* linux-nat.c (linux_nat_wait): Update inferior_ptid's ptid with
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52
53 #ifdef HAVE_PERSONALITY
54 # include <sys/personality.h>
55 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
56 # define ADDR_NO_RANDOMIZE 0x0040000
57 # endif
58 #endif /* HAVE_PERSONALITY */
59
60 /* This comment documents high-level logic of this file.
61
62 Waiting for events in sync mode
63 ===============================
64
65 When waiting for an event in a specific thread, we just use waitpid, passing
66 the specific pid, and not passing WNOHANG.
67
68 When waiting for an event in all threads, waitpid is not quite good. Prior to
69 version 2.4, Linux can either wait for event in main thread, or in secondary
70 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
71 miss an event. The solution is to use non-blocking waitpid, together with
72 sigsuspend. First, we use non-blocking waitpid to get an event in the main
73 process, if any. Second, we use non-blocking waitpid with the __WCLONED
74 flag to check for events in cloned processes. If nothing is found, we use
75 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
76 happened to a child process -- and SIGCHLD will be delivered both for events
77 in main debugged process and in cloned processes. As soon as we know there's
78 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
79
80 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
81 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
82 blocked, the signal becomes pending and sigsuspend immediately
83 notices it and returns.
84
85 Waiting for events in async mode
86 ================================
87
88 In async mode, GDB should always be ready to handle both user input and target
89 events, so neither blocking waitpid nor sigsuspend are viable
90 options. Instead, we should notify the GDB main event loop whenever there's
91 unprocessed event from the target. The only way to notify this event loop is
92 to make it wait on input from a pipe, and write something to the pipe whenever
93 there's event. Obviously, if we fail to notify the event loop if there's
94 target event, it's bad. If we notify the event loop when there's no event
95 from target, linux-nat.c will detect that there's no event, actually, and
96 report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
97 better avoided.
98
99 The main design point is that every time GDB is outside linux-nat.c, we have a
100 SIGCHLD handler installed that is called when something happens to the target
101 and notifies the GDB event loop. Also, the event is extracted from the target
102 using waitpid and stored for future use. Whenever GDB core decides to handle
103 the event, and calls into linux-nat.c, we disable SIGCHLD and process things
104 as in sync mode, except that before waitpid call we check if there are any
105 previously read events.
106
107 It could happen that during event processing, we'll try to get more events
108 than there are events in the local queue, which will result to waitpid call.
109 Those waitpid calls, while blocking, are guarantied to always have
110 something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
111 waiting for the lwp to stop.
112
113 The event loop is notified about new events using a pipe. SIGCHLD handler does
114 waitpid and writes the results in to a pipe. GDB event loop has the other end
115 of the pipe among the sources. When event loop starts to process the event
116 and calls a function in linux-nat.c, all events from the pipe are transferred
117 into a local queue and SIGCHLD is blocked. Further processing goes as in sync
118 mode. Before we return from linux_nat_wait, we transfer all unprocessed events
119 from local queue back to the pipe, so that when we get back to event loop,
120 event loop will notice there's something more to do.
121
122 SIGCHLD is blocked when we're inside target_wait, so that should we actually
123 want to wait for some more events, SIGCHLD handler does not steal them from
124 us. Technically, it would be possible to add new events to the local queue but
125 it's about the same amount of work as blocking SIGCHLD.
126
127 This moving of events from pipe into local queue and back into pipe when we
128 enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
129 home-grown and incapable to wait on any queue.
130
131 Use of signals
132 ==============
133
134 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
135 signal is not entirely significant; we just need for a signal to be delivered,
136 so that we can intercept it. SIGSTOP's advantage is that it can not be
137 blocked. A disadvantage is that it is not a real-time signal, so it can only
138 be queued once; we do not keep track of other sources of SIGSTOP.
139
140 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
141 use them, because they have special behavior when the signal is generated -
142 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
143 kills the entire thread group.
144
145 A delivered SIGSTOP would stop the entire thread group, not just the thread we
146 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
147 cancel it (by PTRACE_CONT without passing SIGSTOP).
148
149 We could use a real-time signal instead. This would solve those problems; we
150 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
151 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
152 generates it, and there are races with trying to find a signal that is not
153 blocked. */
154
155 #ifndef O_LARGEFILE
156 #define O_LARGEFILE 0
157 #endif
158
159 /* If the system headers did not provide the constants, hard-code the normal
160 values. */
161 #ifndef PTRACE_EVENT_FORK
162
163 #define PTRACE_SETOPTIONS 0x4200
164 #define PTRACE_GETEVENTMSG 0x4201
165
166 /* options set using PTRACE_SETOPTIONS */
167 #define PTRACE_O_TRACESYSGOOD 0x00000001
168 #define PTRACE_O_TRACEFORK 0x00000002
169 #define PTRACE_O_TRACEVFORK 0x00000004
170 #define PTRACE_O_TRACECLONE 0x00000008
171 #define PTRACE_O_TRACEEXEC 0x00000010
172 #define PTRACE_O_TRACEVFORKDONE 0x00000020
173 #define PTRACE_O_TRACEEXIT 0x00000040
174
175 /* Wait extended result codes for the above trace options. */
176 #define PTRACE_EVENT_FORK 1
177 #define PTRACE_EVENT_VFORK 2
178 #define PTRACE_EVENT_CLONE 3
179 #define PTRACE_EVENT_EXEC 4
180 #define PTRACE_EVENT_VFORK_DONE 5
181 #define PTRACE_EVENT_EXIT 6
182
183 #endif /* PTRACE_EVENT_FORK */
184
185 /* We can't always assume that this flag is available, but all systems
186 with the ptrace event handlers also have __WALL, so it's safe to use
187 here. */
188 #ifndef __WALL
189 #define __WALL 0x40000000 /* Wait for any child. */
190 #endif
191
192 #ifndef PTRACE_GETSIGINFO
193 #define PTRACE_GETSIGINFO 0x4202
194 #endif
195
196 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
197 the use of the multi-threaded target. */
198 static struct target_ops *linux_ops;
199 static struct target_ops linux_ops_saved;
200
201 /* The method to call, if any, when a new thread is attached. */
202 static void (*linux_nat_new_thread) (ptid_t);
203
204 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
205 Called by our to_xfer_partial. */
206 static LONGEST (*super_xfer_partial) (struct target_ops *,
207 enum target_object,
208 const char *, gdb_byte *,
209 const gdb_byte *,
210 ULONGEST, LONGEST);
211
212 static int debug_linux_nat;
213 static void
214 show_debug_linux_nat (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216 {
217 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
218 value);
219 }
220
221 static int debug_linux_nat_async = 0;
222 static void
223 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
227 value);
228 }
229
230 static int disable_randomization = 1;
231
232 static void
233 show_disable_randomization (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 #ifdef HAVE_PERSONALITY
237 fprintf_filtered (file, _("\
238 Disabling randomization of debuggee's virtual address space is %s.\n"),
239 value);
240 #else /* !HAVE_PERSONALITY */
241 fputs_filtered (_("\
242 Disabling randomization of debuggee's virtual address space is unsupported on\n\
243 this platform.\n"), file);
244 #endif /* !HAVE_PERSONALITY */
245 }
246
247 static void
248 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
249 {
250 #ifndef HAVE_PERSONALITY
251 error (_("\
252 Disabling randomization of debuggee's virtual address space is unsupported on\n\
253 this platform."));
254 #endif /* !HAVE_PERSONALITY */
255 }
256
257 static int linux_parent_pid;
258
259 struct simple_pid_list
260 {
261 int pid;
262 int status;
263 struct simple_pid_list *next;
264 };
265 struct simple_pid_list *stopped_pids;
266
267 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
268 can not be used, 1 if it can. */
269
270 static int linux_supports_tracefork_flag = -1;
271
272 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
273 PTRACE_O_TRACEVFORKDONE. */
274
275 static int linux_supports_tracevforkdone_flag = -1;
276
277 /* Async mode support */
278
279 /* Zero if the async mode, although enabled, is masked, which means
280 linux_nat_wait should behave as if async mode was off. */
281 static int linux_nat_async_mask_value = 1;
282
283 /* The read/write ends of the pipe registered as waitable file in the
284 event loop. */
285 static int linux_nat_event_pipe[2] = { -1, -1 };
286
287 /* Number of queued events in the pipe. */
288 static volatile int linux_nat_num_queued_events;
289
290 /* The possible SIGCHLD handling states. */
291
292 enum sigchld_state
293 {
294 /* SIGCHLD disabled, with action set to sigchld_handler, for the
295 sigsuspend in linux_nat_wait. */
296 sigchld_sync,
297 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
298 sigchld_async,
299 /* Set SIGCHLD to default action. Used while creating an
300 inferior. */
301 sigchld_default
302 };
303
304 /* The current SIGCHLD handling state. */
305 static enum sigchld_state linux_nat_async_events_state;
306
307 static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
308 static void pipe_to_local_event_queue (void);
309 static void local_event_queue_to_pipe (void);
310 static void linux_nat_event_pipe_push (int pid, int status, int options);
311 static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
312 static void linux_nat_set_async_mode (int on);
313 static void linux_nat_async (void (*callback)
314 (enum inferior_event_type event_type, void *context),
315 void *context);
316 static int linux_nat_async_mask (int mask);
317 static int kill_lwp (int lwpid, int signo);
318
319 static int send_sigint_callback (struct lwp_info *lp, void *data);
320 static int stop_callback (struct lwp_info *lp, void *data);
321
322 /* Captures the result of a successful waitpid call, along with the
323 options used in that call. */
324 struct waitpid_result
325 {
326 int pid;
327 int status;
328 int options;
329 struct waitpid_result *next;
330 };
331
332 /* A singly-linked list of the results of the waitpid calls performed
333 in the async SIGCHLD handler. */
334 static struct waitpid_result *waitpid_queue = NULL;
335
336 static int
337 queued_waitpid (int pid, int *status, int flags)
338 {
339 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
340
341 if (debug_linux_nat_async)
342 fprintf_unfiltered (gdb_stdlog,
343 "\
344 QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
345 linux_nat_async_events_state,
346 linux_nat_num_queued_events);
347
348 if (flags & __WALL)
349 {
350 for (; msg; prev = msg, msg = msg->next)
351 if (pid == -1 || pid == msg->pid)
352 break;
353 }
354 else if (flags & __WCLONE)
355 {
356 for (; msg; prev = msg, msg = msg->next)
357 if (msg->options & __WCLONE
358 && (pid == -1 || pid == msg->pid))
359 break;
360 }
361 else
362 {
363 for (; msg; prev = msg, msg = msg->next)
364 if ((msg->options & __WCLONE) == 0
365 && (pid == -1 || pid == msg->pid))
366 break;
367 }
368
369 if (msg)
370 {
371 int pid;
372
373 if (prev)
374 prev->next = msg->next;
375 else
376 waitpid_queue = msg->next;
377
378 msg->next = NULL;
379 if (status)
380 *status = msg->status;
381 pid = msg->pid;
382
383 if (debug_linux_nat_async)
384 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
385 pid, msg->status);
386 xfree (msg);
387
388 return pid;
389 }
390
391 if (debug_linux_nat_async)
392 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
393
394 if (status)
395 *status = 0;
396 return -1;
397 }
398
399 static void
400 push_waitpid (int pid, int status, int options)
401 {
402 struct waitpid_result *event, *new_event;
403
404 new_event = xmalloc (sizeof (*new_event));
405 new_event->pid = pid;
406 new_event->status = status;
407 new_event->options = options;
408 new_event->next = NULL;
409
410 if (waitpid_queue)
411 {
412 for (event = waitpid_queue;
413 event && event->next;
414 event = event->next)
415 ;
416
417 event->next = new_event;
418 }
419 else
420 waitpid_queue = new_event;
421 }
422
423 /* Drain all queued events of PID. If PID is -1, the effect is of
424 draining all events. */
425 static void
426 drain_queued_events (int pid)
427 {
428 while (queued_waitpid (pid, NULL, __WALL) != -1)
429 ;
430 }
431
432 \f
433 /* Trivial list manipulation functions to keep track of a list of
434 new stopped processes. */
435 static void
436 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
437 {
438 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
439 new_pid->pid = pid;
440 new_pid->status = status;
441 new_pid->next = *listp;
442 *listp = new_pid;
443 }
444
445 static int
446 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
447 {
448 struct simple_pid_list **p;
449
450 for (p = listp; *p != NULL; p = &(*p)->next)
451 if ((*p)->pid == pid)
452 {
453 struct simple_pid_list *next = (*p)->next;
454 *status = (*p)->status;
455 xfree (*p);
456 *p = next;
457 return 1;
458 }
459 return 0;
460 }
461
462 static void
463 linux_record_stopped_pid (int pid, int status)
464 {
465 add_to_pid_list (&stopped_pids, pid, status);
466 }
467
468 \f
469 /* A helper function for linux_test_for_tracefork, called after fork (). */
470
471 static void
472 linux_tracefork_child (void)
473 {
474 int ret;
475
476 ptrace (PTRACE_TRACEME, 0, 0, 0);
477 kill (getpid (), SIGSTOP);
478 fork ();
479 _exit (0);
480 }
481
482 /* Wrapper function for waitpid which handles EINTR, and checks for
483 locally queued events. */
484
485 static int
486 my_waitpid (int pid, int *status, int flags)
487 {
488 int ret;
489
490 /* There should be no concurrent calls to waitpid. */
491 gdb_assert (linux_nat_async_events_state == sigchld_sync);
492
493 ret = queued_waitpid (pid, status, flags);
494 if (ret != -1)
495 return ret;
496
497 do
498 {
499 ret = waitpid (pid, status, flags);
500 }
501 while (ret == -1 && errno == EINTR);
502
503 return ret;
504 }
505
506 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
507
508 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
509 we know that the feature is not available. This may change the tracing
510 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
511
512 However, if it succeeds, we don't know for sure that the feature is
513 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
514 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
515 fork tracing, and let it fork. If the process exits, we assume that we
516 can't use TRACEFORK; if we get the fork notification, and we can extract
517 the new child's PID, then we assume that we can. */
518
519 static void
520 linux_test_for_tracefork (int original_pid)
521 {
522 int child_pid, ret, status;
523 long second_pid;
524 enum sigchld_state async_events_original_state;
525
526 async_events_original_state = linux_nat_async_events (sigchld_sync);
527
528 linux_supports_tracefork_flag = 0;
529 linux_supports_tracevforkdone_flag = 0;
530
531 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
532 if (ret != 0)
533 return;
534
535 child_pid = fork ();
536 if (child_pid == -1)
537 perror_with_name (("fork"));
538
539 if (child_pid == 0)
540 linux_tracefork_child ();
541
542 ret = my_waitpid (child_pid, &status, 0);
543 if (ret == -1)
544 perror_with_name (("waitpid"));
545 else if (ret != child_pid)
546 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
547 if (! WIFSTOPPED (status))
548 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
549
550 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
551 if (ret != 0)
552 {
553 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
554 if (ret != 0)
555 {
556 warning (_("linux_test_for_tracefork: failed to kill child"));
557 linux_nat_async_events (async_events_original_state);
558 return;
559 }
560
561 ret = my_waitpid (child_pid, &status, 0);
562 if (ret != child_pid)
563 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
564 else if (!WIFSIGNALED (status))
565 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
566 "killed child"), status);
567
568 linux_nat_async_events (async_events_original_state);
569 return;
570 }
571
572 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
573 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
574 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
575 linux_supports_tracevforkdone_flag = (ret == 0);
576
577 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
578 if (ret != 0)
579 warning (_("linux_test_for_tracefork: failed to resume child"));
580
581 ret = my_waitpid (child_pid, &status, 0);
582
583 if (ret == child_pid && WIFSTOPPED (status)
584 && status >> 16 == PTRACE_EVENT_FORK)
585 {
586 second_pid = 0;
587 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
588 if (ret == 0 && second_pid != 0)
589 {
590 int second_status;
591
592 linux_supports_tracefork_flag = 1;
593 my_waitpid (second_pid, &second_status, 0);
594 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
595 if (ret != 0)
596 warning (_("linux_test_for_tracefork: failed to kill second child"));
597 my_waitpid (second_pid, &status, 0);
598 }
599 }
600 else
601 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
602 "(%d, status 0x%x)"), ret, status);
603
604 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
605 if (ret != 0)
606 warning (_("linux_test_for_tracefork: failed to kill child"));
607 my_waitpid (child_pid, &status, 0);
608
609 linux_nat_async_events (async_events_original_state);
610 }
611
612 /* Return non-zero iff we have tracefork functionality available.
