* object.cc (Sized_relobj::do_layout): Don't get confused if
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 static int linux_parent_pid;
274
275 struct simple_pid_list
276 {
277 int pid;
278 int status;
279 struct simple_pid_list *next;
280 };
281 struct simple_pid_list *stopped_pids;
282
283 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
284 can not be used, 1 if it can. */
285
286 static int linux_supports_tracefork_flag = -1;
287
288 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
289 can not be used, 1 if it can. */
290
291 static int linux_supports_tracesysgood_flag = -1;
292
293 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
294 PTRACE_O_TRACEVFORKDONE. */
295
296 static int linux_supports_tracevforkdone_flag = -1;
297
298 /* Async mode support */
299
300 /* Zero if the async mode, although enabled, is masked, which means
301 linux_nat_wait should behave as if async mode was off. */
302 static int linux_nat_async_mask_value = 1;
303
304 /* Stores the current used ptrace() options. */
305 static int current_ptrace_options = 0;
306
307 /* The read/write ends of the pipe registered as waitable file in the
308 event loop. */
309 static int linux_nat_event_pipe[2] = { -1, -1 };
310
311 /* Flush the event pipe. */
312
313 static void
314 async_file_flush (void)
315 {
316 int ret;
317 char buf;
318
319 do
320 {
321 ret = read (linux_nat_event_pipe[0], &buf, 1);
322 }
323 while (ret >= 0 || (ret == -1 && errno == EINTR));
324 }
325
326 /* Put something (anything, doesn't matter what, or how much) in event
327 pipe, so that the select/poll in the event-loop realizes we have
328 something to process. */
329
330 static void
331 async_file_mark (void)
332 {
333 int ret;
334
335 /* It doesn't really matter what the pipe contains, as long we end
336 up with something in it. Might as well flush the previous
337 left-overs. */
338 async_file_flush ();
339
340 do
341 {
342 ret = write (linux_nat_event_pipe[1], "+", 1);
343 }
344 while (ret == -1 && errno == EINTR);
345
346 /* Ignore EAGAIN. If the pipe is full, the event loop will already
347 be awakened anyway. */
348 }
349
350 static void linux_nat_async (void (*callback)
351 (enum inferior_event_type event_type, void *context),
352 void *context);
353 static int linux_nat_async_mask (int mask);
354 static int kill_lwp (int lwpid, int signo);
355
356 static int stop_callback (struct lwp_info *lp, void *data);
357
358 static void block_child_signals (sigset_t *prev_mask);
359 static void restore_child_signals_mask (sigset_t *prev_mask);
360
361 struct lwp_info;
362 static struct lwp_info *add_lwp (ptid_t ptid);
363 static void purge_lwp_list (int pid);
364 static struct lwp_info *find_lwp_pid (ptid_t ptid);
365
366 \f
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->pid = pid;
374 new_pid->status = status;
375 new_pid->next = *listp;
376 *listp = new_pid;
377 }
378
379 static int
380 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
381 {
382 struct simple_pid_list **p;
383
384 for (p = listp; *p != NULL; p = &(*p)->next)
385 if ((*p)->pid == pid)
386 {
387 struct simple_pid_list *next = (*p)->next;
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 int ret;
409
410 ptrace (PTRACE_TRACEME, 0, 0, 0);
411 kill (getpid (), SIGSTOP);
412 fork ();
413 _exit (0);
414 }
415
416 /* Wrapper function for waitpid which handles EINTR. */
417
418 static int
419 my_waitpid (int pid, int *status, int flags)
420 {
421 int ret;
422
423 do
424 {
425 ret = waitpid (pid, status, flags);
426 }
427 while (ret == -1 && errno == EINTR);
428
429 return ret;
430 }
431
432 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
433
434 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
435 we know that the feature is not available. This may change the tracing
436 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
437
438 However, if it succeeds, we don't know for sure that the feature is
439 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
440 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
441 fork tracing, and let it fork. If the process exits, we assume that we
442 can't use TRACEFORK; if we get the fork notification, and we can extract
443 the new child's PID, then we assume that we can. */
444
445 static void
446 linux_test_for_tracefork (int original_pid)
447 {
448 int child_pid, ret, status;
449 long second_pid;
450 sigset_t prev_mask;
451
452 /* We don't want those ptrace calls to be interrupted. */
453 block_child_signals (&prev_mask);
454
455 linux_supports_tracefork_flag = 0;
456 linux_supports_tracevforkdone_flag = 0;
457
458 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 if (ret != 0)
460 {
461 restore_child_signals_mask (&prev_mask);
462 return;
463 }
464
465 child_pid = fork ();
466 if (child_pid == -1)
467 perror_with_name (("fork"));
468
469 if (child_pid == 0)
470 linux_tracefork_child ();
471
472 ret = my_waitpid (child_pid, &status, 0);
473 if (ret == -1)
474 perror_with_name (("waitpid"));
475 else if (ret != child_pid)
476 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
477 if (! WIFSTOPPED (status))
478 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
479
480 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 if (ret != 0)
482 {
483 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 if (ret != 0)
485 {
486 warning (_("linux_test_for_tracefork: failed to kill child"));
487 restore_child_signals_mask (&prev_mask);
488 return;
489 }
490
491 ret = my_waitpid (child_pid, &status, 0);
492 if (ret != child_pid)
493 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
494 else if (!WIFSIGNALED (status))
495 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
496 "killed child"), status);
497
498 restore_child_signals_mask (&prev_mask);
499 return;
500 }
501
502 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
503 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
504 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
505 linux_supports_tracevforkdone_flag = (ret == 0);
506
507 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
508 if (ret != 0)
509 warning (_("linux_test_for_tracefork: failed to resume child"));
510
511 ret = my_waitpid (child_pid, &status, 0);
512
513 if (ret == child_pid && WIFSTOPPED (status)
514 && status >> 16 == PTRACE_EVENT_FORK)
515 {
516 second_pid = 0;
517 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
518 if (ret == 0 && second_pid != 0)
519 {
520 int second_status;
521
522 linux_supports_tracefork_flag = 1;
523 my_waitpid (second_pid, &second_status, 0);
524 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
525 if (ret != 0)
526 warning (_("linux_test_for_tracefork: failed to kill second child"));
527 my_waitpid (second_pid, &status, 0);
528 }
529 }
530 else
531 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
532 "(%d, status 0x%x)"), ret, status);
533
534 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
535 if (ret != 0)
536 warning (_("linux_test_for_tracefork: failed to kill child"));
537 my_waitpid (child_pid, &status, 0);
538
539 restore_child_signals_mask (&prev_mask);
540 }
541
542 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
543
544 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
545 we know that the feature is not available. This may change the tracing
546 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547
548 static void
549 linux_test_for_tracesysgood (int original_pid)
550 {
551 int ret;
552 sigset_t prev_mask;
553
554 /* We don't want those ptrace calls to be interrupted. */
555 block_child_signals (&prev_mask);
556
557 linux_supports_tracesysgood_flag = 0;
558
559 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
560 if (ret != 0)
561 goto out;
562
563 linux_supports_tracesysgood_flag = 1;
564 out:
565 restore_child_signals_mask (&prev_mask);
566 }
567
568 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
569 This function also sets linux_supports_tracesysgood_flag. */
570
571 static int
572 linux_supports_tracesysgood (int pid)
573 {
574 if (linux_supports_tracesysgood_flag == -1)
575 linux_test_for_tracesysgood (pid);
576 return linux_supports_tracesysgood_flag;
577 }
578
579 /* Return non-zero iff we have tracefork functionality available.
580 This function also sets linux_supports_tracefork_flag. */
581
582 static int
583 linux_supports_tracefork (int pid)
584 {
585 if (linux_supports_tracefork_flag == -1)
586 linux_test_for_tracefork (pid);
587 return linux_supports_tracefork_flag;
588 }
589
590 static int
591 linux_supports_tracevforkdone (int pid)
592 {
593 if (linux_supports_tracefork_flag == -1)
594 linux_test_for_tracefork (pid);
595 return linux_supports_tracevforkdone_flag;
596 }
597
598 static void
599 linux_enable_tracesysgood (ptid_t ptid)
600 {
601 int pid = ptid_get_lwp (ptid);
602
603 if (pid == 0)
604 pid = ptid_get_pid (ptid);
605
606 if (linux_supports_tracesysgood (pid) == 0)
607 return;
608
609 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
612 }
613
614 \f
615 void
616 linux_enable_event_reporting (ptid_t ptid)
617 {
618 int pid = ptid_get_lwp (ptid);
619
620 if (pid == 0)
621 pid = ptid_get_pid (ptid);
622
623 if (! linux_supports_tracefork (pid))
624 return;
625
626 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
627 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
628
629 if (linux_supports_tracevforkdone (pid))
630 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
631
632 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
633 read-only process state. */
634
635 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
636 }
637
638 static void
639 linux_child_post_attach (int pid)
640 {
641 linux_enable_event_reporting (pid_to_ptid (pid));
642 check_for_thread_db ();
643 linux_enable_tracesysgood (pid_to_ptid (pid));
644 }
645
646 static void
647 linux_child_post_startup_inferior (ptid_t ptid)
648 {
649 linux_enable_event_reporting (ptid);
650 check_for_thread_db ();
651 linux_enable_tracesysgood (ptid);
652 }
653
654 static int
655 linux_child_follow_fork (struct target_ops *ops, int follow_child)
656 {
657 sigset_t prev_mask;
658 int has_vforked;
659 int parent_pid, child_pid;
660
661 block_child_signals (&prev_mask);
662
663 has_vforked = (inferior_thread ()->pending_follow.kind
664 == TARGET_WAITKIND_VFORKED);
665 parent_pid = ptid_get_lwp (inferior_ptid);
666 if (parent_pid == 0)
667 parent_pid = ptid_get_pid (inferior_ptid);
668 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
669
670 if (!detach_fork)
671 linux_enable_event_reporting (pid_to_ptid (child_pid));
672
673 if (has_vforked
674 && !non_stop /* Non-stop always resumes both branches. */
675 && (!target_is_async_p () || sync_execution)
676 && !(follow_child || detach_fork || sched_multi))
677 {
678 /* The parent stays blocked inside the vfork syscall until the
679 child execs or exits. If we don't let the child run, then
680 the parent stays blocked. If we're telling the parent to run
681 in the foreground, the user will not be able to ctrl-c to get
682 back the terminal, effectively hanging the debug session. */
683 fprintf_filtered (gdb_stderr, _("\
684 Can not resume the parent process over vfork in the foreground while \n\
685 holding the child stopped. Try \"set detach-on-fork\" or \
686 \"set schedule-multiple\".\n"));
687 return 1;
688 }
689
690 if (! follow_child)
691 {
692 struct lwp_info *child_lp = NULL;
693
694 /* We're already attached to the parent, by default. */
695
696 /* Detach new forked process? */
697 if (detach_fork)
698 {
699 /* Before detaching from the child, remove all breakpoints
700 from it. If we forked, then this has already been taken
701 care of by infrun.c. If we vforked however, any
702 breakpoint inserted in the parent is visible in the
703 child, even those added while stopped in a vfork
704 catchpoint. This will remove the breakpoints from the
705 parent also, but they'll be reinserted below. */
706 if (has_vforked)
707 {
708 /* keep breakpoints list in sync. */
709 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 }
711
712 if (info_verbose || debug_linux_nat)
713 {
714 target_terminal_ours ();
715 fprintf_filtered (gdb_stdlog,
716 "Detaching after fork from child process %d.\n",
717 child_pid);
718 }
719
720 ptrace (PTRACE_DETACH, child_pid, 0, 0);
721 }
722 else
723 {
724 struct inferior *parent_inf, *child_inf;
725 struct cleanup *old_chain;
726
727 /* Add process to GDB's tables. */
728 child_inf = add_inferior (child_pid);
729
730 parent_inf = current_inferior ();
731 child_inf->attach_flag = parent_inf->attach_flag;
732 copy_terminal_info (child_inf, parent_inf);
733
734 old_chain = save_inferior_ptid ();
735 save_current_program_space ();
736
737 inferior_ptid = ptid_build (child_pid, child_pid, 0);
738 add_thread (inferior_ptid);
739 child_lp = add_lwp (inferior_ptid);
740 child_lp->stopped = 1;
741 child_lp->resumed = 1;
742
743 /* If this is a vfork child, then the address-space is
744 shared with the parent. */
745 if (has_vforked)
746 {
747 child_inf->pspace = parent_inf->pspace;
748 child_inf->aspace = parent_inf->aspace;
749
750 /* The parent will be frozen until the child is done
751 with the shared region. Keep track of the
752 parent. */
753 child_inf->vfork_parent = parent_inf;
754 child_inf->pending_detach = 0;
755 parent_inf->vfork_child = child_inf;
756 parent_inf->pending_detach = 0;
757 }
758 else
759 {
760 child_inf->aspace = new_address_space ();
761 child_inf->pspace = add_program_space (child_inf->aspace);
762 child_inf->removable = 1;
763 set_current_program_space (child_inf->pspace);
764 clone_program_space (child_inf->pspace, parent_inf->pspace);
765
766 /* Let the shared library layer (solib-svr4) learn about
767 this new process, relocate the cloned exec, pull in
768 shared libraries, and install the solib event
769 breakpoint. If a "cloned-VM" event was propagated
770 better throughout the core, this wouldn't be
771 required. */
772 solib_create_inferior_hook ();
773 }
774
775 /* Let the thread_db layer learn about this new process. */
776 check_for_thread_db ();
777
778 do_cleanups (old_chain);
779 }
780
781 if (has_vforked)
782 {
783 struct lwp_info *lp;
784 struct inferior *parent_inf;
785
786 parent_inf = current_inferior ();
787
788 /* If we detached from the child, then we have to be careful
789 to not insert breakpoints in the parent until the child
790 is done with the shared memory region. However, if we're
791 staying attached to the child, then we can and should
792 insert breakpoints, so that we can debug it. A
793 subsequent child exec or exit is enough to know when does
794 the child stops using the parent's address space. */
795 parent_inf->waiting_for_vfork_done = detach_fork;
796 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
797
798 lp = find_lwp_pid (pid_to_ptid (parent_pid));
799 gdb_assert (linux_supports_tracefork_flag >= 0);
800 if (linux_supports_tracevforkdone (0))
801 {
802 if (debug_linux_nat)
803 fprintf_unfiltered (gdb_stdlog,
804 "LCFF: waiting for VFORK_DONE on %d\n",
805 parent_pid);
806
807 lp->stopped = 1;
808 lp->resumed = 1;
809
810 /* We'll handle the VFORK_DONE event like any other
811 event, in target_wait. */
812 }
813 else
814 {
815 /* We can't insert breakpoints until the child has
816 finished with the shared memory region. We need to
817 wait until that happens. Ideal would be to just
818 call:
819 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
820 - waitpid (parent_pid, &status, __WALL);
821 However, most architectures can't handle a syscall
822 being traced on the way out if it wasn't traced on
823 the way in.
