Obvious indentation fixes on test sample and test file for MPX registers.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* Does the current host support PTRACE_GETREGSET? */
167 int have_ptrace_getregset = -1;
168
169 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
170 the use of the multi-threaded target. */
171 static struct target_ops *linux_ops;
172 static struct target_ops linux_ops_saved;
173
174 /* The method to call, if any, when a new thread is attached. */
175 static void (*linux_nat_new_thread) (struct lwp_info *);
176
177 /* The method to call, if any, when a new fork is attached. */
178 static linux_nat_new_fork_ftype *linux_nat_new_fork;
179
180 /* The method to call, if any, when a process is no longer
181 attached. */
182 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
183
184 /* Hook to call prior to resuming a thread. */
185 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
186
187 /* The method to call, if any, when the siginfo object needs to be
188 converted between the layout returned by ptrace, and the layout in
189 the architecture of the inferior. */
190 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
191 gdb_byte *,
192 int);
193
194 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
195 Called by our to_xfer_partial. */
196 static target_xfer_partial_ftype *super_xfer_partial;
197
198 /* The saved to_close method, inherited from inf-ptrace.c.
199 Called by our to_close. */
200 static void (*super_close) (struct target_ops *);
201
202 static unsigned int debug_linux_nat;
203 static void
204 show_debug_linux_nat (struct ui_file *file, int from_tty,
205 struct cmd_list_element *c, const char *value)
206 {
207 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
208 value);
209 }
210
211 struct simple_pid_list
212 {
213 int pid;
214 int status;
215 struct simple_pid_list *next;
216 };
217 struct simple_pid_list *stopped_pids;
218
219 /* Async mode support. */
220
221 /* The read/write ends of the pipe registered as waitable file in the
222 event loop. */
223 static int linux_nat_event_pipe[2] = { -1, -1 };
224
225 /* True if we're currently in async mode. */
226 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
227
228 /* Flush the event pipe. */
229
230 static void
231 async_file_flush (void)
232 {
233 int ret;
234 char buf;
235
236 do
237 {
238 ret = read (linux_nat_event_pipe[0], &buf, 1);
239 }
240 while (ret >= 0 || (ret == -1 && errno == EINTR));
241 }
242
243 /* Put something (anything, doesn't matter what, or how much) in event
244 pipe, so that the select/poll in the event-loop realizes we have
245 something to process. */
246
247 static void
248 async_file_mark (void)
249 {
250 int ret;
251
252 /* It doesn't really matter what the pipe contains, as long we end
253 up with something in it. Might as well flush the previous
254 left-overs. */
255 async_file_flush ();
256
257 do
258 {
259 ret = write (linux_nat_event_pipe[1], "+", 1);
260 }
261 while (ret == -1 && errno == EINTR);
262
263 /* Ignore EAGAIN. If the pipe is full, the event loop will already
264 be awakened anyway. */
265 }
266
267 static int kill_lwp (int lwpid, int signo);
268
269 static int stop_callback (struct lwp_info *lp, void *data);
270 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
271
272 static void block_child_signals (sigset_t *prev_mask);
273 static void restore_child_signals_mask (sigset_t *prev_mask);
274
275 struct lwp_info;
276 static struct lwp_info *add_lwp (ptid_t ptid);
277 static void purge_lwp_list (int pid);
278 static void delete_lwp (ptid_t ptid);
279 static struct lwp_info *find_lwp_pid (ptid_t ptid);
280
281 static int lwp_status_pending_p (struct lwp_info *lp);
282
283 static int check_stopped_by_breakpoint (struct lwp_info *lp);
284 static int sigtrap_is_event (int status);
285 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
286
287 \f
288 /* LWP accessors. */
289
290 /* See nat/linux-nat.h. */
291
292 ptid_t
293 ptid_of_lwp (struct lwp_info *lwp)
294 {
295 return lwp->ptid;
296 }
297
298 /* See nat/linux-nat.h. */
299
300 void
301 lwp_set_arch_private_info (struct lwp_info *lwp,
302 struct arch_lwp_info *info)
303 {
304 lwp->arch_private = info;
305 }
306
307 /* See nat/linux-nat.h. */
308
309 struct arch_lwp_info *
310 lwp_arch_private_info (struct lwp_info *lwp)
311 {
312 return lwp->arch_private;
313 }
314
315 /* See nat/linux-nat.h. */
316
317 int
318 lwp_is_stopped (struct lwp_info *lwp)
319 {
320 return lwp->stopped;
321 }
322
323 /* See nat/linux-nat.h. */
324
325 enum target_stop_reason
326 lwp_stop_reason (struct lwp_info *lwp)
327 {
328 return lwp->stop_reason;
329 }
330
331 \f
332 /* Trivial list manipulation functions to keep track of a list of
333 new stopped processes. */
334 static void
335 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
336 {
337 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
338
339 new_pid->pid = pid;
340 new_pid->status = status;
341 new_pid->next = *listp;
342 *listp = new_pid;
343 }
344
345 static int
346 in_pid_list_p (struct simple_pid_list *list, int pid)
347 {
348 struct simple_pid_list *p;
349
350 for (p = list; p != NULL; p = p->next)
351 if (p->pid == pid)
352 return 1;
353 return 0;
354 }
355
356 static int
357 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
358 {
359 struct simple_pid_list **p;
360
361 for (p = listp; *p != NULL; p = &(*p)->next)
362 if ((*p)->pid == pid)
363 {
364 struct simple_pid_list *next = (*p)->next;
365
366 *statusp = (*p)->status;
367 xfree (*p);
368 *p = next;
369 return 1;
370 }
371 return 0;
372 }
373
374 /* Return the ptrace options that we want to try to enable. */
375
376 static int
377 linux_nat_ptrace_options (int attached)
378 {
379 int options = 0;
380
381 if (!attached)
382 options |= PTRACE_O_EXITKILL;
383
384 options |= (PTRACE_O_TRACESYSGOOD
385 | PTRACE_O_TRACEVFORKDONE
386 | PTRACE_O_TRACEVFORK
387 | PTRACE_O_TRACEFORK
388 | PTRACE_O_TRACEEXEC);
389
390 return options;
391 }
392
393 /* Initialize ptrace warnings and check for supported ptrace
394 features given PID.
395
396 ATTACHED should be nonzero iff we attached to the inferior. */
397
398 static void
399 linux_init_ptrace (pid_t pid, int attached)
400 {
401 int options = linux_nat_ptrace_options (attached);
402
403 linux_enable_event_reporting (pid, options);
404 linux_ptrace_init_warnings ();
405 }
406
407 static void
408 linux_child_post_attach (struct target_ops *self, int pid)
409 {
410 linux_init_ptrace (pid, 1);
411 }
412
413 static void
414 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
415 {
416 linux_init_ptrace (ptid_get_pid (ptid), 0);
417 }
418
419 /* Return the number of known LWPs in the tgid given by PID. */
420
421 static int
422 num_lwps (int pid)
423 {
424 int count = 0;
425 struct lwp_info *lp;
426
427 for (lp = lwp_list; lp; lp = lp->next)
428 if (ptid_get_pid (lp->ptid) == pid)
429 count++;
430
431 return count;
432 }
433
434 /* Call delete_lwp with prototype compatible for make_cleanup. */
435
436 static void
437 delete_lwp_cleanup (void *lp_voidp)
438 {
439 struct lwp_info *lp = lp_voidp;
440
441 delete_lwp (lp->ptid);
442 }
443
444 /* Target hook for follow_fork. On entry inferior_ptid must be the
445 ptid of the followed inferior. At return, inferior_ptid will be
446 unchanged. */
447
448 static int
449 linux_child_follow_fork (struct target_ops *ops, int follow_child,
450 int detach_fork)
451 {
452 if (!follow_child)
453 {
454 struct lwp_info *child_lp = NULL;
455 int status = W_STOPCODE (0);
456 struct cleanup *old_chain;
457 int has_vforked;
458 ptid_t parent_ptid, child_ptid;
459 int parent_pid, child_pid;
460
461 has_vforked = (inferior_thread ()->pending_follow.kind
462 == TARGET_WAITKIND_VFORKED);
463 parent_ptid = inferior_ptid;
464 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
465 parent_pid = ptid_get_lwp (parent_ptid);
466 child_pid = ptid_get_lwp (child_ptid);
467
468 /* We're already attached to the parent, by default. */
469 old_chain = save_inferior_ptid ();
470 inferior_ptid = child_ptid;
471 child_lp = add_lwp (inferior_ptid);
472 child_lp->stopped = 1;
473 child_lp->last_resume_kind = resume_stop;
474
475 /* Detach new forked process? */
476 if (detach_fork)
477 {
478 make_cleanup (delete_lwp_cleanup, child_lp);
479
480 if (linux_nat_prepare_to_resume != NULL)
481 linux_nat_prepare_to_resume (child_lp);
482
483 /* When debugging an inferior in an architecture that supports
484 hardware single stepping on a kernel without commit
485 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
486 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
487 set if the parent process had them set.
488 To work around this, single step the child process
489 once before detaching to clear the flags. */
490
491 if (!gdbarch_software_single_step_p (target_thread_architecture
492 (child_lp->ptid)))
493 {
494 linux_disable_event_reporting (child_pid);
495 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
496 perror_with_name (_("Couldn't do single step"));
497 if (my_waitpid (child_pid, &status, 0) < 0)
498 perror_with_name (_("Couldn't wait vfork process"));
499 }
500
501 if (WIFSTOPPED (status))
502 {
503 int signo;
504
505 signo = WSTOPSIG (status);
506 if (signo != 0
507 && !signal_pass_state (gdb_signal_from_host (signo)))
508 signo = 0;
509 ptrace (PTRACE_DETACH, child_pid, 0, signo);
510 }
511
512 /* Resets value of inferior_ptid to parent ptid. */
513 do_cleanups (old_chain);
514 }
515 else
516 {
517 /* Let the thread_db layer learn about this new process. */
518 check_for_thread_db ();
519 }
520
521 do_cleanups (old_chain);
522
523 if (has_vforked)
524 {
525 struct lwp_info *parent_lp;
526
527 parent_lp = find_lwp_pid (parent_ptid);
528 gdb_assert (linux_supports_tracefork () >= 0);
529
530 if (linux_supports_tracevforkdone ())
531 {
532 if (debug_linux_nat)
533 fprintf_unfiltered (gdb_stdlog,
534 "LCFF: waiting for VFORK_DONE on %d\n",
535 parent_pid);
536 parent_lp->stopped = 1;
537
538 /* We'll handle the VFORK_DONE event like any other
539 event, in target_wait. */
540 }
541 else
542 {
543 /* We can't insert breakpoints until the child has
544 finished with the shared memory region. We need to
545 wait until that happens. Ideal would be to just
546 call:
547 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
548 - waitpid (parent_pid, &status, __WALL);
549 However, most architectures can't handle a syscall
550 being traced on the way out if it wasn't traced on
551 the way in.
552
553 We might also think to loop, continuing the child
554 until it exits or gets a SIGTRAP. One problem is
555 that the child might call ptrace with PTRACE_TRACEME.
556
557 There's no simple and reliable way to figure out when
558 the vforked child will be done with its copy of the
559 shared memory. We could step it out of the syscall,
560 two instructions, let it go, and then single-step the
561 parent once. When we have hardware single-step, this
562 would work; with software single-step it could still
563 be made to work but we'd have to be able to insert
564 single-step breakpoints in the child, and we'd have
565 to insert -just- the single-step breakpoint in the
566 parent. Very awkward.
567
568 In the end, the best we can do is to make sure it
569 runs for a little while. Hopefully it will be out of
570 range of any breakpoints we reinsert. Usually this
571 is only the single-step breakpoint at vfork's return
572 point. */
573
574 if (debug_linux_nat)
575 fprintf_unfiltered (gdb_stdlog,
576 "LCFF: no VFORK_DONE "
577 "support, sleeping a bit\n");
578
579 usleep (10000);
580
581 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
582 and leave it pending. The next linux_nat_resume call
583 will notice a pending event, and bypasses actually
584 resuming the inferior. */
585 parent_lp->status = 0;
586 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
587 parent_lp->stopped = 1;
588
589 /* If we're in async mode, need to tell the event loop
590 there's something here to process. */
591 if (target_is_async_p ())
592 async_file_mark ();
593 }
594 }
595 }
596 else
597 {
598 struct lwp_info *child_lp;
599
600 child_lp = add_lwp (inferior_ptid);
601 child_lp->stopped = 1;
602 child_lp->last_resume_kind = resume_stop;
603
604 /* Let the thread_db layer learn about this new process. */
605 check_for_thread_db ();
606 }
607
608 return 0;
609 }
610
611 \f
612 static int
613 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
614 {
615 return !linux_supports_tracefork ();
616 }
617
618 static int
619 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
620 {
621 return 0;
622 }
623
624 static int
625 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
626 {
627 return !linux_supports_tracefork ();
628 }
629
630 static int
631 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
632 {
633 return 0;
634 }
635
636 static int
637 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
638 {
639 return !linux_supports_tracefork ();
640 }
641
642 static int
643 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
644 {
645 return 0;
646 }
647
648 static int
649 linux_child_set_syscall_catchpoint (struct target_ops *self,
650 int pid, int needed, int any_count,
651 int table_size, int *table)
652 {
653 if (!linux_supports_tracesysgood ())
654 return 1;
655
656 /* On GNU/Linux, we ignore the arguments. It means that we only
657 enable the syscall catchpoints, but do not disable them.
658
659 Also, we do not use the `table' information because we do not
660 filter system calls here. We let GDB do the logic for us. */
661 return 0;
662 }
663
664 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
665 are processes sharing the same VM space. A multi-threaded process
666 is basically a group of such processes. However, such a grouping
667 is almost entirely a user-space issue; the kernel doesn't enforce
668 such a grouping at all (this might change in the future). In
669 general, we'll rely on the threads library (i.e. the GNU/Linux
670 Threads library) to provide such a grouping.
671
672 It is perfectly well possible to write a multi-threaded application
673 without the assistance of a threads library, by using the clone
674 system call directly. This module should be able to give some
675 rudimentary support for debugging such applications if developers
676 specify the CLONE_PTRACE flag in the clone system call, and are
677 using the Linux kernel 2.4 or above.
678
679 Note that there are some peculiarities in GNU/Linux that affect
680 this code:
681
682 - In general one should specify the __WCLONE flag to waitpid in
683 order to make it report events for any of the cloned processes
684 (and leave it out for the initial process). However, if a cloned
685 process has exited the exit status is only reported if the
686 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
687 we cannot use it since GDB must work on older systems too.
688
689 - When a traced, cloned process exits and is waited for by the
690 debugger, the kernel reassigns it to the original parent and
691 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
692 library doesn't notice this, which leads to the "zombie problem":
693 When debugged a multi-threaded process that spawns a lot of
694 threads will run out of processes, even if the threads exit,
695 because the "zombies" stay around. */
696
697 /* List of known LWPs. */
698 struct lwp_info *lwp_list;
699 \f
700
701 /* Original signal mask. */
702 static sigset_t normal_mask;
703
704 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
705 _initialize_linux_nat. */
706 static sigset_t suspend_mask;
707
708 /* Signals to block to make that sigsuspend work. */
709 static sigset_t blocked_mask;
710
711 /* SIGCHLD action. */
712 struct sigaction sigchld_action;
713
714 /* Block child signals (SIGCHLD and linux threads signals), and store
715 the previous mask in PREV_MASK. */
716
717 static void
718 block_child_signals (sigset_t *prev_mask)
719 {
720 /* Make sure SIGCHLD is blocked. */
721 if (!sigismember (&blocked_mask, SIGCHLD))
722 sigaddset (&blocked_mask, SIGCHLD);
723
724 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
725 }
726
727 /* Restore child signals mask, previously returned by
728 block_child_signals. */
729
730 static void
731 restore_child_signals_mask (sigset_t *prev_mask)
732 {
733 sigprocmask (SIG_SETMASK, prev_mask, NULL);
734 }
735
736 /* Mask of signals to pass directly to the inferior. */
737 static sigset_t pass_mask;
738
739 /* Update signals to pass to the inferior. */
740 static void
741 linux_nat_pass_signals (struct target_ops *self,
742 int numsigs, unsigned char *pass_signals)
743 {
744 int signo;
745
746 sigemptyset (&pass_mask);
747
748 for (signo = 1; signo < NSIG; signo++)
749 {
750 int target_signo = gdb_signal_from_host (signo);
751 if (target_signo < numsigs && pass_signals[target_signo])
752 sigaddset (&pass_mask, signo);
753 }
754 }
755
756 \f
757
758 /* Prototypes for local functions. */
759 static int stop_wait_callback (struct lwp_info *lp, void *data);
760 static int linux_thread_alive (ptid_t ptid);
761 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
762 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
763
764 \f
765
766 /* Destroy and free LP. */
767
768 static void
769 lwp_free (struct lwp_info *lp)
770 {
771 xfree (lp->arch_private);
772 xfree (lp);
773 }
774
775 /* Remove all LWPs belong to PID from the lwp list. */
776
777 static void
778 purge_lwp_list (int pid)
779 {
780 struct lwp_info *lp, *lpprev, *lpnext;
781
782 lpprev = NULL;
783
784 for (lp = lwp_list; lp; lp = lpnext)
785 {
786 lpnext = lp->next;
787
788 if (ptid_get_pid (lp->ptid) == pid)
789 {
790 if (lp == lwp_list)
791 lwp_list = lp->next;
792 else
793 lpprev->next = lp->next;
794
795 lwp_free (lp);
796 }
797 else
798 lpprev = lp;
799 }
800 }
801
802 /* Add the LWP specified by PTID to the list. PTID is the first LWP
803 in the process. Return a pointer to the structure describing the
804 new LWP.
805
806 This differs from add_lwp in that we don't let the arch specific
807 bits know about this new thread. Current clients of this callback
808 take the opportunity to install watchpoints in the new thread, and
809 we shouldn't do that for the first thread. If we're spawning a
810 child ("run"), the thread executes the shell wrapper first, and we
811 shouldn't touch it until it execs the program we want to debug.