613 This function also sets linux_supports_tracefork_flag. */
614
615 static int
616 linux_supports_tracefork (int pid)
617 {
618 if (linux_supports_tracefork_flag == -1)
619 linux_test_for_tracefork (pid);
620 return linux_supports_tracefork_flag;
621 }
622
623 static int
624 linux_supports_tracevforkdone (int pid)
625 {
626 if (linux_supports_tracefork_flag == -1)
627 linux_test_for_tracefork (pid);
628 return linux_supports_tracevforkdone_flag;
629 }
630
631 \f
632 void
633 linux_enable_event_reporting (ptid_t ptid)
634 {
635 int pid = ptid_get_lwp (ptid);
636 int options;
637
638 if (pid == 0)
639 pid = ptid_get_pid (ptid);
640
641 if (! linux_supports_tracefork (pid))
642 return;
643
644 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
645 | PTRACE_O_TRACECLONE;
646 if (linux_supports_tracevforkdone (pid))
647 options |= PTRACE_O_TRACEVFORKDONE;
648
649 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
650 read-only process state. */
651
652 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
653 }
654
655 static void
656 linux_child_post_attach (int pid)
657 {
658 linux_enable_event_reporting (pid_to_ptid (pid));
659 check_for_thread_db ();
660 }
661
662 static void
663 linux_child_post_startup_inferior (ptid_t ptid)
664 {
665 linux_enable_event_reporting (ptid);
666 check_for_thread_db ();
667 }
668
669 static int
670 linux_child_follow_fork (struct target_ops *ops, int follow_child)
671 {
672 ptid_t last_ptid;
673 struct target_waitstatus last_status;
674 int has_vforked;
675 int parent_pid, child_pid;
676
677 if (target_can_async_p ())
678 target_async (NULL, 0);
679
680 get_last_target_status (&last_ptid, &last_status);
681 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
682 parent_pid = ptid_get_lwp (last_ptid);
683 if (parent_pid == 0)
684 parent_pid = ptid_get_pid (last_ptid);
685 child_pid = PIDGET (last_status.value.related_pid);
686
687 if (! follow_child)
688 {
689 /* We're already attached to the parent, by default. */
690
691 /* Before detaching from the child, remove all breakpoints from
692 it. (This won't actually modify the breakpoint list, but will
693 physically remove the breakpoints from the child.) */
694 /* If we vforked this will remove the breakpoints from the parent
695 also, but they'll be reinserted below. */
696 detach_breakpoints (child_pid);
697
698 /* Detach new forked process? */
699 if (detach_fork)
700 {
701 if (info_verbose || debug_linux_nat)
702 {
703 target_terminal_ours ();
704 fprintf_filtered (gdb_stdlog,
705 "Detaching after fork from child process %d.\n",
706 child_pid);
707 }
708
709 ptrace (PTRACE_DETACH, child_pid, 0, 0);
710 }
711 else
712 {
713 struct fork_info *fp;
714 /* Retain child fork in ptrace (stopped) state. */
715 fp = find_fork_pid (child_pid);
716 if (!fp)
717 fp = add_fork (child_pid);
718 fork_save_infrun_state (fp, 0);
719 }
720
721 if (has_vforked)
722 {
723 gdb_assert (linux_supports_tracefork_flag >= 0);
724 if (linux_supports_tracevforkdone (0))
725 {
726 int status;
727
728 ptrace (PTRACE_CONT, parent_pid, 0, 0);
729 my_waitpid (parent_pid, &status, __WALL);
730 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
731 warning (_("Unexpected waitpid result %06x when waiting for "
732 "vfork-done"), status);
733 }
734 else
735 {
736 /* We can't insert breakpoints until the child has
737 finished with the shared memory region. We need to
738 wait until that happens. Ideal would be to just
739 call:
740 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
741 - waitpid (parent_pid, &status, __WALL);
742 However, most architectures can't handle a syscall
743 being traced on the way out if it wasn't traced on
744 the way in.
745
746 We might also think to loop, continuing the child
747 until it exits or gets a SIGTRAP. One problem is
748 that the child might call ptrace with PTRACE_TRACEME.
749
750 There's no simple and reliable way to figure out when
751 the vforked child will be done with its copy of the
752 shared memory. We could step it out of the syscall,
753 two instructions, let it go, and then single-step the
754 parent once. When we have hardware single-step, this
755 would work; with software single-step it could still
756 be made to work but we'd have to be able to insert
757 single-step breakpoints in the child, and we'd have
758 to insert -just- the single-step breakpoint in the
759 parent. Very awkward.
760
761 In the end, the best we can do is to make sure it
762 runs for a little while. Hopefully it will be out of
763 range of any breakpoints we reinsert. Usually this
764 is only the single-step breakpoint at vfork's return
765 point. */
766
767 usleep (10000);
768 }
769
770 /* Since we vforked, breakpoints were removed in the parent
771 too. Put them back. */
772 reattach_breakpoints (parent_pid);
773 }
774 }
775 else
776 {
777 char child_pid_spelling[40];
778
779 /* Needed to keep the breakpoint lists in sync. */
780 if (! has_vforked)
781 detach_breakpoints (child_pid);
782
783 /* Before detaching from the parent, remove all breakpoints from it. */
784 remove_breakpoints ();
785
786 if (info_verbose || debug_linux_nat)
787 {
788 target_terminal_ours ();
789 fprintf_filtered (gdb_stdlog,
790 "Attaching after fork to child process %d.\n",
791 child_pid);
792 }
793
794 /* If we're vforking, we may want to hold on to the parent until
795 the child exits or execs. At exec time we can remove the old
796 breakpoints from the parent and detach it; at exit time we
797 could do the same (or even, sneakily, resume debugging it - the
798 child's exec has failed, or something similar).
799
800 This doesn't clean up "properly", because we can't call
801 target_detach, but that's OK; if the current target is "child",
802 then it doesn't need any further cleanups, and lin_lwp will
803 generally not encounter vfork (vfork is defined to fork
804 in libpthread.so).
805
806 The holding part is very easy if we have VFORKDONE events;
807 but keeping track of both processes is beyond GDB at the
808 moment. So we don't expose the parent to the rest of GDB.
809 Instead we quietly hold onto it until such time as we can
810 safely resume it. */
811
812 if (has_vforked)
813 linux_parent_pid = parent_pid;
814 else if (!detach_fork)
815 {
816 struct fork_info *fp;
817 /* Retain parent fork in ptrace (stopped) state. */
818 fp = find_fork_pid (parent_pid);
819 if (!fp)
820 fp = add_fork (parent_pid);
821 fork_save_infrun_state (fp, 0);
822 }
823 else
824 target_detach (NULL, 0);
825
826 inferior_ptid = ptid_build (child_pid, child_pid, 0);
827
828 /* Reinstall ourselves, since we might have been removed in
829 target_detach (which does other necessary cleanup). */
830
831 push_target (ops);
832 linux_nat_switch_fork (inferior_ptid);
833 check_for_thread_db ();
834
835 /* Reset breakpoints in the child as appropriate. */
836 follow_inferior_reset_breakpoints ();
837 }
838
839 if (target_can_async_p ())
840 target_async (inferior_event_handler, 0);
841
842 return 0;
843 }
844
845 \f
846 static void
847 linux_child_insert_fork_catchpoint (int pid)
848 {
849 if (! linux_supports_tracefork (pid))
850 error (_("Your system does not support fork catchpoints."));
851 }
852
853 static void
854 linux_child_insert_vfork_catchpoint (int pid)
855 {
856 if (!linux_supports_tracefork (pid))
857 error (_("Your system does not support vfork catchpoints."));
858 }
859
860 static void
861 linux_child_insert_exec_catchpoint (int pid)
862 {
863 if (!linux_supports_tracefork (pid))
864 error (_("Your system does not support exec catchpoints."));
865 }
866
867 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
868 are processes sharing the same VM space. A multi-threaded process
869 is basically a group of such processes. However, such a grouping
870 is almost entirely a user-space issue; the kernel doesn't enforce
871 such a grouping at all (this might change in the future). In
872 general, we'll rely on the threads library (i.e. the GNU/Linux
873 Threads library) to provide such a grouping.
874
875 It is perfectly well possible to write a multi-threaded application
876 without the assistance of a threads library, by using the clone
877 system call directly. This module should be able to give some
878 rudimentary support for debugging such applications if developers
879 specify the CLONE_PTRACE flag in the clone system call, and are
880 using the Linux kernel 2.4 or above.
881
882 Note that there are some peculiarities in GNU/Linux that affect
883 this code:
884
885 - In general one should specify the __WCLONE flag to waitpid in
886 order to make it report events for any of the cloned processes
887 (and leave it out for the initial process). However, if a cloned
888 process has exited the exit status is only reported if the
889 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
890 we cannot use it since GDB must work on older systems too.
891
892 - When a traced, cloned process exits and is waited for by the
893 debugger, the kernel reassigns it to the original parent and
894 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
895 library doesn't notice this, which leads to the "zombie problem":
896 When debugged a multi-threaded process that spawns a lot of
897 threads will run out of processes, even if the threads exit,
898 because the "zombies" stay around. */
899
900 /* List of known LWPs. */
901 struct lwp_info *lwp_list;
902
903 /* Number of LWPs in the list. */
904 static int num_lwps;
905 \f
906
907 /* Original signal mask. */
908 static sigset_t normal_mask;
909
910 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
911 _initialize_linux_nat. */
912 static sigset_t suspend_mask;
913
914 /* SIGCHLD action for synchronous mode. */
915 struct sigaction sync_sigchld_action;
916
917 /* SIGCHLD action for asynchronous mode. */
918 static struct sigaction async_sigchld_action;
919
920 /* SIGCHLD default action, to pass to new inferiors. */
921 static struct sigaction sigchld_default_action;
922 \f
923
924 /* Prototypes for local functions. */
925 static int stop_wait_callback (struct lwp_info *lp, void *data);
926 static int linux_nat_thread_alive (ptid_t ptid);
927 static char *linux_child_pid_to_exec_file (int pid);
928 static int cancel_breakpoint (struct lwp_info *lp);
929
930 \f
931 /* Convert wait status STATUS to a string. Used for printing debug
932 messages only. */
933
934 static char *
935 status_to_str (int status)
936 {
937 static char buf[64];
938
939 if (WIFSTOPPED (status))
940 snprintf (buf, sizeof (buf), "%s (stopped)",
941 strsignal (WSTOPSIG (status)));
942 else if (WIFSIGNALED (status))
943 snprintf (buf, sizeof (buf), "%s (terminated)",
944 strsignal (WSTOPSIG (status)));
945 else
946 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
947
948 return buf;
949 }
950
951 /* Initialize the list of LWPs. Note that this module, contrary to
952 what GDB's generic threads layer does for its thread list,
953 re-initializes the LWP lists whenever we mourn or detach (which
954 doesn't involve mourning) the inferior. */
955
956 static void
957 init_lwp_list (void)
958 {
959 struct lwp_info *lp, *lpnext;
960
961 for (lp = lwp_list; lp; lp = lpnext)
962 {
963 lpnext = lp->next;
964 xfree (lp);
965 }
966
967 lwp_list = NULL;
968 num_lwps = 0;
969 }
970
971 /* Add the LWP specified by PID to the list. Return a pointer to the
972 structure describing the new LWP. The LWP should already be stopped
973 (with an exception for the very first LWP). */
974
975 static struct lwp_info *
976 add_lwp (ptid_t ptid)
977 {
978 struct lwp_info *lp;
979
980 gdb_assert (is_lwp (ptid));
981
982 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
983
984 memset (lp, 0, sizeof (struct lwp_info));
985
986 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
987
988 lp->ptid = ptid;
989
990 lp->next = lwp_list;
991 lwp_list = lp;
992 ++num_lwps;
993
994 if (num_lwps > 1 && linux_nat_new_thread != NULL)
995 linux_nat_new_thread (ptid);
996
997 return lp;
998 }
999
1000 /* Remove the LWP specified by PID from the list. */
1001
1002 static void
1003 delete_lwp (ptid_t ptid)
1004 {
1005 struct lwp_info *lp, *lpprev;
1006
1007 lpprev = NULL;
1008
1009 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1010 if (ptid_equal (lp->ptid, ptid))
1011 break;
1012
1013 if (!lp)
1014 return;
1015
1016 num_lwps--;
1017
1018 if (lpprev)
1019 lpprev->next = lp->next;
1020 else
1021 lwp_list = lp->next;
1022
1023 xfree (lp);
1024 }
1025
1026 /* Return a pointer to the structure describing the LWP corresponding
1027 to PID. If no corresponding LWP could be found, return NULL. */
1028
1029 static struct lwp_info *
1030 find_lwp_pid (ptid_t ptid)
1031 {
1032 struct lwp_info *lp;
1033 int lwp;
1034
1035 if (is_lwp (ptid))
1036 lwp = GET_LWP (ptid);
1037 else
1038 lwp = GET_PID (ptid);
1039
1040 for (lp = lwp_list; lp; lp = lp->next)
1041 if (lwp == GET_LWP (lp->ptid))
1042 return lp;
1043
1044 return NULL;
1045 }
1046
1047 /* Call CALLBACK with its second argument set to DATA for every LWP in
1048 the list. If CALLBACK returns 1 for a particular LWP, return a
1049 pointer to the structure describing that LWP immediately.
1050 Otherwise return NULL. */
1051
1052 struct lwp_info *
1053 iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1054 {
1055 struct lwp_info *lp, *lpnext;
1056
1057 for (lp = lwp_list; lp; lp = lpnext)
1058 {
1059 lpnext = lp->next;
1060 if ((*callback) (lp, data))
1061 return lp;
1062 }
1063
1064 return NULL;
1065 }
1066
1067 /* Update our internal state when changing from one fork (checkpoint,
1068 et cetera) to another indicated by NEW_PTID. We can only switch
1069 single-threaded applications, so we only create one new LWP, and
1070 the previous list is discarded. */
1071
1072 void
1073 linux_nat_switch_fork (ptid_t new_ptid)
1074 {
1075 struct lwp_info *lp;
1076
1077 init_lwp_list ();
1078 lp = add_lwp (new_ptid);
1079 lp->stopped = 1;
1080
1081 init_thread_list ();
1082 add_thread_silent (new_ptid);
1083 }
1084
1085 /* Handle the exit of a single thread LP. */
1086
1087 static void
1088 exit_lwp (struct lwp_info *lp)
1089 {
1090 struct thread_info *th = find_thread_pid (lp->ptid);
1091
1092 if (th)
1093 {
1094 if (print_thread_events)
1095 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1096
1097 delete_thread (lp->ptid);
1098 }
1099
1100 delete_lwp (lp->ptid);
1101 }
1102
1103 /* Detect `T (stopped)' in `/proc/PID/status'.
1104 Other states including `T (tracing stop)' are reported as false. */
1105
1106 static int
1107 pid_is_stopped (pid_t pid)
1108 {
1109 FILE *status_file;
1110 char buf[100];
1111 int retval = 0;
1112
1113 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1114 status_file = fopen (buf, "r");
1115 if (status_file != NULL)
1116 {
1117 int have_state = 0;
1118
1119 while (fgets (buf, sizeof (buf), status_file))
1120 {
1121 if (strncmp (buf, "State:", 6) == 0)
1122 {
1123 have_state = 1;
1124 break;
1125 }
1126 }
1127 if (have_state && strstr (buf, "T (stopped)") != NULL)
1128 retval = 1;
1129 fclose (status_file);
1130 }
1131 return retval;
1132 }
1133
1134 /* Wait for the LWP specified by LP, which we have just attached to.
1135 Returns a wait status for that LWP, to cache. */
1136
1137 static int
1138 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1139 int *signalled)
1140 {
1141 pid_t new_pid, pid = GET_LWP (ptid);
1142 int status;
1143
1144 if (pid_is_stopped (pid))
1145 {
1146 if (debug_linux_nat)
1147 fprintf_unfiltered (gdb_stdlog,
1148 "LNPAW: Attaching to a stopped process\n");
1149
1150 /* The process is definitely stopped. It is in a job control
1151 stop, unless the kernel predates the TASK_STOPPED /
1152 TASK_TRACED distinction, in which case it might be in a
1153 ptrace stop. Make sure it is in a ptrace stop; from there we
1154 can kill it, signal it, et cetera.