824
825 We might also think to loop, continuing the child
826 until it exits or gets a SIGTRAP. One problem is
827 that the child might call ptrace with PTRACE_TRACEME.
828
829 There's no simple and reliable way to figure out when
830 the vforked child will be done with its copy of the
831 shared memory. We could step it out of the syscall,
832 two instructions, let it go, and then single-step the
833 parent once. When we have hardware single-step, this
834 would work; with software single-step it could still
835 be made to work but we'd have to be able to insert
836 single-step breakpoints in the child, and we'd have
837 to insert -just- the single-step breakpoint in the
838 parent. Very awkward.
839
840 In the end, the best we can do is to make sure it
841 runs for a little while. Hopefully it will be out of
842 range of any breakpoints we reinsert. Usually this
843 is only the single-step breakpoint at vfork's return
844 point. */
845
846 if (debug_linux_nat)
847 fprintf_unfiltered (gdb_stdlog,
848 "LCFF: no VFORK_DONE support, sleeping a bit\n");
849
850 usleep (10000);
851
852 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
853 and leave it pending. The next linux_nat_resume call
854 will notice a pending event, and bypasses actually
855 resuming the inferior. */
856 lp->status = 0;
857 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
858 lp->stopped = 0;
859 lp->resumed = 1;
860
861 /* If we're in async mode, need to tell the event loop
862 there's something here to process. */
863 if (target_can_async_p ())
864 async_file_mark ();
865 }
866 }
867 }
868 else
869 {
870 struct thread_info *tp;
871 struct inferior *parent_inf, *child_inf;
872 struct lwp_info *lp;
873 struct program_space *parent_pspace;
874
875 if (info_verbose || debug_linux_nat)
876 {
877 target_terminal_ours ();
878 if (has_vforked)
879 fprintf_filtered (gdb_stdlog, _("\
880 Attaching after process %d vfork to child process %d.\n"),
881 parent_pid, child_pid);
882 else
883 fprintf_filtered (gdb_stdlog, _("\
884 Attaching after process %d fork to child process %d.\n"),
885 parent_pid, child_pid);
886 }
887
888 /* Add the new inferior first, so that the target_detach below
889 doesn't unpush the target. */
890
891 child_inf = add_inferior (child_pid);
892
893 parent_inf = current_inferior ();
894 child_inf->attach_flag = parent_inf->attach_flag;
895 copy_terminal_info (child_inf, parent_inf);
896
897 parent_pspace = parent_inf->pspace;
898
899 /* If we're vforking, we want to hold on to the parent until the
900 child exits or execs. At child exec or exit time we can
901 remove the old breakpoints from the parent and detach or
902 resume debugging it. Otherwise, detach the parent now; we'll
903 want to reuse it's program/address spaces, but we can't set
904 them to the child before removing breakpoints from the
905 parent, otherwise, the breakpoints module could decide to
906 remove breakpoints from the wrong process (since they'd be
907 assigned to the same address space). */
908
909 if (has_vforked)
910 {
911 gdb_assert (child_inf->vfork_parent == NULL);
912 gdb_assert (parent_inf->vfork_child == NULL);
913 child_inf->vfork_parent = parent_inf;
914 child_inf->pending_detach = 0;
915 parent_inf->vfork_child = child_inf;
916 parent_inf->pending_detach = detach_fork;
917 parent_inf->waiting_for_vfork_done = 0;
918 }
919 else if (detach_fork)
920 target_detach (NULL, 0);
921
922 /* Note that the detach above makes PARENT_INF dangling. */
923
924 /* Add the child thread to the appropriate lists, and switch to
925 this new thread, before cloning the program space, and
926 informing the solib layer about this new process. */
927
928 inferior_ptid = ptid_build (child_pid, child_pid, 0);
929 add_thread (inferior_ptid);
930 lp = add_lwp (inferior_ptid);
931 lp->stopped = 1;
932 lp->resumed = 1;
933
934 /* If this is a vfork child, then the address-space is shared
935 with the parent. If we detached from the parent, then we can
936 reuse the parent's program/address spaces. */
937 if (has_vforked || detach_fork)
938 {
939 child_inf->pspace = parent_pspace;
940 child_inf->aspace = child_inf->pspace->aspace;
941 }
942 else
943 {
944 child_inf->aspace = new_address_space ();
945 child_inf->pspace = add_program_space (child_inf->aspace);
946 child_inf->removable = 1;
947 set_current_program_space (child_inf->pspace);
948 clone_program_space (child_inf->pspace, parent_pspace);
949
950 /* Let the shared library layer (solib-svr4) learn about
951 this new process, relocate the cloned exec, pull in
952 shared libraries, and install the solib event breakpoint.
953 If a "cloned-VM" event was propagated better throughout
954 the core, this wouldn't be required. */
955 solib_create_inferior_hook ();
956 }
957
958 /* Let the thread_db layer learn about this new process. */
959 check_for_thread_db ();
960 }
961
962 restore_child_signals_mask (&prev_mask);
963 return 0;
964 }
965
966 \f
967 static void
968 linux_child_insert_fork_catchpoint (int pid)
969 {
970 if (! linux_supports_tracefork (pid))
971 error (_("Your system does not support fork catchpoints."));
972 }
973
974 static void
975 linux_child_insert_vfork_catchpoint (int pid)
976 {
977 if (!linux_supports_tracefork (pid))
978 error (_("Your system does not support vfork catchpoints."));
979 }
980
981 static void
982 linux_child_insert_exec_catchpoint (int pid)
983 {
984 if (!linux_supports_tracefork (pid))
985 error (_("Your system does not support exec catchpoints."));
986 }
987
988 static int
989 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
990 int table_size, int *table)
991 {
992 if (! linux_supports_tracesysgood (pid))
993 error (_("Your system does not support syscall catchpoints."));
994 /* On GNU/Linux, we ignore the arguments. It means that we only
995 enable the syscall catchpoints, but do not disable them.
996
997 Also, we do not use the `table' information because we do not
998 filter system calls here. We let GDB do the logic for us. */
999 return 0;
1000 }
1001
1002 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1003 are processes sharing the same VM space. A multi-threaded process
1004 is basically a group of such processes. However, such a grouping
1005 is almost entirely a user-space issue; the kernel doesn't enforce
1006 such a grouping at all (this might change in the future). In
1007 general, we'll rely on the threads library (i.e. the GNU/Linux
1008 Threads library) to provide such a grouping.
1009
1010 It is perfectly well possible to write a multi-threaded application
1011 without the assistance of a threads library, by using the clone
1012 system call directly. This module should be able to give some
1013 rudimentary support for debugging such applications if developers
1014 specify the CLONE_PTRACE flag in the clone system call, and are
1015 using the Linux kernel 2.4 or above.
1016
1017 Note that there are some peculiarities in GNU/Linux that affect
1018 this code:
1019
1020 - In general one should specify the __WCLONE flag to waitpid in
1021 order to make it report events for any of the cloned processes
1022 (and leave it out for the initial process). However, if a cloned
1023 process has exited the exit status is only reported if the
1024 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1025 we cannot use it since GDB must work on older systems too.