812 For "attach", it'd be okay to call the callback, but it's not
813 necessary, because watchpoints can't yet have been inserted into
814 the inferior. */
815
816 static struct lwp_info *
817 add_initial_lwp (ptid_t ptid)
818 {
819 struct lwp_info *lp;
820
821 gdb_assert (ptid_lwp_p (ptid));
822
823 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
824
825 memset (lp, 0, sizeof (struct lwp_info));
826
827 lp->last_resume_kind = resume_continue;
828 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
829
830 lp->ptid = ptid;
831 lp->core = -1;
832
833 lp->next = lwp_list;
834 lwp_list = lp;
835
836 return lp;
837 }
838
839 /* Add the LWP specified by PID to the list. Return a pointer to the
840 structure describing the new LWP. The LWP should already be
841 stopped. */
842
843 static struct lwp_info *
844 add_lwp (ptid_t ptid)
845 {
846 struct lwp_info *lp;
847
848 lp = add_initial_lwp (ptid);
849
850 /* Let the arch specific bits know about this new thread. Current
851 clients of this callback take the opportunity to install
852 watchpoints in the new thread. We don't do this for the first
853 thread though. See add_initial_lwp. */
854 if (linux_nat_new_thread != NULL)
855 linux_nat_new_thread (lp);
856
857 return lp;
858 }
859
860 /* Remove the LWP specified by PID from the list. */
861
862 static void
863 delete_lwp (ptid_t ptid)
864 {
865 struct lwp_info *lp, *lpprev;
866
867 lpprev = NULL;
868
869 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
870 if (ptid_equal (lp->ptid, ptid))
871 break;
872
873 if (!lp)
874 return;
875
876 if (lpprev)
877 lpprev->next = lp->next;
878 else
879 lwp_list = lp->next;
880
881 lwp_free (lp);
882 }
883
884 /* Return a pointer to the structure describing the LWP corresponding
885 to PID. If no corresponding LWP could be found, return NULL. */
886
887 static struct lwp_info *
888 find_lwp_pid (ptid_t ptid)
889 {
890 struct lwp_info *lp;
891 int lwp;
892
893 if (ptid_lwp_p (ptid))
894 lwp = ptid_get_lwp (ptid);
895 else
896 lwp = ptid_get_pid (ptid);
897
898 for (lp = lwp_list; lp; lp = lp->next)
899 if (lwp == ptid_get_lwp (lp->ptid))
900 return lp;
901
902 return NULL;
903 }
904
905 /* See nat/linux-nat.h. */
906
907 struct lwp_info *
908 iterate_over_lwps (ptid_t filter,
909 iterate_over_lwps_ftype callback,
910 void *data)
911 {
912 struct lwp_info *lp, *lpnext;
913
914 for (lp = lwp_list; lp; lp = lpnext)
915 {
916 lpnext = lp->next;
917
918 if (ptid_match (lp->ptid, filter))
919 {
920 if ((*callback) (lp, data) != 0)
921 return lp;
922 }
923 }
924
925 return NULL;
926 }
927
928 /* Update our internal state when changing from one checkpoint to
929 another indicated by NEW_PTID. We can only switch single-threaded
930 applications, so we only create one new LWP, and the previous list
931 is discarded. */
932
933 void
934 linux_nat_switch_fork (ptid_t new_ptid)
935 {
936 struct lwp_info *lp;
937
938 purge_lwp_list (ptid_get_pid (inferior_ptid));
939
940 lp = add_lwp (new_ptid);
941 lp->stopped = 1;
942
943 /* This changes the thread's ptid while preserving the gdb thread
944 num. Also changes the inferior pid, while preserving the
945 inferior num. */
946 thread_change_ptid (inferior_ptid, new_ptid);
947
948 /* We've just told GDB core that the thread changed target id, but,
949 in fact, it really is a different thread, with different register
950 contents. */
951 registers_changed ();
952 }
953
954 /* Handle the exit of a single thread LP. */
955
956 static void
957 exit_lwp (struct lwp_info *lp)
958 {
959 struct thread_info *th = find_thread_ptid (lp->ptid);
960
961 if (th)
962 {
963 if (print_thread_events)
964 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
965
966 delete_thread (lp->ptid);
967 }
968
969 delete_lwp (lp->ptid);
970 }
971
972 /* Wait for the LWP specified by LP, which we have just attached to.
973 Returns a wait status for that LWP, to cache. */
974
975 static int
976 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
977 int *signalled)
978 {
979 pid_t new_pid, pid = ptid_get_lwp (ptid);
980 int status;
981
982 if (linux_proc_pid_is_stopped (pid))
983 {
984 if (debug_linux_nat)
985 fprintf_unfiltered (gdb_stdlog,
986 "LNPAW: Attaching to a stopped process\n");
987
988 /* The process is definitely stopped. It is in a job control
989 stop, unless the kernel predates the TASK_STOPPED /
990 TASK_TRACED distinction, in which case it might be in a
991 ptrace stop. Make sure it is in a ptrace stop; from there we
992 can kill it, signal it, et cetera.
993
994 First make sure there is a pending SIGSTOP. Since we are
995 already attached, the process can not transition from stopped
996 to running without a PTRACE_CONT; so we know this signal will
997 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
998 probably already in the queue (unless this kernel is old
999 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1000 is not an RT signal, it can only be queued once. */
1001 kill_lwp (pid, SIGSTOP);
1002
1003 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1004 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1005 ptrace (PTRACE_CONT, pid, 0, 0);
1006 }
1007
1008 /* Make sure the initial process is stopped. The user-level threads
1009 layer might want to poke around in the inferior, and that won't
1010 work if things haven't stabilized yet. */
1011 new_pid = my_waitpid (pid, &status, 0);
1012 if (new_pid == -1 && errno == ECHILD)
1013 {
1014 if (first)
1015 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1016
1017 /* Try again with __WCLONE to check cloned processes. */
1018 new_pid = my_waitpid (pid, &status, __WCLONE);
1019 *cloned = 1;
1020 }
1021
1022 gdb_assert (pid == new_pid);
1023
1024 if (!WIFSTOPPED (status))
1025 {
1026 /* The pid we tried to attach has apparently just exited. */
1027 if (debug_linux_nat)
1028 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1029 pid, status_to_str (status));
1030 return status;
1031 }
1032
1033 if (WSTOPSIG (status) != SIGSTOP)
1034 {
1035 *signalled = 1;
1036 if (debug_linux_nat)
1037 fprintf_unfiltered (gdb_stdlog,
1038 "LNPAW: Received %s after attaching\n",
1039 status_to_str (status));
1040 }
1041
1042 return status;
1043 }
1044
1045 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1046 the new LWP could not be attached, or 1 if we're already auto
1047 attached to this thread, but haven't processed the
1048 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1049 its existance, without considering it an error. */
1050
1051 int
1052 lin_lwp_attach_lwp (ptid_t ptid)
1053 {
1054 struct lwp_info *lp;
1055 int lwpid;
1056
1057 gdb_assert (ptid_lwp_p (ptid));
1058
1059 lp = find_lwp_pid (ptid);
1060 lwpid = ptid_get_lwp (ptid);
1061
1062 /* We assume that we're already attached to any LWP that is already
1063 in our list of LWPs. If we're not seeing exit events from threads
1064 and we've had PID wraparound since we last tried to stop all threads,
1065 this assumption might be wrong; fortunately, this is very unlikely
1066 to happen. */
1067 if (lp == NULL)
1068 {
1069 int status, cloned = 0, signalled = 0;
1070
1071 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1072 {
1073 if (linux_supports_tracefork ())
1074 {
1075 /* If we haven't stopped all threads when we get here,
1076 we may have seen a thread listed in thread_db's list,
1077 but not processed the PTRACE_EVENT_CLONE yet. If
1078 that's the case, ignore this new thread, and let
1079 normal event handling discover it later. */
1080 if (in_pid_list_p (stopped_pids, lwpid))
1081 {
1082 /* We've already seen this thread stop, but we
1083 haven't seen the PTRACE_EVENT_CLONE extended
1084 event yet. */
1085 if (debug_linux_nat)
1086 fprintf_unfiltered (gdb_stdlog,
1087 "LLAL: attach failed, but already seen "
1088 "this thread %s stop\n",
1089 target_pid_to_str (ptid));
1090 return 1;
1091 }
1092 else
1093 {
1094 int new_pid;
1095 int status;
1096
1097 if (debug_linux_nat)
1098 fprintf_unfiltered (gdb_stdlog,
1099 "LLAL: attach failed, and haven't seen "
1100 "this thread %s stop yet\n",
1101 target_pid_to_str (ptid));
1102
1103 /* We may or may not be attached to the LWP already.
1104 Try waitpid on it. If that errors, we're not
1105 attached to the LWP yet. Otherwise, we're
1106 already attached. */
1107 gdb_assert (lwpid > 0);
1108 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1109 if (new_pid == -1 && errno == ECHILD)
1110 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1111 if (new_pid != -1)
1112 {
1113 if (new_pid == 0)
1114 {
1115 /* The child hasn't stopped for its initial
1116 SIGSTOP stop yet. */
1117 if (debug_linux_nat)
1118 fprintf_unfiltered (gdb_stdlog,
1119 "LLAL: child hasn't "
1120 "stopped yet\n");
1121 }
1122 else if (WIFSTOPPED (status))
1123 {
1124 if (debug_linux_nat)
1125 fprintf_unfiltered (gdb_stdlog,
1126 "LLAL: adding to stopped_pids\n");
1127 add_to_pid_list (&stopped_pids, lwpid, status);
1128 }
1129 return 1;
1130 }
1131 }
1132 }
1133
1134 /* If we fail to attach to the thread, issue a warning,
1135 but continue. One way this can happen is if thread
1136 creation is interrupted; as of Linux kernel 2.6.19, a
1137 bug may place threads in the thread list and then fail
1138 to create them. */
1139 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1140 safe_strerror (errno));
1141 return -1;
1142 }
1143
1144 if (debug_linux_nat)
1145 fprintf_unfiltered (gdb_stdlog,
1146 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1147 target_pid_to_str (ptid));
1148
1149 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1150 if (!WIFSTOPPED (status))
1151 return 1;
1152
1153 lp = add_lwp (ptid);
1154 lp->stopped = 1;
1155 lp->last_resume_kind = resume_stop;
1156 lp->cloned = cloned;
1157 lp->signalled = signalled;
1158 if (WSTOPSIG (status) != SIGSTOP)
1159 {
1160 lp->resumed = 1;
1161 lp->status = status;
1162 }
1163
1164 target_post_attach (ptid_get_lwp (lp->ptid));
1165
1166 if (debug_linux_nat)
1167 {
1168 fprintf_unfiltered (gdb_stdlog,
1169 "LLAL: waitpid %s received %s\n",
1170 target_pid_to_str (ptid),
1171 status_to_str (status));
1172 }
1173 }
1174
1175 return 0;
1176 }
1177
1178 static void
1179 linux_nat_create_inferior (struct target_ops *ops,
1180 char *exec_file, char *allargs, char **env,
1181 int from_tty)
1182 {
1183 struct cleanup *restore_personality
1184 = maybe_disable_address_space_randomization (disable_randomization);
1185
1186 /* The fork_child mechanism is synchronous and calls target_wait, so
1187 we have to mask the async mode. */
1188
1189 /* Make sure we report all signals during startup. */
1190 linux_nat_pass_signals (ops, 0, NULL);
1191
1192 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1193
1194 do_cleanups (restore_personality);
1195 }
1196
1197 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1198 already attached. Returns true if a new LWP is found, false
1199 otherwise. */
1200
1201 static int
1202 attach_proc_task_lwp_callback (ptid_t ptid)
1203 {
1204 struct lwp_info *lp;
1205
1206 /* Ignore LWPs we're already attached to. */
1207 lp = find_lwp_pid (ptid);
1208 if (lp == NULL)
1209 {
1210 int lwpid = ptid_get_lwp (ptid);
1211
1212 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1213 {
1214 int err = errno;
1215
1216 /* Be quiet if we simply raced with the thread exiting.
1217 EPERM is returned if the thread's task still exists, and
1218 is marked as exited or zombie, as well as other
1219 conditions, so in that case, confirm the status in
1220 /proc/PID/status. */
1221 if (err == ESRCH
1222 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1223 {
1224 if (debug_linux_nat)
1225 {
1226 fprintf_unfiltered (gdb_stdlog,
1227 "Cannot attach to lwp %d: "
1228 "thread is gone (%d: %s)\n",
1229 lwpid, err, safe_strerror (err));
1230 }
1231 }
1232 else
1233 {
1234 warning (_("Cannot attach to lwp %d: %s"),
1235 lwpid,
1236 linux_ptrace_attach_fail_reason_string (ptid,
1237 err));
1238 }
1239 }
1240 else
1241 {
1242 if (debug_linux_nat)
1243 fprintf_unfiltered (gdb_stdlog,
1244 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1245 target_pid_to_str (ptid));
1246
1247 lp = add_lwp (ptid);
1248 lp->cloned = 1;
1249
1250 /* The next time we wait for this LWP we'll see a SIGSTOP as
1251 PTRACE_ATTACH brings it to a halt. */
1252 lp->signalled = 1;
1253
1254 /* We need to wait for a stop before being able to make the
1255 next ptrace call on this LWP. */
1256 lp->must_set_ptrace_flags = 1;
1257 }
1258
1259 return 1;
1260 }
1261 return 0;
1262 }
1263
1264 static void
1265 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1266 {
1267 struct lwp_info *lp;
1268 int status;
1269 ptid_t ptid;
1270
1271 /* Make sure we report all signals during attach. */
1272 linux_nat_pass_signals (ops, 0, NULL);
1273
1274 TRY
1275 {
1276 linux_ops->to_attach (ops, args, from_tty);
1277 }
1278 CATCH (ex, RETURN_MASK_ERROR)
1279 {
1280 pid_t pid = parse_pid_to_attach (args);
1281 struct buffer buffer;
1282 char *message, *buffer_s;
1283
1284 message = xstrdup (ex.message);
1285 make_cleanup (xfree, message);
1286
1287 buffer_init (&buffer);
1288 linux_ptrace_attach_fail_reason (pid, &buffer);
1289
1290 buffer_grow_str0 (&buffer, "");
1291 buffer_s = buffer_finish (&buffer);
1292 make_cleanup (xfree, buffer_s);
1293
1294 if (*buffer_s != '\0')
1295 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1296 else
1297 throw_error (ex.error, "%s", message);
1298 }
1299 END_CATCH
1300
1301 /* The ptrace base target adds the main thread with (pid,0,0)
1302 format. Decorate it with lwp info. */
1303 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1304 ptid_get_pid (inferior_ptid),
1305 0);
1306 thread_change_ptid (inferior_ptid, ptid);
1307
1308 /* Add the initial process as the first LWP to the list. */
1309 lp = add_initial_lwp (ptid);
1310
1311 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1312 &lp->signalled);
1313 if (!WIFSTOPPED (status))
1314 {
1315 if (WIFEXITED (status))
1316 {
1317 int exit_code = WEXITSTATUS (status);
1318
1319 target_terminal_ours ();
1320 target_mourn_inferior ();
1321 if (exit_code == 0)
1322 error (_("Unable to attach: program exited normally."));
1323 else
1324 error (_("Unable to attach: program exited with code %d."),
1325 exit_code);
1326 }
1327 else if (WIFSIGNALED (status))
1328 {
1329 enum gdb_signal signo;
1330
1331 target_terminal_ours ();
1332 target_mourn_inferior ();
1333
1334 signo = gdb_signal_from_host (WTERMSIG (status));
1335 error (_("Unable to attach: program terminated with signal "
1336 "%s, %s."),
1337 gdb_signal_to_name (signo),
1338 gdb_signal_to_string (signo));
1339 }
1340
1341 internal_error (__FILE__, __LINE__,
1342 _("unexpected status %d for PID %ld"),
1343 status, (long) ptid_get_lwp (ptid));
1344 }
1345
1346 lp->stopped = 1;
1347
1348 /* Save the wait status to report later. */
1349 lp->resumed = 1;
1350 if (debug_linux_nat)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "LNA: waitpid %ld, saving status %s\n",
1353 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1354
1355 lp->status = status;
1356
1357 /* We must attach to every LWP. If /proc is mounted, use that to
1358 find them now. The inferior may be using raw clone instead of
1359 using pthreads. But even if it is using pthreads, thread_db
1360 walks structures in the inferior's address space to find the list
1361 of threads/LWPs, and those structures may well be corrupted.
1362 Note that once thread_db is loaded, we'll still use it to list
1363 threads and associate pthread info with each LWP. */
1364 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1365 attach_proc_task_lwp_callback);
1366
1367 if (target_can_async_p ())
1368 target_async (1);
1369 }
1370
1371 /* Get pending status of LP. */
1372 static int
1373 get_pending_status (struct lwp_info *lp, int *status)
1374 {
1375 enum gdb_signal signo = GDB_SIGNAL_0;
1376
1377 /* If we paused threads momentarily, we may have stored pending
1378 events in lp->status or lp->waitstatus (see stop_wait_callback),
1379 and GDB core hasn't seen any signal for those threads.
1380 Otherwise, the last signal reported to the core is found in the
1381 thread object's stop_signal.
1382
1383 There's a corner case that isn't handled here at present. Only
1384 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1385 stop_signal make sense as a real signal to pass to the inferior.