1155
1156 First make sure there is a pending SIGSTOP. Since we are
1157 already attached, the process can not transition from stopped
1158 to running without a PTRACE_CONT; so we know this signal will
1159 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1160 probably already in the queue (unless this kernel is old
1161 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1162 is not an RT signal, it can only be queued once. */
1163 kill_lwp (pid, SIGSTOP);
1164
1165 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1166 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1167 ptrace (PTRACE_CONT, pid, 0, 0);
1168 }
1169
1170 /* Make sure the initial process is stopped. The user-level threads
1171 layer might want to poke around in the inferior, and that won't
1172 work if things haven't stabilized yet. */
1173 new_pid = my_waitpid (pid, &status, 0);
1174 if (new_pid == -1 && errno == ECHILD)
1175 {
1176 if (first)
1177 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1178
1179 /* Try again with __WCLONE to check cloned processes. */
1180 new_pid = my_waitpid (pid, &status, __WCLONE);
1181 *cloned = 1;
1182 }
1183
1184 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1185
1186 if (WSTOPSIG (status) != SIGSTOP)
1187 {
1188 *signalled = 1;
1189 if (debug_linux_nat)
1190 fprintf_unfiltered (gdb_stdlog,
1191 "LNPAW: Received %s after attaching\n",
1192 status_to_str (status));
1193 }
1194
1195 return status;
1196 }
1197
1198 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1199 if the new LWP could not be attached. */
1200
1201 int
1202 lin_lwp_attach_lwp (ptid_t ptid)
1203 {
1204 struct lwp_info *lp;
1205 enum sigchld_state async_events_original_state;
1206
1207 gdb_assert (is_lwp (ptid));
1208
1209 async_events_original_state = linux_nat_async_events (sigchld_sync);
1210
1211 lp = find_lwp_pid (ptid);
1212
1213 /* We assume that we're already attached to any LWP that has an id
1214 equal to the overall process id, and to any LWP that is already
1215 in our list of LWPs. If we're not seeing exit events from threads
1216 and we've had PID wraparound since we last tried to stop all threads,
1217 this assumption might be wrong; fortunately, this is very unlikely
1218 to happen. */
1219 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1220 {
1221 int status, cloned = 0, signalled = 0;
1222
1223 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1224 {
1225 /* If we fail to attach to the thread, issue a warning,
1226 but continue. One way this can happen is if thread
1227 creation is interrupted; as of Linux kernel 2.6.19, a
1228 bug may place threads in the thread list and then fail
1229 to create them. */
1230 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1231 safe_strerror (errno));
1232 return -1;
1233 }
1234
1235 if (debug_linux_nat)
1236 fprintf_unfiltered (gdb_stdlog,
1237 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1238 target_pid_to_str (ptid));
1239
1240 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1241 lp = add_lwp (ptid);
1242 lp->stopped = 1;
1243 lp->cloned = cloned;
1244 lp->signalled = signalled;
1245 if (WSTOPSIG (status) != SIGSTOP)
1246 {
1247 lp->resumed = 1;
1248 lp->status = status;
1249 }
1250
1251 target_post_attach (GET_LWP (lp->ptid));
1252
1253 if (debug_linux_nat)
1254 {
1255 fprintf_unfiltered (gdb_stdlog,
1256 "LLAL: waitpid %s received %s\n",
1257 target_pid_to_str (ptid),
1258 status_to_str (status));
1259 }
1260 }
1261 else
1262 {
1263 /* We assume that the LWP representing the original process is
1264 already stopped. Mark it as stopped in the data structure
1265 that the GNU/linux ptrace layer uses to keep track of
1266 threads. Note that this won't have already been done since
1267 the main thread will have, we assume, been stopped by an
1268 attach from a different layer. */
1269 if (lp == NULL)
1270 lp = add_lwp (ptid);
1271 lp->stopped = 1;
1272 }
1273
1274 linux_nat_async_events (async_events_original_state);
1275 return 0;
1276 }
1277
1278 static void
1279 linux_nat_create_inferior (char *exec_file, char *allargs, char **env,
1280 int from_tty)
1281 {
1282 int saved_async = 0;
1283 #ifdef HAVE_PERSONALITY
1284 int personality_orig = 0, personality_set = 0;
1285 #endif /* HAVE_PERSONALITY */
1286
1287 /* The fork_child mechanism is synchronous and calls target_wait, so
1288 we have to mask the async mode. */
1289
1290 if (target_can_async_p ())
1291 /* Mask async mode. Creating a child requires a loop calling
1292 wait_for_inferior currently. */
1293 saved_async = linux_nat_async_mask (0);
1294 else
1295 {
1296 /* Restore the original signal mask. */
1297 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1298 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1299 suspend_mask = normal_mask;
1300 sigdelset (&suspend_mask, SIGCHLD);
1301 }
1302
1303 /* Set SIGCHLD to the default action, until after execing the child,
1304 since the inferior inherits the superior's signal mask. It will
1305 be blocked again in linux_nat_wait, which is only reached after
1306 the inferior execing. */
1307 linux_nat_async_events (sigchld_default);
1308
1309 #ifdef HAVE_PERSONALITY
1310 if (disable_randomization)
1311 {
1312 errno = 0;
1313 personality_orig = personality (0xffffffff);
1314 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1315 {
1316 personality_set = 1;
1317 personality (personality_orig | ADDR_NO_RANDOMIZE);
1318 }
1319 if (errno != 0 || (personality_set
1320 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1321 warning (_("Error disabling address space randomization: %s"),
1322 safe_strerror (errno));
1323 }
1324 #endif /* HAVE_PERSONALITY */
1325
1326 linux_ops->to_create_inferior (exec_file, allargs, env, from_tty);
1327
1328 #ifdef HAVE_PERSONALITY
1329 if (personality_set)
1330 {
1331 errno = 0;
1332 personality (personality_orig);
1333 if (errno != 0)
1334 warning (_("Error restoring address space randomization: %s"),
1335 safe_strerror (errno));
1336 }
1337 #endif /* HAVE_PERSONALITY */
1338
1339 if (saved_async)
1340 linux_nat_async_mask (saved_async);
1341 }
1342
1343 static void
1344 linux_nat_attach (char *args, int from_tty)
1345 {
1346 struct lwp_info *lp;
1347 int status;
1348
1349 /* FIXME: We should probably accept a list of process id's, and
1350 attach all of them. */
1351 linux_ops->to_attach (args, from_tty);
1352
1353 if (!target_can_async_p ())
1354 {
1355 /* Restore the original signal mask. */
1356 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1357 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1358 suspend_mask = normal_mask;
1359 sigdelset (&suspend_mask, SIGCHLD);
1360 }
1361
1362 /* Add the initial process as the first LWP to the list. */
1363 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1364 lp = add_lwp (inferior_ptid);
1365
1366 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1367 &lp->signalled);
1368 lp->stopped = 1;
1369
1370 /* If this process is not using thread_db, then we still don't
1371 detect any other threads, but add at least this one. */
1372 add_thread_silent (lp->ptid);
1373
1374 /* Save the wait status to report later. */
1375 lp->resumed = 1;
1376 if (debug_linux_nat)
1377 fprintf_unfiltered (gdb_stdlog,
1378 "LNA: waitpid %ld, saving status %s\n",
1379 (long) GET_PID (lp->ptid), status_to_str (status));
1380
1381 if (!target_can_async_p ())
1382 lp->status = status;
1383 else
1384 {
1385 /* We already waited for this LWP, so put the wait result on the
1386 pipe. The event loop will wake up and gets us to handling
1387 this event. */
1388 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1389 lp->cloned ? __WCLONE : 0);
1390 /* Register in the event loop. */
1391 target_async (inferior_event_handler, 0);
1392 }
1393 }
1394
1395 /* Get pending status of LP. */
1396 static int
1397 get_pending_status (struct lwp_info *lp, int *status)
1398 {
1399 struct target_waitstatus last;
1400 ptid_t last_ptid;
1401
1402 get_last_target_status (&last_ptid, &last);
1403
1404 /* If this lwp is the ptid that GDB is processing an event from, the
1405 signal will be in stop_signal. Otherwise, in all-stop + sync
1406 mode, we may cache pending events in lp->status while trying to
1407 stop all threads (see stop_wait_callback). In async mode, the
1408 events are always cached in waitpid_queue. */
1409
1410 *status = 0;
1411
1412 if (non_stop)
1413 {
1414 enum target_signal signo = TARGET_SIGNAL_0;
1415
1416 if (is_executing (lp->ptid))
1417 {
1418 /* If the core thought this lwp was executing --- e.g., the
1419 executing property hasn't been updated yet, but the
1420 thread has been stopped with a stop_callback /
1421 stop_wait_callback sequence (see linux_nat_detach for
1422 example) --- we can only have pending events in the local
1423 queue. */
1424 if (queued_waitpid (GET_LWP (lp->ptid), status, __WALL) != -1)
1425 {
1426 if (WIFSTOPPED (status))
1427 signo = target_signal_from_host (WSTOPSIG (status));
1428
1429 /* If not stopped, then the lwp is gone, no use in
1430 resending a signal. */
1431 }
1432 }
1433 else
1434 {
1435 /* If the core knows the thread is not executing, then we
1436 have the last signal recorded in
1437 thread_info->stop_signal, unless this is inferior_ptid,
1438 in which case, it's in the global stop_signal, due to
1439 context switching. */
1440
1441 if (ptid_equal (lp->ptid, inferior_ptid))
1442 signo = stop_signal;
1443 else
1444 {
1445 struct thread_info *tp = find_thread_pid (lp->ptid);
1446 gdb_assert (tp);
1447 signo = tp->stop_signal;
1448 }
1449 }
1450
1451 if (signo != TARGET_SIGNAL_0
1452 && !signal_pass_state (signo))
1453 {
1454 if (debug_linux_nat)
1455 fprintf_unfiltered (gdb_stdlog, "\
1456 GPT: lwp %s had signal %s, but it is in no pass state\n",
1457 target_pid_to_str (lp->ptid),
1458 target_signal_to_string (signo));
1459 }
1460 else
1461 {
1462 if (signo != TARGET_SIGNAL_0)
1463 *status = W_STOPCODE (target_signal_to_host (signo));
1464
1465 if (debug_linux_nat)
1466 fprintf_unfiltered (gdb_stdlog,
1467 "GPT: lwp %s as pending signal %s\n",
1468 target_pid_to_str (lp->ptid),
1469 target_signal_to_string (signo));
1470 }
1471 }
1472 else
1473 {
1474 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1475 {
1476 if (stop_signal != TARGET_SIGNAL_0
1477 && signal_pass_state (stop_signal))
1478 *status = W_STOPCODE (target_signal_to_host (stop_signal));
1479 }
1480 else if (target_can_async_p ())
1481 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1482 else
1483 *status = lp->status;
1484 }
1485
1486 return 0;
1487 }
1488
1489 static int
1490 detach_callback (struct lwp_info *lp, void *data)
1491 {
1492 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1493
1494 if (debug_linux_nat && lp->status)
1495 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1496 strsignal (WSTOPSIG (lp->status)),
1497 target_pid_to_str (lp->ptid));
1498
1499 /* If there is a pending SIGSTOP, get rid of it. */
1500 if (lp->signalled)
1501 {
1502 if (debug_linux_nat)
1503 fprintf_unfiltered (gdb_stdlog,
1504 "DC: Sending SIGCONT to %s\n",
1505 target_pid_to_str (lp->ptid));
1506
1507 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1508 lp->signalled = 0;
1509 }
1510
1511 /* We don't actually detach from the LWP that has an id equal to the
1512 overall process id just yet. */
1513 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1514 {
1515 int status = 0;
1516
1517 /* Pass on any pending signal for this LWP. */
1518 get_pending_status (lp, &status);
1519
1520 errno = 0;
1521 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1522 WSTOPSIG (status)) < 0)
1523 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1524 safe_strerror (errno));
1525
1526 if (debug_linux_nat)
1527 fprintf_unfiltered (gdb_stdlog,
1528 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1529 target_pid_to_str (lp->ptid),
1530 strsignal (WSTOPSIG (lp->status)));
1531
1532 delete_lwp (lp->ptid);
1533 }
1534
1535 return 0;
1536 }
1537
1538 static void
1539 linux_nat_detach (char *args, int from_tty)
1540 {
1541 int pid;
1542 int status;
1543 enum target_signal sig;
1544
1545 if (target_can_async_p ())
1546 linux_nat_async (NULL, 0);
1547
1548 /* Stop all threads before detaching. ptrace requires that the
1549 thread is stopped to sucessfully detach. */
1550 iterate_over_lwps (stop_callback, NULL);
1551 /* ... and wait until all of them have reported back that
1552 they're no longer running. */
1553 iterate_over_lwps (stop_wait_callback, NULL);
1554
1555 iterate_over_lwps (detach_callback, NULL);
1556
1557 /* Only the initial process should be left right now. */
1558 gdb_assert (num_lwps == 1);
1559
1560 /* Pass on any pending signal for the last LWP. */
1561 if ((args == NULL || *args == '\0')
1562 && get_pending_status (lwp_list, &status) != -1
1563 && WIFSTOPPED (status))
1564 {
1565 /* Put the signal number in ARGS so that inf_ptrace_detach will
1566 pass it along with PTRACE_DETACH. */
1567 args = alloca (8);
1568 sprintf (args, "%d", (int) WSTOPSIG (status));
1569 fprintf_unfiltered (gdb_stdlog,
1570 "LND: Sending signal %s to %s\n",
1571 args,
1572 target_pid_to_str (lwp_list->ptid));
1573 }
1574
1575 /* Destroy LWP info; it's no longer valid. */
1576 init_lwp_list ();
1577
1578 pid = GET_PID (inferior_ptid);
1579 inferior_ptid = pid_to_ptid (pid);
1580 linux_ops->to_detach (args, from_tty);
1581
1582 if (target_can_async_p ())
1583 drain_queued_events (pid);
1584 }
1585
1586 /* Resume LP. */
1587
1588 static int
1589 resume_callback (struct lwp_info *lp, void *data)
1590 {
1591 if (lp->stopped && lp->status == 0)
1592 {
1593 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
1594 0, TARGET_SIGNAL_0);
1595 if (debug_linux_nat)
1596 fprintf_unfiltered (gdb_stdlog,
1597 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1598 target_pid_to_str (lp->ptid));
1599 lp->stopped = 0;
1600 lp->step = 0;
1601 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1602 }
1603 else if (lp->stopped && debug_linux_nat)
1604 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1605 target_pid_to_str (lp->ptid));
1606 else if (debug_linux_nat)
1607 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1608 target_pid_to_str (lp->ptid));
1609
1610 return 0;
1611 }
1612
1613 static int
1614 resume_clear_callback (struct lwp_info *lp, void *data)
1615 {
1616 lp->resumed = 0;
1617 return 0;
1618 }
1619
1620 static int
1621 resume_set_callback (struct lwp_info *lp, void *data)
1622 {
1623 lp->resumed = 1;
1624 return 0;
1625 }
1626
1627 static void
1628 linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
1629 {
1630 struct lwp_info *lp;
1631 int resume_all;
1632
1633 if (debug_linux_nat)
1634 fprintf_unfiltered (gdb_stdlog,
1635 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1636 step ? "step" : "resume",
1637 target_pid_to_str (ptid),
1638 signo ? strsignal (signo) : "0",
1639 target_pid_to_str (inferior_ptid));
1640
1641 if (target_can_async_p ())
1642 /* Block events while we're here. */
1643 linux_nat_async_events (sigchld_sync);
1644
1645 /* A specific PTID means `step only this process id'. */
1646 resume_all = (PIDGET (ptid) == -1);
1647
1648 if (non_stop && resume_all)
1649 internal_error (__FILE__, __LINE__,
1650 "can't resume all in non-stop mode");
1651
1652 if (!non_stop)
1653 {
1654 if (resume_all)
1655 iterate_over_lwps (resume_set_callback, NULL);
1656 else
1657 iterate_over_lwps (resume_clear_callback, NULL);
1658 }
1659
1660 /* If PID is -1, it's the current inferior that should be
1661 handled specially. */
1662 if (PIDGET (ptid) == -1)
1663 ptid = inferior_ptid;
1664
1665 lp = find_lwp_pid (ptid);
1666 gdb_assert (lp != NULL);
1667
1668 /* Convert to something the lower layer understands. */
1669 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1670
1671 /* Remember if we're stepping. */
1672 lp->step = step;
1673
1674 /* Mark this LWP as resumed. */
1675 lp->resumed = 1;
1676
1677 /* If we have a pending wait status for this thread, there is no
1678 point in resuming the process. But first make sure that
1679 linux_nat_wait won't preemptively handle the event - we
1680 should never take this short-circuit if we are going to
1681 leave LP running, since we have skipped resuming all the
1682 other threads. This bit of code needs to be synchronized
1683 with linux_nat_wait. */
1684
1685 /* In async mode, we never have pending wait status. */
1686 if (target_can_async_p () && lp->status)
1687 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1688
1689 if (lp->status && WIFSTOPPED (lp->status))
1690 {
1691 int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1692
1693 if (signal_stop_state (saved_signo) == 0
1694 && signal_print_state (saved_signo) == 0
1695 && signal_pass_state (saved_signo) == 1)
1696 {
1697 if (debug_linux_nat)
1698 fprintf_unfiltered (gdb_stdlog,
1699 "LLR: Not short circuiting for ignored "
1700 "status 0x%x\n", lp->status);
1701
1702 /* FIXME: What should we do if we are supposed to continue
1703 this thread with a signal? */
1704 gdb_assert (signo == TARGET_SIGNAL_0);
1705 signo = saved_signo;
1706 lp->status = 0;
1707 }
1708 }
1709
1710 if (lp->status)
1711 {
1712 /* FIXME: What should we do if we are supposed to continue
1713 this thread with a signal? */
1714 gdb_assert (signo == TARGET_SIGNAL_0);
1715
1716 if (debug_linux_nat)
1717 fprintf_unfiltered (gdb_stdlog,
1718 "LLR: Short circuiting for status 0x%x\n",
1719 lp->status);
1720
1721 return;
1722 }
1723
1724 /* Mark LWP as not stopped to prevent it from being continued by
1725 resume_callback. */
1726 lp->stopped = 0;
1727
1728 if (resume_all)
1729 iterate_over_lwps (resume_callback, NULL);
1730
1731 linux_ops->to_resume (ptid, step, signo);
1732 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1733
1734 if (debug_linux_nat)
1735 fprintf_unfiltered (gdb_stdlog,
1736 "LLR: %s %s, %s (resume event thread)\n",
1737 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1738 target_pid_to_str (ptid),
1739 signo ? strsignal (signo) : "0");
1740
1741 if (target_can_async_p ())
1742 target_async (inferior_event_handler, 0);
1743 }
1744
1745 /* Issue kill to specified lwp. */
1746
1747 static int tkill_failed;
1748
1749 static int
1750 kill_lwp (int lwpid, int signo)
1751 {
1752 errno = 0;
1753
1754 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1755 fails, then we are not using nptl threads and we should be using kill. */
1756
1757 #ifdef HAVE_TKILL_SYSCALL
1758 if (!tkill_failed)
1759 {
1760 int ret = syscall (__NR_tkill, lwpid, signo);
1761 if (errno != ENOSYS)
1762 return ret;
1763 errno = 0;
1764 tkill_failed = 1;
1765 }
1766 #endif
1767
1768 return kill (lwpid, signo);
1769 }
1770
1771 /* Handle a GNU/Linux extended wait response. If we see a clone
1772 event, we need to add the new LWP to our list (and not report the
1773 trap to higher layers). This function returns non-zero if the
1774 event should be ignored and we should wait again. If STOPPING is
1775 true, the new LWP remains stopped, otherwise it is continued. */
1776
1777 static int
1778 linux_handle_extended_wait (struct lwp_info *lp, int status,
1779 int stopping)
1780 {
1781 int pid = GET_LWP (lp->ptid);
1782 struct target_waitstatus *ourstatus = &lp->waitstatus;
1783 struct lwp_info *new_lp = NULL;
1784 int event = status >> 16;
1785
1786 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1787 || event == PTRACE_EVENT_CLONE)
1788 {
1789 unsigned long new_pid;
1790 int ret;
1791
1792 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1793
1794 /* If we haven't already seen the new PID stop, wait for it now. */
1795 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1796 {
1797 /* The new child has a pending SIGSTOP. We can't affect it until it
1798 hits the SIGSTOP, but we're already attached. */
1799 ret = my_waitpid (new_pid, &status,
1800 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1801 if (ret == -1)
1802 perror_with_name (_("waiting for new child"));
1803 else if (ret != new_pid)
1804 internal_error (__FILE__, __LINE__,
1805 _("wait returned unexpected PID %d"), ret);
1806 else if (!WIFSTOPPED (status))
1807 internal_error (__FILE__, __LINE__,
1808 _("wait returned unexpected status 0x%x"), status);
1809 }
1810
1811 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1812
1813 if (event == PTRACE_EVENT_FORK)
1814 ourstatus->kind = TARGET_WAITKIND_FORKED;
1815 else if (event == PTRACE_EVENT_VFORK)
1816 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1817 else
1818 {
1819 struct cleanup *old_chain;
1820
1821 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1822 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1823 new_lp->cloned = 1;
1824 new_lp->stopped = 1;
1825
1826 if (WSTOPSIG (status) != SIGSTOP)
1827 {
1828 /* This can happen if someone starts sending signals to
1829 the new thread before it gets a chance to run, which
1830 have a lower number than SIGSTOP (e.g. SIGUSR1).