1026
1027 - When a traced, cloned process exits and is waited for by the
1028 debugger, the kernel reassigns it to the original parent and
1029 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1030 library doesn't notice this, which leads to the "zombie problem":
1031 When debugged a multi-threaded process that spawns a lot of
1032 threads will run out of processes, even if the threads exit,
1033 because the "zombies" stay around. */
1034
1035 /* List of known LWPs. */
1036 struct lwp_info *lwp_list;
1037 \f
1038
1039 /* Original signal mask. */
1040 static sigset_t normal_mask;
1041
1042 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1043 _initialize_linux_nat. */
1044 static sigset_t suspend_mask;
1045
1046 /* Signals to block to make that sigsuspend work. */
1047 static sigset_t blocked_mask;
1048
1049 /* SIGCHLD action. */
1050 struct sigaction sigchld_action;
1051
1052 /* Block child signals (SIGCHLD and linux threads signals), and store
1053 the previous mask in PREV_MASK. */
1054
1055 static void
1056 block_child_signals (sigset_t *prev_mask)
1057 {
1058 /* Make sure SIGCHLD is blocked. */
1059 if (!sigismember (&blocked_mask, SIGCHLD))
1060 sigaddset (&blocked_mask, SIGCHLD);
1061
1062 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1063 }
1064
1065 /* Restore child signals mask, previously returned by
1066 block_child_signals. */
1067
1068 static void
1069 restore_child_signals_mask (sigset_t *prev_mask)
1070 {
1071 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072 }
1073 \f
1074
1075 /* Prototypes for local functions. */
1076 static int stop_wait_callback (struct lwp_info *lp, void *data);
1077 static int linux_thread_alive (ptid_t ptid);
1078 static char *linux_child_pid_to_exec_file (int pid);
1079 static int cancel_breakpoint (struct lwp_info *lp);
1080
1081 \f
1082 /* Convert wait status STATUS to a string. Used for printing debug
1083 messages only. */
1084
1085 static char *
1086 status_to_str (int status)
1087 {
1088 static char buf[64];
1089
1090 if (WIFSTOPPED (status))
1091 {
1092 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1093 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1094 strsignal (SIGTRAP));
1095 else
1096 snprintf (buf, sizeof (buf), "%s (stopped)",
1097 strsignal (WSTOPSIG (status)));
1098 }
1099 else if (WIFSIGNALED (status))
1100 snprintf (buf, sizeof (buf), "%s (terminated)",
1101 strsignal (WSTOPSIG (status)));
1102 else
1103 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1104
1105 return buf;
1106 }
1107
1108 /* Initialize the list of LWPs. Note that this module, contrary to
1109 what GDB's generic threads layer does for its thread list,
1110 re-initializes the LWP lists whenever we mourn or detach (which
1111 doesn't involve mourning) the inferior. */
1112
1113 static void
1114 init_lwp_list (void)
1115 {
1116 struct lwp_info *lp, *lpnext;
1117
1118 for (lp = lwp_list; lp; lp = lpnext)
1119 {
1120 lpnext = lp->next;
1121 xfree (lp);
1122 }
1123
1124 lwp_list = NULL;
1125 }
1126
1127 /* Remove all LWPs belong to PID from the lwp list. */
1128
1129 static void
1130 purge_lwp_list (int pid)
1131 {
1132 struct lwp_info *lp, *lpprev, *lpnext;
1133
1134 lpprev = NULL;
1135
1136 for (lp = lwp_list; lp; lp = lpnext)
1137 {
1138 lpnext = lp->next;
1139
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 {
1142 if (lp == lwp_list)
1143 lwp_list = lp->next;
1144 else
1145 lpprev->next = lp->next;
1146
1147 xfree (lp);
1148 }
1149 else
1150 lpprev = lp;
1151 }
1152 }
1153
1154 /* Return the number of known LWPs in the tgid given by PID. */
1155
1156 static int
1157 num_lwps (int pid)
1158 {
1159 int count = 0;
1160 struct lwp_info *lp;
1161
1162 for (lp = lwp_list; lp; lp = lp->next)
1163 if (ptid_get_pid (lp->ptid) == pid)
1164 count++;
1165
1166 return count;
1167 }
1168
1169 /* Add the LWP specified by PID to the list. Return a pointer to the
1170 structure describing the new LWP. The LWP should already be stopped
1171 (with an exception for the very first LWP). */
1172
1173 static struct lwp_info *
1174 add_lwp (ptid_t ptid)
1175 {
1176 struct lwp_info *lp;
1177
1178 gdb_assert (is_lwp (ptid));
1179
1180 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1181
1182 memset (lp, 0, sizeof (struct lwp_info));
1183
1184 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1185
1186 lp->ptid = ptid;
1187
1188 lp->next = lwp_list;
1189 lwp_list = lp;
1190
1191 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1192 linux_nat_new_thread (ptid);
1193
1194 return lp;
1195 }
1196
1197 /* Remove the LWP specified by PID from the list. */
1198
1199 static void
1200 delete_lwp (ptid_t ptid)
1201 {
1202 struct lwp_info *lp, *lpprev;
1203
1204 lpprev = NULL;
1205
1206 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1207 if (ptid_equal (lp->ptid, ptid))
1208 break;
1209
1210 if (!lp)
1211 return;
1212
1213 if (lpprev)
1214 lpprev->next = lp->next;
1215 else
1216 lwp_list = lp->next;
1217
1218 xfree (lp);
1219 }
1220
1221 /* Return a pointer to the structure describing the LWP corresponding
1222 to PID. If no corresponding LWP could be found, return NULL. */
1223
1224 static struct lwp_info *
1225 find_lwp_pid (ptid_t ptid)
1226 {
1227 struct lwp_info *lp;
1228 int lwp;
1229
1230 if (is_lwp (ptid))
1231 lwp = GET_LWP (ptid);
1232 else
1233 lwp = GET_PID (ptid);
1234
1235 for (lp = lwp_list; lp; lp = lp->next)
1236 if (lwp == GET_LWP (lp->ptid))
1237 return lp;
1238
1239 return NULL;
1240 }
1241
1242 /* Returns true if PTID matches filter FILTER. FILTER can be the wild
1243 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1244 a process (ptid_is_pid returns true), in which case, all lwps of
1245 that give process match, lwps of other process do not; or, it can
1246 represent a specific thread, in which case, only that thread will
1247 match true. PTID must represent an LWP, it can never be a wild
1248 card. */
1249
1250 static int
1251 ptid_match (ptid_t ptid, ptid_t filter)
1252 {
1253 /* Since both parameters have the same type, prevent easy mistakes
1254 from happening. */
1255 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1256 && !ptid_equal (ptid, null_ptid));
1257
1258 if (ptid_equal (filter, minus_one_ptid))
1259 return 1;
1260 if (ptid_is_pid (filter)
1261 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1262 return 1;
1263 else if (ptid_equal (ptid, filter))
1264 return 1;
1265
1266 return 0;
1267 }
1268
1269 /* Call CALLBACK with its second argument set to DATA for every LWP in
1270 the list. If CALLBACK returns 1 for a particular LWP, return a
1271 pointer to the structure describing that LWP immediately.
1272 Otherwise return NULL. */
1273
1274 struct lwp_info *
1275 iterate_over_lwps (ptid_t filter,
1276 int (*callback) (struct lwp_info *, void *),
1277 void *data)
1278 {
1279 struct lwp_info *lp, *lpnext;
1280
1281 for (lp = lwp_list; lp; lp = lpnext)
1282 {
1283 lpnext = lp->next;
1284
1285 if (ptid_match (lp->ptid, filter))
1286 {
1287 if ((*callback) (lp, data))
1288 return lp;
1289 }
1290 }
1291
1292 return NULL;
1293 }
1294
1295 /* Update our internal state when changing from one checkpoint to
1296 another indicated by NEW_PTID. We can only switch single-threaded
1297 applications, so we only create one new LWP, and the previous list
1298 is discarded. */
1299
1300 void
1301 linux_nat_switch_fork (ptid_t new_ptid)
1302 {
1303 struct lwp_info *lp;
1304
1305 purge_lwp_list (GET_PID (inferior_ptid));
1306
1307 lp = add_lwp (new_ptid);
1308 lp->stopped = 1;
1309
1310 /* This changes the thread's ptid while preserving the gdb thread
1311 num. Also changes the inferior pid, while preserving the
1312 inferior num. */
1313 thread_change_ptid (inferior_ptid, new_ptid);
1314
1315 /* We've just told GDB core that the thread changed target id, but,
1316 in fact, it really is a different thread, with different register
1317 contents. */
1318 registers_changed ();
1319 }
1320
1321 /* Handle the exit of a single thread LP. */
1322
1323 static void
1324 exit_lwp (struct lwp_info *lp)
1325 {
1326 struct thread_info *th = find_thread_ptid (lp->ptid);
1327
1328 if (th)
1329 {
1330 if (print_thread_events)
1331 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1332
1333 delete_thread (lp->ptid);
1334 }
1335
1336 delete_lwp (lp->ptid);
1337 }
1338
1339 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1340
1341 int
1342 linux_proc_get_tgid (int lwpid)
1343 {
1344 FILE *status_file;
1345 char buf[100];
1346 int tgid = -1;
1347
1348 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1349 status_file = fopen (buf, "r");
1350 if (status_file != NULL)
1351 {
1352 while (fgets (buf, sizeof (buf), status_file))
1353 {
1354 if (strncmp (buf, "Tgid:", 5) == 0)
1355 {
1356 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1357 break;
1358 }
1359 }
1360
1361 fclose (status_file);
1362 }
1363
1364 return tgid;
1365 }
1366
1367 /* Detect `T (stopped)' in `/proc/PID/status'.
1368 Other states including `T (tracing stop)' are reported as false. */
1369
1370 static int
1371 pid_is_stopped (pid_t pid)
1372 {
1373 FILE *status_file;
1374 char buf[100];
1375 int retval = 0;
1376
1377 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1378 status_file = fopen (buf, "r");
1379 if (status_file != NULL)
1380 {
1381 int have_state = 0;
1382
1383 while (fgets (buf, sizeof (buf), status_file))
1384 {
1385 if (strncmp (buf, "State:", 6) == 0)
1386 {
1387 have_state = 1;
1388 break;
1389 }
1390 }
1391 if (have_state && strstr (buf, "T (stopped)") != NULL)
1392 retval = 1;
1393 fclose (status_file);
1394 }
1395 return retval;
1396 }
1397
1398 /* Wait for the LWP specified by LP, which we have just attached to.
1399 Returns a wait status for that LWP, to cache. */
1400
1401 static int
1402 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1403 int *signalled)
1404 {
1405 pid_t new_pid, pid = GET_LWP (ptid);
1406 int status;
1407
1408 if (pid_is_stopped (pid))
1409 {
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "LNPAW: Attaching to a stopped process\n");
1413
1414 /* The process is definitely stopped. It is in a job control
1415 stop, unless the kernel predates the TASK_STOPPED /
1416 TASK_TRACED distinction, in which case it might be in a
1417 ptrace stop. Make sure it is in a ptrace stop; from there we
1418 can kill it, signal it, et cetera.
