());
4371 if (addr_bit
< (sizeof (ULONGEST
) * HOST_CHAR_BIT
))
4372 offset
&= ((ULONGEST
) 1 << addr_bit
) - 1;
4375 xfer
= linux_proc_xfer_partial (ops
, object
, annex
, readbuf
, writebuf
,
4380 return super_xfer_partial (ops
, object
, annex
, readbuf
, writebuf
,
4385 cleanup_target_stop (void *arg
)
4387 ptid_t
*ptid
= (ptid_t
*) arg
;
4389 gdb_assert (arg
!= NULL
);
4392 target_resume (*ptid
, 0, GDB_SIGNAL_0
);
4395 static VEC(static_tracepoint_marker_p
) *
4396 linux_child_static_tracepoint_markers_by_strid (const char *strid
)
4398 char s
[IPA_CMD_BUF_SIZE
];
4399 struct cleanup
*old_chain
;
4400 int pid
= ptid_get_pid (inferior_ptid
);
4401 VEC(static_tracepoint_marker_p
) *markers
= NULL
;
4402 struct static_tracepoint_marker
*marker
= NULL
;
4404 ptid_t ptid
= ptid_build (pid
, 0, 0);
4409 memcpy (s
, "qTfSTM", sizeof ("qTfSTM"));
4410 s
[sizeof ("qTfSTM")] = 0;
4412 agent_run_command (pid
, s
, strlen (s
) + 1);
4414 old_chain
= make_cleanup (free_current_marker
, &marker
);
4415 make_cleanup (cleanup_target_stop
, &ptid
);
4420 marker
= XCNEW (struct static_tracepoint_marker
);
4424 parse_static_tracepoint_marker_definition (p
, &p
, marker
);
4426 if (strid
== NULL
|| strcmp (strid
, marker
->str_id
) == 0)
4428 VEC_safe_push (static_tracepoint_marker_p
,
4434 release_static_tracepoint_marker (marker
);
4435 memset (marker
, 0, sizeof (*marker
));
4438 while (*p
++ == ','); /* comma-separated list */
4440 memcpy (s
, "qTsSTM", sizeof ("qTsSTM"));
4441 s
[sizeof ("qTsSTM")] = 0;
4442 agent_run_command (pid
, s
, strlen (s
) + 1);
4446 do_cleanups (old_chain
);
4451 /* Create a prototype generic GNU/Linux target. The client can override
4452 it with local methods. */
4455 linux_target_install_ops (struct target_ops
*t
)
4457 t
->to_insert_fork_catchpoint
= linux_child_insert_fork_catchpoint
;
4458 t
->to_remove_fork_catchpoint
= linux_child_remove_fork_catchpoint
;
4459 t
->to_insert_vfork_catchpoint
= linux_child_insert_vfork_catchpoint
;
4460 t
->to_remove_vfork_catchpoint
= linux_child_remove_vfork_catchpoint
;
4461 t
->to_insert_exec_catchpoint
= linux_child_insert_exec_catchpoint
;
4462 t
->to_remove_exec_catchpoint
= linux_child_remove_exec_catchpoint
;
4463 t
->to_set_syscall_catchpoint
= linux_child_set_syscall_catchpoint
;
4464 t
->to_pid_to_exec_file
= linux_child_pid_to_exec_file
;
4465 t
->to_post_startup_inferior
= linux_child_post_startup_inferior
;
4466 t
->to_post_attach
= linux_child_post_attach
;
4467 t
->to_follow_fork
= linux_child_follow_fork
;
4468 t
->to_make_corefile_notes
= linux_nat_make_corefile_notes
;
4470 super_xfer_partial
= t
->to_xfer_partial
;
4471 t
->to_xfer_partial
= linux_xfer_partial
;
4473 t
->to_static_tracepoint_markers_by_strid
4474 = linux_child_static_tracepoint_markers_by_strid
;
4480 struct target_ops
*t
;
4482 t
= inf_ptrace_target ();
4483 linux_target_install_ops (t
);
4489 linux_trad_target (CORE_ADDR (*register_u_offset
)(struct gdbarch
*, int, int))
4491 struct target_ops
*t
;
4493 t
= inf_ptrace_trad_target (register_u_offset
);
4494 linux_target_install_ops (t
);
4499 /* target_is_async_p implementation. */
4502 linux_nat_is_async_p (void)
4504 /* NOTE: palves 2008-03-21: We're only async when the user requests
4505 it explicitly with the "set target-async" command.