1831 This is an unlikely case, and harder to handle for
1832 fork / vfork than for clone, so we do not try - but
1833 we handle it for clone events here. We'll send
1834 the other signal on to the thread below. */
1835
1836 new_lp->signalled = 1;
1837 }
1838 else
1839 status = 0;
1840
1841 if (non_stop)
1842 {
1843 /* Add the new thread to GDB's lists as soon as possible
1844 so that:
1845
1846 1) the frontend doesn't have to wait for a stop to
1847 display them, and,
1848
1849 2) we tag it with the correct running state. */
1850
1851 /* If the thread_db layer is active, let it know about
1852 this new thread, and add it to GDB's list. */
1853 if (!thread_db_attach_lwp (new_lp->ptid))
1854 {
1855 /* We're not using thread_db. Add it to GDB's
1856 list. */
1857 target_post_attach (GET_LWP (new_lp->ptid));
1858 add_thread (new_lp->ptid);
1859 }
1860
1861 if (!stopping)
1862 {
1863 set_running (new_lp->ptid, 1);
1864 set_executing (new_lp->ptid, 1);
1865 }
1866 }
1867
1868 if (!stopping)
1869 {
1870 new_lp->stopped = 0;
1871 new_lp->resumed = 1;
1872 ptrace (PTRACE_CONT, new_pid, 0,
1873 status ? WSTOPSIG (status) : 0);
1874 }
1875
1876 if (debug_linux_nat)
1877 fprintf_unfiltered (gdb_stdlog,
1878 "LHEW: Got clone event from LWP %ld, resuming\n",
1879 GET_LWP (lp->ptid));
1880 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1881
1882 return 1;
1883 }
1884
1885 return 0;
1886 }
1887
1888 if (event == PTRACE_EVENT_EXEC)
1889 {
1890 ourstatus->kind = TARGET_WAITKIND_EXECD;
1891 ourstatus->value.execd_pathname
1892 = xstrdup (linux_child_pid_to_exec_file (pid));
1893
1894 if (linux_parent_pid)
1895 {
1896 detach_breakpoints (linux_parent_pid);
1897 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1898
1899 linux_parent_pid = 0;
1900 }
1901
1902 /* At this point, all inserted breakpoints are gone. Doing this
1903 as soon as we detect an exec prevents the badness of deleting
1904 a breakpoint writing the current "shadow contents" to lift
1905 the bp. That shadow is NOT valid after an exec.
1906
1907 Note that we have to do this after the detach_breakpoints
1908 call above, otherwise breakpoints wouldn't be lifted from the
1909 parent on a vfork, because detach_breakpoints would think
1910 that breakpoints are not inserted. */
1911 mark_breakpoints_out ();
1912 return 0;
1913 }
1914
1915 internal_error (__FILE__, __LINE__,
1916 _("unknown ptrace event %d"), event);
1917 }
1918
1919 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1920 exited. */
1921
1922 static int
1923 wait_lwp (struct lwp_info *lp)
1924 {
1925 pid_t pid;
1926 int status;
1927 int thread_dead = 0;
1928
1929 gdb_assert (!lp->stopped);
1930 gdb_assert (lp->status == 0);
1931
1932 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
1933 if (pid == -1 && errno == ECHILD)
1934 {
1935 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
1936 if (pid == -1 && errno == ECHILD)
1937 {
1938 /* The thread has previously exited. We need to delete it
1939 now because, for some vendor 2.4 kernels with NPTL
1940 support backported, there won't be an exit event unless
1941 it is the main thread. 2.6 kernels will report an exit
1942 event for each thread that exits, as expected. */
1943 thread_dead = 1;
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
1946 target_pid_to_str (lp->ptid));
1947 }
1948 }
1949
1950 if (!thread_dead)
1951 {
1952 gdb_assert (pid == GET_LWP (lp->ptid));
1953
1954 if (debug_linux_nat)
1955 {
1956 fprintf_unfiltered (gdb_stdlog,
1957 "WL: waitpid %s received %s\n",
1958 target_pid_to_str (lp->ptid),
1959 status_to_str (status));
1960 }
1961 }
1962
1963 /* Check if the thread has exited. */
1964 if (WIFEXITED (status) || WIFSIGNALED (status))
1965 {
1966 thread_dead = 1;
1967 if (debug_linux_nat)
1968 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
1969 target_pid_to_str (lp->ptid));
1970 }
1971
1972 if (thread_dead)
1973 {
1974 exit_lwp (lp);
1975 return 0;
1976 }
1977
1978 gdb_assert (WIFSTOPPED (status));
1979
1980 /* Handle GNU/Linux's extended waitstatus for trace events. */
1981 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1982 {
1983 if (debug_linux_nat)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "WL: Handling extended status 0x%06x\n",
1986 status);
1987 if (linux_handle_extended_wait (lp, status, 1))
1988 return wait_lwp (lp);
1989 }
1990
1991 return status;
1992 }
1993
1994 /* Save the most recent siginfo for LP. This is currently only called
1995 for SIGTRAP; some ports use the si_addr field for
1996 target_stopped_data_address. In the future, it may also be used to
1997 restore the siginfo of requeued signals. */
1998
1999 static void
2000 save_siginfo (struct lwp_info *lp)
2001 {
2002 errno = 0;
2003 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2004 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2005
2006 if (errno != 0)
2007 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2008 }
2009
2010 /* Send a SIGSTOP to LP. */
2011
2012 static int
2013 stop_callback (struct lwp_info *lp, void *data)
2014 {
2015 if (!lp->stopped && !lp->signalled)
2016 {
2017 int ret;
2018
2019 if (debug_linux_nat)
2020 {
2021 fprintf_unfiltered (gdb_stdlog,
2022 "SC: kill %s **<SIGSTOP>**\n",
2023 target_pid_to_str (lp->ptid));
2024 }
2025 errno = 0;
2026 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2027 if (debug_linux_nat)
2028 {
2029 fprintf_unfiltered (gdb_stdlog,
2030 "SC: lwp kill %d %s\n",
2031 ret,
2032 errno ? safe_strerror (errno) : "ERRNO-OK");
2033 }
2034
2035 lp->signalled = 1;
2036 gdb_assert (lp->status == 0);
2037 }
2038
2039 return 0;
2040 }
2041
2042 /* Return non-zero if LWP PID has a pending SIGINT. */
2043
2044 static int
2045 linux_nat_has_pending_sigint (int pid)
2046 {
2047 sigset_t pending, blocked, ignored;
2048 int i;
2049
2050 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2051
2052 if (sigismember (&pending, SIGINT)
2053 && !sigismember (&ignored, SIGINT))
2054 return 1;
2055
2056 return 0;
2057 }
2058
2059 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2060
2061 static int
2062 set_ignore_sigint (struct lwp_info *lp, void *data)
2063 {
2064 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2065 flag to consume the next one. */
2066 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2067 && WSTOPSIG (lp->status) == SIGINT)
2068 lp->status = 0;
2069 else
2070 lp->ignore_sigint = 1;
2071
2072 return 0;
2073 }
2074
2075 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2076 This function is called after we know the LWP has stopped; if the LWP
2077 stopped before the expected SIGINT was delivered, then it will never have
2078 arrived. Also, if the signal was delivered to a shared queue and consumed
2079 by a different thread, it will never be delivered to this LWP. */
2080
2081 static void
2082 maybe_clear_ignore_sigint (struct lwp_info *lp)
2083 {
2084 if (!lp->ignore_sigint)
2085 return;
2086
2087 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2088 {
2089 if (debug_linux_nat)
2090 fprintf_unfiltered (gdb_stdlog,
2091 "MCIS: Clearing bogus flag for %s\n",
2092 target_pid_to_str (lp->ptid));
2093 lp->ignore_sigint = 0;
2094 }
2095 }
2096
2097 /* Wait until LP is stopped. */
2098
2099 static int
2100 stop_wait_callback (struct lwp_info *lp, void *data)
2101 {
2102 if (!lp->stopped)
2103 {
2104 int status;
2105
2106 status = wait_lwp (lp);
2107 if (status == 0)
2108 return 0;
2109
2110 if (lp->ignore_sigint && WIFSTOPPED (status)
2111 && WSTOPSIG (status) == SIGINT)
2112 {
2113 lp->ignore_sigint = 0;
2114
2115 errno = 0;
2116 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2117 if (debug_linux_nat)
2118 fprintf_unfiltered (gdb_stdlog,
2119 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2120 target_pid_to_str (lp->ptid),
2121 errno ? safe_strerror (errno) : "OK");
2122
2123 return stop_wait_callback (lp, NULL);
2124 }
2125
2126 maybe_clear_ignore_sigint (lp);
2127
2128 if (WSTOPSIG (status) != SIGSTOP)
2129 {
2130 if (WSTOPSIG (status) == SIGTRAP)
2131 {
2132 /* If a LWP other than the LWP that we're reporting an
2133 event for has hit a GDB breakpoint (as opposed to
2134 some random trap signal), then just arrange for it to
2135 hit it again later. We don't keep the SIGTRAP status
2136 and don't forward the SIGTRAP signal to the LWP. We
2137 will handle the current event, eventually we will
2138 resume all LWPs, and this one will get its breakpoint
2139 trap again.
2140
2141 If we do not do this, then we run the risk that the
2142 user will delete or disable the breakpoint, but the
2143 thread will have already tripped on it. */
2144
2145 /* Save the trap's siginfo in case we need it later. */
2146 save_siginfo (lp);
2147
2148 /* Now resume this LWP and get the SIGSTOP event. */
2149 errno = 0;
2150 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2151 if (debug_linux_nat)
2152 {
2153 fprintf_unfiltered (gdb_stdlog,
2154 "PTRACE_CONT %s, 0, 0 (%s)\n",
2155 target_pid_to_str (lp->ptid),
2156 errno ? safe_strerror (errno) : "OK");
2157
2158 fprintf_unfiltered (gdb_stdlog,
2159 "SWC: Candidate SIGTRAP event in %s\n",
2160 target_pid_to_str (lp->ptid));
2161 }
2162 /* Hold this event/waitstatus while we check to see if
2163 there are any more (we still want to get that SIGSTOP). */
2164 stop_wait_callback (lp, NULL);
2165
2166 if (target_can_async_p ())
2167 {
2168 /* Don't leave a pending wait status in async mode.
2169 Retrigger the breakpoint. */
2170 if (!cancel_breakpoint (lp))
2171 {
2172 /* There was no gdb breakpoint set at pc. Put
2173 the event back in the queue. */
2174 if (debug_linux_nat)
2175 fprintf_unfiltered (gdb_stdlog,
2176 "SWC: kill %s, %s\n",
2177 target_pid_to_str (lp->ptid),
2178 status_to_str ((int) status));
2179 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2180 }
2181 }
2182 else
2183 {
2184 /* Hold the SIGTRAP for handling by
2185 linux_nat_wait. */
2186 /* If there's another event, throw it back into the
2187 queue. */
2188 if (lp->status)
2189 {
2190 if (debug_linux_nat)
2191 fprintf_unfiltered (gdb_stdlog,
2192 "SWC: kill %s, %s\n",
2193 target_pid_to_str (lp->ptid),
2194 status_to_str ((int) status));
2195 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2196 }
2197 /* Save the sigtrap event. */
2198 lp->status = status;
2199 }
2200 return 0;
2201 }
2202 else
2203 {
2204 /* The thread was stopped with a signal other than
2205 SIGSTOP, and didn't accidentally trip a breakpoint. */
2206
2207 if (debug_linux_nat)
2208 {
2209 fprintf_unfiltered (gdb_stdlog,
2210 "SWC: Pending event %s in %s\n",
2211 status_to_str ((int) status),
2212 target_pid_to_str (lp->ptid));
2213 }
2214 /* Now resume this LWP and get the SIGSTOP event. */
2215 errno = 0;
2216 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2217 if (debug_linux_nat)
2218 fprintf_unfiltered (gdb_stdlog,
2219 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2220 target_pid_to_str (lp->ptid),
2221 errno ? safe_strerror (errno) : "OK");
2222
2223 /* Hold this event/waitstatus while we check to see if
2224 there are any more (we still want to get that SIGSTOP). */
2225 stop_wait_callback (lp, NULL);
2226
2227 /* If the lp->status field is still empty, use it to
2228 hold this event. If not, then this event must be
2229 returned to the event queue of the LWP. */
2230 if (lp->status || target_can_async_p ())
2231 {
2232 if (debug_linux_nat)
2233 {
2234 fprintf_unfiltered (gdb_stdlog,
2235 "SWC: kill %s, %s\n",
2236 target_pid_to_str (lp->ptid),
2237 status_to_str ((int) status));
2238 }
2239 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2240 }
2241 else
2242 lp->status = status;
2243 return 0;
2244 }
2245 }
2246 else
2247 {
2248 /* We caught the SIGSTOP that we intended to catch, so
2249 there's no SIGSTOP pending. */
2250 lp->stopped = 1;
2251 lp->signalled = 0;
2252 }
2253 }
2254
2255 return 0;
2256 }
2257
2258 /* Return non-zero if LP has a wait status pending. */
2259
2260 static int
2261 status_callback (struct lwp_info *lp, void *data)
2262 {
2263 /* Only report a pending wait status if we pretend that this has
2264 indeed been resumed. */
2265 return (lp->status != 0 && lp->resumed);
2266 }
2267
2268 /* Return non-zero if LP isn't stopped. */
2269
2270 static int
2271 running_callback (struct lwp_info *lp, void *data)
2272 {
2273 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2274 }
2275
2276 /* Count the LWP's that have had events. */
2277
2278 static int
2279 count_events_callback (struct lwp_info *lp, void *data)
2280 {
2281 int *count = data;
2282
2283 gdb_assert (count != NULL);
2284
2285 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2286 if (lp->status != 0 && lp->resumed
2287 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2288 (*count)++;
2289
2290 return 0;
2291 }
2292
2293 /* Select the LWP (if any) that is currently being single-stepped. */
2294
2295 static int
2296 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2297 {
2298 if (lp->step && lp->status != 0)
2299 return 1;
2300 else
2301 return 0;
2302 }
2303
2304 /* Select the Nth LWP that has had a SIGTRAP event. */
2305
2306 static int
2307 select_event_lwp_callback (struct lwp_info *lp, void *data)
2308 {
2309 int *selector = data;
2310
2311 gdb_assert (selector != NULL);
2312
2313 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2314 if (lp->status != 0 && lp->resumed
2315 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2316 if ((*selector)-- == 0)
2317 return 1;
2318
2319 return 0;
2320 }
2321
2322 static int
2323 cancel_breakpoint (struct lwp_info *lp)
2324 {
2325 /* Arrange for a breakpoint to be hit again later. We don't keep
2326 the SIGTRAP status and don't forward the SIGTRAP signal to the
2327 LWP. We will handle the current event, eventually we will resume
2328 this LWP, and this breakpoint will trap again.