1386 Some catchpoint related events, like
1387 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1388 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1389 those traps are debug API (ptrace in our case) related and
1390 induced; the inferior wouldn't see them if it wasn't being
1391 traced. Hence, we should never pass them to the inferior, even
1392 when set to pass state. Since this corner case isn't handled by
1393 infrun.c when proceeding with a signal, for consistency, neither
1394 do we handle it here (or elsewhere in the file we check for
1395 signal pass state). Normally SIGTRAP isn't set to pass state, so
1396 this is really a corner case. */
1397
1398 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1399 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1400 else if (lp->status)
1401 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1402 else if (non_stop && !is_executing (lp->ptid))
1403 {
1404 struct thread_info *tp = find_thread_ptid (lp->ptid);
1405
1406 signo = tp->suspend.stop_signal;
1407 }
1408 else if (!non_stop)
1409 {
1410 struct target_waitstatus last;
1411 ptid_t last_ptid;
1412
1413 get_last_target_status (&last_ptid, &last);
1414
1415 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1416 {
1417 struct thread_info *tp = find_thread_ptid (lp->ptid);
1418
1419 signo = tp->suspend.stop_signal;
1420 }
1421 }
1422
1423 *status = 0;
1424
1425 if (signo == GDB_SIGNAL_0)
1426 {
1427 if (debug_linux_nat)
1428 fprintf_unfiltered (gdb_stdlog,
1429 "GPT: lwp %s has no pending signal\n",
1430 target_pid_to_str (lp->ptid));
1431 }
1432 else if (!signal_pass_state (signo))
1433 {
1434 if (debug_linux_nat)
1435 fprintf_unfiltered (gdb_stdlog,
1436 "GPT: lwp %s had signal %s, "
1437 "but it is in no pass state\n",
1438 target_pid_to_str (lp->ptid),
1439 gdb_signal_to_string (signo));
1440 }
1441 else
1442 {
1443 *status = W_STOPCODE (gdb_signal_to_host (signo));
1444
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "GPT: lwp %s has pending signal %s\n",
1448 target_pid_to_str (lp->ptid),
1449 gdb_signal_to_string (signo));
1450 }
1451
1452 return 0;
1453 }
1454
1455 static int
1456 detach_callback (struct lwp_info *lp, void *data)
1457 {
1458 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1459
1460 if (debug_linux_nat && lp->status)
1461 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1462 strsignal (WSTOPSIG (lp->status)),
1463 target_pid_to_str (lp->ptid));
1464
1465 /* If there is a pending SIGSTOP, get rid of it. */
1466 if (lp->signalled)
1467 {
1468 if (debug_linux_nat)
1469 fprintf_unfiltered (gdb_stdlog,
1470 "DC: Sending SIGCONT to %s\n",
1471 target_pid_to_str (lp->ptid));
1472
1473 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1474 lp->signalled = 0;
1475 }
1476
1477 /* We don't actually detach from the LWP that has an id equal to the
1478 overall process id just yet. */
1479 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1480 {
1481 int status = 0;
1482
1483 /* Pass on any pending signal for this LWP. */
1484 get_pending_status (lp, &status);
1485
1486 if (linux_nat_prepare_to_resume != NULL)
1487 linux_nat_prepare_to_resume (lp);
1488 errno = 0;
1489 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1490 WSTOPSIG (status)) < 0)
1491 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1492 safe_strerror (errno));
1493
1494 if (debug_linux_nat)
1495 fprintf_unfiltered (gdb_stdlog,
1496 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1497 target_pid_to_str (lp->ptid),
1498 strsignal (WSTOPSIG (status)));
1499
1500 delete_lwp (lp->ptid);
1501 }
1502
1503 return 0;
1504 }
1505
1506 static void
1507 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1508 {
1509 int pid;
1510 int status;
1511 struct lwp_info *main_lwp;
1512
1513 pid = ptid_get_pid (inferior_ptid);
1514
1515 /* Don't unregister from the event loop, as there may be other
1516 inferiors running. */
1517
1518 /* Stop all threads before detaching. ptrace requires that the
1519 thread is stopped to sucessfully detach. */
1520 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1521 /* ... and wait until all of them have reported back that
1522 they're no longer running. */
1523 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1524
1525 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1526
1527 /* Only the initial process should be left right now. */
1528 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1529
1530 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1531
1532 /* Pass on any pending signal for the last LWP. */
1533 if ((args == NULL || *args == '\0')
1534 && get_pending_status (main_lwp, &status) != -1
1535 && WIFSTOPPED (status))
1536 {
1537 char *tem;
1538
1539 /* Put the signal number in ARGS so that inf_ptrace_detach will
1540 pass it along with PTRACE_DETACH. */
1541 tem = alloca (8);
1542 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1543 args = tem;
1544 if (debug_linux_nat)
1545 fprintf_unfiltered (gdb_stdlog,
1546 "LND: Sending signal %s to %s\n",
1547 args,
1548 target_pid_to_str (main_lwp->ptid));
1549 }
1550
1551 if (linux_nat_prepare_to_resume != NULL)
1552 linux_nat_prepare_to_resume (main_lwp);
1553 delete_lwp (main_lwp->ptid);
1554
1555 if (forks_exist_p ())
1556 {
1557 /* Multi-fork case. The current inferior_ptid is being detached
1558 from, but there are other viable forks to debug. Detach from
1559 the current fork, and context-switch to the first
1560 available. */
1561 linux_fork_detach (args, from_tty);
1562 }
1563 else
1564 linux_ops->to_detach (ops, args, from_tty);
1565 }
1566
1567 /* Resume execution of the inferior process. If STEP is nonzero,
1568 single-step it. If SIGNAL is nonzero, give it that signal. */
1569
1570 static void
1571 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1572 enum gdb_signal signo)
1573 {
1574 lp->step = step;
1575
1576 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1577 We only presently need that if the LWP is stepped though (to
1578 handle the case of stepping a breakpoint instruction). */
1579 if (step)
1580 {
1581 struct regcache *regcache = get_thread_regcache (lp->ptid);
1582
1583 lp->stop_pc = regcache_read_pc (regcache);
1584 }
1585 else
1586 lp->stop_pc = 0;
1587
1588 if (linux_nat_prepare_to_resume != NULL)
1589 linux_nat_prepare_to_resume (lp);
1590 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1591
1592 /* Successfully resumed. Clear state that no longer makes sense,
1593 and mark the LWP as running. Must not do this before resuming
1594 otherwise if that fails other code will be confused. E.g., we'd
1595 later try to stop the LWP and hang forever waiting for a stop
1596 status. Note that we must not throw after this is cleared,
1597 otherwise handle_zombie_lwp_error would get confused. */
1598 lp->stopped = 0;
1599 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1600 registers_changed_ptid (lp->ptid);
1601 }
1602
1603 /* Called when we try to resume a stopped LWP and that errors out. If
1604 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1605 or about to become), discard the error, clear any pending status
1606 the LWP may have, and return true (we'll collect the exit status
1607 soon enough). Otherwise, return false. */
1608
1609 static int
1610 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1611 {
1612 /* If we get an error after resuming the LWP successfully, we'd
1613 confuse !T state for the LWP being gone. */
1614 gdb_assert (lp->stopped);
1615
1616 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1617 because even if ptrace failed with ESRCH, the tracee may be "not
1618 yet fully dead", but already refusing ptrace requests. In that
1619 case the tracee has 'R (Running)' state for a little bit
1620 (observed in Linux 3.18). See also the note on ESRCH in the
1621 ptrace(2) man page. Instead, check whether the LWP has any state
1622 other than ptrace-stopped. */
1623
1624 /* Don't assume anything if /proc/PID/status can't be read. */
1625 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1626 {
1627 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1628 lp->status = 0;
1629 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1630 return 1;
1631 }
1632 return 0;
1633 }
1634
1635 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1636 disappears while we try to resume it. */
1637
1638 static void
1639 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1640 {
1641 TRY
1642 {
1643 linux_resume_one_lwp_throw (lp, step, signo);
1644 }
1645 CATCH (ex, RETURN_MASK_ERROR)
1646 {
1647 if (!check_ptrace_stopped_lwp_gone (lp))
1648 throw_exception (ex);
1649 }
1650 END_CATCH
1651 }
1652
1653 /* Resume LP. */
1654
1655 static void
1656 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1657 {
1658 if (lp->stopped)
1659 {
1660 struct inferior *inf = find_inferior_ptid (lp->ptid);
1661
1662 if (inf->vfork_child != NULL)
1663 {
1664 if (debug_linux_nat)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "RC: Not resuming %s (vfork parent)\n",
1667 target_pid_to_str (lp->ptid));
1668 }
1669 else if (!lwp_status_pending_p (lp))
1670 {
1671 if (debug_linux_nat)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "RC: Resuming sibling %s, %s, %s\n",
1674 target_pid_to_str (lp->ptid),
1675 (signo != GDB_SIGNAL_0
1676 ? strsignal (gdb_signal_to_host (signo))
1677 : "0"),
1678 step ? "step" : "resume");
1679
1680 linux_resume_one_lwp (lp, step, signo);
1681 }
1682 else
1683 {
1684 if (debug_linux_nat)
1685 fprintf_unfiltered (gdb_stdlog,
1686 "RC: Not resuming sibling %s (has pending)\n",
1687 target_pid_to_str (lp->ptid));
1688 }
1689 }
1690 else
1691 {
1692 if (debug_linux_nat)
1693 fprintf_unfiltered (gdb_stdlog,
1694 "RC: Not resuming sibling %s (not stopped)\n",
1695 target_pid_to_str (lp->ptid));
1696 }
1697 }
1698
1699 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1700 Resume LWP with the last stop signal, if it is in pass state. */
1701
1702 static int
1703 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1704 {
1705 enum gdb_signal signo = GDB_SIGNAL_0;
1706
1707 if (lp == except)
1708 return 0;
1709
1710 if (lp->stopped)
1711 {
1712 struct thread_info *thread;
1713
1714 thread = find_thread_ptid (lp->ptid);
1715 if (thread != NULL)
1716 {
1717 signo = thread->suspend.stop_signal;
1718 thread->suspend.stop_signal = GDB_SIGNAL_0;
1719 }
1720 }
1721
1722 resume_lwp (lp, 0, signo);
1723 return 0;
1724 }
1725
1726 static int
1727 resume_clear_callback (struct lwp_info *lp, void *data)
1728 {
1729 lp->resumed = 0;
1730 lp->last_resume_kind = resume_stop;
1731 return 0;
1732 }
1733
1734 static int
1735 resume_set_callback (struct lwp_info *lp, void *data)
1736 {
1737 lp->resumed = 1;
1738 lp->last_resume_kind = resume_continue;
1739 return 0;
1740 }
1741
1742 static void
1743 linux_nat_resume (struct target_ops *ops,
1744 ptid_t ptid, int step, enum gdb_signal signo)
1745 {
1746 struct lwp_info *lp;
1747 int resume_many;
1748
1749 if (debug_linux_nat)
1750 fprintf_unfiltered (gdb_stdlog,
1751 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1752 step ? "step" : "resume",
1753 target_pid_to_str (ptid),
1754 (signo != GDB_SIGNAL_0
1755 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1756 target_pid_to_str (inferior_ptid));
1757
1758 /* A specific PTID means `step only this process id'. */
1759 resume_many = (ptid_equal (minus_one_ptid, ptid)
1760 || ptid_is_pid (ptid));
1761
1762 /* Mark the lwps we're resuming as resumed. */
1763 iterate_over_lwps (ptid, resume_set_callback, NULL);
1764
1765 /* See if it's the current inferior that should be handled
1766 specially. */
1767 if (resume_many)
1768 lp = find_lwp_pid (inferior_ptid);
1769 else
1770 lp = find_lwp_pid (ptid);
1771 gdb_assert (lp != NULL);
1772
1773 /* Remember if we're stepping. */
1774 lp->last_resume_kind = step ? resume_step : resume_continue;
1775
1776 /* If we have a pending wait status for this thread, there is no
1777 point in resuming the process. But first make sure that
1778 linux_nat_wait won't preemptively handle the event - we
1779 should never take this short-circuit if we are going to
1780 leave LP running, since we have skipped resuming all the
1781 other threads. This bit of code needs to be synchronized
1782 with linux_nat_wait. */
1783
1784 if (lp->status && WIFSTOPPED (lp->status))
1785 {
1786 if (!lp->step
1787 && WSTOPSIG (lp->status)
1788 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1789 {
1790 if (debug_linux_nat)
1791 fprintf_unfiltered (gdb_stdlog,
1792 "LLR: Not short circuiting for ignored "
1793 "status 0x%x\n", lp->status);
1794
1795 /* FIXME: What should we do if we are supposed to continue
1796 this thread with a signal? */
1797 gdb_assert (signo == GDB_SIGNAL_0);
1798 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1799 lp->status = 0;
1800 }
1801 }
1802
1803 if (lwp_status_pending_p (lp))
1804 {
1805 /* FIXME: What should we do if we are supposed to continue
1806 this thread with a signal? */
1807 gdb_assert (signo == GDB_SIGNAL_0);
1808
1809 if (debug_linux_nat)
1810 fprintf_unfiltered (gdb_stdlog,
1811 "LLR: Short circuiting for status 0x%x\n",
1812 lp->status);
1813
1814 if (target_can_async_p ())
1815 {
1816 target_async (1);
1817 /* Tell the event loop we have something to process. */
1818 async_file_mark ();
1819 }
1820 return;
1821 }
1822
1823 if (resume_many)
1824 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1825
1826 if (debug_linux_nat)
1827 fprintf_unfiltered (gdb_stdlog,
1828 "LLR: %s %s, %s (resume event thread)\n",
1829 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1830 target_pid_to_str (lp->ptid),
1831 (signo != GDB_SIGNAL_0
1832 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1833
1834 linux_resume_one_lwp (lp, step, signo);
1835
1836 if (target_can_async_p ())
1837 target_async (1);
1838 }
1839
1840 /* Send a signal to an LWP. */
1841
1842 static int
1843 kill_lwp (int lwpid, int signo)
1844 {
1845 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1846 fails, then we are not using nptl threads and we should be using kill. */
1847
1848 #ifdef HAVE_TKILL_SYSCALL
1849 {
1850 static int tkill_failed;
1851
1852 if (!tkill_failed)
1853 {
1854 int ret;
1855
1856 errno = 0;
1857 ret = syscall (__NR_tkill, lwpid, signo);
1858 if (errno != ENOSYS)
1859 return ret;
1860 tkill_failed = 1;
1861 }
1862 }
1863 #endif
1864
1865 return kill (lwpid, signo);
1866 }
1867
1868 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1869 event, check if the core is interested in it: if not, ignore the
1870 event, and keep waiting; otherwise, we need to toggle the LWP's
1871 syscall entry/exit status, since the ptrace event itself doesn't
1872 indicate it, and report the trap to higher layers. */
1873
1874 static int
1875 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1876 {
1877 struct target_waitstatus *ourstatus = &lp->waitstatus;
1878 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1879 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1880
1881 if (stopping)
1882 {
1883 /* If we're stopping threads, there's a SIGSTOP pending, which
1884 makes it so that the LWP reports an immediate syscall return,
1885 followed by the SIGSTOP. Skip seeing that "return" using
1886 PTRACE_CONT directly, and let stop_wait_callback collect the
1887 SIGSTOP. Later when the thread is resumed, a new syscall
1888 entry event. If we didn't do this (and returned 0), we'd
1889 leave a syscall entry pending, and our caller, by using
1890 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1891 itself. Later, when the user re-resumes this LWP, we'd see
1892 another syscall entry event and we'd mistake it for a return.
1893
1894 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1895 (leaving immediately with LWP->signalled set, without issuing
1896 a PTRACE_CONT), it would still be problematic to leave this
1897 syscall enter pending, as later when the thread is resumed,
1898 it would then see the same syscall exit mentioned above,
1899 followed by the delayed SIGSTOP, while the syscall didn't
1900 actually get to execute. It seems it would be even more
1901 confusing to the user. */
1902
1903 if (debug_linux_nat)
1904 fprintf_unfiltered (gdb_stdlog,
1905 "LHST: ignoring syscall %d "
1906 "for LWP %ld (stopping threads), "
1907 "resuming with PTRACE_CONT for SIGSTOP\n",
1908 syscall_number,
1909 ptid_get_lwp (lp->ptid));
1910
1911 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1912 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1913 lp->stopped = 0;
1914 return 1;
1915 }
1916
1917 if (catch_syscall_enabled ())
1918 {
1919 /* Always update the entry/return state, even if this particular
1920 syscall isn't interesting to the core now. In async mode,
1921 the user could install a new catchpoint for this syscall
1922 between syscall enter/return, and we'll need to know to
1923 report a syscall return if that happens. */
1924 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1925 ? TARGET_WAITKIND_SYSCALL_RETURN
1926 : TARGET_WAITKIND_SYSCALL_ENTRY);
1927
1928 if (catching_syscall_number (syscall_number))
1929 {
1930 /* Alright, an event to report. */
1931 ourstatus->kind = lp->syscall_state;
1932 ourstatus->value.syscall_number = syscall_number;
1933
1934 if (debug_linux_nat)
1935 fprintf_unfiltered (gdb_stdlog,
1936 "LHST: stopping for %s of syscall %d"
1937 " for LWP %ld\n",
1938 lp->syscall_state
1939 == TARGET_WAITKIND_SYSCALL_ENTRY
1940 ? "entry" : "return",
1941 syscall_number,
1942 ptid_get_lwp (lp->ptid));
1943 return 0;
1944 }
1945
1946 if (debug_linux_nat)
1947 fprintf_unfiltered (gdb_stdlog,
1948 "LHST: ignoring %s of syscall %d "
1949 "for LWP %ld\n",
1950 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1951 ? "entry" : "return",
1952 syscall_number,
1953 ptid_get_lwp (lp->ptid));
1954 }
1955 else
1956 {
1957 /* If we had been syscall tracing, and hence used PT_SYSCALL
1958 before on this LWP, it could happen that the user removes all
1959 syscall catchpoints before we get to process this event.
1960 There are two noteworthy issues here:
1961
1962 - When stopped at a syscall entry event, resuming with
1963 PT_STEP still resumes executing the syscall and reports a
1964 syscall return.
1965
1966 - Only PT_SYSCALL catches syscall enters. If we last
1967 single-stepped this thread, then this event can't be a
1968 syscall enter. If we last single-stepped this thread, this
1969 has to be a syscall exit.
1970
1971 The points above mean that the next resume, be it PT_STEP or
1972 PT_CONTINUE, can not trigger a syscall trace event. */
1973 if (debug_linux_nat)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "LHST: caught syscall event "
1976 "with no syscall catchpoints."
1977 " %d for LWP %ld, ignoring\n",
1978 syscall_number,
1979 ptid_get_lwp (lp->ptid));
1980 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1981 }
1982
1983 /* The core isn't interested in this event. For efficiency, avoid
1984 stopping all threads only to have the core resume them all again.