4506 Someday, linux will always be async. */
4507 return target_async_permitted
;
4510 /* target_can_async_p implementation. */
4513 linux_nat_can_async_p (void)
4515 /* NOTE: palves 2008-03-21: We're only async when the user requests
4516 it explicitly with the "set target-async" command.
4517 Someday, linux will always be async. */
4518 return target_async_permitted
;
4522 linux_nat_supports_non_stop (void)
4527 /* True if we want to support multi-process. To be removed when GDB
4528 supports multi-exec. */
4530 int linux_multi_process
= 1;
4533 linux_nat_supports_multi_process (void)
4535 return linux_multi_process
;
4539 linux_nat_supports_disable_randomization (void)
4541 #ifdef HAVE_PERSONALITY
4548 static int async_terminal_is_ours
= 1;
4550 /* target_terminal_inferior implementation. */
4553 linux_nat_terminal_inferior (void)
4555 if (!target_is_async_p ())
4557 /* Async mode is disabled. */
4558 terminal_inferior ();
4562 terminal_inferior ();
4564 /* Calls to target_terminal_*() are meant to be idempotent. */
4565 if (!async_terminal_is_ours
)
4568 delete_file_handler (input_fd
);
4569 async_terminal_is_ours
= 0;
4573 /* target_terminal_ours implementation. */
4576 linux_nat_terminal_ours (void)
4578 if (!target_is_async_p ())
4580 /* Async mode is disabled. */
4585 /* GDB should never give the terminal to the inferior if the
4586 inferior is running in the background (run&, continue&, etc.),
4587 but claiming it sure should. */
4590 if (async_terminal_is_ours
)
4593 clear_sigint_trap ();
4594 add_file_handler (input_fd
, stdin_event_handler
, 0);
4595 async_terminal_is_ours
= 1;
4598 static void (*async_client_callback
) (enum inferior_event_type event_type
,
4600 static void *async_client_context
;
4602 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4603 so we notice when any child changes state, and notify the
4604 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4605 above to wait for the arrival of a SIGCHLD. */
4608 sigchld_handler (int signo
)
4610 int old_errno
= errno
;
4612 if (debug_linux_nat
)
4613 ui_file_write_async_safe (gdb_stdlog
,
4614 "sigchld\n", sizeof ("sigchld\n") - 1);
4616 if (signo
== SIGCHLD
4617 && linux_nat_event_pipe
[0] != -1)
4618 async_file_mark (); /* Let the event loop know that there are
4619 events to handle. */
4624 /* Callback registered with the target events file descriptor. */
4627 handle_target_event (int error
, gdb_client_data client_data
)
4629 (*async_client_callback
) (INF_REG_EVENT
, async_client_context
);
4632 /* Create/destroy the target events pipe. Returns previous state. */
4635 linux_async_pipe (int enable
)
4637 int previous
= (linux_nat_event_pipe
[0] != -1);
4639 if (previous
!= enable
)
4643 /* Block child signals while we create/destroy the pipe, as
4644 their handler writes to it. */
4645 block_child_signals (&prev_mask
);
4649 if (gdb_pipe_cloexec (linux_nat_event_pipe
) == -1)
4650 internal_error (__FILE__
, __LINE__
,
4651 "creating event pipe failed.");
4653 fcntl (linux_nat_event_pipe
[0], F_SETFL
, O_NONBLOCK
);
4654 fcntl (linux_nat_event_pipe
[1], F_SETFL
, O_NONBLOCK
);
4658 close (linux_nat_event_pipe
[0]);
4659 close (linux_nat_event_pipe
[1]);
4660 linux_nat_event_pipe
[0] = -1;
4661 linux_nat_event_pipe
[1] = -1;
4664 restore_child_signals_mask (&prev_mask