2329
2330 If we do not do this, then we run the risk that the user will
2331 delete or disable the breakpoint, but the LWP will have already
2332 tripped on it. */
2333
2334 struct regcache *regcache = get_thread_regcache (lp->ptid);
2335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2336 CORE_ADDR pc;
2337
2338 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2339 if (breakpoint_inserted_here_p (pc))
2340 {
2341 if (debug_linux_nat)
2342 fprintf_unfiltered (gdb_stdlog,
2343 "CB: Push back breakpoint for %s\n",
2344 target_pid_to_str (lp->ptid));
2345
2346 /* Back up the PC if necessary. */
2347 if (gdbarch_decr_pc_after_break (gdbarch))
2348 regcache_write_pc (regcache, pc);
2349
2350 return 1;
2351 }
2352 return 0;
2353 }
2354
2355 static int
2356 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2357 {
2358 struct lwp_info *event_lp = data;
2359
2360 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2361 if (lp == event_lp)
2362 return 0;
2363
2364 /* If a LWP other than the LWP that we're reporting an event for has
2365 hit a GDB breakpoint (as opposed to some random trap signal),
2366 then just arrange for it to hit it again later. We don't keep
2367 the SIGTRAP status and don't forward the SIGTRAP signal to the
2368 LWP. We will handle the current event, eventually we will resume
2369 all LWPs, and this one will get its breakpoint trap again.
2370
2371 If we do not do this, then we run the risk that the user will
2372 delete or disable the breakpoint, but the LWP will have already
2373 tripped on it. */
2374
2375 if (lp->status != 0
2376 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2377 && cancel_breakpoint (lp))
2378 /* Throw away the SIGTRAP. */
2379 lp->status = 0;
2380
2381 return 0;
2382 }
2383
2384 /* Select one LWP out of those that have events pending. */
2385
2386 static void
2387 select_event_lwp (struct lwp_info **orig_lp, int *status)
2388 {
2389 int num_events = 0;
2390 int random_selector;
2391 struct lwp_info *event_lp;
2392
2393 /* Record the wait status for the original LWP. */
2394 (*orig_lp)->status = *status;
2395
2396 /* Give preference to any LWP that is being single-stepped. */
2397 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2398 if (event_lp != NULL)
2399 {
2400 if (debug_linux_nat)
2401 fprintf_unfiltered (gdb_stdlog,
2402 "SEL: Select single-step %s\n",
2403 target_pid_to_str (event_lp->ptid));
2404 }
2405 else
2406 {
2407 /* No single-stepping LWP. Select one at random, out of those
2408 which have had SIGTRAP events. */
2409
2410 /* First see how many SIGTRAP events we have. */
2411 iterate_over_lwps (count_events_callback, &num_events);
2412
2413 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2414 random_selector = (int)
2415 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2416
2417 if (debug_linux_nat && num_events > 1)
2418 fprintf_unfiltered (gdb_stdlog,
2419 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2420 num_events, random_selector);
2421
2422 event_lp = iterate_over_lwps (select_event_lwp_callback,
2423 &random_selector);
2424 }
2425
2426 if (event_lp != NULL)
2427 {
2428 /* Switch the event LWP. */
2429 *orig_lp = event_lp;
2430 *status = event_lp->status;
2431 }
2432
2433 /* Flush the wait status for the event LWP. */
2434 (*orig_lp)->status = 0;
2435 }
2436
2437 /* Return non-zero if LP has been resumed. */
2438
2439 static int
2440 resumed_callback (struct lwp_info *lp, void *data)
2441 {
2442 return lp->resumed;
2443 }
2444
2445 /* Stop an active thread, verify it still exists, then resume it. */
2446
2447 static int
2448 stop_and_resume_callback (struct lwp_info *lp, void *data)
2449 {
2450 struct lwp_info *ptr;
2451
2452 if (!lp->stopped && !lp->signalled)
2453 {
2454 stop_callback (lp, NULL);
2455 stop_wait_callback (lp, NULL);
2456 /* Resume if the lwp still exists. */
2457 for (ptr = lwp_list; ptr; ptr = ptr->next)
2458 if (lp == ptr)
2459 {
2460 resume_callback (lp, NULL);
2461 resume_set_callback (lp, NULL);
2462 }
2463 }
2464 return 0;
2465 }
2466
2467 /* Check if we should go on and pass this event to common code.
2468 Return the affected lwp if we are, or NULL otherwise. */
2469 static struct lwp_info *
2470 linux_nat_filter_event (int lwpid, int status, int options)
2471 {
2472 struct lwp_info *lp;
2473
2474 lp = find_lwp_pid (pid_to_ptid (lwpid));
2475
2476 /* Check for stop events reported by a process we didn't already
2477 know about - anything not already in our LWP list.
2478
2479 If we're expecting to receive stopped processes after
2480 fork, vfork, and clone events, then we'll just add the
2481 new one to our list and go back to waiting for the event
2482 to be reported - the stopped process might be returned
2483 from waitpid before or after the event is. */
2484 if (WIFSTOPPED (status) && !lp)
2485 {
2486 linux_record_stopped_pid (lwpid, status);
2487 return NULL;
2488 }
2489
2490 /* Make sure we don't report an event for the exit of an LWP not in
2491 our list, i.e. not part of the current process. This can happen
2492 if we detach from a program we original forked and then it
2493 exits. */
2494 if (!WIFSTOPPED (status) && !lp)
2495 return NULL;
2496
2497 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2498 CLONE_PTRACE processes which do not use the thread library -
2499 otherwise we wouldn't find the new LWP this way. That doesn't
2500 currently work, and the following code is currently unreachable
2501 due to the two blocks above. If it's fixed some day, this code
2502 should be broken out into a function so that we can also pick up
2503 LWPs from the new interface. */
2504 if (!lp)
2505 {
2506 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2507 if (options & __WCLONE)
2508 lp->cloned = 1;
2509
2510 gdb_assert (WIFSTOPPED (status)
2511 && WSTOPSIG (status) == SIGSTOP);
2512 lp->signalled = 1;
2513
2514 if (!in_thread_list (inferior_ptid))
2515 {
2516 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2517 GET_PID (inferior_ptid));
2518 add_thread (inferior_ptid);
2519 }
2520
2521 add_thread (lp->ptid);
2522 }
2523
2524 /* Save the trap's siginfo in case we need it later. */
2525 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2526 save_siginfo (lp);
2527
2528 /* Handle GNU/Linux's extended waitstatus for trace events. */
2529 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2530 {
2531 if (debug_linux_nat)
2532 fprintf_unfiltered (gdb_stdlog,
2533 "LLW: Handling extended status 0x%06x\n",
2534 status);
2535 if (linux_handle_extended_wait (lp, status, 0))
2536 return NULL;
2537 }
2538
2539 /* Check if the thread has exited. */
2540 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2541 {
2542 /* If this is the main thread, we must stop all threads and
2543 verify if they are still alive. This is because in the nptl
2544 thread model, there is no signal issued for exiting LWPs
2545 other than the main thread. We only get the main thread exit
2546 signal once all child threads have already exited. If we
2547 stop all the threads and use the stop_wait_callback to check
2548 if they have exited we can determine whether this signal
2549 should be ignored or whether it means the end of the debugged
2550 application, regardless of which threading model is being
2551 used. */
2552 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2553 {
2554 lp->stopped = 1;
2555 iterate_over_lwps (stop_and_resume_callback, NULL);
2556 }
2557
2558 if (debug_linux_nat)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "LLW: %s exited.\n",
2561 target_pid_to_str (lp->ptid));
2562
2563 exit_lwp (lp);
2564
2565 /* If there is at least one more LWP, then the exit signal was
2566 not the end of the debugged application and should be
2567 ignored. */
2568 if (num_lwps > 0)
2569 return NULL;
2570 }
2571
2572 /* Check if the current LWP has previously exited. In the nptl
2573 thread model, LWPs other than the main thread do not issue
2574 signals when they exit so we must check whenever the thread has
2575 stopped. A similar check is made in stop_wait_callback(). */
2576 if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
2577 {
2578 if (debug_linux_nat)
2579 fprintf_unfiltered (gdb_stdlog,
2580 "LLW: %s exited.\n",
2581 target_pid_to_str (lp->ptid));
2582
2583 exit_lwp (lp);
2584
2585 /* Make sure there is at least one thread running. */
2586 gdb_assert (iterate_over_lwps (running_callback, NULL));
2587
2588 /* Discard the event. */
2589 return NULL;
2590 }
2591
2592 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2593 an attempt to stop an LWP. */
2594 if (lp->signalled
2595 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2596 {
2597 if (debug_linux_nat)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "LLW: Delayed SIGSTOP caught for %s.\n",
2600 target_pid_to_str (lp->ptid));
2601
2602 /* This is a delayed SIGSTOP. */
2603 lp->signalled = 0;
2604
2605 registers_changed ();
2606
2607 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2608 lp->step, TARGET_SIGNAL_0);
2609 if (debug_linux_nat)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2612 lp->step ?
2613 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2614 target_pid_to_str (lp->ptid));
2615
2616 lp->stopped = 0;
2617 gdb_assert (lp->resumed);
2618
2619 /* Discard the event. */
2620 return NULL;
2621 }
2622
2623 /* Make sure we don't report a SIGINT that we have already displayed
2624 for another thread. */
2625 if (lp->ignore_sigint
2626 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2627 {
2628 if (debug_linux_nat)
2629 fprintf_unfiltered (gdb_stdlog,
2630 "LLW: Delayed SIGINT caught for %s.\n",
2631 target_pid_to_str (lp->ptid));
2632
2633 /* This is a delayed SIGINT. */
2634 lp->ignore_sigint = 0;
2635
2636 registers_changed ();
2637 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2638 lp->step, TARGET_SIGNAL_0);
2639 if (debug_linux_nat)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2642 lp->step ?
2643 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2644 target_pid_to_str (lp->ptid));
2645
2646 lp->stopped = 0;
2647 gdb_assert (lp->resumed);
2648
2649 /* Discard the event. */
2650 return NULL;
2651 }
2652
2653 /* An interesting event. */
2654 gdb_assert (lp);
2655 return lp;
2656 }
2657
2658 /* Get the events stored in the pipe into the local queue, so they are
2659 accessible to queued_waitpid. We need to do this, since it is not
2660 always the case that the event at the head of the pipe is the event
2661 we want. */
2662
2663 static void
2664 pipe_to_local_event_queue (void)
2665 {
2666 if (debug_linux_nat_async)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2669 linux_nat_num_queued_events);
2670 while (linux_nat_num_queued_events)
2671 {
2672 int lwpid, status, options;
2673 lwpid = linux_nat_event_pipe_pop (&status, &options);
2674 gdb_assert (lwpid > 0);
2675 push_waitpid (lwpid, status, options);
2676 }
2677 }
2678
2679 /* Get the unprocessed events stored in the local queue back into the
2680 pipe, so the event loop realizes there's something else to
2681 process. */
2682
2683 static void
2684 local_event_queue_to_pipe (void)
2685 {
2686 struct waitpid_result *w = waitpid_queue;
2687 while (w)
2688 {
2689 struct waitpid_result *next = w->next;
2690 linux_nat_event_pipe_push (w->pid,
2691 w->status,
2692 w->options);
2693 xfree (w);
2694 w = next;
2695 }
2696 waitpid_queue = NULL;
2697
2698 if (debug_linux_nat_async)
2699 fprintf_unfiltered (gdb_stdlog,
2700 "LEQTP: linux_nat_num_queued_events(%d)\n",
2701 linux_nat_num_queued_events);
2702 }
2703
2704 static ptid_t
2705 linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
2706 {
2707 struct lwp_info *lp = NULL;
2708 int options = 0;
2709 int status = 0;
2710 pid_t pid = PIDGET (ptid);
2711
2712 if (debug_linux_nat_async)
2713 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2714
2715 /* The first time we get here after starting a new inferior, we may
2716 not have added it to the LWP list yet - this is the earliest
2717 moment at which we know its PID. */
2718 if (num_lwps == 0)
2719 {
2720 gdb_assert (!is_lwp (inferior_ptid));
2721
2722 /* Upgrade the main thread's ptid. */
2723 thread_change_ptid (inferior_ptid,
2724 BUILD_LWP (GET_PID (inferior_ptid),
2725 GET_PID (inferior_ptid)));
2726
2727 lp = add_lwp (inferior_ptid);
2728 lp->resumed = 1;
2729 }
2730
2731 /* Block events while we're here. */
2732 linux_nat_async_events (sigchld_sync);
2733
2734 retry:
2735
2736 /* Make sure there is at least one LWP that has been resumed. */
2737 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
2738
2739 /* First check if there is a LWP with a wait status pending. */
2740 if (pid == -1)
2741 {
2742 /* Any LWP that's been resumed will do. */
2743 lp = iterate_over_lwps (status_callback, NULL);
2744 if (lp)
2745 {
2746 if (target_can_async_p ())
2747 internal_error (__FILE__, __LINE__,
2748 "Found an LWP with a pending status in async mode.");
2749
2750 status = lp->status;
2751 lp->status = 0;
2752
2753 if (debug_linux_nat && status)
2754 fprintf_unfiltered (gdb_stdlog,
2755 "LLW: Using pending wait status %s for %s.\n",
2756 status_to_str (status),
2757 target_pid_to_str (lp->ptid));
2758 }
2759
2760 /* But if we don't find one, we'll have to wait, and check both
2761 cloned and uncloned processes. We start with the cloned
2762 processes. */
2763 options = __WCLONE | WNOHANG;
2764 }
2765 else if (is_lwp (ptid))
2766 {
2767 if (debug_linux_nat)
2768 fprintf_unfiltered (gdb_stdlog,
2769 "LLW: Waiting for specific LWP %s.\n",
2770 target_pid_to_str (ptid));
2771
2772 /* We have a specific LWP to check. */
2773 lp = find_lwp_pid (ptid);
2774 gdb_assert (lp);
2775 status = lp->status;
2776 lp->status = 0;
2777
2778 if (debug_linux_nat && status)
2779 fprintf_unfiltered (gdb_stdlog,
2780 "LLW: Using pending wait status %s for %s.\n",
2781 status_to_str (status),
2782 target_pid_to_str (lp->ptid));
2783
2784 /* If we have to wait, take into account whether PID is a cloned
2785 process or not. And we have to convert it to something that
2786 the layer beneath us can understand. */
2787 options = lp->cloned ? __WCLONE : 0;
2788 pid = GET_LWP (ptid);
2789 }
2790
2791 if (status && lp->signalled)
2792 {
2793 /* A pending SIGSTOP may interfere with the normal stream of
2794 events. In a typical case where interference is a problem,
2795 we have a SIGSTOP signal pending for LWP A while
2796 single-stepping it, encounter an event in LWP B, and take the
2797 pending SIGSTOP while trying to stop LWP A. After processing
2798 the event in LWP B, LWP A is continued, and we'll never see
2799 the SIGTRAP associated with the last time we were
2800 single-stepping LWP A. */
2801
2802 /* Resume the thread. It should halt immediately returning the
2803 pending SIGSTOP. */
2804 registers_changed ();
2805 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2806 lp->step, TARGET_SIGNAL_0);
2807 if (debug_linux_nat)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2810 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2811 target_pid_to_str (lp->ptid));
2812 lp->stopped = 0;
2813 gdb_assert (lp->resumed);
2814
2815 /* This should catch the pending SIGSTOP. */
2816 stop_wait_callback (lp, NULL);
2817 }
2818
2819 if (!target_can_async_p ())
2820 {
2821 /* Causes SIGINT to be passed on to the attached process. */
2822 set_sigint_trap ();
2823 set_sigio_trap ();
2824 }
2825
2826 while (status == 0)
2827 {
2828 pid_t lwpid;
2829
2830 if (target_can_async_p ())
2831 /* In async mode, don't ever block. Only look at the locally
2832 queued events. */
2833 lwpid = queued_waitpid (pid, &status, options);
2834 else
2835 lwpid = my_waitpid (pid, &status, options);
2836
2837 if (lwpid > 0)
2838 {
2839 gdb_assert (pid == -1 || lwpid == pid);
2840
2841 if (debug_linux_nat)
2842 {
2843 fprintf_unfiltered (gdb_stdlog,
2844 "LLW: waitpid %ld received %s\n",
2845 (long) lwpid, status_to_str (status));
2846 }
2847
2848 lp = linux_nat_filter_event (lwpid, status, options);
2849 if (!lp)
2850 {
2851 /* A discarded event. */
2852 status = 0;
2853 continue;
2854 }
2855
2856 break;
2857 }
2858
2859 if (pid == -1)
2860 {
2861 /* Alternate between checking cloned and uncloned processes. */
2862 options ^= __WCLONE;
2863
2864 /* And every time we have checked both:
2865 In async mode, return to event loop;
2866 In sync mode, suspend waiting for a SIGCHLD signal. */
2867 if (options & __WCLONE)
2868 {
2869 if (target_can_async_p ())
2870 {
2871 /* No interesting event. */
2872 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2873
2874 /* Get ready for the next event. */
2875 target_async (inferior_event_handler, 0);
2876
2877 if (debug_linux_nat_async)
2878 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2879
2880 return minus_one_ptid;
2881 }
2882
2883 sigsuspend (&suspend_mask);
2884 }
2885 }
2886
2887 /* We shouldn't end up here unless we want to try again. */
2888 gdb_assert (status == 0);
2889 }
2890
2891 if (!target_can_async_p ())
2892 {
2893 clear_sigio_trap ();
2894 clear_sigint_trap ();
2895 }
2896
2897 gdb_assert (lp);
2898
2899 /* Don't report signals that GDB isn't interested in, such as
2900 signals that are neither printed nor stopped upon. Stopping all
2901 threads can be a bit time-consuming so if we want decent
2902 performance with heavily multi-threaded programs, especially when
2903 they're using a high frequency timer, we'd better avoid it if we
2904 can. */
2905
2906 if (WIFSTOPPED (status))
2907 {
2908 int signo = target_signal_from_host (WSTOPSIG (status));
2909
2910 /* If we get a signal while single-stepping, we may need special
2911 care, e.g. to skip the signal handler. Defer to common code. */
2912 if (!lp->step
2913 && signal_stop_state (signo) == 0
2914 && signal_print_state (signo) == 0
2915 && signal_pass_state (signo) == 1)
2916 {
2917 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
2918 here? It is not clear we should. GDB may not expect
2919 other threads to run. On the other hand, not resuming
2920 newly attached threads may cause an unwanted delay in
2921 getting them running. */
2922 registers_changed ();
2923 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2924 lp->step, signo);
2925 if (debug_linux_nat)
2926 fprintf_unfiltered (gdb_stdlog,
2927 "LLW: %s %s, %s (preempt 'handle')\n",
2928 lp->step ?