1419
1420 First make sure there is a pending SIGSTOP. Since we are
1421 already attached, the process can not transition from stopped
1422 to running without a PTRACE_CONT; so we know this signal will
1423 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1424 probably already in the queue (unless this kernel is old
1425 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1426 is not an RT signal, it can only be queued once. */
1427 kill_lwp (pid, SIGSTOP);
1428
1429 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1430 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1431 ptrace (PTRACE_CONT, pid, 0, 0);
1432 }
1433
1434 /* Make sure the initial process is stopped. The user-level threads
1435 layer might want to poke around in the inferior, and that won't
1436 work if things haven't stabilized yet. */
1437 new_pid = my_waitpid (pid, &status, 0);
1438 if (new_pid == -1 && errno == ECHILD)
1439 {
1440 if (first)
1441 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1442
1443 /* Try again with __WCLONE to check cloned processes. */
1444 new_pid = my_waitpid (pid, &status, __WCLONE);
1445 *cloned = 1;
1446 }
1447
1448 gdb_assert (pid == new_pid);
1449
1450 if (!WIFSTOPPED (status))
1451 {
1452 /* The pid we tried to attach has apparently just exited. */
1453 if (debug_linux_nat)
1454 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1455 pid, status_to_str (status));
1456 return status;
1457 }
1458
1459 if (WSTOPSIG (status) != SIGSTOP)
1460 {
1461 *signalled = 1;
1462 if (debug_linux_nat)
1463 fprintf_unfiltered (gdb_stdlog,
1464 "LNPAW: Received %s after attaching\n",
1465 status_to_str (status));
1466 }
1467
1468 return status;
1469 }
1470
1471 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1472 if the new LWP could not be attached. */
1473
1474 int
1475 lin_lwp_attach_lwp (ptid_t ptid)
1476 {
1477 struct lwp_info *lp;
1478 sigset_t prev_mask;
1479
1480 gdb_assert (is_lwp (ptid));
1481
1482 block_child_signals (&prev_mask);
1483
1484 lp = find_lwp_pid (ptid);
1485
1486 /* We assume that we're already attached to any LWP that has an id
1487 equal to the overall process id, and to any LWP that is already
1488 in our list of LWPs. If we're not seeing exit events from threads
1489 and we've had PID wraparound since we last tried to stop all threads,
1490 this assumption might be wrong; fortunately, this is very unlikely
1491 to happen. */
1492 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1493 {
1494 int status, cloned = 0, signalled = 0;
1495
1496 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1497 {
1498 /* If we fail to attach to the thread, issue a warning,
1499 but continue. One way this can happen is if thread
1500 creation is interrupted; as of Linux kernel 2.6.19, a
1501 bug may place threads in the thread list and then fail
1502 to create them. */
1503 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1504 safe_strerror (errno));
1505 restore_child_signals_mask (&prev_mask);
1506 return -1;
1507 }
1508
1509 if (debug_linux_nat)
1510 fprintf_unfiltered (gdb_stdlog,
1511 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1512 target_pid_to_str (ptid));
1513
1514 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1515 if (!WIFSTOPPED (status))
1516 return -1;
1517
1518 lp = add_lwp (ptid);
1519 lp->stopped = 1;
1520 lp->cloned = cloned;
1521 lp->signalled = signalled;
1522 if (WSTOPSIG (status) != SIGSTOP)
1523 {
1524 lp->resumed = 1;
1525 lp->status = status;
1526 }
1527
1528 target_post_attach (GET_LWP (lp->ptid));
1529
1530 if (debug_linux_nat)
1531 {
1532 fprintf_unfiltered (gdb_stdlog,
1533 "LLAL: waitpid %s received %s\n",
1534 target_pid_to_str (ptid),
1535 status_to_str (status));
1536 }
1537 }
1538 else
1539 {
1540 /* We assume that the LWP representing the original process is
1541 already stopped. Mark it as stopped in the data structure
1542 that the GNU/linux ptrace layer uses to keep track of
1543 threads. Note that this won't have already been done since
1544 the main thread will have, we assume, been stopped by an
1545 attach from a different layer. */
1546 if (lp == NULL)
1547 lp = add_lwp (ptid);
1548 lp->stopped = 1;
1549 }
1550
1551 restore_child_signals_mask (&prev_mask);
1552 return 0;
1553 }
1554
1555 static void
1556 linux_nat_create_inferior (struct target_ops *ops,
1557 char *exec_file, char *allargs, char **env,
1558 int from_tty)
1559 {
1560 #ifdef HAVE_PERSONALITY
1561 int personality_orig = 0, personality_set = 0;
1562 #endif /* HAVE_PERSONALITY */
1563
1564 /* The fork_child mechanism is synchronous and calls target_wait, so
1565 we have to mask the async mode. */
1566
1567 #ifdef HAVE_PERSONALITY
1568 if (disable_randomization)
1569 {
1570 errno = 0;
1571 personality_orig = personality (0xffffffff);
1572 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1573 {
1574 personality_set = 1;
1575 personality (personality_orig | ADDR_NO_RANDOMIZE);
1576 }
1577 if (errno != 0 || (personality_set
1578 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1579 warning (_("Error disabling address space randomization: %s"),
1580 safe_strerror (errno));
1581 }
1582 #endif /* HAVE_PERSONALITY */
1583
1584 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1585
1586 #ifdef HAVE_PERSONALITY
1587 if (personality_set)
1588 {
1589 errno = 0;
1590 personality (personality_orig);
1591 if (errno != 0)
1592 warning (_("Error restoring address space randomization: %s"),
1593 safe_strerror (errno));
1594 }
1595 #endif /* HAVE_PERSONALITY */
1596 }
1597
1598 static void
1599 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1600 {
1601 struct lwp_info *lp;
1602 int status;
1603 ptid_t ptid;
1604
1605 linux_ops->to_attach (ops, args, from_tty);
1606
1607 /* The ptrace base target adds the main thread with (pid,0,0)
1608 format. Decorate it with lwp info. */
1609 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1610 thread_change_ptid (inferior_ptid, ptid);
1611
1612 /* Add the initial process as the first LWP to the list. */
1613 lp = add_lwp (ptid);
1614
1615 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1616 &lp->signalled);
1617 if (!WIFSTOPPED (status))
1618 {
1619 if (WIFEXITED (status))
1620 {
1621 int exit_code = WEXITSTATUS (status);
1622
1623 target_terminal_ours ();
1624 target_mourn_inferior ();
1625 if (exit_code == 0)
1626 error (_("Unable to attach: program exited normally."));
1627 else
1628 error (_("Unable to attach: program exited with code %d."),
1629 exit_code);
1630 }
1631 else if (WIFSIGNALED (status))
1632 {
1633 enum target_signal signo;
1634
1635 target_terminal_ours ();
1636 target_mourn_inferior ();
1637
1638 signo = target_signal_from_host (WTERMSIG (status));
1639 error (_("Unable to attach: program terminated with signal "
1640 "%s, %s."),
1641 target_signal_to_name (signo),
1642 target_signal_to_string (signo));
1643 }
1644
1645 internal_error (__FILE__, __LINE__,
1646 _("unexpected status %d for PID %ld"),
1647 status, (long) GET_LWP (ptid));
1648 }
1649
1650 lp->stopped = 1;
1651
1652 /* Save the wait status to report later. */
1653 lp->resumed = 1;
1654 if (debug_linux_nat)
1655 fprintf_unfiltered (gdb_stdlog,
1656 "LNA: waitpid %ld, saving status %s\n",
1657 (long) GET_PID (lp->ptid), status_to_str (status));
1658
1659 lp->status = status;
1660
1661 if (target_can_async_p ())
1662 target_async (inferior_event_handler, 0);
1663 }
1664
1665 /* Get pending status of LP. */
1666 static int
1667 get_pending_status (struct lwp_info *lp, int *status)
1668 {
1669 enum target_signal signo = TARGET_SIGNAL_0;
1670
1671 /* If we paused threads momentarily, we may have stored pending
1672 events in lp->status or lp->waitstatus (see stop_wait_callback),
1673 and GDB core hasn't seen any signal for those threads.
1674 Otherwise, the last signal reported to the core is found in the
1675 thread object's stop_signal.
1676
1677 There's a corner case that isn't handled here at present. Only
1678 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1679 stop_signal make sense as a real signal to pass to the inferior.
1680 Some catchpoint related events, like
1681 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1682 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1683 those traps are debug API (ptrace in our case) related and
1684 induced; the inferior wouldn't see them if it wasn't being
1685 traced. Hence, we should never pass them to the inferior, even
1686 when set to pass state. Since this corner case isn't handled by
1687 infrun.c when proceeding with a signal, for consistency, neither
1688 do we handle it here (or elsewhere in the file we check for
1689 signal pass state). Normally SIGTRAP isn't set to pass state, so
1690 this is really a corner case. */
1691
1692 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1693 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1694 else if (lp->status)
1695 signo = target_signal_from_host (WSTOPSIG (lp->status));
1696 else if (non_stop && !is_executing (lp->ptid))
1697 {
1698 struct thread_info *tp = find_thread_ptid (lp->ptid);
1699 signo = tp->stop_signal;
1700 }
1701 else if (!non_stop)
1702 {
1703 struct target_waitstatus last;
1704 ptid_t last_ptid;
1705
1706 get_last_target_status (&last_ptid, &last);
1707
1708 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1709 {
1710 struct thread_info *tp = find_thread_ptid (lp->ptid);
1711 signo = tp->stop_signal;
1712 }
1713 }
1714
1715 *status = 0;
1716
1717 if (signo == TARGET_SIGNAL_0)
1718 {
1719 if (debug_linux_nat)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "GPT: lwp %s has no pending signal\n",
1722 target_pid_to_str (lp->ptid));
1723 }
1724 else if (!signal_pass_state (signo))
1725 {
1726 if (debug_linux_nat)
1727 fprintf_unfiltered (gdb_stdlog, "\
1728 GPT: lwp %s had signal %s, but it is in no pass state\n",
1729 target_pid_to_str (lp->ptid),
1730 target_signal_to_string (signo));
1731 }
1732 else
1733 {
1734 *status = W_STOPCODE (target_signal_to_host (signo));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "GPT: lwp %s has pending signal %s\n",
1739 target_pid_to_str (lp->ptid),
1740 target_signal_to_string (signo));
1741 }
1742
1743 return 0;
1744 }
1745
1746 static int
1747 detach_callback (struct lwp_info *lp, void *data)
1748 {
1749 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1750
1751 if (debug_linux_nat && lp->status)
1752 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1753 strsignal (WSTOPSIG (lp->status)),
1754 target_pid_to_str (lp->ptid));
1755
1756 /* If there is a pending SIGSTOP, get rid of it. */
1757 if (lp->signalled)
1758 {
1759 if (debug_linux_nat)
1760 fprintf_unfiltered (gdb_stdlog,
1761 "DC: Sending SIGCONT to %s\n",
1762 target_pid_to_str (lp->ptid));
1763
1764 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1765 lp->signalled = 0;
1766 }
1767
1768 /* We don't actually detach from the LWP that has an id equal to the
1769 overall process id just yet. */
1770 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1771 {
1772 int status = 0;
1773
1774 /* Pass on any pending signal for this LWP. */
1775 get_pending_status (lp, &status);
1776
1777 errno = 0;
1778 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1779 WSTOPSIG (status)) < 0)
1780 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1781 safe_strerror (errno));
1782
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1786 target_pid_to_str (lp->ptid),
1787 strsignal (WSTOPSIG (status)));
1788
1789 delete_lwp (lp->ptid);
1790 }
1791
1792 return 0;
1793 }
1794
1795 static void
1796 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1797 {
1798 int pid;
1799 int status;
1800 enum target_signal sig;
1801 struct lwp_info *main_lwp;
1802
1803 pid = GET_PID (inferior_ptid);
1804
1805 if (target_can_async_p ())
1806 linux_nat_async (NULL, 0);
1807
1808 /* Stop all threads before detaching. ptrace requires that the
1809 thread is stopped to sucessfully detach. */
1810 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1811 /* ... and wait until all of them have reported back that
1812 they're no longer running. */
1813 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1814
1815 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1816
1817 /* Only the initial process should be left right now. */
1818 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1819
1820 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1821
1822 /* Pass on any pending signal for the last LWP. */
1823 if ((args == NULL || *args == '\0')
1824 && get_pending_status (main_lwp, &status) != -1
1825 && WIFSTOPPED (status))
1826 {
1827 /* Put the signal number in ARGS so that inf_ptrace_detach will
1828 pass it along with PTRACE_DETACH. */
1829 args = alloca (8);
1830 sprintf (args, "%d", (int) WSTOPSIG (status));
1831 fprintf_unfiltered (gdb_stdlog,
1832 "LND: Sending signal %s to %s\n",
1833 args,
1834 target_pid_to_str (main_lwp->ptid));
1835 }
1836
1837 delete_lwp (main_lwp->ptid);
1838
1839 if (forks_exist_p ())
1840 {
1841 /* Multi-fork case. The current inferior_ptid is being detached
1842 from, but there are other viable forks to debug. Detach from
1843 the current fork, and context-switch to the first
1844 available. */
1845 linux_fork_detach (args, from_tty);
1846
1847 if (non_stop && target_can_async_p ())
1848 target_async (inferior_event_handler, 0);
1849 }
1850 else
1851 linux_ops->to_detach (ops, args, from_tty);
1852 }
1853
1854 /* Resume LP. */
1855
1856 static int
1857 resume_callback (struct lwp_info *lp, void *data)
1858 {
1859 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1860
1861 if (lp->stopped && inf->vfork_child != NULL)
1862 {
1863 if (debug_linux_nat)
1864 fprintf_unfiltered (gdb_stdlog,
1865 "RC: Not resuming %s (vfork parent)\n",
1866 target_pid_to_str (lp->ptid));
1867 }
1868 else if (lp->stopped && lp->status == 0)