);
4670 /* target_async implementation. */
4673 linux_nat_async (void (*callback
) (enum inferior_event_type event_type
,
4674 void *context
), void *context
)
4676 if (callback
!= NULL
)
4678 async_client_callback
= callback
;
4679 async_client_context
= context
;
4680 if (!linux_async_pipe (1))
4682 add_file_handler (linux_nat_event_pipe
[0],
4683 handle_target_event
, NULL
);
4684 /* There may be pending events to handle. Tell the event loop
4691 async_client_callback
= callback
;
4692 async_client_context
= context
;
4693 delete_file_handler (linux_nat_event_pipe
[0]);
4694 linux_async_pipe (0);
4699 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4703 linux_nat_stop_lwp (struct lwp_info
*lwp
, void *data
)
4707 if (debug_linux_nat
)
4708 fprintf_unfiltered (gdb_stdlog
,
4709 "LNSL: running -> suspending %s\n",
4710 target_pid_to_str (lwp
->ptid
));
4713 if (lwp
->last_resume_kind
== resume_stop
)
4715 if (debug_linux_nat
)
4716 fprintf_unfiltered (gdb_stdlog
,
4717 "linux-nat: already stopping LWP %ld at "
4719 ptid_get_lwp (lwp
->ptid
));
4723 stop_callback (lwp
, NULL
);
4724 lwp
->last_resume_kind
= resume_stop
;
4728 /* Already known to be stopped; do nothing. */
4730 if (debug_linux_nat
)
4732 if (find_thread_ptid (lwp
->ptid
)->stop_requested
)
4733 fprintf_unfiltered (gdb_stdlog
,
4734 "LNSL: already stopped/stop_requested %s\n",
4735 target_pid_to_str (lwp
->ptid
));
4737 fprintf_unfiltered (gdb_stdlog
,
4738 "LNSL: already stopped/no "
4739 "stop_requested yet %s\n",
4740 target_pid_to_str (lwp
->ptid
));
4747 linux_nat_stop (ptid_t ptid
)
4750 iterate_over_lwps (ptid
, linux_nat_stop_lwp
, NULL
);
4752 linux_ops
->to_stop (ptid
);
4756 linux_nat_close (void)
4758 /* Unregister from the event loop. */
4759 if (linux_nat_is_async_p ())
4760 linux_nat_async (NULL
, 0);
4762 if (linux_ops
->to_close
)
4763 linux_ops
->to_close ();
4766 /* When requests are passed down from the linux-nat layer to the
4767 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4768 used. The address space pointer is stored in the inferior object,
4769 but the common code that is passed such ptid can't tell whether
4770 lwpid is a "main" process id or not (it assumes so). We reverse
4771 look up the "main" process id from the lwp here. */
4773 static struct address_space
*
4774 linux_nat_thread_address_space (struct target_ops
*t
, ptid_t ptid
)
4776 struct lwp_info
*lwp
;
4777 struct inferior
*inf
;
4780 pid
= ptid_get_lwp (ptid
);
4781 if (ptid_get_lwp (ptid
) == 0)
4783 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4785 lwp
= find_lwp_pid (ptid
);
4786 pid
= ptid_get_pid (lwp
->ptid
);
4790 /* A (pid,lwpid,0) ptid. */
4791 pid
= ptid_get_pid (ptid
);
4794 inf
= find_inferior_pid (pid
);
4795 gdb_assert (inf
!= NULL
);
4799 /* Return the cached value of the processor core for thread PTID. */
4802 linux_nat_core_of_thread (struct target_ops
*ops
, ptid_t ptid
)
4804 struct lwp_info
*info
= find_lwp_pid (ptid
);
4812 linux_nat_add_target (struct target_ops
*t
)
4814 /* Save the provided single-threaded target. We save this in a separate
4815 variable because another target we've inherited from (e.g. inf-ptrace)
4816 may have saved a pointer to T; we want to use it for the final
4817 process stratum target. */
4818 linux_ops_saved