1985 Since we're not stopping threads, if we're still syscall tracing
1986 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1987 subsequent syscall. Simply resume using the inf-ptrace layer,
1988 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1989
1990 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1991 return 1;
1992 }
1993
1994 /* Handle a GNU/Linux extended wait response. If we see a clone
1995 event, we need to add the new LWP to our list (and not report the
1996 trap to higher layers). This function returns non-zero if the
1997 event should be ignored and we should wait again. If STOPPING is
1998 true, the new LWP remains stopped, otherwise it is continued. */
1999
2000 static int
2001 linux_handle_extended_wait (struct lwp_info *lp, int status,
2002 int stopping)
2003 {
2004 int pid = ptid_get_lwp (lp->ptid);
2005 struct target_waitstatus *ourstatus = &lp->waitstatus;
2006 int event = linux_ptrace_get_extended_event (status);
2007
2008 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2009 || event == PTRACE_EVENT_CLONE)
2010 {
2011 unsigned long new_pid;
2012 int ret;
2013
2014 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2015
2016 /* If we haven't already seen the new PID stop, wait for it now. */
2017 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2018 {
2019 /* The new child has a pending SIGSTOP. We can't affect it until it
2020 hits the SIGSTOP, but we're already attached. */
2021 ret = my_waitpid (new_pid, &status,
2022 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2023 if (ret == -1)
2024 perror_with_name (_("waiting for new child"));
2025 else if (ret != new_pid)
2026 internal_error (__FILE__, __LINE__,
2027 _("wait returned unexpected PID %d"), ret);
2028 else if (!WIFSTOPPED (status))
2029 internal_error (__FILE__, __LINE__,
2030 _("wait returned unexpected status 0x%x"), status);
2031 }
2032
2033 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2034
2035 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2036 {
2037 /* The arch-specific native code may need to know about new
2038 forks even if those end up never mapped to an
2039 inferior. */
2040 if (linux_nat_new_fork != NULL)
2041 linux_nat_new_fork (lp, new_pid);
2042 }
2043
2044 if (event == PTRACE_EVENT_FORK
2045 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2046 {
2047 /* Handle checkpointing by linux-fork.c here as a special
2048 case. We don't want the follow-fork-mode or 'catch fork'
2049 to interfere with this. */
2050
2051 /* This won't actually modify the breakpoint list, but will
2052 physically remove the breakpoints from the child. */
2053 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2054
2055 /* Retain child fork in ptrace (stopped) state. */
2056 if (!find_fork_pid (new_pid))
2057 add_fork (new_pid);
2058
2059 /* Report as spurious, so that infrun doesn't want to follow
2060 this fork. We're actually doing an infcall in
2061 linux-fork.c. */
2062 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2063
2064 /* Report the stop to the core. */
2065 return 0;
2066 }
2067
2068 if (event == PTRACE_EVENT_FORK)
2069 ourstatus->kind = TARGET_WAITKIND_FORKED;
2070 else if (event == PTRACE_EVENT_VFORK)
2071 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2072 else
2073 {
2074 struct lwp_info *new_lp;
2075
2076 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2077
2078 if (debug_linux_nat)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "LHEW: Got clone event "
2081 "from LWP %d, new child is LWP %ld\n",
2082 pid, new_pid);
2083
2084 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2085 new_lp->cloned = 1;
2086 new_lp->stopped = 1;
2087
2088 if (WSTOPSIG (status) != SIGSTOP)
2089 {
2090 /* This can happen if someone starts sending signals to
2091 the new thread before it gets a chance to run, which
2092 have a lower number than SIGSTOP (e.g. SIGUSR1).
2093 This is an unlikely case, and harder to handle for
2094 fork / vfork than for clone, so we do not try - but
2095 we handle it for clone events here. We'll send
2096 the other signal on to the thread below. */
2097
2098 new_lp->signalled = 1;
2099 }
2100 else
2101 {
2102 struct thread_info *tp;
2103
2104 /* When we stop for an event in some other thread, and
2105 pull the thread list just as this thread has cloned,
2106 we'll have seen the new thread in the thread_db list
2107 before handling the CLONE event (glibc's
2108 pthread_create adds the new thread to the thread list
2109 before clone'ing, and has the kernel fill in the
2110 thread's tid on the clone call with
2111 CLONE_PARENT_SETTID). If that happened, and the core
2112 had requested the new thread to stop, we'll have
2113 killed it with SIGSTOP. But since SIGSTOP is not an
2114 RT signal, it can only be queued once. We need to be
2115 careful to not resume the LWP if we wanted it to
2116 stop. In that case, we'll leave the SIGSTOP pending.
2117 It will later be reported as GDB_SIGNAL_0. */
2118 tp = find_thread_ptid (new_lp->ptid);
2119 if (tp != NULL && tp->stop_requested)
2120 new_lp->last_resume_kind = resume_stop;
2121 else
2122 status = 0;
2123 }
2124
2125 /* If the thread_db layer is active, let it record the user
2126 level thread id and status, and add the thread to GDB's
2127 list. */
2128 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2129 {
2130 /* The process is not using thread_db. Add the LWP to
2131 GDB's list. */
2132 target_post_attach (ptid_get_lwp (new_lp->ptid));
2133 add_thread (new_lp->ptid);
2134 }
2135
2136 /* Even if we're stopping the thread for some reason
2137 internal to this module, from the user/frontend's
2138 perspective, this new thread is running. */
2139 set_running (new_lp->ptid, 1);
2140 if (!stopping)
2141 {
2142 set_executing (new_lp->ptid, 1);
2143 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2144 resume_stop. */
2145 new_lp->last_resume_kind = resume_continue;
2146 }
2147
2148 if (status != 0)
2149 {
2150 /* We created NEW_LP so it cannot yet contain STATUS. */
2151 gdb_assert (new_lp->status == 0);
2152
2153 /* Save the wait status to report later. */
2154 if (debug_linux_nat)
2155 fprintf_unfiltered (gdb_stdlog,
2156 "LHEW: waitpid of new LWP %ld, "
2157 "saving status %s\n",
2158 (long) ptid_get_lwp (new_lp->ptid),
2159 status_to_str (status));
2160 new_lp->status = status;
2161 }
2162
2163 new_lp->resumed = !stopping;
2164 return 1;
2165 }
2166
2167 return 0;
2168 }
2169
2170 if (event == PTRACE_EVENT_EXEC)
2171 {
2172 if (debug_linux_nat)
2173 fprintf_unfiltered (gdb_stdlog,
2174 "LHEW: Got exec event from LWP %ld\n",
2175 ptid_get_lwp (lp->ptid));
2176
2177 ourstatus->kind = TARGET_WAITKIND_EXECD;
2178 ourstatus->value.execd_pathname
2179 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2180
2181 /* The thread that execed must have been resumed, but, when a
2182 thread execs, it changes its tid to the tgid, and the old
2183 tgid thread might have not been resumed. */
2184 lp->resumed = 1;
2185 return 0;
2186 }
2187
2188 if (event == PTRACE_EVENT_VFORK_DONE)
2189 {
2190 if (current_inferior ()->waiting_for_vfork_done)
2191 {
2192 if (debug_linux_nat)
2193 fprintf_unfiltered (gdb_stdlog,
2194 "LHEW: Got expected PTRACE_EVENT_"
2195 "VFORK_DONE from LWP %ld: stopping\n",
2196 ptid_get_lwp (lp->ptid));
2197
2198 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2199 return 0;
2200 }
2201
2202 if (debug_linux_nat)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2205 "from LWP %ld: ignoring\n",
2206 ptid_get_lwp (lp->ptid));
2207 return 1;
2208 }
2209
2210 internal_error (__FILE__, __LINE__,
2211 _("unknown ptrace event %d"), event);
2212 }
2213
2214 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2215 exited. */
2216
2217 static int
2218 wait_lwp (struct lwp_info *lp)
2219 {
2220 pid_t pid;
2221 int status = 0;
2222 int thread_dead = 0;
2223 sigset_t prev_mask;
2224
2225 gdb_assert (!lp->stopped);
2226 gdb_assert (lp->status == 0);
2227
2228 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2229 block_child_signals (&prev_mask);
2230
2231 for (;;)
2232 {
2233 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2234 was right and we should just call sigsuspend. */
2235
2236 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2237 if (pid == -1 && errno == ECHILD)
2238 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2239 if (pid == -1 && errno == ECHILD)
2240 {
2241 /* The thread has previously exited. We need to delete it
2242 now because, for some vendor 2.4 kernels with NPTL
2243 support backported, there won't be an exit event unless
2244 it is the main thread. 2.6 kernels will report an exit
2245 event for each thread that exits, as expected. */
2246 thread_dead = 1;
2247 if (debug_linux_nat)
2248 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2249 target_pid_to_str (lp->ptid));
2250 }
2251 if (pid != 0)
2252 break;
2253
2254 /* Bugs 10970, 12702.
2255 Thread group leader may have exited in which case we'll lock up in
2256 waitpid if there are other threads, even if they are all zombies too.
2257 Basically, we're not supposed to use waitpid this way.
2258 __WCLONE is not applicable for the leader so we can't use that.
2259 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2260 process; it gets ESRCH both for the zombie and for running processes.
2261
2262 As a workaround, check if we're waiting for the thread group leader and
2263 if it's a zombie, and avoid calling waitpid if it is.
2264
2265 This is racy, what if the tgl becomes a zombie right after we check?
2266 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2267 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2268
2269 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2270 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2271 {
2272 thread_dead = 1;
2273 if (debug_linux_nat)
2274 fprintf_unfiltered (gdb_stdlog,
2275 "WL: Thread group leader %s vanished.\n",
2276 target_pid_to_str (lp->ptid));
2277 break;
2278 }
2279
2280 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2281 get invoked despite our caller had them intentionally blocked by
2282 block_child_signals. This is sensitive only to the loop of
2283 linux_nat_wait_1 and there if we get called my_waitpid gets called
2284 again before it gets to sigsuspend so we can safely let the handlers
2285 get executed here. */
2286
2287 if (debug_linux_nat)
2288 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2289 sigsuspend (&suspend_mask);
2290 }
2291
2292 restore_child_signals_mask (&prev_mask);
2293
2294 if (!thread_dead)
2295 {
2296 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2297
2298 if (debug_linux_nat)
2299 {
2300 fprintf_unfiltered (gdb_stdlog,
2301 "WL: waitpid %s received %s\n",
2302 target_pid_to_str (lp->ptid),
2303 status_to_str (status));
2304 }
2305
2306 /* Check if the thread has exited. */
2307 if (WIFEXITED (status) || WIFSIGNALED (status))
2308 {
2309 thread_dead = 1;
2310 if (debug_linux_nat)
2311 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2312 target_pid_to_str (lp->ptid));
2313 }
2314 }
2315
2316 if (thread_dead)
2317 {
2318 exit_lwp (lp);
2319 return 0;
2320 }
2321
2322 gdb_assert (WIFSTOPPED (status));
2323 lp->stopped = 1;
2324
2325 if (lp->must_set_ptrace_flags)
2326 {
2327 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2328 int options = linux_nat_ptrace_options (inf->attach_flag);
2329
2330 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2331 lp->must_set_ptrace_flags = 0;
2332 }
2333
2334 /* Handle GNU/Linux's syscall SIGTRAPs. */
2335 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2336 {
2337 /* No longer need the sysgood bit. The ptrace event ends up
2338 recorded in lp->waitstatus if we care for it. We can carry
2339 on handling the event like a regular SIGTRAP from here
2340 on. */
2341 status = W_STOPCODE (SIGTRAP);
2342 if (linux_handle_syscall_trap (lp, 1))
2343 return wait_lwp (lp);
2344 }
2345
2346 /* Handle GNU/Linux's extended waitstatus for trace events. */
2347 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2348 && linux_is_extended_waitstatus (status))
2349 {
2350 if (debug_linux_nat)
2351 fprintf_unfiltered (gdb_stdlog,
2352 "WL: Handling extended status 0x%06x\n",
2353 status);
2354 linux_handle_extended_wait (lp, status, 1);
2355 return 0;
2356 }
2357
2358 return status;
2359 }
2360
2361 /* Send a SIGSTOP to LP. */
2362
2363 static int
2364 stop_callback (struct lwp_info *lp, void *data)
2365 {
2366 if (!lp->stopped && !lp->signalled)
2367 {
2368 int ret;
2369
2370 if (debug_linux_nat)
2371 {
2372 fprintf_unfiltered (gdb_stdlog,
2373 "SC: kill %s **<SIGSTOP>**\n",
2374 target_pid_to_str (lp->ptid));
2375 }
2376 errno = 0;
2377 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2378 if (debug_linux_nat)
2379 {
2380 fprintf_unfiltered (gdb_stdlog,
2381 "SC: lwp kill %d %s\n",
2382 ret,
2383 errno ? safe_strerror (errno) : "ERRNO-OK");
2384 }
2385
2386 lp->signalled = 1;
2387 gdb_assert (lp->status == 0);
2388 }
2389
2390 return 0;
2391 }
2392
2393 /* Request a stop on LWP. */
2394
2395 void
2396 linux_stop_lwp (struct lwp_info *lwp)
2397 {
2398 stop_callback (lwp, NULL);
2399 }
2400
2401 /* See linux-nat.h */
2402
2403 void
2404 linux_stop_and_wait_all_lwps (void)
2405 {
2406 /* Stop all LWP's ... */
2407 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2408
2409 /* ... and wait until all of them have reported back that
2410 they're no longer running. */
2411 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2412 }
2413
2414 /* See linux-nat.h */
2415
2416 void
2417 linux_unstop_all_lwps (void)
2418 {
2419 iterate_over_lwps (minus_one_ptid,
2420 resume_stopped_resumed_lwps, &minus_one_ptid);
2421 }
2422
2423 /* Return non-zero if LWP PID has a pending SIGINT. */
2424
2425 static int
2426 linux_nat_has_pending_sigint (int pid)
2427 {
2428 sigset_t pending, blocked, ignored;
2429
2430 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2431
2432 if (sigismember (&pending, SIGINT)
2433 && !sigismember (&ignored, SIGINT))
2434 return 1;
2435
2436 return 0;
2437 }
2438
2439 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2440
2441 static int
2442 set_ignore_sigint (struct lwp_info *lp, void *data)
2443 {
2444 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2445 flag to consume the next one. */
2446 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2447 && WSTOPSIG (lp->status) == SIGINT)
2448 lp->status = 0;
2449 else
2450 lp->ignore_sigint = 1;
2451
2452 return 0;
2453 }
2454
2455 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2456 This function is called after we know the LWP has stopped; if the LWP
2457 stopped before the expected SIGINT was delivered, then it will never have
2458 arrived. Also, if the signal was delivered to a shared queue and consumed
2459 by a different thread, it will never be delivered to this LWP. */
2460
2461 static void
2462 maybe_clear_ignore_sigint (struct lwp_info *lp)
2463 {
2464 if (!lp->ignore_sigint)
2465 return;
2466
2467 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2468 {
2469 if (debug_linux_nat)
2470 fprintf_unfiltered (gdb_stdlog,
2471 "MCIS: Clearing bogus flag for %s\n",
2472 target_pid_to_str (lp->ptid));
2473 lp->ignore_sigint = 0;
2474 }
2475 }
2476
2477 /* Fetch the possible triggered data watchpoint info and store it in
2478 LP.
2479
2480 On some archs, like x86, that use debug registers to set
2481 watchpoints, it's possible that the way to know which watched
2482 address trapped, is to check the register that is used to select
2483 which address to watch. Problem is, between setting the watchpoint
2484 and reading back which data address trapped, the user may change
2485 the set of watchpoints, and, as a consequence, GDB changes the
2486 debug registers in the inferior. To avoid reading back a stale
2487 stopped-data-address when that happens, we cache in LP the fact
2488 that a watchpoint trapped, and the corresponding data address, as
2489 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2490 registers meanwhile, we have the cached data we can rely on. */
2491
2492 static int
2493 check_stopped_by_watchpoint (struct lwp_info *lp)
2494 {
2495 struct cleanup *old_chain;
2496
2497 if (linux_ops->to_stopped_by_watchpoint == NULL)
2498 return 0;
2499
2500 old_chain = save_inferior_ptid ();
2501 inferior_ptid = lp->ptid;
2502
2503 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2504 {
2505 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2506
2507 if (linux_ops->to_stopped_data_address != NULL)
2508 lp->stopped_data_address_p =
2509 linux_ops->to_stopped_data_address (&current_target,
2510 &lp->stopped_data_address);
2511 else
2512 lp->stopped_data_address_p = 0;
2513 }
2514
2515 do_cleanups (old_chain);
2516
2517 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2518 }
2519
2520 /* Called when the LWP stopped for a trap that could be explained by a
2521 watchpoint or a breakpoint. */
2522
2523 static void
2524 save_sigtrap (struct lwp_info *lp)
2525 {
2526 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2527 gdb_assert (lp->status != 0);
2528
2529 /* Check first if this was a SW/HW breakpoint before checking
2530 watchpoints, because at least s390 can't tell the data address of
2531 hardware watchpoint hits, and the kernel returns
2532 stopped-by-watchpoint as long as there's a watchpoint set. */
2533 if (linux_nat_status_is_event (lp->status))
2534 check_stopped_by_breakpoint (lp);
2535
2536 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2537 or hardware watchpoint. Check which is which if we got
2538 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2539 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2540 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2541 check_stopped_by_watchpoint (lp);
2542 }
2543
2544 /* Returns true if the LWP had stopped for a watchpoint. */
2545
2546 static int
2547 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2548 {
2549 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2550
2551 gdb_assert (lp != NULL);
2552
2553 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2554 }
2555
2556 static int
2557 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2558 {
2559 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2560
2561 gdb_assert (lp != NULL);
2562
2563 *addr_p = lp->stopped_data_address;
2564
2565 return lp->stopped_data_address_p;
2566 }
2567
2568 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2569
2570 static int
2571 sigtrap_is_event (int status)
2572 {
2573 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2574 }
2575
2576 /* Set alternative SIGTRAP-like events recognizer. If
2577 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2578 applied. */
2579
2580 void
2581 linux_nat_set_status_is_event (struct target_ops *t,
2582 int (*status_is_event) (int status))
2583 {
2584 linux_nat_status_is_event = status_is_event;
2585 }
2586
2587 /* Wait until LP is stopped. */
2588
2589 static int
2590 stop_wait_callback (struct lwp_info *lp, void *data)
2591 {
2592 struct inferior *inf = find_inferior_ptid (lp->ptid);
2593
2594 /* If this is a vfork parent, bail out, it is not going to report
2595 any SIGSTOP until the vfork is done with. */
2596 if (inf->vfork_child != NULL)
2597 return 0;
2598
2599 if (!lp->stopped)
2600 {
2601 int status;
2602
2603 status = wait_lwp (lp);
2604 if (status == 0)
2605 return 0;
2606
2607 if (lp->ignore_sigint && WIFSTOPPED (status)
2608 && WSTOPSIG (status) == SIGINT)
2609 {
2610 lp->ignore_sigint = 0;
2611
2612 errno = 0;
2613 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2614 lp->stopped = 0;
2615 if (debug_linux_nat)
2616 fprintf_unfiltered (gdb_stdlog,
2617 "PTRACE_CONT %s, 0, 0 (%s) "
2618 "(discarding SIGINT)\n",
2619 target_pid_to_str (lp->ptid),
2620 errno ? safe_strerror (errno) : "OK");
2621
2622 return stop_wait_callback (lp, NULL);
2623 }
2624
2625 maybe_clear_ignore_sigint (lp);
2626
2627 if (WSTOPSIG (status) != SIGSTOP)
2628 {
2629 /* The thread was stopped with a signal other than SIGSTOP. */
2630
2631 if (debug_linux_nat)
2632 fprintf_unfiltered (gdb_stdlog,
2633 "SWC: Pending event %s in %s\n",
2634 status_to_str ((int) status),
2635 target_pid_to_str (lp->ptid));
2636
2637 /* Save the sigtrap event. */
2638 lp->status = status;
2639 gdb_assert (lp->signalled);
2640 save_sigtrap (lp);
2641 }
2642 else
2643 {
2644 /* We caught the SIGSTOP that we intended to catch, so
2645 there's no SIGSTOP pending. */
2646
2647 if (debug_linux_nat)
2648 fprintf_unfiltered (gdb_stdlog,
2649 "SWC: Expected SIGSTOP caught for %s.\n",
2650 target_pid_to_str (lp->ptid));
2651
2652 /* Reset SIGNALLED only after the stop_wait_callback call
2653 above as it does gdb_assert on SIGNALLED. */
2654 lp->signalled = 0;
2655 }
2656 }
2657
2658 return 0;
2659 }
2660
2661 /* Return non-zero if LP has a wait status pending. Discard the
2662 pending event and resume the LWP if the event that originally
2663 caused the stop became uninteresting. */
2664
2665 static int
2666 status_callback (struct lwp_info *lp, void *data)
2667 {
2668 /* Only report a pending wait status if we pretend that this has
2669 indeed been resumed. */
2670 if (!lp->resumed)
2671 return 0;
2672
2673 if (!lwp_status_pending_p (lp))
2674 return 0;
2675
2676 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2677 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2678 {
2679 struct regcache *regcache = get_thread_regcache (lp->ptid);
2680 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2681 CORE_ADDR pc;
2682 int discard = 0;
2683
2684 pc = regcache_read_pc (regcache);
2685
2686 if (pc != lp->stop_pc)
2687 {
2688 if (debug_linux_nat)
2689 fprintf_unfiltered (gdb_stdlog,
2690 "SC: PC of %s changed. was=%s, now=%s\n",
2691 target_pid_to_str (lp->ptid),
2692 paddress (target_gdbarch (), lp->stop_pc),
2693 paddress (target_gdbarch (), pc));
2694 discard = 1;
2695 }
2696
2697 #if !USE_SIGTRAP_SIGINFO
2698 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2699 {
2700 if (debug_linux_nat)
2701 fprintf_unfiltered (gdb_stdlog,
2702 "SC: previous breakpoint of %s, at %s gone\n",
2703 target_pid_to_str (lp->ptid),
2704 paddress (target_gdbarch (), lp->stop_pc));
2705
2706 discard = 1;
2707 }
2708 #endif
2709
2710 if (discard)
2711 {
2712 if (debug_linux_nat)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "SC: pending event of %s cancelled.\n",
2715 target_pid_to_str (lp->ptid));
2716
2717 lp->status = 0;
2718 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2719 return 0;
2720 }
2721 }
2722
2723 return 1;
2724 }
2725
2726 /* Return non-zero if LP isn't stopped. */
2727
2728 static int
2729 running_callback (struct lwp_info *lp, void *data)
2730 {
2731 return (!lp->stopped
2732 || (lwp_status_pending_p (lp) && lp->resumed));
2733 }
2734
2735 /* Count the LWP's that have had events. */
2736
2737 static int
2738 count_events_callback (struct lwp_info *lp, void *data)
2739 {
2740 int *count = data;
2741
2742 gdb_assert (count != NULL);
2743
2744 /* Select only resumed LWPs that have an event pending. */
2745 if (lp->resumed && lwp_status_pending_p (lp))
2746 (*count)++;
2747
2748 return 0;
2749 }
2750
2751 /* Select the LWP (if any) that is currently being single-stepped. */
2752
2753 static int
2754 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2755 {
2756 if (lp->last_resume_kind == resume_step
2757 && lp->status != 0)
2758 return 1;
2759 else
2760 return 0;
2761 }
2762
2763 /* Returns true if LP has a status pending. */
2764
2765 static int
2766 lwp_status_pending_p (struct lwp_info *lp)
2767 {
2768 /* We check for lp->waitstatus in addition to lp->status, because we
2769 can have pending process exits recorded in lp->status and
2770 W_EXITCODE(0,0) happens to be 0. */
2771 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2772 }
2773
2774 /* Select the Nth LWP that has had an event. */
2775
2776 static int
2777 select_event_lwp_callback (struct lwp_info *lp, void *data)
2778 {
2779 int *selector = data;
2780
2781 gdb_assert (selector != NULL);
2782
2783 /* Select only resumed LWPs that have an event pending. */
2784 if (lp->resumed && lwp_status_pending_p (lp))
2785 if ((*selector)-- == 0)
2786 return 1;
2787
2788 return 0;
2789 }
2790
2791 /* Called when the LWP got a signal/trap that could be explained by a
2792 software or hardware breakpoint. */
2793
2794 static int
2795 check_stopped_by_breakpoint (struct lwp_info *lp)
2796 {
2797 /* Arrange for a breakpoint to be hit again later. We don't keep
2798 the SIGTRAP status and don't forward the SIGTRAP signal to the
2799 LWP. We will handle the current event, eventually we will resume
2800 this LWP, and this breakpoint will trap again.