1869 {
1870 if (debug_linux_nat)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1873 target_pid_to_str (lp->ptid));
1874
1875 linux_ops->to_resume (linux_ops,
1876 pid_to_ptid (GET_LWP (lp->ptid)),
1877 0, TARGET_SIGNAL_0);
1878 if (debug_linux_nat)
1879 fprintf_unfiltered (gdb_stdlog,
1880 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1881 target_pid_to_str (lp->ptid));
1882 lp->stopped = 0;
1883 lp->step = 0;
1884 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1885 lp->stopped_by_watchpoint = 0;
1886 }
1887 else if (lp->stopped && debug_linux_nat)
1888 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1889 target_pid_to_str (lp->ptid));
1890 else if (debug_linux_nat)
1891 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1892 target_pid_to_str (lp->ptid));
1893
1894 return 0;
1895 }
1896
1897 static int
1898 resume_clear_callback (struct lwp_info *lp, void *data)
1899 {
1900 lp->resumed = 0;
1901 return 0;
1902 }
1903
1904 static int
1905 resume_set_callback (struct lwp_info *lp, void *data)
1906 {
1907 lp->resumed = 1;
1908 return 0;
1909 }
1910
1911 static void
1912 linux_nat_resume (struct target_ops *ops,
1913 ptid_t ptid, int step, enum target_signal signo)
1914 {
1915 sigset_t prev_mask;
1916 struct lwp_info *lp;
1917 int resume_many;
1918
1919 if (debug_linux_nat)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1922 step ? "step" : "resume",
1923 target_pid_to_str (ptid),
1924 signo ? strsignal (signo) : "0",
1925 target_pid_to_str (inferior_ptid));
1926
1927 block_child_signals (&prev_mask);
1928
1929 /* A specific PTID means `step only this process id'. */
1930 resume_many = (ptid_equal (minus_one_ptid, ptid)
1931 || ptid_is_pid (ptid));
1932
1933 if (!non_stop)
1934 {
1935 /* Mark the lwps we're resuming as resumed. */
1936 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1937 iterate_over_lwps (ptid, resume_set_callback, NULL);
1938 }
1939 else
1940 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
1941
1942 /* See if it's the current inferior that should be handled
1943 specially. */
1944 if (resume_many)
1945 lp = find_lwp_pid (inferior_ptid);
1946 else
1947 lp = find_lwp_pid (ptid);
1948 gdb_assert (lp != NULL);
1949
1950 /* Remember if we're stepping. */
1951 lp->step = step;
1952
1953 /* If we have a pending wait status for this thread, there is no
1954 point in resuming the process. But first make sure that
1955 linux_nat_wait won't preemptively handle the event - we
1956 should never take this short-circuit if we are going to
1957 leave LP running, since we have skipped resuming all the
1958 other threads. This bit of code needs to be synchronized
1959 with linux_nat_wait. */
1960
1961 if (lp->status && WIFSTOPPED (lp->status))
1962 {
1963 int saved_signo;
1964 struct inferior *inf;
1965
1966 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1967 gdb_assert (inf);
1968 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1969
1970 /* Defer to common code if we're gaining control of the
1971 inferior. */
1972 if (inf->stop_soon == NO_STOP_QUIETLY
1973 && signal_stop_state (saved_signo) == 0
1974 && signal_print_state (saved_signo) == 0
1975 && signal_pass_state (saved_signo) == 1)
1976 {
1977 if (debug_linux_nat)
1978 fprintf_unfiltered (gdb_stdlog,
1979 "LLR: Not short circuiting for ignored "
1980 "status 0x%x\n", lp->status);
1981
1982 /* FIXME: What should we do if we are supposed to continue
1983 this thread with a signal? */
1984 gdb_assert (signo == TARGET_SIGNAL_0);
1985 signo = saved_signo;
1986 lp->status = 0;
1987 }
1988 }
1989
1990 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1991 {
1992 /* FIXME: What should we do if we are supposed to continue
1993 this thread with a signal? */
1994 gdb_assert (signo == TARGET_SIGNAL_0);
1995
1996 if (debug_linux_nat)
1997 fprintf_unfiltered (gdb_stdlog,
1998 "LLR: Short circuiting for status 0x%x\n",
1999 lp->status);
2000
2001 restore_child_signals_mask (&prev_mask);
2002 if (target_can_async_p ())
2003 {
2004 target_async (inferior_event_handler, 0);
2005 /* Tell the event loop we have something to process. */
2006 async_file_mark ();
2007 }
2008 return;
2009 }
2010
2011 /* Mark LWP as not stopped to prevent it from being continued by
2012 resume_callback. */
2013 lp->stopped = 0;
2014
2015 if (resume_many)
2016 iterate_over_lwps (ptid, resume_callback, NULL);
2017
2018 /* Convert to something the lower layer understands. */
2019 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2020
2021 linux_ops->to_resume (linux_ops, ptid, step, signo);
2022 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2023 lp->stopped_by_watchpoint = 0;
2024
2025 if (debug_linux_nat)
2026 fprintf_unfiltered (gdb_stdlog,
2027 "LLR: %s %s, %s (resume event thread)\n",
2028 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2029 target_pid_to_str (ptid),
2030 signo ? strsignal (signo) : "0");
2031
2032 restore_child_signals_mask (&prev_mask);
2033 if (target_can_async_p ())
2034 target_async (inferior_event_handler, 0);
2035 }
2036
2037 /* Send a signal to an LWP. */
2038
2039 static int
2040 kill_lwp (int lwpid, int signo)
2041 {
2042 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2043 fails, then we are not using nptl threads and we should be using kill. */
2044
2045 #ifdef HAVE_TKILL_SYSCALL
2046 {
2047 static int tkill_failed;
2048
2049 if (!tkill_failed)
2050 {
2051 int ret;
2052
2053 errno = 0;
2054 ret = syscall (__NR_tkill, lwpid, signo);
2055 if (errno != ENOSYS)
2056 return ret;
2057 tkill_failed = 1;
2058 }
2059 }
2060 #endif
2061
2062 return kill (lwpid, signo);
2063 }
2064
2065 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2066 event, check if the core is interested in it: if not, ignore the
2067 event, and keep waiting; otherwise, we need to toggle the LWP's
2068 syscall entry/exit status, since the ptrace event itself doesn't
2069 indicate it, and report the trap to higher layers. */
2070
2071 static int
2072 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2073 {
2074 struct target_waitstatus *ourstatus = &lp->waitstatus;
2075 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2076 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2077
2078 if (stopping)
2079 {
2080 /* If we're stopping threads, there's a SIGSTOP pending, which
2081 makes it so that the LWP reports an immediate syscall return,
2082 followed by the SIGSTOP. Skip seeing that "return" using
2083 PTRACE_CONT directly, and let stop_wait_callback collect the
2084 SIGSTOP. Later when the thread is resumed, a new syscall
2085 entry event. If we didn't do this (and returned 0), we'd
2086 leave a syscall entry pending, and our caller, by using
2087 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2088 itself. Later, when the user re-resumes this LWP, we'd see
2089 another syscall entry event and we'd mistake it for a return.
2090
2091 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2092 (leaving immediately with LWP->signalled set, without issuing
2093 a PTRACE_CONT), it would still be problematic to leave this
2094 syscall enter pending, as later when the thread is resumed,
2095 it would then see the same syscall exit mentioned above,
2096 followed by the delayed SIGSTOP, while the syscall didn't
2097 actually get to execute. It seems it would be even more
2098 confusing to the user. */
2099
2100 if (debug_linux_nat)
2101 fprintf_unfiltered (gdb_stdlog,
2102 "LHST: ignoring syscall %d "
2103 "for LWP %ld (stopping threads), "
2104 "resuming with PTRACE_CONT for SIGSTOP\n",
2105 syscall_number,
2106 GET_LWP (lp->ptid));
2107
2108 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2109 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2110 return 1;
2111 }
2112
2113 if (catch_syscall_enabled ())
2114 {
2115 /* Always update the entry/return state, even if this particular
2116 syscall isn't interesting to the core now. In async mode,
2117 the user could install a new catchpoint for this syscall
2118 between syscall enter/return, and we'll need to know to
2119 report a syscall return if that happens. */
2120 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2121 ? TARGET_WAITKIND_SYSCALL_RETURN
2122 : TARGET_WAITKIND_SYSCALL_ENTRY);
2123
2124 if (catching_syscall_number (syscall_number))
2125 {
2126 /* Alright, an event to report. */
2127 ourstatus->kind = lp->syscall_state;
2128 ourstatus->value.syscall_number = syscall_number;
2129
2130 if (debug_linux_nat)
2131 fprintf_unfiltered (gdb_stdlog,
2132 "LHST: stopping for %s of syscall %d"
2133 " for LWP %ld\n",
2134 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2135 ? "entry" : "return",
2136 syscall_number,
2137 GET_LWP (lp->ptid));
2138 return 0;
2139 }
2140
2141 if (debug_linux_nat)
2142 fprintf_unfiltered (gdb_stdlog,
2143 "LHST: ignoring %s of syscall %d "
2144 "for LWP %ld\n",
2145 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2146 ? "entry" : "return",
2147 syscall_number,
2148 GET_LWP (lp->ptid));
2149 }
2150 else
2151 {
2152 /* If we had been syscall tracing, and hence used PT_SYSCALL
2153 before on this LWP, it could happen that the user removes all
2154 syscall catchpoints before we get to process this event.
2155 There are two noteworthy issues here:
2156
2157 - When stopped at a syscall entry event, resuming with
2158 PT_STEP still resumes executing the syscall and reports a
2159 syscall return.
2160
2161 - Only PT_SYSCALL catches syscall enters. If we last
2162 single-stepped this thread, then this event can't be a
2163 syscall enter. If we last single-stepped this thread, this
2164 has to be a syscall exit.
2165
2166 The points above mean that the next resume, be it PT_STEP or
2167 PT_CONTINUE, can not trigger a syscall trace event. */
2168 if (debug_linux_nat)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "LHST: caught syscall event with no syscall catchpoints."
2171 " %d for LWP %ld, ignoring\n",
2172 syscall_number,
2173 GET_LWP (lp->ptid));
2174 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2175 }
2176
2177 /* The core isn't interested in this event. For efficiency, avoid
2178 stopping all threads only to have the core resume them all again.
2179 Since we're not stopping threads, if we're still syscall tracing
2180 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2181 subsequent syscall. Simply resume using the inf-ptrace layer,
2182 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2183
2184 /* Note that gdbarch_get_syscall_number may access registers, hence
2185 fill a regcache. */
2186 registers_changed ();
2187 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2188 lp->step, TARGET_SIGNAL_0);
2189 return 1;
2190 }
2191
2192 /* Handle a GNU/Linux extended wait response. If we see a clone
2193 event, we need to add the new LWP to our list (and not report the
2194 trap to higher layers). This function returns non-zero if the
2195 event should be ignored and we should wait again. If STOPPING is
2196 true, the new LWP remains stopped, otherwise it is continued. */
2197
2198 static int
2199 linux_handle_extended_wait (struct lwp_info *lp, int status,
2200 int stopping)
2201 {
2202 int pid = GET_LWP (lp->ptid);
2203 struct target_waitstatus *ourstatus = &lp->waitstatus;
2204 struct lwp_info *new_lp = NULL;
2205 int event = status >> 16;
2206
2207 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2208 || event == PTRACE_EVENT_CLONE)
2209 {
2210 unsigned long new_pid;
2211 int ret;
2212
2213 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2214
2215 /* If we haven't already seen the new PID stop, wait for it now. */
2216 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2217 {
2218 /* The new child has a pending SIGSTOP. We can't affect it until it
2219 hits the SIGSTOP, but we're already attached. */
2220 ret = my_waitpid (new_pid, &status,
2221 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2222 if (ret == -1)
2223 perror_with_name (_("waiting for new child"));
2224 else if (ret != new_pid)
2225 internal_error (__FILE__, __LINE__,
2226 _("wait returned unexpected PID %d"), ret);
2227 else if (!WIFSTOPPED (status))
2228 internal_error (__FILE__, __LINE__,
2229 _("wait returned unexpected status 0x%x"), status);
2230 }
2231
2232 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2233
2234 if (event == PTRACE_EVENT_FORK
2235 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2236 {
2237 struct fork_info *fp;
2238
2239 /* Handle checkpointing by linux-fork.c here as a special
2240 case. We don't want the follow-fork-mode or 'catch fork'
2241 to interfere with this. */
2242
2243 /* This won't actually modify the breakpoint list, but will
2244 physically remove the breakpoints from the child. */
2245 detach_breakpoints (new_pid);
2246
2247 /* Retain child fork in ptrace (stopped) state. */
2248 fp = find_fork_pid (new_pid);
2249 if (!fp)
2250 fp = add_fork (new_pid);
2251
2252 /* Report as spurious, so that infrun doesn't want to follow
2253 this fork. We're actually doing an infcall in
2254 linux-fork.c. */
2255 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2256 linux_enable_event_reporting (pid_to_ptid (new_pid));
2257
2258 /* Report the stop to the core. */
2259 return 0;
2260 }
2261
2262 if (event == PTRACE_EVENT_FORK)
2263 ourstatus->kind = TARGET_WAITKIND_FORKED;
2264 else if (event == PTRACE_EVENT_VFORK)
2265 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2266 else
2267 {
2268 struct cleanup *old_chain;
2269
2270 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2271 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2272 new_lp->cloned = 1;
2273 new_lp->stopped = 1;
2274
2275 if (WSTOPSIG (status) != SIGSTOP)
2276 {
2277 /* This can happen if someone starts sending signals to
2278 the new thread before it gets a chance to run, which
2279 have a lower number than SIGSTOP (e.g. SIGUSR1).