= *t
;
4819 linux_ops
= &linux_ops_saved
;
4821 /* Override some methods for multithreading. */
4822 t
->to_create_inferior
= linux_nat_create_inferior
;
4823 t
->to_attach
= linux_nat_attach
;
4824 t
->to_detach
= linux_nat_detach
;
4825 t
->to_resume
= linux_nat_resume
;
4826 t
->to_wait
= linux_nat_wait
;
4827 t
->to_pass_signals
= linux_nat_pass_signals
;
4828 t
->to_xfer_partial
= linux_nat_xfer_partial
;
4829 t
->to_kill
= linux_nat_kill
;
4830 t
->to_mourn_inferior
= linux_nat_mourn_inferior
;
4831 t
->to_thread_alive
= linux_nat_thread_alive
;
4832 t
->to_pid_to_str
= linux_nat_pid_to_str
;
4833 t
->to_thread_name
= linux_nat_thread_name
;
4834 t
->to_has_thread_control
= tc_schedlock
;
4835 t
->to_thread_address_space
= linux_nat_thread_address_space
;
4836 t
->to_stopped_by_watchpoint
= linux_nat_stopped_by_watchpoint
;
4837 t
->to_stopped_data_address
= linux_nat_stopped_data_address
;
4839 t
->to_can_async_p
= linux_nat_can_async_p
;
4840 t
->to_is_async_p
= linux_nat_is_async_p
;
4841 t
->to_supports_non_stop
= linux_nat_supports_non_stop
;
4842 t
->to_async
= linux_nat_async
;
4843 t
->to_terminal_inferior
= linux_nat_terminal_inferior
;
4844 t
->to_terminal_ours
= linux_nat_terminal_ours
;
4845 t
->to_close
= linux_nat_close
;
4847 /* Methods for non-stop support. */
4848 t
->to_stop
= linux_nat_stop
;
4850 t
->to_supports_multi_process
= linux_nat_supports_multi_process
;
4852 t
->to_supports_disable_randomization
4853 = linux_nat_supports_disable_randomization
;
4855 t
->to_core_of_thread
= linux_nat_core_of_thread
;
4857 /* We don't change the stratum; this target will sit at
4858 process_stratum and thread_db will set at thread_stratum. This
4859 is a little strange, since this is a multi-threaded-capable
4860 target, but we want to be on the stack below thread_db, and we
4861 also want to be used for single-threaded processes. */
4866 /* Register a method to call whenever a new thread is attached. */
4868 linux_nat_set_new_thread (struct target_ops
*t
,
4869 void (*new_thread
) (struct lwp_info
*))
4871 /* Save the pointer. We only support a single registered instance
4872 of the GNU/Linux native target, so we do not need to map this to
4874 linux_nat_new_thread
= new_thread
;
4877 /* See declaration in linux-nat.h. */
4880 linux_nat_set_new_fork (struct target_ops
*t
,
4881 linux_nat_new_fork_ftype
*new_fork
)
4883 /* Save the pointer. */
4884 linux_nat_new_fork
= new_fork
;
4887 /* See declaration in linux-nat.h. */
4890 linux_nat_set_forget_process (struct target_ops
*t
,
4891 linux_nat_forget_process_ftype
*fn
)
4893 /* Save the pointer. */
4894 linux_nat_forget_process_hook
= fn
;
4897 /* See declaration in linux-nat.h. */
4900 linux_nat_forget_process (pid_t pid
)
4902 if (linux_nat_forget_process_hook
!= NULL
)
4903 linux_nat_forget_process_hook (pid
);
4906 /* Register a method that converts a siginfo object between the layout
4907 that ptrace returns, and the layout in the architecture of the
4910 linux_nat_set_siginfo_fixup (struct target_ops
*t
,
4911 int (*siginfo_fixup
) (siginfo_t
*,
4915 /* Save the pointer. */
4916 linux_nat_siginfo_fixup
= siginfo_fixup
;
4919 /* Register a method to call prior to resuming a thread. */
4922 linux_nat_set_prepare_to_resume (struct target_ops
*t
,