2929 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2930 target_pid_to_str (lp->ptid),
2931 signo ? strsignal (signo) : "0");
2932 lp->stopped = 0;
2933 status = 0;
2934 goto retry;
2935 }
2936
2937 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
2938 {
2939 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2940 forwarded to the entire process group, that is, all LWPs
2941 will receive it - unless they're using CLONE_THREAD to
2942 share signals. Since we only want to report it once, we
2943 mark it as ignored for all LWPs except this one. */
2944 iterate_over_lwps (set_ignore_sigint, NULL);
2945 lp->ignore_sigint = 0;
2946 }
2947 else
2948 maybe_clear_ignore_sigint (lp);
2949 }
2950
2951 /* This LWP is stopped now. */
2952 lp->stopped = 1;
2953
2954 if (debug_linux_nat)
2955 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
2956 status_to_str (status), target_pid_to_str (lp->ptid));
2957
2958 if (!non_stop)
2959 {
2960 /* Now stop all other LWP's ... */
2961 iterate_over_lwps (stop_callback, NULL);
2962
2963 /* ... and wait until all of them have reported back that
2964 they're no longer running. */
2965 iterate_over_lwps (stop_wait_callback, NULL);
2966
2967 /* If we're not waiting for a specific LWP, choose an event LWP
2968 from among those that have had events. Giving equal priority
2969 to all LWPs that have had events helps prevent
2970 starvation. */
2971 if (pid == -1)
2972 select_event_lwp (&lp, &status);
2973 }
2974
2975 /* Now that we've selected our final event LWP, cancel any
2976 breakpoints in other LWPs that have hit a GDB breakpoint. See
2977 the comment in cancel_breakpoints_callback to find out why. */
2978 iterate_over_lwps (cancel_breakpoints_callback, lp);
2979
2980 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2981 {
2982 if (debug_linux_nat)
2983 fprintf_unfiltered (gdb_stdlog,
2984 "LLW: trap ptid is %s.\n",
2985 target_pid_to_str (lp->ptid));
2986 }
2987
2988 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2989 {
2990 *ourstatus = lp->waitstatus;
2991 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
2992 }
2993 else
2994 store_waitstatus (ourstatus, status);
2995
2996 /* Get ready for the next event. */
2997 if (target_can_async_p ())
2998 target_async (inferior_event_handler, 0);
2999
3000 if (debug_linux_nat_async)
3001 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3002
3003 return lp->ptid;
3004 }
3005
3006 static int
3007 kill_callback (struct lwp_info *lp, void *data)
3008 {
3009 errno = 0;
3010 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3011 if (debug_linux_nat)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3014 target_pid_to_str (lp->ptid),
3015 errno ? safe_strerror (errno) : "OK");
3016
3017 return 0;
3018 }
3019
3020 static int
3021 kill_wait_callback (struct lwp_info *lp, void *data)
3022 {
3023 pid_t pid;
3024
3025 /* We must make sure that there are no pending events (delayed
3026 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3027 program doesn't interfere with any following debugging session. */
3028
3029 /* For cloned processes we must check both with __WCLONE and
3030 without, since the exit status of a cloned process isn't reported
3031 with __WCLONE. */
3032 if (lp->cloned)
3033 {
3034 do
3035 {
3036 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3037 if (pid != (pid_t) -1)
3038 {
3039 if (debug_linux_nat)
3040 fprintf_unfiltered (gdb_stdlog,
3041 "KWC: wait %s received unknown.\n",
3042 target_pid_to_str (lp->ptid));
3043 /* The Linux kernel sometimes fails to kill a thread
3044 completely after PTRACE_KILL; that goes from the stop
3045 point in do_fork out to the one in
3046 get_signal_to_deliever and waits again. So kill it
3047 again. */
3048 kill_callback (lp, NULL);
3049 }
3050 }
3051 while (pid == GET_LWP (lp->ptid));
3052
3053 gdb_assert (pid == -1 && errno == ECHILD);
3054 }
3055
3056 do
3057 {
3058 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3059 if (pid != (pid_t) -1)
3060 {
3061 if (debug_linux_nat)
3062 fprintf_unfiltered (gdb_stdlog,
3063 "KWC: wait %s received unk.\n",
3064 target_pid_to_str (lp->ptid));
3065 /* See the call to kill_callback above. */
3066 kill_callback (lp, NULL);
3067 }
3068 }
3069 while (pid == GET_LWP (lp->ptid));
3070
3071 gdb_assert (pid == -1 && errno == ECHILD);
3072 return 0;
3073 }
3074
3075 static void
3076 linux_nat_kill (void)
3077 {
3078 struct target_waitstatus last;
3079 ptid_t last_ptid;
3080 int status;
3081
3082 if (target_can_async_p ())
3083 target_async (NULL, 0);
3084
3085 /* If we're stopped while forking and we haven't followed yet,
3086 kill the other task. We need to do this first because the
3087 parent will be sleeping if this is a vfork. */
3088
3089 get_last_target_status (&last_ptid, &last);
3090
3091 if (last.kind == TARGET_WAITKIND_FORKED
3092 || last.kind == TARGET_WAITKIND_VFORKED)
3093 {
3094 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3095 wait (&status);
3096 }
3097
3098 if (forks_exist_p ())
3099 {
3100 linux_fork_killall ();
3101 drain_queued_events (-1);
3102 }
3103 else
3104 {
3105 /* Stop all threads before killing them, since ptrace requires
3106 that the thread is stopped to sucessfully PTRACE_KILL. */
3107 iterate_over_lwps (stop_callback, NULL);
3108 /* ... and wait until all of them have reported back that
3109 they're no longer running. */
3110 iterate_over_lwps (stop_wait_callback, NULL);
3111
3112 /* Kill all LWP's ... */
3113 iterate_over_lwps (kill_callback, NULL);
3114
3115 /* ... and wait until we've flushed all events. */
3116 iterate_over_lwps (kill_wait_callback, NULL);
3117 }
3118
3119 target_mourn_inferior ();
3120 }
3121
3122 static void
3123 linux_nat_mourn_inferior (void)
3124 {
3125 /* Destroy LWP info; it's no longer valid. */
3126 init_lwp_list ();
3127
3128 if (! forks_exist_p ())
3129 {
3130 /* Normal case, no other forks available. */
3131 if (target_can_async_p ())
3132 linux_nat_async (NULL, 0);
3133 linux_ops->to_mourn_inferior ();
3134 }
3135 else
3136 /* Multi-fork case. The current inferior_ptid has exited, but
3137 there are other viable forks to debug. Delete the exiting
3138 one and context-switch to the first available. */
3139 linux_fork_mourn_inferior ();
3140 }
3141
3142 static LONGEST
3143 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3144 const char *annex, gdb_byte *readbuf,
3145 const gdb_byte *writebuf,
3146 ULONGEST offset, LONGEST len)
3147 {
3148 struct cleanup *old_chain = save_inferior_ptid ();
3149 LONGEST xfer;
3150
3151 if (is_lwp (inferior_ptid))
3152 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3153
3154 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3155 offset, len);
3156
3157 do_cleanups (old_chain);
3158 return xfer;
3159 }
3160
3161 static int
3162 linux_nat_thread_alive (ptid_t ptid)
3163 {
3164 int err;
3165
3166 gdb_assert (is_lwp (ptid));
3167
3168 /* Send signal 0 instead of anything ptrace, because ptracing a
3169 running thread errors out claiming that the thread doesn't
3170 exist. */
3171 err = kill_lwp (GET_LWP (ptid), 0);
3172
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "LLTA: KILL(SIG0) %s (%s)\n",
3176 target_pid_to_str (ptid),
3177 err ? safe_strerror (err) : "OK");
3178
3179 if (err != 0)
3180 return 0;
3181
3182 return 1;
3183 }
3184
3185 static char *
3186 linux_nat_pid_to_str (ptid_t ptid)
3187 {
3188 static char buf[64];
3189
3190 if (is_lwp (ptid)
3191 && ((lwp_list && lwp_list->next)
3192 || GET_PID (ptid) != GET_LWP (ptid)))
3193 {
3194 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3195 return buf;
3196 }
3197
3198 return normal_pid_to_str (ptid);
3199 }
3200
3201 static void
3202 sigchld_handler (int signo)
3203 {
3204 if (target_async_permitted
3205 && linux_nat_async_events_state != sigchld_sync
3206 && signo == SIGCHLD)
3207 /* It is *always* a bug to hit this. */
3208 internal_error (__FILE__, __LINE__,
3209 "sigchld_handler called when async events are enabled");
3210
3211 /* Do nothing. The only reason for this handler is that it allows
3212 us to use sigsuspend in linux_nat_wait above to wait for the
3213 arrival of a SIGCHLD. */
3214 }
3215
3216 /* Accepts an integer PID; Returns a string representing a file that
3217 can be opened to get the symbols for the child process. */
3218
3219 static char *
3220 linux_child_pid_to_exec_file (int pid)
3221 {
3222 char *name1, *name2;
3223
3224 name1 = xmalloc (MAXPATHLEN);
3225 name2 = xmalloc (MAXPATHLEN);
3226 make_cleanup (xfree, name1);
3227 make_cleanup (xfree, name2);
3228 memset (name2, 0, MAXPATHLEN);
3229
3230 sprintf (name1, "/proc/%d/exe", pid);
3231 if (readlink (name1, name2, MAXPATHLEN) > 0)
3232 return name2;
3233 else
3234 return name1;
3235 }
3236
3237 /* Service function for corefiles and info proc. */
3238
3239 static int
3240 read_mapping (FILE *mapfile,
3241 long long *addr,
3242 long long *endaddr,
3243 char *permissions,
3244 long long *offset,
3245 char *device, long long *inode, char *filename)
3246 {
3247 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3248 addr, endaddr, permissions, offset, device, inode);
3249
3250 filename[0] = '\0';
3251 if (ret > 0 && ret != EOF)
3252 {
3253 /* Eat everything up to EOL for the filename. This will prevent
3254 weird filenames (such as one with embedded whitespace) from
3255 confusing this code. It also makes this code more robust in
3256 respect to annotations the kernel may add after the filename.
3257
3258 Note the filename is used for informational purposes
3259 only. */
3260 ret += fscanf (mapfile, "%[^\n]\n", filename);
3261 }
3262
3263 return (ret != 0 && ret != EOF);
3264 }
3265
3266 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3267 regions in the inferior for a corefile. */
3268
3269 static int
3270 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3271 unsigned long,
3272 int, int, int, void *), void *obfd)
3273 {
3274 long long pid = PIDGET (inferior_ptid);
3275 char mapsfilename[MAXPATHLEN];
3276 FILE *mapsfile;
3277 long long addr, endaddr, size, offset, inode;
3278 char permissions[8], device[8], filename[MAXPATHLEN];
3279 int read, write, exec;
3280 int ret;
3281
3282 /* Compose the filename for the /proc memory map, and open it. */
3283 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3284 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3285 error (_("Could not open %s."), mapsfilename);
3286
3287 if (info_verbose)
3288 fprintf_filtered (gdb_stdout,
3289 "Reading memory regions from %s\n", mapsfilename);
3290
3291 /* Now iterate until end-of-file. */
3292 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3293 &offset, &device[0], &inode, &filename[0]))
3294 {
3295 size = endaddr - addr;
3296
3297 /* Get the segment's permissions. */
3298 read = (strchr (permissions, 'r') != 0);
3299 write = (strchr (permissions, 'w') != 0);
3300 exec = (strchr (permissions, 'x') != 0);
3301
3302 if (info_verbose)
3303 {
3304 fprintf_filtered (gdb_stdout,
3305 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3306 size, paddr_nz (addr),
3307 read ? 'r' : ' ',
3308 write ? 'w' : ' ', exec ? 'x' : ' ');
3309 if (filename[0])
3310 fprintf_filtered (gdb_stdout, " for %s", filename);
3311 fprintf_filtered (gdb_stdout, "\n");
3312 }
3313
3314 /* Invoke the callback function to create the corefile
3315 segment. */
3316 func (addr, size, read, write, exec, obfd);
3317 }
3318 fclose (mapsfile);
3319 return 0;
3320 }
3321
3322 /* Records the thread's register state for the corefile note
3323 section. */
3324
3325 static char *
3326 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3327 char *note_data, int *note_size)
3328 {
3329 gdb_gregset_t gregs;
3330 gdb_fpregset_t fpregs;
3331 unsigned long lwp = ptid_get_lwp (ptid);
3332 struct regcache *regcache = get_thread_regcache (ptid);
3333 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3334 const struct regset *regset;
3335 int core_regset_p;
3336 struct cleanup *old_chain;
3337 struct core_regset_section *sect_list;
3338 char *gdb_regset;
3339
3340 old_chain = save_inferior_ptid ();
3341 inferior_ptid = ptid;
3342 target_fetch_registers (regcache, -1);
3343 do_cleanups (old_chain);
3344
3345 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3346 sect_list = gdbarch_core_regset_sections (gdbarch);
3347
3348 if (core_regset_p
3349 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3350 sizeof (gregs))) != NULL
3351 && regset->collect_regset != NULL)
3352 regset->collect_regset (regset, regcache, -1,
3353 &gregs, sizeof (gregs));
3354 else
3355 fill_gregset (regcache, &gregs, -1);
3356
3357 note_data = (char *) elfcore_write_prstatus (obfd,
3358 note_data,
3359 note_size,
3360 lwp,
3361 stop_signal, &gregs);
3362
3363 /* The loop below uses the new struct core_regset_section, which stores
3364 the supported section names and sizes for the core file. Note that
3365 note PRSTATUS needs to be treated specially. But the other notes are
3366 structurally the same, so they can benefit from the new struct. */
3367 if (core_regset_p && sect_list != NULL)
3368 while (sect_list->sect_name != NULL)
3369 {
3370 /* .reg was already handled above. */
3371 if (strcmp (sect_list->sect_name, ".reg") == 0)
3372 {
3373 sect_list++;
3374 continue;
3375 }
3376 regset = gdbarch_regset_from_core_section (gdbarch,
3377 sect_list->sect_name,
3378 sect_list->size);
3379 gdb_assert (regset && regset->collect_regset);
3380 gdb_regset = xmalloc (sect_list->size);
3381 regset->collect_regset (regset, regcache, -1,
3382 gdb_regset, sect_list->size);
3383 note_data = (char *) elfcore_write_register_note (obfd,
3384 note_data,
3385 note_size,
3386 sect_list->sect_name,
3387 gdb_regset,
3388 sect_list->size);
3389 xfree (gdb_regset);
3390 sect_list++;
3391 }
3392
3393 /* For architectures that does not have the struct core_regset_section
3394 implemented, we use the old method. When all the architectures have
3395 the new support, the code below should be deleted. */
3396 else
3397 {
3398 if (core_regset_p
3399 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3400 sizeof (fpregs))) != NULL
3401 && regset->collect_regset != NULL)
3402 regset->collect_regset (regset, regcache, -1,
3403 &fpregs, sizeof (fpregs));
3404 else
3405 fill_fpregset (regcache, &fpregs, -1);
3406
3407 note_data = (char *) elfcore_write_prfpreg (obfd,
3408 note_data,
3409 note_size,
3410 &fpregs, sizeof (fpregs));
3411 }
3412
3413 return note_data;
3414 }
3415
3416 struct linux_nat_corefile_thread_data
3417 {
3418 bfd *obfd;
3419 char *note_data;
3420 int *note_size;
3421 int num_notes;
3422 };
3423
3424 /* Called by gdbthread.c once per thread. Records the thread's
3425 register state for the corefile note section. */
3426
3427 static int
3428 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3429 {
3430 struct linux_nat_corefile_thread_data *args = data;
3431
3432 args->note_data = linux_nat_do_thread_registers (args->obfd,
3433 ti->ptid,
3434 args->note_data,
3435 args->note_size);
3436 args->num_notes++;
3437
3438 return 0;
3439 }
3440
3441 /* Records the register state for the corefile note section. */
3442
3443 static char *
3444 linux_nat_do_registers (bfd *obfd, ptid_t ptid,
3445 char *note_data, int *note_size)
3446 {
3447 return linux_nat_do_thread_registers (obfd,
3448 ptid_build (ptid_get_pid (inferior_ptid),
3449 ptid_get_pid (inferior_ptid),
3450 0),
3451 note_data, note_size);
3452 }
3453
3454 /* Fills the "to_make_corefile_note" target vector. Builds the note
3455 section for a corefile, and returns it in a malloc buffer. */
3456
3457 static char *
3458 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3459 {
3460 struct linux_nat_corefile_thread_data thread_args;
3461 struct cleanup *old_chain;
3462 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3463 char fname[16] = { '\0' };
3464 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3465 char psargs[80] = { '\0' };
3466 char *note_data = NULL;
3467 ptid_t current_ptid = inferior_ptid;
3468 gdb_byte *auxv;
3469 int auxv_len;
3470
3471 if (get_exec_file (0))
3472 {
3473 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3474 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3475 if (get_inferior_args ())
3476 {
3477 char *string_end;
3478 char *psargs_end = psargs + sizeof (psargs);
3479
3480 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3481 strings fine. */
3482 string_end = memchr (psargs, 0, sizeof (psargs));
3483 if (string_end != NULL)
3484 {
3485 *string_end++ = ' ';
3486 strncpy (string_end, get_inferior_args (),
3487 psargs_end - string_end);