2280 This is an unlikely case, and harder to handle for
2281 fork / vfork than for clone, so we do not try - but
2282 we handle it for clone events here. We'll send
2283 the other signal on to the thread below. */
2284
2285 new_lp->signalled = 1;
2286 }
2287 else
2288 status = 0;
2289
2290 if (non_stop)
2291 {
2292 /* Add the new thread to GDB's lists as soon as possible
2293 so that:
2294
2295 1) the frontend doesn't have to wait for a stop to
2296 display them, and,
2297
2298 2) we tag it with the correct running state. */
2299
2300 /* If the thread_db layer is active, let it know about
2301 this new thread, and add it to GDB's list. */
2302 if (!thread_db_attach_lwp (new_lp->ptid))
2303 {
2304 /* We're not using thread_db. Add it to GDB's
2305 list. */
2306 target_post_attach (GET_LWP (new_lp->ptid));
2307 add_thread (new_lp->ptid);
2308 }
2309
2310 if (!stopping)
2311 {
2312 set_running (new_lp->ptid, 1);
2313 set_executing (new_lp->ptid, 1);
2314 }
2315 }
2316
2317 /* Note the need to use the low target ops to resume, to
2318 handle resuming with PT_SYSCALL if we have syscall
2319 catchpoints. */
2320 if (!stopping)
2321 {
2322 int signo;
2323
2324 new_lp->stopped = 0;
2325 new_lp->resumed = 1;
2326
2327 signo = (status
2328 ? target_signal_from_host (WSTOPSIG (status))
2329 : TARGET_SIGNAL_0);
2330
2331 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2332 0, signo);
2333 }
2334
2335 if (debug_linux_nat)
2336 fprintf_unfiltered (gdb_stdlog,
2337 "LHEW: Got clone event from LWP %ld, resuming\n",
2338 GET_LWP (lp->ptid));
2339 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2340 0, TARGET_SIGNAL_0);
2341
2342 return 1;
2343 }
2344
2345 return 0;
2346 }
2347
2348 if (event == PTRACE_EVENT_EXEC)
2349 {
2350 if (debug_linux_nat)
2351 fprintf_unfiltered (gdb_stdlog,
2352 "LHEW: Got exec event from LWP %ld\n",
2353 GET_LWP (lp->ptid));
2354
2355 ourstatus->kind = TARGET_WAITKIND_EXECD;
2356 ourstatus->value.execd_pathname
2357 = xstrdup (linux_child_pid_to_exec_file (pid));
2358
2359 return 0;
2360 }
2361
2362 if (event == PTRACE_EVENT_VFORK_DONE)
2363 {
2364 if (current_inferior ()->waiting_for_vfork_done)
2365 {
2366 if (debug_linux_nat)
2367 fprintf_unfiltered (gdb_stdlog, "\
2368 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2369 GET_LWP (lp->ptid));
2370
2371 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2372 return 0;
2373 }
2374
2375 if (debug_linux_nat)
2376 fprintf_unfiltered (gdb_stdlog, "\
2377 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2378 GET_LWP (lp->ptid));
2379 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2380 return 1;
2381 }
2382
2383 internal_error (__FILE__, __LINE__,
2384 _("unknown ptrace event %d"), event);
2385 }
2386
2387 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2388 exited. */
2389
2390 static int
2391 wait_lwp (struct lwp_info *lp)
2392 {
2393 pid_t pid;
2394 int status;
2395 int thread_dead = 0;
2396
2397 gdb_assert (!lp->stopped);
2398 gdb_assert (lp->status == 0);
2399
2400 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2401 if (pid == -1 && errno == ECHILD)
2402 {
2403 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2404 if (pid == -1 && errno == ECHILD)
2405 {
2406 /* The thread has previously exited. We need to delete it
2407 now because, for some vendor 2.4 kernels with NPTL
2408 support backported, there won't be an exit event unless
2409 it is the main thread. 2.6 kernels will report an exit
2410 event for each thread that exits, as expected. */
2411 thread_dead = 1;
2412 if (debug_linux_nat)
2413 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2414 target_pid_to_str (lp->ptid));
2415 }
2416 }
2417
2418 if (!thread_dead)
2419 {
2420 gdb_assert (pid == GET_LWP (lp->ptid));
2421
2422 if (debug_linux_nat)
2423 {
2424 fprintf_unfiltered (gdb_stdlog,
2425 "WL: waitpid %s received %s\n",
2426 target_pid_to_str (lp->ptid),
2427 status_to_str (status));
2428 }
2429 }
2430
2431 /* Check if the thread has exited. */
2432 if (WIFEXITED (status) || WIFSIGNALED (status))
2433 {
2434 thread_dead = 1;
2435 if (debug_linux_nat)
2436 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2437 target_pid_to_str (lp->ptid));
2438 }
2439
2440 if (thread_dead)
2441 {
2442 exit_lwp (lp);
2443 return 0;
2444 }
2445
2446 gdb_assert (WIFSTOPPED (status));
2447
2448 /* Handle GNU/Linux's syscall SIGTRAPs. */
2449 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2450 {
2451 /* No longer need the sysgood bit. The ptrace event ends up
2452 recorded in lp->waitstatus if we care for it. We can carry
2453 on handling the event like a regular SIGTRAP from here
2454 on. */
2455 status = W_STOPCODE (SIGTRAP);
2456 if (linux_handle_syscall_trap (lp, 1))
2457 return wait_lwp (lp);
2458 }
2459
2460 /* Handle GNU/Linux's extended waitstatus for trace events. */
2461 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2462 {
2463 if (debug_linux_nat)
2464 fprintf_unfiltered (gdb_stdlog,
2465 "WL: Handling extended status 0x%06x\n",
2466 status);
2467 if (linux_handle_extended_wait (lp, status, 1))
2468 return wait_lwp (lp);
2469 }
2470
2471 return status;
2472 }
2473
2474 /* Save the most recent siginfo for LP. This is currently only called
2475 for SIGTRAP; some ports use the si_addr field for
2476 target_stopped_data_address. In the future, it may also be used to
2477 restore the siginfo of requeued signals. */
2478
2479 static void
2480 save_siginfo (struct lwp_info *lp)
2481 {
2482 errno = 0;
2483 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2484 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2485
2486 if (errno != 0)
2487 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2488 }
2489
2490 /* Send a SIGSTOP to LP. */
2491
2492 static int
2493 stop_callback (struct lwp_info *lp, void *data)
2494 {
2495 if (!lp->stopped && !lp->signalled)
2496 {
2497 int ret;
2498
2499 if (debug_linux_nat)
2500 {
2501 fprintf_unfiltered (gdb_stdlog,
2502 "SC: kill %s **<SIGSTOP>**\n",
2503 target_pid_to_str (lp->ptid));
2504 }
2505 errno = 0;
2506 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2507 if (debug_linux_nat)
2508 {
2509 fprintf_unfiltered (gdb_stdlog,
2510 "SC: lwp kill %d %s\n",
2511 ret,
2512 errno ? safe_strerror (errno) : "ERRNO-OK");
2513 }
2514
2515 lp->signalled = 1;
2516 gdb_assert (lp->status == 0);
2517 }
2518
2519 return 0;
2520 }
2521
2522 /* Return non-zero if LWP PID has a pending SIGINT. */
2523
2524 static int
2525 linux_nat_has_pending_sigint (int pid)
2526 {
2527 sigset_t pending, blocked, ignored;
2528 int i;
2529
2530 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2531
2532 if (sigismember (&pending, SIGINT)
2533 && !sigismember (&ignored, SIGINT))
2534 return 1;
2535
2536 return 0;
2537 }
2538
2539 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2540
2541 static int
2542 set_ignore_sigint (struct lwp_info *lp, void *data)
2543 {
2544 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2545 flag to consume the next one. */
2546 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2547 && WSTOPSIG (lp->status) == SIGINT)
2548 lp->status = 0;
2549 else
2550 lp->ignore_sigint = 1;
2551
2552 return 0;
2553 }
2554
2555 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2556 This function is called after we know the LWP has stopped; if the LWP
2557 stopped before the expected SIGINT was delivered, then it will never have
2558 arrived. Also, if the signal was delivered to a shared queue and consumed
2559 by a different thread, it will never be delivered to this LWP. */
2560
2561 static void
2562 maybe_clear_ignore_sigint (struct lwp_info *lp)
2563 {
2564 if (!lp->ignore_sigint)
2565 return;
2566
2567 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2568 {
2569 if (debug_linux_nat)
2570 fprintf_unfiltered (gdb_stdlog,
2571 "MCIS: Clearing bogus flag for %s\n",
2572 target_pid_to_str (lp->ptid));
2573 lp->ignore_sigint = 0;