2801
2802 If we do not do this, then we run the risk that the user will
2803 delete or disable the breakpoint, but the LWP will have already
2804 tripped on it. */
2805
2806 struct regcache *regcache = get_thread_regcache (lp->ptid);
2807 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2808 CORE_ADDR pc;
2809 CORE_ADDR sw_bp_pc;
2810 #if USE_SIGTRAP_SIGINFO
2811 siginfo_t siginfo;
2812 #endif
2813
2814 pc = regcache_read_pc (regcache);
2815 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2816
2817 #if USE_SIGTRAP_SIGINFO
2818 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2819 {
2820 if (siginfo.si_signo == SIGTRAP)
2821 {
2822 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
2823 {
2824 if (debug_linux_nat)
2825 fprintf_unfiltered (gdb_stdlog,
2826 "CSBB: %s stopped by software "
2827 "breakpoint\n",
2828 target_pid_to_str (lp->ptid));
2829
2830 /* Back up the PC if necessary. */
2831 if (pc != sw_bp_pc)
2832 regcache_write_pc (regcache, sw_bp_pc);
2833
2834 lp->stop_pc = sw_bp_pc;
2835 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2836 return 1;
2837 }
2838 else if (siginfo.si_code == TRAP_HWBKPT)
2839 {
2840 if (debug_linux_nat)
2841 fprintf_unfiltered (gdb_stdlog,
2842 "CSBB: %s stopped by hardware "
2843 "breakpoint/watchpoint\n",
2844 target_pid_to_str (lp->ptid));
2845
2846 lp->stop_pc = pc;
2847 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2848 return 1;
2849 }
2850 else if (siginfo.si_code == TRAP_TRACE)
2851 {
2852 if (debug_linux_nat)
2853 fprintf_unfiltered (gdb_stdlog,
2854 "CSBB: %s stopped by trace\n",
2855 target_pid_to_str (lp->ptid));
2856 }
2857 }
2858 }
2859 #else
2860 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2861 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2862 sw_bp_pc))
2863 {
2864 /* The LWP was either continued, or stepped a software
2865 breakpoint instruction. */
2866 if (debug_linux_nat)
2867 fprintf_unfiltered (gdb_stdlog,
2868 "CSBB: %s stopped by software breakpoint\n",
2869 target_pid_to_str (lp->ptid));
2870
2871 /* Back up the PC if necessary. */
2872 if (pc != sw_bp_pc)
2873 regcache_write_pc (regcache, sw_bp_pc);
2874
2875 lp->stop_pc = sw_bp_pc;
2876 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2877 return 1;
2878 }
2879
2880 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2881 {
2882 if (debug_linux_nat)
2883 fprintf_unfiltered (gdb_stdlog,
2884 "CSBB: stopped by hardware breakpoint %s\n",
2885 target_pid_to_str (lp->ptid));
2886
2887 lp->stop_pc = pc;
2888 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2889 return 1;
2890 }
2891 #endif
2892
2893 return 0;
2894 }
2895
2896
2897 /* Returns true if the LWP had stopped for a software breakpoint. */
2898
2899 static int
2900 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2901 {
2902 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2903
2904 gdb_assert (lp != NULL);
2905
2906 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2907 }
2908
2909 /* Implement the supports_stopped_by_sw_breakpoint method. */
2910
2911 static int
2912 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2913 {
2914 return USE_SIGTRAP_SIGINFO;
2915 }
2916
2917 /* Returns true if the LWP had stopped for a hardware
2918 breakpoint/watchpoint. */
2919
2920 static int
2921 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2922 {
2923 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2924
2925 gdb_assert (lp != NULL);
2926
2927 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2928 }
2929
2930 /* Implement the supports_stopped_by_hw_breakpoint method. */
2931
2932 static int
2933 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2934 {
2935 return USE_SIGTRAP_SIGINFO;
2936 }
2937
2938 /* Select one LWP out of those that have events pending. */
2939
2940 static void
2941 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2942 {
2943 int num_events = 0;
2944 int random_selector;
2945 struct lwp_info *event_lp = NULL;
2946
2947 /* Record the wait status for the original LWP. */
2948 (*orig_lp)->status = *status;
2949
2950 /* In all-stop, give preference to the LWP that is being
2951 single-stepped. There will be at most one, and it will be the
2952 LWP that the core is most interested in. If we didn't do this,
2953 then we'd have to handle pending step SIGTRAPs somehow in case
2954 the core later continues the previously-stepped thread, as
2955 otherwise we'd report the pending SIGTRAP then, and the core, not
2956 having stepped the thread, wouldn't understand what the trap was
2957 for, and therefore would report it to the user as a random
2958 signal. */
2959 if (!non_stop)
2960 {
2961 event_lp = iterate_over_lwps (filter,
2962 select_singlestep_lwp_callback, NULL);
2963 if (event_lp != NULL)
2964 {
2965 if (debug_linux_nat)
2966 fprintf_unfiltered (gdb_stdlog,
2967 "SEL: Select single-step %s\n",
2968 target_pid_to_str (event_lp->ptid));
2969 }
2970 }
2971
2972 if (event_lp == NULL)
2973 {
2974 /* Pick one at random, out of those which have had events. */
2975
2976 /* First see how many events we have. */
2977 iterate_over_lwps (filter, count_events_callback, &num_events);
2978 gdb_assert (num_events > 0);
2979
2980 /* Now randomly pick a LWP out of those that have had
2981 events. */
2982 random_selector = (int)
2983 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2984
2985 if (debug_linux_nat && num_events > 1)
2986 fprintf_unfiltered (gdb_stdlog,
2987 "SEL: Found %d events, selecting #%d\n",
2988 num_events, random_selector);
2989
2990 event_lp = iterate_over_lwps (filter,
2991 select_event_lwp_callback,
2992 &random_selector);
2993 }
2994
2995 if (event_lp != NULL)
2996 {
2997 /* Switch the event LWP. */
2998 *orig_lp = event_lp;
2999 *status = event_lp->status;
3000 }
3001
3002 /* Flush the wait status for the event LWP. */
3003 (*orig_lp)->status = 0;
3004 }
3005
3006 /* Return non-zero if LP has been resumed. */
3007
3008 static int
3009 resumed_callback (struct lwp_info *lp, void *data)
3010 {
3011 return lp->resumed;
3012 }
3013
3014 /* Stop an active thread, verify it still exists, then resume it. If
3015 the thread ends up with a pending status, then it is not resumed,
3016 and *DATA (really a pointer to int), is set. */
3017
3018 static int
3019 stop_and_resume_callback (struct lwp_info *lp, void *data)
3020 {
3021 if (!lp->stopped)
3022 {
3023 ptid_t ptid = lp->ptid;
3024
3025 stop_callback (lp, NULL);
3026 stop_wait_callback (lp, NULL);
3027
3028 /* Resume if the lwp still exists, and the core wanted it
3029 running. */
3030 lp = find_lwp_pid (ptid);
3031 if (lp != NULL)
3032 {
3033 if (lp->last_resume_kind == resume_stop
3034 && !lwp_status_pending_p (lp))
3035 {
3036 /* The core wanted the LWP to stop. Even if it stopped
3037 cleanly (with SIGSTOP), leave the event pending. */
3038 if (debug_linux_nat)
3039 fprintf_unfiltered (gdb_stdlog,
3040 "SARC: core wanted LWP %ld stopped "
3041 "(leaving SIGSTOP pending)\n",
3042 ptid_get_lwp (lp->ptid));
3043 lp->status = W_STOPCODE (SIGSTOP);
3044 }
3045
3046 if (!lwp_status_pending_p (lp))
3047 {
3048 if (debug_linux_nat)
3049 fprintf_unfiltered (gdb_stdlog,
3050 "SARC: re-resuming LWP %ld\n",
3051 ptid_get_lwp (lp->ptid));
3052 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3053 }
3054 else
3055 {
3056 if (debug_linux_nat)
3057 fprintf_unfiltered (gdb_stdlog,
3058 "SARC: not re-resuming LWP %ld "
3059 "(has pending)\n",
3060 ptid_get_lwp (lp->ptid));
3061 }
3062 }
3063 }
3064 return 0;
3065 }
3066
3067 /* Check if we should go on and pass this event to common code.
3068 Return the affected lwp if we are, or NULL otherwise. */
3069
3070 static struct lwp_info *
3071 linux_nat_filter_event (int lwpid, int status)
3072 {
3073 struct lwp_info *lp;
3074 int event = linux_ptrace_get_extended_event (status);
3075
3076 lp = find_lwp_pid (pid_to_ptid (lwpid));
3077
3078 /* Check for stop events reported by a process we didn't already
3079 know about - anything not already in our LWP list.
3080
3081 If we're expecting to receive stopped processes after
3082 fork, vfork, and clone events, then we'll just add the
3083 new one to our list and go back to waiting for the event
3084 to be reported - the stopped process might be returned
3085 from waitpid before or after the event is.
3086
3087 But note the case of a non-leader thread exec'ing after the
3088 leader having exited, and gone from our lists. The non-leader
3089 thread changes its tid to the tgid. */
3090
3091 if (WIFSTOPPED (status) && lp == NULL
3092 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
3093 {
3094 /* A multi-thread exec after we had seen the leader exiting. */
3095 if (debug_linux_nat)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "LLW: Re-adding thread group leader LWP %d.\n",
3098 lwpid);
3099
3100 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3101 lp->stopped = 1;
3102 lp->resumed = 1;
3103 add_thread (lp->ptid);
3104 }
3105
3106 if (WIFSTOPPED (status) && !lp)
3107 {
3108 if (debug_linux_nat)
3109 fprintf_unfiltered (gdb_stdlog,
3110 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3111 (long) lwpid, status_to_str (status));
3112 add_to_pid_list (&stopped_pids, lwpid, status);
3113 return NULL;
3114 }
3115
3116 /* Make sure we don't report an event for the exit of an LWP not in
3117 our list, i.e. not part of the current process. This can happen
3118 if we detach from a program we originally forked and then it
3119 exits. */
3120 if (!WIFSTOPPED (status) && !lp)
3121 return NULL;
3122
3123 /* This LWP is stopped now. (And if dead, this prevents it from
3124 ever being continued.) */
3125 lp->stopped = 1;
3126
3127 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3128 {
3129 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3130 int options = linux_nat_ptrace_options (inf->attach_flag);
3131
3132 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3133 lp->must_set_ptrace_flags = 0;
3134 }
3135
3136 /* Handle GNU/Linux's syscall SIGTRAPs. */
3137 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3138 {
3139 /* No longer need the sysgood bit. The ptrace event ends up
3140 recorded in lp->waitstatus if we care for it. We can carry
3141 on handling the event like a regular SIGTRAP from here
3142 on. */
3143 status = W_STOPCODE (SIGTRAP);
3144 if (linux_handle_syscall_trap (lp, 0))
3145 return NULL;
3146 }
3147
3148 /* Handle GNU/Linux's extended waitstatus for trace events. */
3149 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3150 && linux_is_extended_waitstatus (status))
3151 {
3152 if (debug_linux_nat)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "LLW: Handling extended status 0x%06x\n",
3155 status);
3156 if (linux_handle_extended_wait (lp, status, 0))
3157 return NULL;
3158 }
3159
3160 /* Check if the thread has exited. */
3161 if (WIFEXITED (status) || WIFSIGNALED (status))
3162 {
3163 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3164 {
3165 /* If this is the main thread, we must stop all threads and
3166 verify if they are still alive. This is because in the
3167 nptl thread model on Linux 2.4, there is no signal issued
3168 for exiting LWPs other than the main thread. We only get
3169 the main thread exit signal once all child threads have
3170 already exited. If we stop all the threads and use the
3171 stop_wait_callback to check if they have exited we can
3172 determine whether this signal should be ignored or
3173 whether it means the end of the debugged application,
3174 regardless of which threading model is being used. */
3175 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3176 {
3177 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3178 stop_and_resume_callback, NULL);
3179 }
3180
3181 if (debug_linux_nat)
3182 fprintf_unfiltered (gdb_stdlog,
3183 "LLW: %s exited.\n",
3184 target_pid_to_str (lp->ptid));
3185
3186 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3187 {
3188 /* If there is at least one more LWP, then the exit signal
3189 was not the end of the debugged application and should be
3190 ignored. */
3191 exit_lwp (lp);
3192 return NULL;
3193 }
3194 }
3195
3196 gdb_assert (lp->resumed);
3197
3198 if (debug_linux_nat)
3199 fprintf_unfiltered (gdb_stdlog,
3200 "Process %ld exited\n",
3201 ptid_get_lwp (lp->ptid));
3202
3203 /* This was the last lwp in the process. Since events are
3204 serialized to GDB core, we may not be able report this one
3205 right now, but GDB core and the other target layers will want
3206 to be notified about the exit code/signal, leave the status
3207 pending for the next time we're able to report it. */
3208
3209 /* Dead LWP's aren't expected to reported a pending sigstop. */
3210 lp->signalled = 0;
3211
3212 /* Store the pending event in the waitstatus, because
3213 W_EXITCODE(0,0) == 0. */
3214 store_waitstatus (&lp->waitstatus, status);
3215 return lp;
3216 }
3217
3218 /* Check if the current LWP has previously exited. In the nptl
3219 thread model, LWPs other than the main thread do not issue
3220 signals when they exit so we must check whenever the thread has
3221 stopped. A similar check is made in stop_wait_callback(). */
3222 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3223 {
3224 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3225
3226 if (debug_linux_nat)
3227 fprintf_unfiltered (gdb_stdlog,
3228 "LLW: %s exited.\n",
3229 target_pid_to_str (lp->ptid));
3230
3231 exit_lwp (lp);
3232
3233 /* Make sure there is at least one thread running. */
3234 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3235
3236 /* Discard the event. */
3237 return NULL;
3238 }
3239
3240 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3241 an attempt to stop an LWP. */
3242 if (lp->signalled
3243 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3244 {
3245 lp->signalled = 0;
3246
3247 if (lp->last_resume_kind == resume_stop)
3248 {
3249 if (debug_linux_nat)
3250 fprintf_unfiltered (gdb_stdlog,
3251 "LLW: resume_stop SIGSTOP caught for %s.\n",
3252 target_pid_to_str (lp->ptid));
3253 }
3254 else
3255 {
3256 /* This is a delayed SIGSTOP. Filter out the event. */
3257
3258 if (debug_linux_nat)
3259 fprintf_unfiltered (gdb_stdlog,
3260 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3261 lp->step ?