3488 }
3489 }
3490 note_data = (char *) elfcore_write_prpsinfo (obfd,
3491 note_data,
3492 note_size, fname, psargs);
3493 }
3494
3495 /* Dump information for threads. */
3496 thread_args.obfd = obfd;
3497 thread_args.note_data = note_data;
3498 thread_args.note_size = note_size;
3499 thread_args.num_notes = 0;
3500 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3501 if (thread_args.num_notes == 0)
3502 {
3503 /* iterate_over_threads didn't come up with any threads; just
3504 use inferior_ptid. */
3505 note_data = linux_nat_do_registers (obfd, inferior_ptid,
3506 note_data, note_size);
3507 }
3508 else
3509 {
3510 note_data = thread_args.note_data;
3511 }
3512
3513 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3514 NULL, &auxv);
3515 if (auxv_len > 0)
3516 {
3517 note_data = elfcore_write_note (obfd, note_data, note_size,
3518 "CORE", NT_AUXV, auxv, auxv_len);
3519 xfree (auxv);
3520 }
3521
3522 make_cleanup (xfree, note_data);
3523 return note_data;
3524 }
3525
3526 /* Implement the "info proc" command. */
3527
3528 static void
3529 linux_nat_info_proc_cmd (char *args, int from_tty)
3530 {
3531 long long pid = PIDGET (inferior_ptid);
3532 FILE *procfile;
3533 char **argv = NULL;
3534 char buffer[MAXPATHLEN];
3535 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3536 int cmdline_f = 1;
3537 int cwd_f = 1;
3538 int exe_f = 1;
3539 int mappings_f = 0;
3540 int environ_f = 0;
3541 int status_f = 0;
3542 int stat_f = 0;
3543 int all = 0;
3544 struct stat dummy;
3545
3546 if (args)
3547 {
3548 /* Break up 'args' into an argv array. */
3549 if ((argv = buildargv (args)) == NULL)
3550 nomem (0);
3551 else
3552 make_cleanup_freeargv (argv);
3553 }
3554 while (argv != NULL && *argv != NULL)
3555 {
3556 if (isdigit (argv[0][0]))
3557 {
3558 pid = strtoul (argv[0], NULL, 10);
3559 }
3560 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3561 {
3562 mappings_f = 1;
3563 }
3564 else if (strcmp (argv[0], "status") == 0)
3565 {
3566 status_f = 1;
3567 }
3568 else if (strcmp (argv[0], "stat") == 0)
3569 {
3570 stat_f = 1;
3571 }
3572 else if (strcmp (argv[0], "cmd") == 0)
3573 {
3574 cmdline_f = 1;
3575 }
3576 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3577 {
3578 exe_f = 1;
3579 }
3580 else if (strcmp (argv[0], "cwd") == 0)
3581 {
3582 cwd_f = 1;
3583 }
3584 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3585 {
3586 all = 1;
3587 }
3588 else
3589 {
3590 /* [...] (future options here) */
3591 }
3592 argv++;
3593 }
3594 if (pid == 0)
3595 error (_("No current process: you must name one."));
3596
3597 sprintf (fname1, "/proc/%lld", pid);
3598 if (stat (fname1, &dummy) != 0)
3599 error (_("No /proc directory: '%s'"), fname1);
3600
3601 printf_filtered (_("process %lld\n"), pid);
3602 if (cmdline_f || all)
3603 {
3604 sprintf (fname1, "/proc/%lld/cmdline", pid);
3605 if ((procfile = fopen (fname1, "r")) != NULL)
3606 {
3607 fgets (buffer, sizeof (buffer), procfile);
3608 printf_filtered ("cmdline = '%s'\n", buffer);
3609 fclose (procfile);
3610 }
3611 else
3612 warning (_("unable to open /proc file '%s'"), fname1);
3613 }
3614 if (cwd_f || all)
3615 {
3616 sprintf (fname1, "/proc/%lld/cwd", pid);
3617 memset (fname2, 0, sizeof (fname2));
3618 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3619 printf_filtered ("cwd = '%s'\n", fname2);
3620 else
3621 warning (_("unable to read link '%s'"), fname1);
3622 }
3623 if (exe_f || all)
3624 {
3625 sprintf (fname1, "/proc/%lld/exe", pid);
3626 memset (fname2, 0, sizeof (fname2));
3627 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3628 printf_filtered ("exe = '%s'\n", fname2);
3629 else
3630 warning (_("unable to read link '%s'"), fname1);
3631 }
3632 if (mappings_f || all)
3633 {
3634 sprintf (fname1, "/proc/%lld/maps", pid);
3635 if ((procfile = fopen (fname1, "r")) != NULL)
3636 {
3637 long long addr, endaddr, size, offset, inode;
3638 char permissions[8], device[8], filename[MAXPATHLEN];
3639
3640 printf_filtered (_("Mapped address spaces:\n\n"));
3641 if (gdbarch_addr_bit (current_gdbarch) == 32)
3642 {
3643 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3644 "Start Addr",
3645 " End Addr",
3646 " Size", " Offset", "objfile");
3647 }
3648 else
3649 {
3650 printf_filtered (" %18s %18s %10s %10s %7s\n",
3651 "Start Addr",
3652 " End Addr",
3653 " Size", " Offset", "objfile");
3654 }
3655
3656 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3657 &offset, &device[0], &inode, &filename[0]))
3658 {
3659 size = endaddr - addr;
3660
3661 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3662 calls here (and possibly above) should be abstracted
3663 out into their own functions? Andrew suggests using
3664 a generic local_address_string instead to print out
3665 the addresses; that makes sense to me, too. */
3666
3667 if (gdbarch_addr_bit (current_gdbarch) == 32)
3668 {
3669 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3670 (unsigned long) addr, /* FIXME: pr_addr */
3671 (unsigned long) endaddr,
3672 (int) size,
3673 (unsigned int) offset,
3674 filename[0] ? filename : "");
3675 }
3676 else
3677 {
3678 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3679 (unsigned long) addr, /* FIXME: pr_addr */
3680 (unsigned long) endaddr,
3681 (int) size,
3682 (unsigned int) offset,
3683 filename[0] ? filename : "");
3684 }
3685 }
3686
3687 fclose (procfile);
3688 }
3689 else
3690 warning (_("unable to open /proc file '%s'"), fname1);
3691 }
3692 if (status_f || all)
3693 {
3694 sprintf (fname1, "/proc/%lld/status", pid);
3695 if ((procfile = fopen (fname1, "r")) != NULL)
3696 {
3697 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3698 puts_filtered (buffer);
3699 fclose (procfile);
3700 }
3701 else
3702 warning (_("unable to open /proc file '%s'"), fname1);
3703 }
3704 if (stat_f || all)
3705 {
3706 sprintf (fname1, "/proc/%lld/stat", pid);
3707 if ((procfile = fopen (fname1, "r")) != NULL)
3708 {
3709 int itmp;
3710 char ctmp;
3711 long ltmp;
3712
3713 if (fscanf (procfile, "%d ", &itmp) > 0)
3714 printf_filtered (_("Process: %d\n"), itmp);
3715 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
3716 printf_filtered (_("Exec file: %s\n"), buffer);
3717 if (fscanf (procfile, "%c ", &ctmp) > 0)
3718 printf_filtered (_("State: %c\n"), ctmp);
3719 if (fscanf (procfile, "%d ", &itmp) > 0)
3720 printf_filtered (_("Parent process: %d\n"), itmp);
3721 if (fscanf (procfile, "%d ", &itmp) > 0)
3722 printf_filtered (_("Process group: %d\n"), itmp);
3723 if (fscanf (procfile, "%d ", &itmp) > 0)
3724 printf_filtered (_("Session id: %d\n"), itmp);
3725 if (fscanf (procfile, "%d ", &itmp) > 0)
3726 printf_filtered (_("TTY: %d\n"), itmp);
3727 if (fscanf (procfile, "%d ", &itmp) > 0)
3728 printf_filtered (_("TTY owner process group: %d\n"), itmp);
3729 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3730 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3731 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3732 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3733 (unsigned long) ltmp);
3734 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3735 printf_filtered (_("Minor faults, children: %lu\n"),
3736 (unsigned long) ltmp);
3737 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3738 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3739 (unsigned long) ltmp);
3740 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3741 printf_filtered (_("Major faults, children: %lu\n"),
3742 (unsigned long) ltmp);
3743 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3744 printf_filtered (_("utime: %ld\n"), ltmp);
3745 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3746 printf_filtered (_("stime: %ld\n"), ltmp);
3747 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3748 printf_filtered (_("utime, children: %ld\n"), ltmp);
3749 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3750 printf_filtered (_("stime, children: %ld\n"), ltmp);
3751 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3752 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3753 ltmp);
3754 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3755 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3756 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3757 printf_filtered (_("jiffies until next timeout: %lu\n"),
3758 (unsigned long) ltmp);
3759 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3760 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3761 (unsigned long) ltmp);
3762 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3763 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3764 ltmp);
3765 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3766 printf_filtered (_("Virtual memory size: %lu\n"),
3767 (unsigned long) ltmp);
3768 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3769 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3770 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3771 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3772 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3773 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3774 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3775 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3776 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3777 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
3778 #if 0 /* Don't know how architecture-dependent the rest is...
3779 Anyway the signal bitmap info is available from "status". */
3780 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3781 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3782 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3783 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3784 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3785 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3786 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3787 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3788 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3789 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3790 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3791 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3792 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3793 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
3794 #endif
3795 fclose (procfile);
3796 }
3797 else
3798 warning (_("unable to open /proc file '%s'"), fname1);
3799 }
3800 }
3801
3802 /* Implement the to_xfer_partial interface for memory reads using the /proc
3803 filesystem. Because we can use a single read() call for /proc, this
3804 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3805 but it doesn't support writes. */
3806
3807 static LONGEST
3808 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3809 const char *annex, gdb_byte *readbuf,
3810 const gdb_byte *writebuf,
3811 ULONGEST offset, LONGEST len)
3812 {
3813 LONGEST ret;
3814 int fd;
3815 char filename[64];
3816
3817 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3818 return 0;
3819
3820 /* Don't bother for one word. */
3821 if (len < 3 * sizeof (long))
3822 return 0;
3823
3824 /* We could keep this file open and cache it - possibly one per
3825 thread. That requires some juggling, but is even faster. */
3826 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
3827 fd = open (filename, O_RDONLY | O_LARGEFILE);
3828 if (fd == -1)
3829 return 0;
3830
3831 /* If pread64 is available, use it. It's faster if the kernel
3832 supports it (only one syscall), and it's 64-bit safe even on
3833 32-bit platforms (for instance, SPARC debugging a SPARC64
3834 application). */
3835 #ifdef HAVE_PREAD64
3836 if (pread64 (fd, readbuf, len, offset) != len)
3837 #else
3838 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3839 #endif
3840 ret = 0;
3841 else
3842 ret = len;
3843
3844 close (fd);
3845 return ret;
3846 }
3847
3848 /* Parse LINE as a signal set and add its set bits to SIGS. */
3849
3850 static void
3851 add_line_to_sigset (const char *line, sigset_t *sigs)
3852 {
3853 int len = strlen (line) - 1;
3854 const char *p;
3855 int signum;
3856
3857 if (line[len] != '\n')
3858 error (_("Could not parse signal set: %s"), line);
3859
3860 p = line;
3861 signum = len * 4;
3862 while (len-- > 0)
3863 {
3864 int digit;
3865
3866 if (*p >= '0' && *p <= '9')
3867 digit = *p - '0';
3868 else if (*p >= 'a' && *p <= 'f')
3869 digit = *p - 'a' + 10;
3870 else
3871 error (_("Could not parse signal set: %s"), line);
3872
3873 signum -= 4;
3874
3875 if (digit & 1)
3876 sigaddset (sigs, signum + 1);
3877 if (digit & 2)
3878 sigaddset (sigs, signum + 2);
3879 if (digit & 4)
3880 sigaddset (sigs, signum + 3);
3881 if (digit & 8)
3882 sigaddset (sigs, signum + 4);
3883
3884 p++;
3885 }
3886 }
3887
3888 /* Find process PID's pending signals from /proc/pid/status and set
3889 SIGS to match. */
3890
3891 void
3892 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
3893 {
3894 FILE *procfile;
3895 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
3896 int signum;
3897
3898 sigemptyset (pending);
3899 sigemptyset (blocked);
3900 sigemptyset (ignored);
3901 sprintf (fname, "/proc/%d/status", pid);
3902 procfile = fopen (fname, "r");
3903 if (procfile == NULL)
3904 error (_("Could not open %s"), fname);
3905
3906 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
3907 {
3908 /* Normal queued signals are on the SigPnd line in the status
3909 file. However, 2.6 kernels also have a "shared" pending
3910 queue for delivering signals to a thread group, so check for
3911 a ShdPnd line also.
3912
3913 Unfortunately some Red Hat kernels include the shared pending
3914 queue but not the ShdPnd status field. */
3915
3916 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
3917 add_line_to_sigset (buffer + 8, pending);
3918 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
3919 add_line_to_sigset (buffer + 8, pending);
3920 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
3921 add_line_to_sigset (buffer + 8, blocked);
3922 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
3923 add_line_to_sigset (buffer + 8, ignored);
3924 }
3925
3926 fclose (procfile);
3927 }
3928
3929 static LONGEST
3930 linux_xfer_partial (struct target_ops *ops, enum target_object object,
3931 const char *annex, gdb_byte *readbuf,
3932 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3933 {
3934 LONGEST xfer;
3935
3936 if (object == TARGET_OBJECT_AUXV)
3937 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
3938 offset, len);
3939
3940 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
3941 offset, len);
3942 if (xfer != 0)
3943 return xfer;
3944
3945 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
3946 offset, len);
3947 }
3948
3949 /* Create a prototype generic GNU/Linux target. The client can override
3950 it with local methods. */
3951
3952 static void
3953 linux_target_install_ops (struct target_ops *t)
3954 {
3955 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
3956 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
3957 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
3958 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
3959 t->to_post_startup_inferior = linux_child_post_startup_inferior;
3960 t->to_post_attach = linux_child_post_attach;
3961 t->to_follow_fork = linux_child_follow_fork;
3962 t->to_find_memory_regions = linux_nat_find_memory_regions;
3963 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
3964
3965 super_xfer_partial = t->to_xfer_partial;
3966 t->to_xfer_partial = linux_xfer_partial;
3967 }
3968
3969 struct target_ops *
3970 linux_target (void)
3971 {
3972 struct target_ops *t;
3973
3974 t = inf_ptrace_target ();
3975 linux_target_install_ops (t);
3976
3977 return t;
3978 }
3979
3980 struct target_ops *
3981 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
3982 {
3983 struct target_ops *t;
3984
3985 t = inf_ptrace_trad_target (register_u_offset);
3986 linux_target_install_ops (t);
3987
3988 return t;
3989 }
3990
3991 /* target_is_async_p implementation. */
3992
3993 static int
3994 linux_nat_is_async_p (void)
3995 {
3996 /* NOTE: palves 2008-03-21: We're only async when the user requests
3997 it explicitly with the "maintenance set target-async" command.
3998 Someday, linux will always be async. */
3999 if (!target_async_permitted)
4000 return 0;
4001
4002 return 1;
4003 }
4004
4005 /* target_can_async_p implementation. */
4006
4007 static int
4008 linux_nat_can_async_p (void)
4009 {
4010 /* NOTE: palves 2008-03-21: We're only async when the user requests
4011 it explicitly with the "maintenance set target-async" command.