2574 }
2575 }
2576
2577 /* Fetch the possible triggered data watchpoint info and store it in
2578 LP.
2579
2580 On some archs, like x86, that use debug registers to set
2581 watchpoints, it's possible that the way to know which watched
2582 address trapped, is to check the register that is used to select
2583 which address to watch. Problem is, between setting the watchpoint
2584 and reading back which data address trapped, the user may change
2585 the set of watchpoints, and, as a consequence, GDB changes the
2586 debug registers in the inferior. To avoid reading back a stale
2587 stopped-data-address when that happens, we cache in LP the fact
2588 that a watchpoint trapped, and the corresponding data address, as
2589 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2590 registers meanwhile, we have the cached data we can rely on. */
2591
2592 static void
2593 save_sigtrap (struct lwp_info *lp)
2594 {
2595 struct cleanup *old_chain;
2596
2597 if (linux_ops->to_stopped_by_watchpoint == NULL)
2598 {
2599 lp->stopped_by_watchpoint = 0;
2600 return;
2601 }
2602
2603 old_chain = save_inferior_ptid ();
2604 inferior_ptid = lp->ptid;
2605
2606 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2607
2608 if (lp->stopped_by_watchpoint)
2609 {
2610 if (linux_ops->to_stopped_data_address != NULL)
2611 lp->stopped_data_address_p =
2612 linux_ops->to_stopped_data_address (&current_target,
2613 &lp->stopped_data_address);
2614 else
2615 lp->stopped_data_address_p = 0;
2616 }
2617
2618 do_cleanups (old_chain);
2619 }
2620
2621 /* See save_sigtrap. */
2622
2623 static int
2624 linux_nat_stopped_by_watchpoint (void)
2625 {
2626 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2627
2628 gdb_assert (lp != NULL);
2629
2630 return lp->stopped_by_watchpoint;
2631 }
2632
2633 static int
2634 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2635 {
2636 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2637
2638 gdb_assert (lp != NULL);
2639
2640 *addr_p = lp->stopped_data_address;
2641
2642 return lp->stopped_data_address_p;
2643 }
2644
2645 /* Wait until LP is stopped. */
2646
2647 static int
2648 stop_wait_callback (struct lwp_info *lp, void *data)
2649 {
2650 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2651
2652 /* If this is a vfork parent, bail out, it is not going to report
2653 any SIGSTOP until the vfork is done with. */
2654 if (inf->vfork_child != NULL)
2655 return 0;
2656
2657 if (!lp->stopped)
2658 {
2659 int status;
2660
2661 status = wait_lwp (lp);
2662 if (status == 0)
2663 return 0;
2664
2665 if (lp->ignore_sigint && WIFSTOPPED (status)
2666 && WSTOPSIG (status) == SIGINT)
2667 {
2668 lp->ignore_sigint = 0;
2669
2670 errno = 0;
2671 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2672 if (debug_linux_nat)
2673 fprintf_unfiltered (gdb_stdlog,
2674 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2675 target_pid_to_str (lp->ptid),
2676 errno ? safe_strerror (errno) : "OK");
2677
2678 return stop_wait_callback (lp, NULL);
2679 }
2680
2681 maybe_clear_ignore_sigint (lp);
2682
2683 if (WSTOPSIG (status) != SIGSTOP)
2684 {
2685 if (WSTOPSIG (status) == SIGTRAP)
2686 {
2687 /* If a LWP other than the LWP that we're reporting an
2688 event for has hit a GDB breakpoint (as opposed to
2689 some random trap signal), then just arrange for it to
2690 hit it again later. We don't keep the SIGTRAP status
2691 and don't forward the SIGTRAP signal to the LWP. We
2692 will handle the current event, eventually we will
2693 resume all LWPs, and this one will get its breakpoint
2694 trap again.
2695
2696 If we do not do this, then we run the risk that the
2697 user will delete or disable the breakpoint, but the
2698 thread will have already tripped on it. */
2699
2700 /* Save the trap's siginfo in case we need it later. */
2701 save_siginfo (lp);
2702
2703 save_sigtrap (lp);
2704
2705 /* Now resume this LWP and get the SIGSTOP event. */
2706 errno = 0;
2707 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2708 if (debug_linux_nat)
2709 {
2710 fprintf_unfiltered (gdb_stdlog,
2711 "PTRACE_CONT %s, 0, 0 (%s)\n",
2712 target_pid_to_str (lp->ptid),
2713 errno ? safe_strerror (errno) : "OK");
2714
2715 fprintf_unfiltered (gdb_stdlog,
2716 "SWC: Candidate SIGTRAP event in %s\n",
2717 target_pid_to_str (lp->ptid));
2718 }
2719 /* Hold this event/waitstatus while we check to see if
2720 there are any more (we still want to get that SIGSTOP). */
2721 stop_wait_callback (lp, NULL);
2722
2723 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2724 there's another event, throw it back into the
2725 queue. */
2726 if (lp->status)
2727 {
2728 if (debug_linux_nat)
2729 fprintf_unfiltered (gdb_stdlog,
2730 "SWC: kill %s, %s\n",
2731 target_pid_to_str (lp->ptid),
2732 status_to_str ((int) status));
2733 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2734 }
2735
2736 /* Save the sigtrap event. */
2737 lp->status = status;
2738 return 0;
2739 }
2740 else
2741 {
2742 /* The thread was stopped with a signal other than
2743 SIGSTOP, and didn't accidentally trip a breakpoint. */
2744
2745 if (debug_linux_nat)
2746 {
2747 fprintf_unfiltered (gdb_stdlog,
2748 "SWC: Pending event %s in %s\n",
2749 status_to_str ((int) status),
2750 target_pid_to_str (lp->ptid));
2751 }
2752 /* Now resume this LWP and get the SIGSTOP event. */
2753 errno = 0;
2754 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2755 if (debug_linux_nat)
2756 fprintf_unfiltered (gdb_stdlog,
2757 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2758 target_pid_to_str (lp->ptid),
2759 errno ? safe_strerror (errno) : "OK");
2760
2761 /* Hold this event/waitstatus while we check to see if
2762 there are any more (we still want to get that SIGSTOP). */
2763 stop_wait_callback (lp, NULL);
2764
2765 /* If the lp->status field is still empty, use it to
2766 hold this event. If not, then this event must be
2767 returned to the event queue of the LWP. */
2768 if (lp->status)
2769 {
2770 if (debug_linux_nat)
2771 {
2772 fprintf_unfiltered (gdb_stdlog,
2773 "SWC: kill %s, %s\n",
2774 target_pid_to_str (lp->ptid),
2775 status_to_str ((int) status));
2776 }
2777 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2778 }
2779 else
2780 lp->status = status;
2781 return 0;
2782 }
2783 }
2784 else
2785 {
2786 /* We caught the SIGSTOP that we intended to catch, so
2787 there's no SIGSTOP pending. */
2788 lp->stopped = 1;
2789 lp->signalled = 0;
2790 }
2791 }
2792
2793 return 0;
2794 }
2795
2796 /* Return non-zero if LP has a wait status pending. */
2797
2798 static int
2799 status_callback (struct lwp_info *lp, void *data)
2800 {
2801 /* Only report a pending wait status if we pretend that this has
2802 indeed been resumed. */
2803 if (!lp->resumed)
2804 return 0;
2805
2806 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2807 {
2808 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2809 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2810 0', so a clean process exit can not be stored pending in
2811 lp->status, it is indistinguishable from
2812 no-pending-status. */
2813 return 1;
2814 }
2815
2816 if (lp->status != 0)
2817 return 1;
2818
2819 return 0;
2820 }
2821
2822 /* Return non-zero if LP isn't stopped. */
2823
2824 static int
2825 running_callback (struct lwp_info *lp, void *data)
2826 {
2827 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2828 }
2829
2830 /* Count the LWP's that have had events. */
2831
2832 static int
2833 count_events_callback (struct lwp_info *lp, void *data)
2834 {
2835 int *count = data;
2836
2837 gdb_assert (count != NULL);
2838
2839 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2840 if (lp->status != 0 && lp->resumed
2841 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2842 (*count)++;
2843
2844 return 0;
2845 }
2846
2847 /* Select the LWP (if any) that is currently being single-stepped. */
2848
2849 static int
2850 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2851 {
2852 if (lp->step && lp->status != 0)
2853 return 1;
2854 else
2855 return 0;
2856 }
2857
2858 /* Select the Nth LWP that has had a SIGTRAP event. */
2859
2860 static int
2861 select_event_lwp_callback (struct lwp_info *lp, void *data)
2862 {
2863 int *selector = data;
2864
2865 gdb_assert (selector != NULL);
2866
2867 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2868 if (lp->status != 0 && lp->resumed
2869 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2870 if ((*selector)-- == 0)
2871 return 1;
2872
2873 return 0;
2874 }
2875
2876 static int
2877 cancel_breakpoint (struct lwp_info *lp)
2878 {
2879 /* Arrange for a breakpoint to be hit again later. We don't keep
2880 the SIGTRAP status and don't forward the SIGTRAP signal to the
2881 LWP. We will handle the current event, eventually we will resume
2882 this LWP, and this breakpoint will trap again.
2883
2884 If we do not do this, then we run the risk that the user will
2885 delete or disable the breakpoint, but the LWP will have already
2886 tripped on it. */
2887
2888 struct regcache *regcache = get_thread_regcache (lp->ptid);
2889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2890 CORE_ADDR pc;
2891
2892 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2893 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2894 {
2895 if (debug_linux_nat)
2896 fprintf_unfiltered (gdb_stdlog,
2897 "CB: Push back breakpoint for %s\n",
2898 target_pid_to_str (lp->ptid));
2899
2900 /* Back up the PC if necessary. */
2901 if (gdbarch_decr_pc_after_break (gdbarch))
2902 regcache_write_pc (regcache, pc);
2903
2904 return 1;
2905 }
2906 return 0;
2907 }
2908
2909 static int
2910 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2911 {
2912 struct lwp_info *event_lp = data;
2913
2914 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2915 if (lp == event_lp)
2916 return 0;
2917
2918 /* If a LWP other than the LWP that we're reporting an event for has
2919 hit a GDB breakpoint (as opposed to some random trap signal),
2920 then just arrange for it to hit it again later. We don't keep
2921 the SIGTRAP status and don't forward the SIGTRAP signal to the
2922 LWP. We will handle the current event, eventually we will resume
2923 all LWPs, and this one will get its breakpoint trap again.
2924
2925 If we do not do this, then we run the risk that the user will
2926 delete or disable the breakpoint, but the LWP will have already
2927 tripped on it. */
2928
2929 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2930 && lp->status != 0
2931 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2932 && cancel_breakpoint (lp))
2933 /* Throw away the SIGTRAP. */
2934 lp->status = 0;
2935
2936 return 0;
2937 }
2938
2939 /* Select one LWP out of those that have events pending. */
2940
2941 static void
2942 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2943 {
2944 int num_events = 0;
2945 int random_selector;
2946 struct lwp_info *event_lp;
2947
2948 /* Record the wait status for the original LWP. */
2949 (*orig_lp)->status = *status;
2950
2951 /* Give preference to any LWP that is being single-stepped. */
2952 event_lp = iterate_over_lwps (filter,
2953 select_singlestep_lwp_callback, NULL);
2954 if (event_lp != NULL)
2955 {
2956 if (debug_linux_nat)
2957 fprintf_unfiltered (gdb_stdlog,
2958 "SEL: Select single-step %s\n",
2959 target_pid_to_str (event_lp->ptid));
2960 }
2961 else
2962 {
2963 /* No single-stepping LWP. Select one at random, out of those
2964 which have had SIGTRAP events. */
2965
2966 /* First see how many SIGTRAP events we have. */
2967 iterate_over_lwps (filter, count_events_callback, &num_events);
2968
2969 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2970 random_selector = (int)
2971 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2972
2973 if (debug_linux_nat && num_events > 1)
2974 fprintf_unfiltered (gdb_stdlog,
2975 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2976 num_events, random_selector);
2977
2978 event_lp = iterate_over_lwps (filter,
2979 select_event_lwp_callback,
2980 &random_selector);
2981 }
2982
2983 if (event_lp != NULL)
2984 {
2985 /* Switch the event LWP. */
2986 *orig_lp = event_lp;
2987 *status = event_lp->status;
2988 }
2989
2990 /* Flush the wait status for the event LWP. */
2991 (*orig_lp)->status = 0;
2992 }
2993
2994 /* Return non-zero if LP has been resumed. */
2995
2996 static int
2997 resumed_callback (struct lwp_info *lp, void *data)
2998 {
2999 return lp->resumed;
3000 }
3001
3002 /* Stop an active thread, verify it still exists, then resume it. */
3003
3004 static int
3005 stop_and_resume_callback (struct lwp_info *lp, void *data)
3006 {
3007 struct lwp_info *ptr;
3008
3009 if (!lp->stopped && !lp->signalled)
3010 {
3011 stop_callback (lp, NULL);
3012 stop_wait_callback (lp, NULL);
3013 /* Resume if the lwp still exists. */
3014 for (ptr = lwp_list; ptr; ptr = ptr->next)
3015 if (lp == ptr)
3016 {
3017 resume_callback (lp, NULL);
3018 resume_set_callback (lp, NULL);
3019 }
3020 }
3021 return 0;
3022 }
3023
3024 /* Check if we should go on and pass this event to common code.