3262 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3263 target_pid_to_str (lp->ptid));
3264
3265 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3266 gdb_assert (lp->resumed);
3267 return NULL;
3268 }
3269 }
3270
3271 /* Make sure we don't report a SIGINT that we have already displayed
3272 for another thread. */
3273 if (lp->ignore_sigint
3274 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3275 {
3276 if (debug_linux_nat)
3277 fprintf_unfiltered (gdb_stdlog,
3278 "LLW: Delayed SIGINT caught for %s.\n",
3279 target_pid_to_str (lp->ptid));
3280
3281 /* This is a delayed SIGINT. */
3282 lp->ignore_sigint = 0;
3283
3284 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3285 if (debug_linux_nat)
3286 fprintf_unfiltered (gdb_stdlog,
3287 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3288 lp->step ?
3289 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3290 target_pid_to_str (lp->ptid));
3291 gdb_assert (lp->resumed);
3292
3293 /* Discard the event. */
3294 return NULL;
3295 }
3296
3297 /* Don't report signals that GDB isn't interested in, such as
3298 signals that are neither printed nor stopped upon. Stopping all
3299 threads can be a bit time-consuming so if we want decent
3300 performance with heavily multi-threaded programs, especially when
3301 they're using a high frequency timer, we'd better avoid it if we
3302 can. */
3303 if (WIFSTOPPED (status))
3304 {
3305 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3306
3307 if (!non_stop)
3308 {
3309 /* Only do the below in all-stop, as we currently use SIGSTOP
3310 to implement target_stop (see linux_nat_stop) in
3311 non-stop. */
3312 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3313 {
3314 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3315 forwarded to the entire process group, that is, all LWPs
3316 will receive it - unless they're using CLONE_THREAD to
3317 share signals. Since we only want to report it once, we
3318 mark it as ignored for all LWPs except this one. */
3319 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3320 set_ignore_sigint, NULL);
3321 lp->ignore_sigint = 0;
3322 }
3323 else
3324 maybe_clear_ignore_sigint (lp);
3325 }
3326
3327 /* When using hardware single-step, we need to report every signal.
3328 Otherwise, signals in pass_mask may be short-circuited
3329 except signals that might be caused by a breakpoint. */
3330 if (!lp->step
3331 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3332 && !linux_wstatus_maybe_breakpoint (status))
3333 {
3334 linux_resume_one_lwp (lp, lp->step, signo);
3335 if (debug_linux_nat)
3336 fprintf_unfiltered (gdb_stdlog,
3337 "LLW: %s %s, %s (preempt 'handle')\n",
3338 lp->step ?
3339 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3340 target_pid_to_str (lp->ptid),
3341 (signo != GDB_SIGNAL_0
3342 ? strsignal (gdb_signal_to_host (signo))
3343 : "0"));
3344 return NULL;
3345 }
3346 }
3347
3348 /* An interesting event. */
3349 gdb_assert (lp);
3350 lp->status = status;
3351 save_sigtrap (lp);
3352 return lp;
3353 }
3354
3355 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3356 their exits until all other threads in the group have exited. */
3357
3358 static void
3359 check_zombie_leaders (void)
3360 {
3361 struct inferior *inf;
3362
3363 ALL_INFERIORS (inf)
3364 {
3365 struct lwp_info *leader_lp;
3366
3367 if (inf->pid == 0)
3368 continue;
3369
3370 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3371 if (leader_lp != NULL
3372 /* Check if there are other threads in the group, as we may
3373 have raced with the inferior simply exiting. */
3374 && num_lwps (inf->pid) > 1
3375 && linux_proc_pid_is_zombie (inf->pid))
3376 {
3377 if (debug_linux_nat)
3378 fprintf_unfiltered (gdb_stdlog,
3379 "CZL: Thread group leader %d zombie "
3380 "(it exited, or another thread execd).\n",
3381 inf->pid);
3382
3383 /* A leader zombie can mean one of two things:
3384
3385 - It exited, and there's an exit status pending
3386 available, or only the leader exited (not the whole
3387 program). In the latter case, we can't waitpid the
3388 leader's exit status until all other threads are gone.
3389
3390 - There are 3 or more threads in the group, and a thread
3391 other than the leader exec'd. On an exec, the Linux
3392 kernel destroys all other threads (except the execing
3393 one) in the thread group, and resets the execing thread's
3394 tid to the tgid. No exit notification is sent for the
3395 execing thread -- from the ptracer's perspective, it
3396 appears as though the execing thread just vanishes.
3397 Until we reap all other threads except the leader and the
3398 execing thread, the leader will be zombie, and the
3399 execing thread will be in `D (disc sleep)'. As soon as
3400 all other threads are reaped, the execing thread changes
3401 it's tid to the tgid, and the previous (zombie) leader
3402 vanishes, giving place to the "new" leader. We could try
3403 distinguishing the exit and exec cases, by waiting once
3404 more, and seeing if something comes out, but it doesn't
3405 sound useful. The previous leader _does_ go away, and
3406 we'll re-add the new one once we see the exec event
3407 (which is just the same as what would happen if the
3408 previous leader did exit voluntarily before some other
3409 thread execs). */
3410
3411 if (debug_linux_nat)
3412 fprintf_unfiltered (gdb_stdlog,
3413 "CZL: Thread group leader %d vanished.\n",
3414 inf->pid);
3415 exit_lwp (leader_lp);
3416 }
3417 }
3418 }
3419
3420 static ptid_t
3421 linux_nat_wait_1 (struct target_ops *ops,
3422 ptid_t ptid, struct target_waitstatus *ourstatus,
3423 int target_options)
3424 {
3425 sigset_t prev_mask;
3426 enum resume_kind last_resume_kind;
3427 struct lwp_info *lp;
3428 int status;
3429
3430 if (debug_linux_nat)
3431 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3432
3433 /* The first time we get here after starting a new inferior, we may
3434 not have added it to the LWP list yet - this is the earliest
3435 moment at which we know its PID. */
3436 if (ptid_is_pid (inferior_ptid))
3437 {
3438 /* Upgrade the main thread's ptid. */
3439 thread_change_ptid (inferior_ptid,
3440 ptid_build (ptid_get_pid (inferior_ptid),
3441 ptid_get_pid (inferior_ptid), 0));
3442
3443 lp = add_initial_lwp (inferior_ptid);
3444 lp->resumed = 1;
3445 }
3446
3447 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3448 block_child_signals (&prev_mask);
3449
3450 /* First check if there is a LWP with a wait status pending. */
3451 lp = iterate_over_lwps (ptid, status_callback, NULL);
3452 if (lp != NULL)
3453 {
3454 if (debug_linux_nat)
3455 fprintf_unfiltered (gdb_stdlog,
3456 "LLW: Using pending wait status %s for %s.\n",
3457 status_to_str (lp->status),
3458 target_pid_to_str (lp->ptid));
3459 }
3460
3461 if (!target_is_async_p ())
3462 {
3463 /* Causes SIGINT to be passed on to the attached process. */
3464 set_sigint_trap ();
3465 }
3466
3467 /* But if we don't find a pending event, we'll have to wait. Always
3468 pull all events out of the kernel. We'll randomly select an
3469 event LWP out of all that have events, to prevent starvation. */
3470
3471 while (lp == NULL)
3472 {
3473 pid_t lwpid;
3474
3475 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3476 quirks:
3477
3478 - If the thread group leader exits while other threads in the
3479 thread group still exist, waitpid(TGID, ...) hangs. That
3480 waitpid won't return an exit status until the other threads
3481 in the group are reapped.
3482
3483 - When a non-leader thread execs, that thread just vanishes
3484 without reporting an exit (so we'd hang if we waited for it
3485 explicitly in that case). The exec event is reported to
3486 the TGID pid. */
3487
3488 errno = 0;
3489 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3490 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3491 lwpid = my_waitpid (-1, &status, WNOHANG);
3492
3493 if (debug_linux_nat)
3494 fprintf_unfiltered (gdb_stdlog,
3495 "LNW: waitpid(-1, ...) returned %d, %s\n",
3496 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3497
3498 if (lwpid > 0)
3499 {
3500 if (debug_linux_nat)
3501 {
3502 fprintf_unfiltered (gdb_stdlog,
3503 "LLW: waitpid %ld received %s\n",
3504 (long) lwpid, status_to_str (status));
3505 }
3506
3507 linux_nat_filter_event (lwpid, status);
3508 /* Retry until nothing comes out of waitpid. A single
3509 SIGCHLD can indicate more than one child stopped. */
3510 continue;
3511 }
3512
3513 /* Now that we've pulled all events out of the kernel, resume
3514 LWPs that don't have an interesting event to report. */
3515 iterate_over_lwps (minus_one_ptid,
3516 resume_stopped_resumed_lwps, &minus_one_ptid);
3517
3518 /* ... and find an LWP with a status to report to the core, if
3519 any. */
3520 lp = iterate_over_lwps (ptid, status_callback, NULL);
3521 if (lp != NULL)
3522 break;
3523
3524 /* Check for zombie thread group leaders. Those can't be reaped
3525 until all other threads in the thread group are. */
3526 check_zombie_leaders ();
3527
3528 /* If there are no resumed children left, bail. We'd be stuck
3529 forever in the sigsuspend call below otherwise. */
3530 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3531 {
3532 if (debug_linux_nat)
3533 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3534
3535 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3536
3537 if (!target_is_async_p ())
3538 clear_sigint_trap ();
3539
3540 restore_child_signals_mask (&prev_mask);
3541 return minus_one_ptid;
3542 }
3543
3544 /* No interesting event to report to the core. */
3545
3546 if (target_options & TARGET_WNOHANG)
3547 {
3548 if (debug_linux_nat)
3549 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3550
3551 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3552 restore_child_signals_mask (&prev_mask);
3553 return minus_one_ptid;
3554 }
3555
3556 /* We shouldn't end up here unless we want to try again. */
3557 gdb_assert (lp == NULL);
3558
3559 /* Block until we get an event reported with SIGCHLD. */
3560 if (debug_linux_nat)
3561 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3562 sigsuspend (&suspend_mask);
3563 }
3564
3565 if (!target_is_async_p ())
3566 clear_sigint_trap ();
3567
3568 gdb_assert (lp);
3569
3570 status = lp->status;
3571 lp->status = 0;
3572
3573 if (!non_stop)
3574 {
3575 /* Now stop all other LWP's ... */
3576 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3577
3578 /* ... and wait until all of them have reported back that
3579 they're no longer running. */
3580 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3581 }
3582
3583 /* If we're not waiting for a specific LWP, choose an event LWP from
3584 among those that have had events. Giving equal priority to all
3585 LWPs that have had events helps prevent starvation. */
3586 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3587 select_event_lwp (ptid, &lp, &status);
3588
3589 gdb_assert (lp != NULL);
3590
3591 /* Now that we've selected our final event LWP, un-adjust its PC if
3592 it was a software breakpoint, and we can't reliably support the
3593 "stopped by software breakpoint" stop reason. */
3594 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3595 && !USE_SIGTRAP_SIGINFO)
3596 {
3597 struct regcache *regcache = get_thread_regcache (lp->ptid);
3598 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3599 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3600
3601 if (decr_pc != 0)
3602 {
3603 CORE_ADDR pc;
3604
3605 pc = regcache_read_pc (regcache);
3606 regcache_write_pc (regcache, pc + decr_pc);
3607 }
3608 }
3609
3610 /* We'll need this to determine whether to report a SIGSTOP as
3611 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3612 clears it. */
3613 last_resume_kind = lp->last_resume_kind;
3614
3615 if (!non_stop)
3616 {
3617 /* In all-stop, from the core's perspective, all LWPs are now
3618 stopped until a new resume action is sent over. */
3619 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3620 }
3621 else
3622 {
3623 resume_clear_callback (lp, NULL);
3624 }
3625
3626 if (linux_nat_status_is_event (status))
3627 {
3628 if (debug_linux_nat)
3629 fprintf_unfiltered (gdb_stdlog,
3630 "LLW: trap ptid is %s.\n",
3631 target_pid_to_str (lp->ptid));
3632 }
3633
3634 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3635 {
3636 *ourstatus = lp->waitstatus;
3637 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3638 }
3639 else
3640 store_waitstatus (ourstatus, status);
3641
3642 if (debug_linux_nat)
3643 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3644
3645 restore_child_signals_mask (&prev_mask);
3646
3647 if (last_resume_kind == resume_stop
3648 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3649 && WSTOPSIG (status) == SIGSTOP)
3650 {
3651 /* A thread that has been requested to stop by GDB with
3652 target_stop, and it stopped cleanly, so report as SIG0. The
3653 use of SIGSTOP is an implementation detail. */
3654 ourstatus->value.sig = GDB_SIGNAL_0;
3655 }
3656
3657 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3658 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3659 lp->core = -1;
3660 else
3661 lp->core = linux_common_core_of_thread (lp->ptid);
3662
3663 return lp->ptid;
3664 }
3665
3666 /* Resume LWPs that are currently stopped without any pending status
3667 to report, but are resumed from the core's perspective. */
3668
3669 static int
3670 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3671 {
3672 ptid_t *wait_ptid_p = data;
3673
3674 if (lp->stopped
3675 && lp->resumed
3676 && !lwp_status_pending_p (lp))
3677 {
3678 struct regcache *regcache = get_thread_regcache (lp->ptid);
3679 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3680
3681 TRY
3682 {
3683 CORE_ADDR pc = regcache_read_pc (regcache);
3684 int leave_stopped = 0;
3685
3686 /* Don't bother if there's a breakpoint at PC that we'd hit
3687 immediately, and we're not waiting for this LWP. */
3688 if (!ptid_match (lp->ptid, *wait_ptid_p))
3689 {
3690 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3691 leave_stopped = 1;
3692 }
3693
3694 if (!leave_stopped)
3695 {
3696 if (debug_linux_nat)
3697 fprintf_unfiltered (gdb_stdlog,
3698 "RSRL: resuming stopped-resumed LWP %s at "
3699 "%s: step=%d\n",
3700 target_pid_to_str (lp->ptid),
3701 paddress (gdbarch, pc),
3702 lp->step);
3703
3704 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3705 }
3706 }
3707 CATCH (ex, RETURN_MASK_ERROR)
3708 {
3709 if (!check_ptrace_stopped_lwp_gone (lp))
3710 throw_exception (ex);
3711 }
3712 END_CATCH
3713 }
3714
3715 return 0;
3716 }
3717
3718 static ptid_t
3719 linux_nat_wait (struct target_ops *ops,
3720 ptid_t ptid, struct target_waitstatus *ourstatus,
3721 int target_options)
3722 {
3723 ptid_t event_ptid;
3724
3725 if (debug_linux_nat)
3726 {
3727 char *options_string;
3728
3729 options_string = target_options_to_string (target_options);
3730 fprintf_unfiltered (gdb_stdlog,
3731 "linux_nat_wait: [%s], [%s]\n",
3732 target_pid_to_str (ptid),
3733 options_string);
3734 xfree (options_string);
3735 }
3736
3737 /* Flush the async file first. */
3738 if (target_is_async_p ())
3739 async_file_flush ();
3740
3741 /* Resume LWPs that are currently stopped without any pending status
3742 to report, but are resumed from the core's perspective. LWPs get
3743 in this state if we find them stopping at a time we're not
3744 interested in reporting the event (target_wait on a
3745 specific_process, for example, see linux_nat_wait_1), and
3746 meanwhile the event became uninteresting. Don't bother resuming
3747 LWPs we're not going to wait for if they'd stop immediately. */
3748 if (non_stop)
3749 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3750
3751 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3752
3753 /* If we requested any event, and something came out, assume there
3754 may be more. If we requested a specific lwp or process, also
3755 assume there may be more. */
3756 if (target_is_async_p ()
3757 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3758 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3759 || !ptid_equal (ptid, minus_one_ptid)))
3760 async_file_mark ();
3761
3762 return event_ptid;
3763 }
3764
3765 static int
3766 kill_callback (struct lwp_info *lp, void *data)
3767 {
3768 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3769
3770 errno = 0;
3771 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3772 if (debug_linux_nat)
3773 {
3774 int save_errno = errno;
3775
3776 fprintf_unfiltered (gdb_stdlog,
3777 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3778 target_pid_to_str (lp->ptid),
3779 save_errno ? safe_strerror (save_errno) : "OK");
3780 }
3781
3782 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3783
3784 errno = 0;
3785 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3786 if (debug_linux_nat)
3787 {
3788 int save_errno = errno;
3789
3790 fprintf_unfiltered (gdb_stdlog,
3791 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3792 target_pid_to_str (lp->ptid),
3793 save_errno ? safe_strerror (save_errno) : "OK");
3794 }
3795
3796 return 0;
3797 }
3798
3799 static int
3800 kill_wait_callback (struct lwp_info *lp, void *data)
3801 {
3802 pid_t pid;
3803
3804 /* We must make sure that there are no pending events (delayed
3805 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3806 program doesn't interfere with any following debugging session. */
3807
3808 /* For cloned processes we must check both with __WCLONE and
3809 without, since the exit status of a cloned process isn't reported
3810 with __WCLONE. */
3811 if (lp->cloned)
3812 {
3813 do
3814 {
3815 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3816 if (pid != (pid_t) -1)
3817 {
3818 if (debug_linux_nat)
3819 fprintf_unfiltered (gdb_stdlog,
3820 "KWC: wait %s received unknown.\n",
3821 target_pid_to_str (lp->ptid));
3822 /* The Linux kernel sometimes fails to kill a thread
3823 completely after PTRACE_KILL; that goes from the stop
3824 point in do_fork out to the one in
3825 get_signal_to_deliever and waits again. So kill it
3826 again. */
3827 kill_callback (lp, NULL);
3828 }
3829 }
3830 while (pid == ptid_get_lwp (lp->ptid));
3831
3832 gdb_assert (pid == -1 && errno == ECHILD);
3833 }
3834
3835 do
3836 {
3837 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3838 if (pid != (pid_t) -1)
3839 {
3840 if (debug_linux_nat)
3841 fprintf_unfiltered (gdb_stdlog,
3842 "KWC: wait %s received unk.\n",
3843 target_pid_to_str (lp->ptid));
3844 /* See the call to kill_callback above. */
3845 kill_callback (lp, NULL);
3846 }
3847 }
3848 while (pid == ptid_get_lwp (lp->ptid));
3849
3850 gdb_assert (pid == -1 && errno == ECHILD);
3851 return 0;
3852 }
3853
3854 static void
3855 linux_nat_kill (struct target_ops *ops)
3856 {
3857 struct target_waitstatus last;
3858 ptid_t last_ptid;
3859 int status;
3860
3861 /* If we're stopped while forking and we haven't followed yet,
3862 kill the other task. We need to do this first because the
3863 parent will be sleeping if this is a vfork. */
3864
3865 get_last_target_status (&last_ptid, &last);
3866
3867 if (last.kind == TARGET_WAITKIND_FORKED
3868 || last.kind == TARGET_WAITKIND_VFORKED)
3869 {
3870 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3871 wait (&status);
3872
3873 /* Let the arch-specific native code know this process is
3874 gone. */
3875 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3876 }
3877
3878 if (forks_exist_p ())
3879 linux_fork_killall ();
3880 else
3881 {