4012 Someday, linux will always be async. */
4013 if (!target_async_permitted)
4014 return 0;
4015
4016 /* See target.h/target_async_mask. */
4017 return linux_nat_async_mask_value;
4018 }
4019
4020 static int
4021 linux_nat_supports_non_stop (void)
4022 {
4023 return 1;
4024 }
4025
4026 /* target_async_mask implementation. */
4027
4028 static int
4029 linux_nat_async_mask (int mask)
4030 {
4031 int current_state;
4032 current_state = linux_nat_async_mask_value;
4033
4034 if (current_state != mask)
4035 {
4036 if (mask == 0)
4037 {
4038 linux_nat_async (NULL, 0);
4039 linux_nat_async_mask_value = mask;
4040 }
4041 else
4042 {
4043 linux_nat_async_mask_value = mask;
4044 linux_nat_async (inferior_event_handler, 0);
4045 }
4046 }
4047
4048 return current_state;
4049 }
4050
4051 /* Pop an event from the event pipe. */
4052
4053 static int
4054 linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
4055 {
4056 struct waitpid_result event = {0};
4057 int ret;
4058
4059 do
4060 {
4061 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
4062 }
4063 while (ret == -1 && errno == EINTR);
4064
4065 gdb_assert (ret == sizeof (event));
4066
4067 *ptr_status = event.status;
4068 *ptr_options = event.options;
4069
4070 linux_nat_num_queued_events--;
4071
4072 return event.pid;
4073 }
4074
4075 /* Push an event into the event pipe. */
4076
4077 static void
4078 linux_nat_event_pipe_push (int pid, int status, int options)
4079 {
4080 int ret;
4081 struct waitpid_result event = {0};
4082 event.pid = pid;
4083 event.status = status;
4084 event.options = options;
4085
4086 do
4087 {
4088 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
4089 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
4090 } while (ret == -1 && errno == EINTR);
4091
4092 linux_nat_num_queued_events++;
4093 }
4094
4095 static void
4096 get_pending_events (void)
4097 {
4098 int status, options, pid;
4099
4100 if (!target_async_permitted
4101 || linux_nat_async_events_state != sigchld_async)
4102 internal_error (__FILE__, __LINE__,
4103 "get_pending_events called with async masked");
4104
4105 while (1)
4106 {
4107 status = 0;
4108 options = __WCLONE | WNOHANG;
4109
4110 do
4111 {
4112 pid = waitpid (-1, &status, options);
4113 }
4114 while (pid == -1 && errno == EINTR);
4115
4116 if (pid <= 0)
4117 {
4118 options = WNOHANG;
4119 do
4120 {
4121 pid = waitpid (-1, &status, options);
4122 }
4123 while (pid == -1 && errno == EINTR);
4124 }
4125
4126 if (pid <= 0)
4127 /* No more children reporting events. */
4128 break;
4129
4130 if (debug_linux_nat_async)
4131 fprintf_unfiltered (gdb_stdlog, "\
4132 get_pending_events: pid(%d), status(%x), options (%x)\n",
4133 pid, status, options);
4134
4135 linux_nat_event_pipe_push (pid, status, options);
4136 }
4137
4138 if (debug_linux_nat_async)
4139 fprintf_unfiltered (gdb_stdlog, "\
4140 get_pending_events: linux_nat_num_queued_events(%d)\n",
4141 linux_nat_num_queued_events);
4142 }
4143
4144 /* SIGCHLD handler for async mode. */
4145
4146 static void
4147 async_sigchld_handler (int signo)
4148 {
4149 if (debug_linux_nat_async)
4150 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4151
4152 get_pending_events ();
4153 }
4154
4155 /* Set SIGCHLD handling state to STATE. Returns previous state. */
4156
4157 static enum sigchld_state
4158 linux_nat_async_events (enum sigchld_state state)
4159 {
4160 enum sigchld_state current_state = linux_nat_async_events_state;
4161
4162 if (debug_linux_nat_async)
4163 fprintf_unfiltered (gdb_stdlog,
4164 "LNAE: state(%d): linux_nat_async_events_state(%d), "
4165 "linux_nat_num_queued_events(%d)\n",
4166 state, linux_nat_async_events_state,
4167 linux_nat_num_queued_events);
4168
4169 if (current_state != state)
4170 {
4171 sigset_t mask;
4172 sigemptyset (&mask);
4173 sigaddset (&mask, SIGCHLD);
4174
4175 /* Always block before changing state. */
4176 sigprocmask (SIG_BLOCK, &mask, NULL);
4177
4178 /* Set new state. */
4179 linux_nat_async_events_state = state;
4180
4181 switch (state)
4182 {
4183 case sigchld_sync:
4184 {
4185 /* Block target events. */
4186 sigprocmask (SIG_BLOCK, &mask, NULL);
4187 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4188 /* Get events out of queue, and make them available to
4189 queued_waitpid / my_waitpid. */
4190 pipe_to_local_event_queue ();
4191 }
4192 break;
4193 case sigchld_async:
4194 {
4195 /* Unblock target events for async mode. */
4196
4197 sigprocmask (SIG_BLOCK, &mask, NULL);
4198
4199 /* Put events we already waited on, in the pipe first, so
4200 events are FIFO. */
4201 local_event_queue_to_pipe ();
4202 /* While in masked async, we may have not collected all
4203 the pending events. Get them out now. */
4204 get_pending_events ();
4205
4206 /* Let'em come. */
4207 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4208 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4209 }
4210 break;
4211 case sigchld_default:
4212 {
4213 /* SIGCHLD default mode. */
4214 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4215
4216 /* Get events out of queue, and make them available to
4217 queued_waitpid / my_waitpid. */
4218 pipe_to_local_event_queue ();
4219
4220 /* Unblock SIGCHLD. */
4221 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4222 }
4223 break;
4224 }
4225 }
4226
4227 return current_state;
4228 }
4229
4230 static int async_terminal_is_ours = 1;
4231
4232 /* target_terminal_inferior implementation. */
4233
4234 static void
4235 linux_nat_terminal_inferior (void)
4236 {
4237 if (!target_is_async_p ())
4238 {
4239 /* Async mode is disabled. */
4240 terminal_inferior ();
4241 return;
4242 }
4243
4244 /* GDB should never give the terminal to the inferior, if the
4245 inferior is running in the background (run&, continue&, etc.).
4246 This check can be removed when the common code is fixed. */
4247 if (!sync_execution)
4248 return;
4249
4250 terminal_inferior ();
4251
4252 if (!async_terminal_is_ours)
4253 return;
4254
4255 delete_file_handler (input_fd);
4256 async_terminal_is_ours = 0;
4257 set_sigint_trap ();
4258 }
4259
4260 /* target_terminal_ours implementation. */
4261
4262 void
4263 linux_nat_terminal_ours (void)
4264 {
4265 if (!target_is_async_p ())
4266 {
4267 /* Async mode is disabled. */
4268 terminal_ours ();
4269 return;
4270 }
4271
4272 /* GDB should never give the terminal to the inferior if the
4273 inferior is running in the background (run&, continue&, etc.),
4274 but claiming it sure should. */
4275 terminal_ours ();
4276
4277 if (!sync_execution)
4278 return;
4279
4280 if (async_terminal_is_ours)
4281 return;
4282
4283 clear_sigint_trap ();
4284 add_file_handler (input_fd, stdin_event_handler, 0);
4285 async_terminal_is_ours = 1;
4286 }
4287
4288 static void (*async_client_callback) (enum inferior_event_type event_type,
4289 void *context);
4290 static void *async_client_context;
4291
4292 static void
4293 linux_nat_async_file_handler (int error, gdb_client_data client_data)
4294 {
4295 async_client_callback (INF_REG_EVENT, async_client_context);
4296 }
4297
4298 /* target_async implementation. */
4299
4300 static void
4301 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4302 void *context), void *context)
4303 {
4304 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
4305 internal_error (__FILE__, __LINE__,
4306 "Calling target_async when async is masked");
4307
4308 if (callback != NULL)
4309 {
4310 async_client_callback = callback;
4311 async_client_context = context;
4312 add_file_handler (linux_nat_event_pipe[0],
4313 linux_nat_async_file_handler, NULL);
4314
4315 linux_nat_async_events (sigchld_async);
4316 }
4317 else
4318 {
4319 async_client_callback = callback;
4320 async_client_context = context;
4321
4322 linux_nat_async_events (sigchld_sync);
4323 delete_file_handler (linux_nat_event_pipe[0]);
4324 }
4325 return;
4326 }
4327
4328 static int
4329 send_sigint_callback (struct lwp_info *lp, void *data)
4330 {
4331 /* Use is_running instead of !lp->stopped, because the lwp may be
4332 stopped due to an internal event, and we want to interrupt it in
4333 that case too. What we want is to check if the thread is stopped
4334 from the point of view of the user. */
4335 if (is_running (lp->ptid))
4336 kill_lwp (GET_LWP (lp->ptid), SIGINT);
4337 return 0;
4338 }
4339
4340 static void
4341 linux_nat_stop (ptid_t ptid)
4342 {
4343 if (non_stop)
4344 {
4345 if (ptid_equal (ptid, minus_one_ptid))
4346 iterate_over_lwps (send_sigint_callback, &ptid);
4347 else
4348 {
4349 struct lwp_info *lp = find_lwp_pid (ptid);
4350 send_sigint_callback (lp, NULL);
4351 }
4352 }
4353 else
4354 linux_ops->to_stop (ptid);
4355 }
4356
4357 void
4358 linux_nat_add_target (struct target_ops *t)
4359 {
4360 /* Save the provided single-threaded target. We save this in a separate
4361 variable because another target we've inherited from (e.g. inf-ptrace)
4362 may have saved a pointer to T; we want to use it for the final
4363 process stratum target. */
4364 linux_ops_saved = *t;
4365 linux_ops = &linux_ops_saved;
4366
4367 /* Override some methods for multithreading. */
4368 t->to_create_inferior = linux_nat_create_inferior;
4369 t->to_attach = linux_nat_attach;
4370 t->to_detach = linux_nat_detach;
4371 t->to_resume = linux_nat_resume;
4372 t->to_wait = linux_nat_wait;
4373 t->to_xfer_partial = linux_nat_xfer_partial;
4374 t->to_kill = linux_nat_kill;
4375 t->to_mourn_inferior = linux_nat_mourn_inferior;
4376 t->to_thread_alive = linux_nat_thread_alive;
4377 t->to_pid_to_str = linux_nat_pid_to_str;
4378 t->to_has_thread_control = tc_schedlock;
4379
4380 t->to_can_async_p = linux_nat_can_async_p;
4381 t->to_is_async_p = linux_nat_is_async_p;
4382 t->to_supports_non_stop = linux_nat_supports_non_stop;
4383 t->to_async = linux_nat_async;
4384 t->to_async_mask = linux_nat_async_mask;
4385 t->to_terminal_inferior = linux_nat_terminal_inferior;
4386 t->to_terminal_ours = linux_nat_terminal_ours;
4387
4388 /* Methods for non-stop support. */
4389 t->to_stop = linux_nat_stop;
4390
4391 /* We don't change the stratum; this target will sit at
4392 process_stratum and thread_db will set at thread_stratum. This
4393 is a little strange, since this is a multi-threaded-capable
4394 target, but we want to be on the stack below thread_db, and we
4395 also want to be used for single-threaded processes. */
4396
4397 add_target (t);
4398
4399 /* TODO: Eliminate this and have libthread_db use
4400 find_target_beneath. */
4401 thread_db_init (t);
4402 }
4403
4404 /* Register a method to call whenever a new thread is attached. */
4405 void
4406 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4407 {
4408 /* Save the pointer. We only support a single registered instance
4409 of the GNU/Linux native target, so we do not need to map this to
4410 T. */
4411 linux_nat_new_thread = new_thread;
4412 }
4413
4414 /* Return the saved siginfo associated with PTID. */
4415 struct siginfo *
4416 linux_nat_get_siginfo (ptid_t ptid)
4417 {
4418 struct lwp_info *lp = find_lwp_pid (ptid);
4419
4420 gdb_assert (lp != NULL);
4421
4422 return &lp->siginfo;
4423 }
4424
4425 /* Enable/Disable async mode. */
4426
4427 static void
4428 linux_nat_setup_async (void)
4429 {
4430 if (pipe (linux_nat_event_pipe) == -1)
4431 internal_error (__FILE__, __LINE__,
4432 "creating event pipe failed.");
4433 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4434 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4435 }
4436
4437 void
4438 _initialize_linux_nat (void)
4439 {
4440 sigset_t mask;
4441
4442 add_info ("proc", linux_nat_info_proc_cmd, _("\
4443 Show /proc process information about any running process.\n\
4444 Specify any process id, or use the program being debugged by default.\n\
4445 Specify any of the following keywords for detailed info:\n\
4446 mappings -- list of mapped memory regions.\n\
4447 stat -- list a bunch of random process info.\n\
4448 status -- list a different bunch of random process info.\n\
4449 all -- list all available /proc info."));
4450
4451 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4452 &debug_linux_nat, _("\
4453 Set debugging of GNU/Linux lwp module."), _("\
4454 Show debugging of GNU/Linux lwp module."), _("\
4455 Enables printf debugging output."),
4456 NULL,
4457 show_debug_linux_nat,
4458 &setdebuglist, &showdebuglist);
4459
4460 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4461 &debug_linux_nat_async, _("\
4462 Set debugging of GNU/Linux async lwp module."), _("\
4463 Show debugging of GNU/Linux async lwp module."), _("\
4464 Enables printf debugging output."),
4465 NULL,
4466 show_debug_linux_nat_async,
4467 &setdebuglist, &showdebuglist);
4468
4469 /* Get the default SIGCHLD action. Used while forking an inferior
4470 (see linux_nat_create_inferior/linux_nat_async_events). */
4471 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4472
4473 /* Block SIGCHLD by default. Doing this early prevents it getting
4474 unblocked if an exception is thrown due to an error while the
4475 inferior is starting (sigsetjmp/siglongjmp). */
4476 sigemptyset (&mask);
4477 sigaddset (&mask, SIGCHLD);
4478 sigprocmask (SIG_BLOCK, &mask, NULL);
4479
4480 /* Save this mask as the default. */
4481 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4482
4483 /* The synchronous SIGCHLD handler. */
4484 sync_sigchld_action.sa_handler = sigchld_handler;
4485 sigemptyset (&sync_sigchld_action.sa_mask);
4486 sync_sigchld_action.sa_flags = SA_RESTART;
4487
4488 /* Make it the default. */
4489 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4490
4491 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4492 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4493 sigdelset (&suspend_mask, SIGCHLD);
4494
4495 /* SIGCHLD handler for async mode. */
4496 async_sigchld_action.sa_handler = async_sigchld_handler;
4497 sigemptyset (&async_sigchld_action.sa_mask);
4498 async_sigchld_action.sa_flags = SA_RESTART;
4499
4500 linux_nat_setup_async ();
4501
4502 add_setshow_boolean_cmd ("disable-randomization", class_support,
4503 &disable_randomization, _("\
4504 Set disabling of debuggee's virtual address space randomization."), _("\
4505 Show disabling of debuggee's virtual address space randomization."), _("\
4506 When this mode is on (which is the default), randomization of the virtual\n\
4507 address space is disabled. Standalone programs run with the randomization\n\
4508 enabled by default on some platforms."),
4509 &set_disable_randomization,
4510 &show_disable_randomization,
4511 &setlist, &showlist);
4512 }
4513 \f
4514
4515 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4516 the GNU/Linux Threads library and therefore doesn't really belong
4517 here. */
4518
4519 /* Read variable NAME in the target and return its value if found.
4520 Otherwise return zero. It is assumed that the type of the variable
4521 is `int'. */
4522
4523 static int
4524 get_signo (const char *name)
4525 {
4526 struct minimal_symbol *ms;
4527 int signo;
4528
4529 ms = lookup_minimal_symbol (name, NULL, NULL);
4530 if (ms == NULL)
4531 return 0;
4532
4533 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4534 sizeof (signo)) != 0)
4535 return 0;
4536
4537 return signo;
4538 }
4539
4540 /* Return the set of signals used by the threads library in *SET. */
4541
4542 void
4543 lin_thread_get_thread_signals (sigset_t *set)
4544 {
4545 struct sigaction action;
4546 int restart, cancel;
4547 sigset_t blocked_mask;
4548
4549 sigemptyset (&blocked_mask);
4550 sigemptyset (set);
4551
4552 restart = get_signo ("__pthread_sig_restart");
4553 cancel = get_signo ("__pthread_sig_cancel");
4554
4555 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4556 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4557 not provide any way for the debugger to query the signal numbers -
4558 fortunately they don't change! */
4559
4560 if (restart == 0)
4561 restart = __SIGRTMIN;
4562
4563 if (cancel == 0)
4564 cancel = __SIGRTMIN + 1;
4565
4566 sigaddset (set, restart);
4567 sigaddset (set, cancel);
4568
4569 /* The GNU/Linux Threads library makes terminating threads send a
4570 special "cancel" signal instead of SIGCHLD. Make sure we catch
4571 those (to prevent them from terminating GDB itself, which is
4572 likely to be their default action) and treat them the same way as
4573 SIGCHLD. */
4574
4575 action.sa_handler = sigchld_handler;
4576 sigemptyset (&action.sa_mask);
4577 action.sa_flags = SA_RESTART;
4578 sigaction (cancel, &action, NULL);
4579
4580 /* We block the "cancel" signal throughout this code ... */
4581 sigaddset (&blocked_mask, cancel);
4582 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4583
4584 /* ... except during a sigsuspend. */
4585 sigdelset (&suspend_mask, cancel);
4586 }
This page took 0.134978 seconds and 4 git commands to generate.