4923 void (*prepare_to_resume
) (struct lwp_info
*))
4925 /* Save the pointer. */
4926 linux_nat_prepare_to_resume
= prepare_to_resume
;
4929 /* See linux-nat.h. */
4932 linux_nat_get_siginfo (ptid_t ptid
, siginfo_t
*siginfo
)
4936 pid
= ptid_get_lwp (ptid
);
4938 pid
= ptid_get_pid (ptid
);
4941 ptrace (PTRACE_GETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, siginfo
);
4944 memset (siginfo
, 0, sizeof (*siginfo
));
4950 /* Provide a prototype to silence -Wmissing-prototypes. */
4951 extern initialize_file_ftype _initialize_linux_nat
;
4954 _initialize_linux_nat (void)
4956 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance
,
4957 &debug_linux_nat
, _("\
4958 Set debugging of GNU/Linux lwp module."), _("\
4959 Show debugging of GNU/Linux lwp module."), _("\
4960 Enables printf debugging output."),
4962 show_debug_linux_nat
,
4963 &setdebuglist
, &showdebuglist
);
4965 /* Save this mask as the default. */
4966 sigprocmask (SIG_SETMASK
, NULL
, &normal_mask
);
4968 /* Install a SIGCHLD handler. */
4969 sigchld_action
.sa_handler
= sigchld_handler
;
4970 sigemptyset (&sigchld_action
.sa_mask
);
4971 sigchld_action
.sa_flags
= SA_RESTART
;
4973 /* Make it the default. */
4974 sigaction (SIGCHLD
, &sigchld_action
, NULL
);
4976 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4977 sigprocmask (SIG_SETMASK
, NULL
, &suspend_mask
);
4978 sigdelset (&suspend_mask
, SIGCHLD
);
4980 sigemptyset (&blocked_mask
);
4984 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4985 the GNU/Linux Threads library and therefore doesn't really belong
4988 /* Read variable NAME in the target and return its value if found.
4989 Otherwise return zero. It is assumed that the type of the variable
4993 get_signo (const char *name
)
4995 struct minimal_symbol
*ms
;
4998 ms
= lookup_minimal_symbol (name
, NULL
, NULL
);
5002 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms
), (gdb_byte
*) &signo
,
5003 sizeof (signo
)) != 0)
5009 /* Return the set of signals used by the threads library in *SET. */
5012 lin_thread_get_thread_signals (sigset_t
*set
)
5014 struct sigaction action
;
5015 int restart
, cancel
;
5017 sigemptyset (&blocked_mask
);
5020 restart
= get_signo ("__pthread_sig_restart");
5021 cancel
= get_signo ("__pthread_sig_cancel");
5023 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5024 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5025 not provide any way for the debugger to query the signal numbers -
5026 fortunately they don't change! */
5029 restart
= __SIGRTMIN
;
5032 cancel
= __SIGRTMIN
+ 1;
5034 sigaddset (set
, restart
);
5035 sigaddset (set
, cancel
);
5037 /* The GNU/Linux Threads library makes terminating threads send a
5038 special "cancel" signal instead of SIGCHLD. Make sure we catch
5039 those (to prevent them from terminating GDB itself, which is
5040 likely to be their default action) and treat them the same way as
5043 action
.sa_handler
= sigchld_handler
;
5044 sigemptyset (&action
.sa_mask
);
5045 action
.sa_flags
= SA_RESTART
;
5046 sigaction (cancel
, &action
, NULL
);
5048 /* We block the "cancel" signal throughout this code ... */
5049 sigaddset (&blocked_mask
, cancel
);
5050 sigprocmask (SIG_BLOCK
, &blocked_mask
, NULL
);
5052 /* ... except during a sigsuspend. */
5053 sigdelset (&suspend_mask
, cancel
);