3882 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3883
3884 /* Stop all threads before killing them, since ptrace requires
3885 that the thread is stopped to sucessfully PTRACE_KILL. */
3886 iterate_over_lwps (ptid, stop_callback, NULL);
3887 /* ... and wait until all of them have reported back that
3888 they're no longer running. */
3889 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3890
3891 /* Kill all LWP's ... */
3892 iterate_over_lwps (ptid, kill_callback, NULL);
3893
3894 /* ... and wait until we've flushed all events. */
3895 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3896 }
3897
3898 target_mourn_inferior ();
3899 }
3900
3901 static void
3902 linux_nat_mourn_inferior (struct target_ops *ops)
3903 {
3904 int pid = ptid_get_pid (inferior_ptid);
3905
3906 purge_lwp_list (pid);
3907
3908 if (! forks_exist_p ())
3909 /* Normal case, no other forks available. */
3910 linux_ops->to_mourn_inferior (ops);
3911 else
3912 /* Multi-fork case. The current inferior_ptid has exited, but
3913 there are other viable forks to debug. Delete the exiting
3914 one and context-switch to the first available. */
3915 linux_fork_mourn_inferior ();
3916
3917 /* Let the arch-specific native code know this process is gone. */
3918 linux_nat_forget_process (pid);
3919 }
3920
3921 /* Convert a native/host siginfo object, into/from the siginfo in the
3922 layout of the inferiors' architecture. */
3923
3924 static void
3925 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3926 {
3927 int done = 0;
3928
3929 if (linux_nat_siginfo_fixup != NULL)
3930 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3931
3932 /* If there was no callback, or the callback didn't do anything,
3933 then just do a straight memcpy. */
3934 if (!done)
3935 {
3936 if (direction == 1)
3937 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3938 else
3939 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3940 }
3941 }
3942
3943 static enum target_xfer_status
3944 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3945 const char *annex, gdb_byte *readbuf,
3946 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3947 ULONGEST *xfered_len)
3948 {
3949 int pid;
3950 siginfo_t siginfo;
3951 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3952
3953 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3954 gdb_assert (readbuf || writebuf);
3955
3956 pid = ptid_get_lwp (inferior_ptid);
3957 if (pid == 0)
3958 pid = ptid_get_pid (inferior_ptid);
3959
3960 if (offset > sizeof (siginfo))
3961 return TARGET_XFER_E_IO;
3962
3963 errno = 0;
3964 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3965 if (errno != 0)
3966 return TARGET_XFER_E_IO;
3967
3968 /* When GDB is built as a 64-bit application, ptrace writes into
3969 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3970 inferior with a 64-bit GDB should look the same as debugging it
3971 with a 32-bit GDB, we need to convert it. GDB core always sees
3972 the converted layout, so any read/write will have to be done
3973 post-conversion. */
3974 siginfo_fixup (&siginfo, inf_siginfo, 0);
3975
3976 if (offset + len > sizeof (siginfo))
3977 len = sizeof (siginfo) - offset;
3978
3979 if (readbuf != NULL)
3980 memcpy (readbuf, inf_siginfo + offset, len);
3981 else
3982 {
3983 memcpy (inf_siginfo + offset, writebuf, len);
3984
3985 /* Convert back to ptrace layout before flushing it out. */
3986 siginfo_fixup (&siginfo, inf_siginfo, 1);
3987
3988 errno = 0;
3989 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3990 if (errno != 0)
3991 return TARGET_XFER_E_IO;
3992 }
3993
3994 *xfered_len = len;
3995 return TARGET_XFER_OK;
3996 }
3997
3998 static enum target_xfer_status
3999 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4000 const char *annex, gdb_byte *readbuf,
4001 const gdb_byte *writebuf,
4002 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4003 {
4004 struct cleanup *old_chain;
4005 enum target_xfer_status xfer;
4006
4007 if (object == TARGET_OBJECT_SIGNAL_INFO)
4008 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4009 offset, len, xfered_len);
4010
4011 /* The target is connected but no live inferior is selected. Pass
4012 this request down to a lower stratum (e.g., the executable
4013 file). */
4014 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4015 return TARGET_XFER_EOF;
4016
4017 old_chain = save_inferior_ptid ();
4018
4019 if (ptid_lwp_p (inferior_ptid))
4020 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
4021
4022 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4023 offset, len, xfered_len);
4024
4025 do_cleanups (old_chain);
4026 return xfer;
4027 }
4028
4029 static int
4030 linux_thread_alive (ptid_t ptid)
4031 {
4032 int err, tmp_errno;
4033
4034 gdb_assert (ptid_lwp_p (ptid));
4035
4036 /* Send signal 0 instead of anything ptrace, because ptracing a
4037 running thread errors out claiming that the thread doesn't
4038 exist. */
4039 err = kill_lwp (ptid_get_lwp (ptid), 0);
4040 tmp_errno = errno;
4041 if (debug_linux_nat)
4042 fprintf_unfiltered (gdb_stdlog,
4043 "LLTA: KILL(SIG0) %s (%s)\n",
4044 target_pid_to_str (ptid),
4045 err ? safe_strerror (tmp_errno) : "OK");
4046
4047 if (err != 0)
4048 return 0;
4049
4050 return 1;
4051 }
4052
4053 static int
4054 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4055 {
4056 return linux_thread_alive (ptid);
4057 }
4058
4059 /* Implement the to_update_thread_list target method for this
4060 target. */
4061
4062 static void
4063 linux_nat_update_thread_list (struct target_ops *ops)
4064 {
4065 if (linux_supports_traceclone ())
4066 {
4067 /* With support for clone events, we add/delete threads from the
4068 list as clone/exit events are processed, so just try deleting
4069 exited threads still in the thread list. */
4070 delete_exited_threads ();
4071 }
4072 else
4073 prune_threads ();
4074 }
4075
4076 static char *
4077 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4078 {
4079 static char buf[64];
4080
4081 if (ptid_lwp_p (ptid)
4082 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4083 || num_lwps (ptid_get_pid (ptid)) > 1))
4084 {
4085 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4086 return buf;
4087 }
4088
4089 return normal_pid_to_str (ptid);
4090 }
4091
4092 static char *
4093 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4094 {
4095 int pid = ptid_get_pid (thr->ptid);
4096 long lwp = ptid_get_lwp (thr->ptid);
4097 #define FORMAT "/proc/%d/task/%ld/comm"
4098 char buf[sizeof (FORMAT) + 30];
4099 FILE *comm_file;
4100 char *result = NULL;
4101
4102 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4103 comm_file = gdb_fopen_cloexec (buf, "r");
4104 if (comm_file)
4105 {
4106 /* Not exported by the kernel, so we define it here. */
4107 #define COMM_LEN 16
4108 static char line[COMM_LEN + 1];
4109
4110 if (fgets (line, sizeof (line), comm_file))
4111 {
4112 char *nl = strchr (line, '\n');
4113
4114 if (nl)
4115 *nl = '\0';
4116 if (*line != '\0')
4117 result = line;
4118 }
4119
4120 fclose (comm_file);
4121 }
4122
4123 #undef COMM_LEN
4124 #undef FORMAT
4125
4126 return result;
4127 }
4128
4129 /* Accepts an integer PID; Returns a string representing a file that
4130 can be opened to get the symbols for the child process. */
4131
4132 static char *
4133 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4134 {
4135 return linux_proc_pid_to_exec_file (pid);
4136 }
4137
4138 /* Implement the to_xfer_partial interface for memory reads using the /proc
4139 filesystem. Because we can use a single read() call for /proc, this
4140 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4141 but it doesn't support writes. */
4142
4143 static enum target_xfer_status
4144 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4145 const char *annex, gdb_byte *readbuf,
4146 const gdb_byte *writebuf,
4147 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4148 {
4149 LONGEST ret;
4150 int fd;
4151 char filename[64];
4152
4153 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4154 return 0;
4155
4156 /* Don't bother for one word. */
4157 if (len < 3 * sizeof (long))
4158 return TARGET_XFER_EOF;
4159
4160 /* We could keep this file open and cache it - possibly one per
4161 thread. That requires some juggling, but is even faster. */
4162 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4163 ptid_get_pid (inferior_ptid));
4164 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4165 if (fd == -1)
4166 return TARGET_XFER_EOF;
4167
4168 /* If pread64 is available, use it. It's faster if the kernel
4169 supports it (only one syscall), and it's 64-bit safe even on
4170 32-bit platforms (for instance, SPARC debugging a SPARC64
4171 application). */
4172 #ifdef HAVE_PREAD64
4173 if (pread64 (fd, readbuf, len, offset) != len)
4174 #else
4175 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4176 #endif
4177 ret = 0;
4178 else
4179 ret = len;
4180
4181 close (fd);
4182
4183 if (ret == 0)
4184 return TARGET_XFER_EOF;
4185 else
4186 {
4187 *xfered_len = ret;
4188 return TARGET_XFER_OK;
4189 }
4190 }
4191
4192
4193 /* Enumerate spufs IDs for process PID. */
4194 static LONGEST
4195 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4196 {
4197 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4198 LONGEST pos = 0;
4199 LONGEST written = 0;
4200 char path[128];
4201 DIR *dir;
4202 struct dirent *entry;
4203
4204 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4205 dir = opendir (path);
4206 if (!dir)
4207 return -1;
4208
4209 rewinddir (dir);
4210 while ((entry = readdir (dir)) != NULL)
4211 {
4212 struct stat st;
4213 struct statfs stfs;
4214 int fd;
4215
4216 fd = atoi (entry->d_name);
4217 if (!fd)
4218 continue;
4219
4220 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4221 if (stat (path, &st) != 0)
4222 continue;
4223 if (!S_ISDIR (st.st_mode))
4224 continue;
4225
4226 if (statfs (path, &stfs) != 0)
4227 continue;
4228 if (stfs.f_type != SPUFS_MAGIC)
4229 continue;
4230
4231 if (pos >= offset && pos + 4 <= offset + len)
4232 {
4233 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4234 written += 4;
4235 }
4236 pos += 4;
4237 }
4238
4239 closedir (dir);
4240 return written;
4241 }
4242
4243 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4244 object type, using the /proc file system. */
4245
4246 static enum target_xfer_status
4247 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4248 const char *annex, gdb_byte *readbuf,
4249 const gdb_byte *writebuf,
4250 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4251 {
4252 char buf[128];
4253 int fd = 0;
4254 int ret = -1;
4255 int pid = ptid_get_pid (inferior_ptid);
4256
4257 if (!annex)
4258 {
4259 if (!readbuf)
4260 return TARGET_XFER_E_IO;
4261 else
4262 {
4263 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4264
4265 if (l < 0)
4266 return TARGET_XFER_E_IO;
4267 else if (l == 0)
4268 return TARGET_XFER_EOF;
4269 else
4270 {
4271 *xfered_len = (ULONGEST) l;
4272 return TARGET_XFER_OK;
4273 }
4274 }
4275 }
4276
4277 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4278 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4279 if (fd <= 0)
4280 return TARGET_XFER_E_IO;
4281
4282 if (offset != 0
4283 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4284 {
4285 close (fd);
4286 return TARGET_XFER_EOF;
4287 }
4288
4289 if (writebuf)
4290 ret = write (fd, writebuf, (size_t) len);
4291 else if (readbuf)
4292 ret = read (fd, readbuf, (size_t) len);
4293
4294 close (fd);
4295
4296 if (ret < 0)
4297 return TARGET_XFER_E_IO;
4298 else if (ret == 0)
4299 return TARGET_XFER_EOF;
4300 else
4301 {
4302 *xfered_len = (ULONGEST) ret;
4303 return TARGET_XFER_OK;
4304 }
4305 }
4306
4307
4308 /* Parse LINE as a signal set and add its set bits to SIGS. */
4309
4310 static void
4311 add_line_to_sigset (const char *line, sigset_t *sigs)
4312 {
4313 int len = strlen (line) - 1;
4314 const char *p;
4315 int signum;
4316
4317 if (line[len] != '\n')
4318 error (_("Could not parse signal set: %s"), line);
4319
4320 p = line;
4321 signum = len * 4;
4322 while (len-- > 0)
4323 {
4324 int digit;
4325
4326 if (*p >= '0' && *p <= '9')
4327 digit = *p - '0';
4328 else if (*p >= 'a' && *p <= 'f')
4329 digit = *p - 'a' + 10;
4330 else
4331 error (_("Could not parse signal set: %s"), line);
4332
4333 signum -= 4;
4334
4335 if (digit & 1)
4336 sigaddset (sigs, signum + 1);
4337 if (digit & 2)
4338 sigaddset (sigs, signum + 2);
4339 if (digit & 4)
4340 sigaddset (sigs, signum + 3);
4341 if (digit & 8)
4342 sigaddset (sigs, signum + 4);
4343
4344 p++;
4345 }
4346 }
4347
4348 /* Find process PID's pending signals from /proc/pid/status and set
4349 SIGS to match. */
4350
4351 void
4352 linux_proc_pending_signals (int pid, sigset_t *pending,
4353 sigset_t *blocked, sigset_t *ignored)
4354 {
4355 FILE *procfile;
4356 char buffer[PATH_MAX], fname[PATH_MAX];
4357 struct cleanup *cleanup;
4358
4359 sigemptyset (pending);
4360 sigemptyset (blocked);
4361 sigemptyset (ignored);
4362 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4363 procfile = gdb_fopen_cloexec (fname, "r");
4364 if (procfile == NULL)
4365 error (_("Could not open %s"), fname);
4366 cleanup = make_cleanup_fclose (procfile);
4367
4368 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4369 {
4370 /* Normal queued signals are on the SigPnd line in the status
4371 file. However, 2.6 kernels also have a "shared" pending
4372 queue for delivering signals to a thread group, so check for
4373 a ShdPnd line also.
4374
4375 Unfortunately some Red Hat kernels include the shared pending
4376 queue but not the ShdPnd status field. */
4377
4378 if (startswith (buffer, "SigPnd:\t"))
4379 add_line_to_sigset (buffer + 8, pending);
4380 else if (startswith (buffer, "ShdPnd:\t"))
4381 add_line_to_sigset (buffer + 8, pending);
4382 else if (startswith (buffer, "SigBlk:\t"))
4383 add_line_to_sigset (buffer + 8, blocked);
4384 else if (startswith (buffer, "SigIgn:\t"))
4385 add_line_to_sigset (buffer + 8, ignored);
4386 }
4387
4388 do_cleanups (cleanup);
4389 }
4390
4391 static enum target_xfer_status
4392 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4393 const char *annex, gdb_byte *readbuf,
4394 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4395 ULONGEST *xfered_len)
4396 {
4397 gdb_assert (object == TARGET_OBJECT_OSDATA);
4398
4399 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4400 if (*xfered_len == 0)
4401 return TARGET_XFER_EOF;
4402 else
4403 return TARGET_XFER_OK;
4404 }
4405
4406 static enum target_xfer_status
4407 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4408 const char *annex, gdb_byte *readbuf,
4409 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4410 ULONGEST *xfered_len)
4411 {
4412 enum target_xfer_status xfer;
4413
4414 if (object == TARGET_OBJECT_AUXV)
4415 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4416 offset, len, xfered_len);
4417
4418 if (object == TARGET_OBJECT_OSDATA)
4419 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4420 offset, len, xfered_len);
4421
4422 if (object == TARGET_OBJECT_SPU)
4423 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4424 offset, len, xfered_len);
4425
4426 /* GDB calculates all the addresses in possibly larget width of the address.
4427 Address width needs to be masked before its final use - either by
4428 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4429
4430 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4431
4432 if (object == TARGET_OBJECT_MEMORY)
4433 {
4434 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4435
4436 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4437 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4438 }
4439
4440 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4441 offset, len, xfered_len);
4442 if (xfer != TARGET_XFER_EOF)
4443 return xfer;
4444
4445 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4446 offset, len, xfered_len);
4447 }
4448
4449 static void
4450 cleanup_target_stop (void *arg)
4451 {
4452 ptid_t *ptid = (ptid_t *) arg;
4453
4454 gdb_assert (arg != NULL);
4455
4456 /* Unpause all */
4457 target_resume (*ptid, 0, GDB_SIGNAL_0);
4458 }
4459
4460 static VEC(static_tracepoint_marker_p) *
4461 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4462 const char *strid)
4463 {
4464 char s[IPA_CMD_BUF_SIZE];
4465 struct cleanup *old_chain;
4466 int pid = ptid_get_pid (inferior_ptid);
4467 VEC(static_tracepoint_marker_p) *markers = NULL;
4468 struct static_tracepoint_marker *marker = NULL;
4469 char *p = s;
4470 ptid_t ptid = ptid_build (pid, 0, 0);
4471
4472 /* Pause all */
4473 target_stop (ptid);
4474
4475 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4476 s[sizeof ("qTfSTM")] = 0;
4477
4478 agent_run_command (pid, s, strlen (s) + 1);
4479
4480 old_chain = make_cleanup (free_current_marker, &marker);
4481 make_cleanup (cleanup_target_stop, &ptid);
4482
4483 while (*p++ == 'm')
4484 {
4485 if (marker == NULL)
4486 marker = XCNEW (struct static_tracepoint_marker);
4487
4488 do
4489 {
4490 parse_static_tracepoint_marker_definition (p, &p, marker);
4491
4492 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4493 {
4494 VEC_safe_push (static_tracepoint_marker_p,
4495 markers, marker);
4496 marker = NULL;
4497 }
4498 else
4499 {
4500 release_static_tracepoint_marker (marker);
4501 memset (marker, 0, sizeof (*marker));
4502 }
4503 }
4504 while (*p++ == ','); /* comma-separated list */
4505
4506 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4507 s[sizeof ("qTsSTM")] = 0;
4508 agent_run_command (pid, s, strlen (s) + 1);
4509 p = s;
4510 }
4511
4512 do_cleanups (old_chain);
4513
4514 return markers;
4515 }
4516
4517 /* Create a prototype generic GNU/Linux target. The client can override
4518 it with local methods. */
4519
4520 static void
4521 linux_target_install_ops (struct target_ops *t)
4522 {
4523 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4524 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4525 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4526 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4527 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4528 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4529 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4530 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4531 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4532 t->to_post_attach = linux_child_post_attach;
4533 t->to_follow_fork = linux_child_follow_fork;
4534
4535 super_xfer_partial = t->to_xfer_partial;
4536 t->to_xfer_partial = linux_xfer_partial;
4537
4538 t->to_static_tracepoint_markers_by_strid
4539 = linux_child_static_tracepoint_markers_by_strid;
4540 }
4541
4542 struct target_ops *
4543 linux_target (void)
4544 {
4545 struct target_ops *t;
4546
4547 t = inf_ptrace_target ();
4548 linux_target_install_ops (t);
4549
4550 return t;
4551 }
4552
4553 struct target_ops *
4554 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4555 {
4556 struct target_ops *t;
4557
4558 t = inf_ptrace_trad_target (register_u_offset);
4559 linux_target_install_ops (t);
4560
4561 return t;
4562 }
4563
4564 /* target_is_async_p implementation. */
4565
4566 static int
4567 linux_nat_is_async_p (struct target_ops *ops)
4568 {
4569 return linux_is_async_p ();
4570 }
4571
4572 /* target_can_async_p implementation. */
4573
4574 static int
4575 linux_nat_can_async_p (struct target_ops *ops)
4576 {
4577 /* NOTE: palves 2008-03-21: We're only async when the user requests
4578 it explicitly with the "set target-async" command.
4579 Someday, linux will always be async. */
4580 return target_async_permitted;
4581 }
4582
4583 static int
4584 linux_nat_supports_non_stop (struct target_ops *self)
4585 {
4586 return 1;
4587 }
4588
4589 /* True if we want to support multi-process. To be removed when GDB
4590 supports multi-exec. */
4591
4592 int linux_multi_process = 1;
4593
4594 static int
4595 linux_nat_supports_multi_process (struct target_ops *self)
4596 {
4597 return linux_multi_process;
4598 }
4599
4600 static int
4601 linux_nat_supports_disable_randomization (struct target_ops *self)
4602 {
4603 #ifdef HAVE_PERSONALITY
4604 return 1;
4605 #else
4606 return 0;
4607 #endif
4608 }
4609
4610 static int async_terminal_is_ours = 1;
4611
4612 /* target_terminal_inferior implementation.
4613
4614 This is a wrapper around child_terminal_inferior to add async support. */
4615
4616 static void
4617 linux_nat_terminal_inferior (struct target_ops *self)
4618 {
4619 /* Like target_terminal_inferior, use target_can_async_p, not
4620 target_is_async_p, since at this point the target is not async
4621 yet. If it can async, then we know it will become async prior to
4622 resume. */
4623 if (!target_can_async_p ())
4624 {
4625 /* Async mode is disabled. */
4626 child_terminal_inferior (self);
4627 return;
4628 }
4629
4630 child_terminal_inferior (self);
4631
4632 /* Calls to target_terminal_*() are meant to be idempotent. */
4633 if (!async_terminal_is_ours)
4634 return;
4635
4636 delete_file_handler (input_fd);
4637 async_terminal_is_ours = 0;
4638 set_sigint_trap ();
4639 }
4640
4641 /* target_terminal_ours implementation.
4642
4643 This is a wrapper around child_terminal_ours to add async support (and
4644 implement the target_terminal_ours vs target_terminal_ours_for_output
4645 distinction). child_terminal_ours is currently no different than
4646 child_terminal_ours_for_output.
4647 We leave target_terminal_ours_for_output alone, leaving it to
4648 child_terminal_ours_for_output. */
4649
4650 static void
4651 linux_nat_terminal_ours (struct target_ops *self)
4652 {
4653 /* GDB should never give the terminal to the inferior if the
4654 inferior is running in the background (run&, continue&, etc.),
4655 but claiming it sure should. */
4656 child_terminal_ours (self);
4657
4658 if (async_terminal_is_ours)
4659 return;
4660
4661 clear_sigint_trap ();
4662 add_file_handler (input_fd, stdin_event_handler, 0);
4663 async_terminal_is_ours = 1;
4664 }
4665
4666 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4667 so we notice when any child changes state, and notify the
4668 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4669 above to wait for the arrival of a SIGCHLD. */
4670
4671 static void
4672 sigchld_handler (int signo)
4673 {
4674 int old_errno = errno;
4675
4676 if (debug_linux_nat)
4677 ui_file_write_async_safe (gdb_stdlog,
4678 "sigchld\n", sizeof ("sigchld\n") - 1);
4679
4680 if (signo == SIGCHLD
4681 && linux_nat_event_pipe[0] != -1)
4682 async_file_mark (); /* Let the event loop know that there are
4683 events to handle. */
4684
4685 errno = old_errno;
4686 }
4687
4688 /* Callback registered with the target events file descriptor. */
4689
4690 static void
4691 handle_target_event (int error, gdb_client_data client_data)
4692 {
4693 inferior_event_handler (INF_REG_EVENT, NULL);
4694 }
4695
4696 /* Create/destroy the target events pipe. Returns previous state. */
4697
4698 static int
4699 linux_async_pipe (int enable)
4700 {
4701 int previous = linux_is_async_p ();
4702
4703 if (previous != enable)
4704 {
4705 sigset_t prev_mask;
4706
4707 /* Block child signals while we create/destroy the pipe, as
4708 their handler writes to it. */
4709 block_child_signals (&prev_mask);
4710
4711 if (enable)
4712 {
4713 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4714 internal_error (__FILE__, __LINE__,
4715 "creating event pipe failed.");
4716
4717 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4718 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4719 }
4720 else
4721 {
4722 close (linux_nat_event_pipe[0]);
4723 close (linux_nat_event_pipe[1]);
4724 linux_nat_event_pipe[0] = -1;
4725 linux_nat_event_pipe[1] = -1;
4726 }
4727
4728 restore_child_signals_mask (&prev_mask);
4729 }
4730
4731 return previous;
4732 }
4733
4734 /* target_async implementation. */
4735
4736 static void
4737 linux_nat_async (struct target_ops *ops, int enable)
4738 {
4739 if (enable)
4740 {
4741 if (!linux_async_pipe (1))
4742 {
4743 add_file_handler (linux_nat_event_pipe[0],
4744 handle_target_event, NULL);
4745 /* There may be pending events to handle. Tell the event loop
4746 to poll them. */
4747 async_file_mark ();
4748 }
4749 }
4750 else
4751 {
4752 delete_file_handler (linux_nat_event_pipe[0]);
4753 linux_async_pipe (0);
4754 }
4755 return;
4756 }
4757
4758 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4759 event came out. */
4760
4761 static int
4762 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4763 {
4764 if (!lwp->stopped)
4765 {
4766 if (debug_linux_nat)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "LNSL: running -> suspending %s\n",
4769 target_pid_to_str (lwp->ptid));
4770
4771
4772 if (lwp->last_resume_kind == resume_stop)
4773 {
4774 if (debug_linux_nat)
4775 fprintf_unfiltered (gdb_stdlog,
4776 "linux-nat: already stopping LWP %ld at "
4777 "GDB's request\n",
4778 ptid_get_lwp (lwp->ptid));
4779 return 0;
4780 }
4781
4782 stop_callback (lwp, NULL);
4783 lwp->last_resume_kind = resume_stop;
4784 }
4785 else
4786 {
4787 /* Already known to be stopped; do nothing. */
4788
4789 if (debug_linux_nat)
4790 {
4791 if (find_thread_ptid (lwp->ptid)->stop_requested)
4792 fprintf_unfiltered (gdb_stdlog,
4793 "LNSL: already stopped/stop_requested %s\n",
4794 target_pid_to_str (lwp->ptid));
4795 else
4796 fprintf_unfiltered (gdb_stdlog,
4797 "LNSL: already stopped/no "
4798 "stop_requested yet %s\n",
4799 target_pid_to_str (lwp->ptid));
4800 }
4801 }
4802 return 0;
4803 }
4804
4805 static void
4806 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4807 {
4808 if (non_stop)
4809 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4810 else
4811 linux_ops->to_stop (linux_ops, ptid);
4812 }
4813
4814 static void
4815 linux_nat_close (struct target_ops *self)
4816 {
4817 /* Unregister from the event loop. */
4818 if (linux_nat_is_async_p (self))
4819 linux_nat_async (self, 0);
4820
4821 if (linux_ops->to_close)
4822 linux_ops->to_close (linux_ops);
4823
4824 super_close (self);
4825 }
4826
4827 /* When requests are passed down from the linux-nat layer to the
4828 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4829 used. The address space pointer is stored in the inferior object,
4830 but the common code that is passed such ptid can't tell whether
4831 lwpid is a "main" process id or not (it assumes so). We reverse
4832 look up the "main" process id from the lwp here. */
4833
4834 static struct address_space *
4835 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4836 {
4837 struct lwp_info *lwp;
4838 struct inferior *inf;
4839 int pid;
4840
4841 if (ptid_get_lwp (ptid) == 0)
4842 {
4843 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4844 tgid. */
4845 lwp = find_lwp_pid (ptid);
4846 pid = ptid_get_pid (lwp->ptid);
4847 }
4848 else
4849 {
4850 /* A (pid,lwpid,0) ptid. */
4851 pid = ptid_get_pid (ptid);
4852 }
4853
4854 inf = find_inferior_pid (pid);
4855 gdb_assert (inf != NULL);
4856 return inf->aspace;
4857 }
4858
4859 /* Return the cached value of the processor core for thread PTID. */
4860
4861 static int
4862 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4863 {
4864 struct lwp_info *info = find_lwp_pid (ptid);
4865
4866 if (info)
4867 return info->core;
4868 return -1;
4869 }
4870
4871 void
4872 linux_nat_add_target (struct target_ops *t)
4873 {
4874 /* Save the provided single-threaded target. We save this in a separate
4875 variable because another target we've inherited from (e.g. inf-ptrace)
4876 may have saved a pointer to T; we want to use it for the final
4877 process stratum target. */
4878 linux_ops_saved = *t;
4879 linux_ops = &linux_ops_saved;
4880
4881 /* Override some methods for multithreading. */
4882 t->to_create_inferior = linux_nat_create_inferior;
4883 t->to_attach = linux_nat_attach;
4884 t->to_detach = linux_nat_detach;
4885 t->to_resume = linux_nat_resume;
4886 t->to_wait = linux_nat_wait;
4887 t->to_pass_signals = linux_nat_pass_signals;
4888 t->to_xfer_partial = linux_nat_xfer_partial;
4889 t->to_kill = linux_nat_kill;
4890 t->to_mourn_inferior = linux_nat_mourn_inferior;
4891 t->to_thread_alive = linux_nat_thread_alive;
4892 t->to_update_thread_list = linux_nat_update_thread_list;
4893 t->to_pid_to_str = linux_nat_pid_to_str;
4894 t->to_thread_name = linux_nat_thread_name;
4895 t->to_has_thread_control = tc_schedlock;
4896 t->to_thread_address_space = linux_nat_thread_address_space;
4897 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4898 t->to_stopped_data_address = linux_nat_stopped_data_address;
4899 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4900 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4901 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4902 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4903
4904 t->to_can_async_p = linux_nat_can_async_p;
4905 t->to_is_async_p = linux_nat_is_async_p;
4906 t->to_supports_non_stop = linux_nat_supports_non_stop;
4907 t->to_async = linux_nat_async;
4908 t->to_terminal_inferior = linux_nat_terminal_inferior;
4909 t->to_terminal_ours = linux_nat_terminal_ours;
4910
4911 super_close = t->to_close;
4912 t->to_close = linux_nat_close;
4913
4914 /* Methods for non-stop support. */
4915 t->to_stop = linux_nat_stop;
4916
4917 t->to_supports_multi_process = linux_nat_supports_multi_process;
4918
4919 t->to_supports_disable_randomization
4920 = linux_nat_supports_disable_randomization;
4921
4922 t->to_core_of_thread = linux_nat_core_of_thread;
4923
4924 /* We don't change the stratum; this target will sit at
4925 process_stratum and thread_db will set at thread_stratum. This
4926 is a little strange, since this is a multi-threaded-capable
4927 target, but we want to be on the stack below thread_db, and we
4928 also want to be used for single-threaded processes. */
4929
4930 add_target (t);
4931 }
4932
4933 /* Register a method to call whenever a new thread is attached. */
4934 void
4935 linux_nat_set_new_thread (struct target_ops *t,
4936 void (*new_thread) (struct lwp_info *))
4937 {
4938 /* Save the pointer. We only support a single registered instance
4939 of the GNU/Linux native target, so we do not need to map this to
4940 T. */
4941 linux_nat_new_thread = new_thread;
4942 }
4943
4944 /* See declaration in linux-nat.h. */
4945
4946 void
4947 linux_nat_set_new_fork (struct target_ops *t,
4948 linux_nat_new_fork_ftype *new_fork)
4949 {
4950 /* Save the pointer. */
4951 linux_nat_new_fork = new_fork;
4952 }
4953
4954 /* See declaration in linux-nat.h. */
4955
4956 void
4957 linux_nat_set_forget_process (struct target_ops *t,
4958 linux_nat_forget_process_ftype *fn)
4959 {
4960 /* Save the pointer. */
4961 linux_nat_forget_process_hook = fn;
4962 }
4963
4964 /* See declaration in linux-nat.h. */
4965
4966 void
4967 linux_nat_forget_process (pid_t pid)
4968 {
4969 if (linux_nat_forget_process_hook != NULL)
4970 linux_nat_forget_process_hook (pid);
4971 }
4972
4973 /* Register a method that converts a siginfo object between the layout
4974 that ptrace returns, and the layout in the architecture of the
4975 inferior. */
4976 void
4977 linux_nat_set_siginfo_fixup (struct target_ops *t,
4978 int (*siginfo_fixup) (siginfo_t *,
4979 gdb_byte *,
4980 int))
4981 {
4982 /* Save the pointer. */
4983 linux_nat_siginfo_fixup = siginfo_fixup;
4984 }
4985
4986 /* Register a method to call prior to resuming a thread. */
4987
4988 void
4989 linux_nat_set_prepare_to_resume (struct target_ops *t,
4990 void (*prepare_to_resume) (struct lwp_info *))
4991 {
4992 /* Save the pointer. */
4993 linux_nat_prepare_to_resume = prepare_to_resume;
4994 }
4995
4996 /* See linux-nat.h. */
4997
4998 int
4999 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
5000 {
5001 int pid;
5002
5003 pid = ptid_get_lwp (ptid);
5004 if (pid == 0)
5005 pid = ptid_get_pid (ptid);
5006
5007 errno = 0;
5008 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
5009 if (errno != 0)
5010 {
5011 memset (siginfo, 0, sizeof (*siginfo));
5012 return 0;
5013 }
5014 return 1;
5015 }
5016
5017 /* See nat/linux-nat.h. */
5018
5019 ptid_t
5020 current_lwp_ptid (void)
5021 {
5022 gdb_assert (ptid_lwp_p (inferior_ptid));
5023 return inferior_ptid;
5024 }
5025
5026 /* Provide a prototype to silence -Wmissing-prototypes. */
5027 extern initialize_file_ftype _initialize_linux_nat;
5028
5029 void
5030 _initialize_linux_nat (void)
5031 {
5032 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5033 &debug_linux_nat, _("\
5034 Set debugging of GNU/Linux lwp module."), _("\
5035 Show debugging of GNU/Linux lwp module."), _("\
5036 Enables printf debugging output."),
5037 NULL,
5038 show_debug_linux_nat,
5039 &setdebuglist, &showdebuglist);
5040
5041 /* Save this mask as the default. */
5042 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5043
5044 /* Install a SIGCHLD handler. */
5045 sigchld_action.sa_handler = sigchld_handler;
5046 sigemptyset (&sigchld_action.sa_mask);
5047 sigchld_action.sa_flags = SA_RESTART;
5048
5049 /* Make it the default. */
5050 sigaction (SIGCHLD, &sigchld_action, NULL);
5051
5052 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5053 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5054 sigdelset (&suspend_mask, SIGCHLD);
5055
5056 sigemptyset (&blocked_mask);
5057 }
5058 \f
5059
5060 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5061 the GNU/Linux Threads library and therefore doesn't really belong
5062 here. */
5063
5064 /* Read variable NAME in the target and return its value if found.
5065 Otherwise return zero. It is assumed that the type of the variable
5066 is `int'. */
5067
5068 static int
5069 get_signo (const char *name)
5070 {
5071 struct bound_minimal_symbol ms;
5072 int signo;
5073
5074 ms = lookup_minimal_symbol (name, NULL, NULL);
5075 if (ms.minsym == NULL)
5076 return 0;
5077
5078 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5079 sizeof (signo)) != 0)
5080 return 0;
5081
5082 return signo;
5083 }
5084
5085 /* Return the set of signals used by the threads library in *SET. */
5086
5087 void
5088 lin_thread_get_thread_signals (sigset_t *set)
5089 {
5090 struct sigaction action;
5091 int restart, cancel;
5092
5093 sigemptyset (&blocked_mask);
5094 sigemptyset (set);
5095
5096 restart = get_signo ("__pthread_sig_restart");
5097 cancel = get_signo ("__pthread_sig_cancel");
5098
5099 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5100 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5101 not provide any way for the debugger to query the signal numbers -
5102 fortunately they don't change! */
5103
5104 if (restart == 0)
5105 restart = __SIGRTMIN;
5106
5107 if (cancel == 0)
5108 cancel = __SIGRTMIN + 1;
5109
5110 sigaddset (set, restart);
5111 sigaddset (set, cancel);
5112
5113 /* The GNU/Linux Threads library makes terminating threads send a
5114 special "cancel" signal instead of SIGCHLD. Make sure we catch
5115 those (to prevent them from terminating GDB itself, which is
5116 likely to be their default action) and treat them the same way as
5117 SIGCHLD. */
5118
5119 action.sa_handler = sigchld_handler;
5120 sigemptyset (&action.sa_mask);
5121 action.sa_flags = SA_RESTART;
5122 sigaction (cancel, &action, NULL);
5123
5124 /* We block the "cancel" signal throughout this code ... */
5125 sigaddset (&blocked_mask, cancel);
5126 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5127
5128 /* ... except during a sigsuspend. */
5129 sigdelset (&suspend_mask, cancel);
5130 }
This page took 0.141651 seconds and 4 git commands to generate.