3025 Return the affected lwp if we are, or NULL otherwise. */
3026 static struct lwp_info *
3027 linux_nat_filter_event (int lwpid, int status, int options)
3028 {
3029 struct lwp_info *lp;
3030
3031 lp = find_lwp_pid (pid_to_ptid (lwpid));
3032
3033 /* Check for stop events reported by a process we didn't already
3034 know about - anything not already in our LWP list.
3035
3036 If we're expecting to receive stopped processes after
3037 fork, vfork, and clone events, then we'll just add the
3038 new one to our list and go back to waiting for the event
3039 to be reported - the stopped process might be returned
3040 from waitpid before or after the event is. */
3041 if (WIFSTOPPED (status) && !lp)
3042 {
3043 linux_record_stopped_pid (lwpid, status);
3044 return NULL;
3045 }
3046
3047 /* Make sure we don't report an event for the exit of an LWP not in
3048 our list, i.e. not part of the current process. This can happen
3049 if we detach from a program we original forked and then it
3050 exits. */
3051 if (!WIFSTOPPED (status) && !lp)
3052 return NULL;
3053
3054 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3055 CLONE_PTRACE processes which do not use the thread library -
3056 otherwise we wouldn't find the new LWP this way. That doesn't
3057 currently work, and the following code is currently unreachable
3058 due to the two blocks above. If it's fixed some day, this code
3059 should be broken out into a function so that we can also pick up
3060 LWPs from the new interface. */
3061 if (!lp)
3062 {
3063 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3064 if (options & __WCLONE)
3065 lp->cloned = 1;
3066
3067 gdb_assert (WIFSTOPPED (status)
3068 && WSTOPSIG (status) == SIGSTOP);
3069 lp->signalled = 1;
3070
3071 if (!in_thread_list (inferior_ptid))
3072 {
3073 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3074 GET_PID (inferior_ptid));
3075 add_thread (inferior_ptid);
3076 }
3077
3078 add_thread (lp->ptid);
3079 }
3080
3081 /* Handle GNU/Linux's syscall SIGTRAPs. */
3082 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3083 {
3084 /* No longer need the sysgood bit. The ptrace event ends up
3085 recorded in lp->waitstatus if we care for it. We can carry
3086 on handling the event like a regular SIGTRAP from here
3087 on. */
3088 status = W_STOPCODE (SIGTRAP);
3089 if (linux_handle_syscall_trap (lp, 0))
3090 return NULL;
3091 }
3092
3093 /* Handle GNU/Linux's extended waitstatus for trace events. */
3094 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3095 {
3096 if (debug_linux_nat)
3097 fprintf_unfiltered (gdb_stdlog,
3098 "LLW: Handling extended status 0x%06x\n",
3099 status);
3100 if (linux_handle_extended_wait (lp, status, 0))
3101 return NULL;
3102 }
3103
3104 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3105 {
3106 /* Save the trap's siginfo in case we need it later. */
3107 save_siginfo (lp);
3108
3109 save_sigtrap (lp);
3110 }
3111
3112 /* Check if the thread has exited. */
3113 if ((WIFEXITED (status) || WIFSIGNALED (status))
3114 && num_lwps (GET_PID (lp->ptid)) > 1)
3115 {
3116 /* If this is the main thread, we must stop all threads and verify
3117 if they are still alive. This is because in the nptl thread model
3118 on Linux 2.4, there is no signal issued for exiting LWPs
3119 other than the main thread. We only get the main thread exit
3120 signal once all child threads have already exited. If we
3121 stop all the threads and use the stop_wait_callback to check
3122 if they have exited we can determine whether this signal
3123 should be ignored or whether it means the end of the debugged
3124 application, regardless of which threading model is being
3125 used. */
3126 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3127 {
3128 lp->stopped = 1;
3129 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3130 stop_and_resume_callback, NULL);
3131 }
3132
3133 if (debug_linux_nat)
3134 fprintf_unfiltered (gdb_stdlog,
3135 "LLW: %s exited.\n",
3136 target_pid_to_str (lp->ptid));
3137
3138 if (num_lwps (GET_PID (lp->ptid)) > 1)
3139 {
3140 /* If there is at least one more LWP, then the exit signal
3141 was not the end of the debugged application and should be
3142 ignored. */
3143 exit_lwp (lp);
3144 return NULL;
3145 }
3146 }
3147
3148 /* Check if the current LWP has previously exited. In the nptl
3149 thread model, LWPs other than the main thread do not issue
3150 signals when they exit so we must check whenever the thread has
3151 stopped. A similar check is made in stop_wait_callback(). */
3152 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3153 {
3154 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3155
3156 if (debug_linux_nat)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "LLW: %s exited.\n",
3159 target_pid_to_str (lp->ptid));
3160
3161 exit_lwp (lp);
3162
3163 /* Make sure there is at least one thread running. */
3164 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3165
3166 /* Discard the event. */
3167 return NULL;
3168 }
3169
3170 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3171 an attempt to stop an LWP. */
3172 if (lp->signalled
3173 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3174 {
3175 if (debug_linux_nat)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "LLW: Delayed SIGSTOP caught for %s.\n",
3178 target_pid_to_str (lp->ptid));
3179
3180 /* This is a delayed SIGSTOP. */
3181 lp->signalled = 0;
3182
3183 registers_changed ();
3184
3185 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3186 lp->step, TARGET_SIGNAL_0);
3187 if (debug_linux_nat)
3188 fprintf_unfiltered (gdb_stdlog,
3189 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3190 lp->step ?
3191 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3192 target_pid_to_str (lp->ptid));
3193
3194 lp->stopped = 0;
3195 gdb_assert (lp->resumed);
3196
3197 /* Discard the event. */
3198 return NULL;
3199 }
3200
3201 /* Make sure we don't report a SIGINT that we have already displayed
3202 for another thread. */
3203 if (lp->ignore_sigint
3204 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3205 {
3206 if (debug_linux_nat)
3207 fprintf_unfiltered (gdb_stdlog,
3208 "LLW: Delayed SIGINT caught for %s.\n",
3209 target_pid_to_str (lp->ptid));
3210
3211 /* This is a delayed SIGINT. */
3212 lp->ignore_sigint = 0;
3213
3214 registers_changed ();
3215 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3216 lp->step, TARGET_SIGNAL_0);
3217 if (debug_linux_nat)
3218 fprintf_unfiltered (gdb_stdlog,
3219 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3220 lp->step ?
3221 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3222 target_pid_to_str (lp->ptid));
3223
3224 lp->stopped = 0;
3225 gdb_assert (lp->resumed);
3226
3227 /* Discard the event. */
3228 return NULL;
3229 }
3230
3231 /* An interesting event. */
3232 gdb_assert (lp);
3233 lp->status = status;
3234 return lp;
3235 }
3236
3237 static ptid_t
3238 linux_nat_wait_1 (struct target_ops *ops,
3239 ptid_t ptid, struct target_waitstatus *ourstatus,
3240 int target_options)
3241 {
3242 static sigset_t prev_mask;
3243 struct lwp_info *lp = NULL;
3244 int options = 0;
3245 int status = 0;
3246 pid_t pid;
3247
3248 if (debug_linux_nat_async)
3249 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3250
3251 /* The first time we get here after starting a new inferior, we may
3252 not have added it to the LWP list yet - this is the earliest
3253 moment at which we know its PID. */
3254 if (ptid_is_pid (inferior_ptid))
3255 {
3256 /* Upgrade the main thread's ptid. */
3257 thread_change_ptid (inferior_ptid,
3258 BUILD_LWP (GET_PID (inferior_ptid),
3259 GET_PID (inferior_ptid)));
3260
3261 lp = add_lwp (inferior_ptid);
3262 lp->resumed = 1;
3263 }
3264
3265 /* Make sure SIGCHLD is blocked. */
3266 block_child_signals (&prev_mask);
3267
3268 if (ptid_equal (ptid, minus_one_ptid))
3269 pid = -1;
3270 else if (ptid_is_pid (ptid))
3271 /* A request to wait for a specific tgid. This is not possible
3272 with waitpid, so instead, we wait for any child, and leave
3273 children we're not interested in right now with a pending
3274 status to report later. */
3275 pid = -1;
3276 else
3277 pid = GET_LWP (ptid);
3278
3279 retry:
3280 lp = NULL;
3281 status = 0;
3282
3283 /* Make sure there is at least one LWP that has been resumed. */
3284 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
3285
3286 /* First check if there is a LWP with a wait status pending. */
3287 if (pid == -1)
3288 {
3289 /* Any LWP that's been resumed will do. */
3290 lp = iterate_over_lwps (ptid, status_callback, NULL);
3291 if (lp)
3292 {
3293 if (debug_linux_nat && lp->status)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "LLW: Using pending wait status %s for %s.\n",
3296 status_to_str (lp->status),
3297 target_pid_to_str (lp->ptid));
3298 }
3299
3300 /* But if we don't find one, we'll have to wait, and check both
3301 cloned and uncloned processes. We start with the cloned
3302 processes. */
3303 options = __WCLONE | WNOHANG;
3304 }
3305 else if (is_lwp (ptid))
3306 {
3307 if (debug_linux_nat)
3308 fprintf_unfiltered (gdb_stdlog,
3309 "LLW: Waiting for specific LWP %s.\n",
3310 target_pid_to_str (ptid));
3311
3312 /* We have a specific LWP to check. */
3313 lp = find_lwp_pid (ptid);
3314 gdb_assert (lp);
3315
3316 if (debug_linux_nat && lp->status)
3317 fprintf_unfiltered (gdb_stdlog,
3318 "LLW: Using pending wait status %s for %s.\n",
3319 status_to_str (lp->status),
3320 target_pid_to_str (lp->ptid));
3321
3322 /* If we have to wait, take into account whether PID is a cloned
3323 process or not. And we have to convert it to something that
3324 the layer beneath us can understand. */
3325 options = lp->cloned ? __WCLONE : 0;
3326 pid = GET_LWP (ptid);
3327
3328 /* We check for lp->waitstatus in addition to lp->status,
3329 because we can have pending process exits recorded in
3330 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3331 an additional lp->status_p flag. */
3332 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3333 lp = NULL;
3334 }
3335
3336 if (lp && lp->signalled)
3337 {
3338 /* A pending SIGSTOP may interfere with the normal stream of
3339 events. In a typical case where interference is a problem,
3340 we have a SIGSTOP signal pending for LWP A while
3341 single-stepping it, encounter an event in LWP B, and take the
3342 pending SIGSTOP while trying to stop LWP A. After processing
3343 the event in LWP B, LWP A is continued, and we'll never see
3344 the SIGTRAP associated with the last time we were
3345 single-stepping LWP A. */
3346
3347 /* Resume the thread. It should halt immediately returning the
3348 pending SIGSTOP. */
3349 registers_changed ();
3350 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3351 lp->step, TARGET_SIGNAL_0);
3352 if (debug_linux_nat)
3353 fprintf_unfiltered (gdb_stdlog,
3354 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3355 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3356 target_pid_to_str (lp->ptid));
3357 lp->stopped = 0;
3358 gdb_assert (lp->resumed);
3359
3360 /* Catch the pending SIGSTOP. */
3361 status = lp->status;
3362 lp->status = 0;
3363
3364 stop_wait_callback (lp, NULL);
3365
3366 /* If the lp->status field isn't empty, we caught another signal
3367 while flushing the SIGSTOP. Return it back to the event
3368 queue of the LWP, as we already have an event to handle. */
3369 if (lp->status)
3370 {
3371 if (debug_linux_nat)
3372 fprintf_unfiltered (gdb_stdlog,
3373 "LLW: kill %s, %s\n",
3374 target_pid_to_str (lp->ptid),
3375 status_to_str (lp->status));
3376 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3377 }
3378
3379 lp->status = status;
3380 }
3381
3382 if (!target_can_async_p ())
3383 {
3384 /* Causes SIGINT to be passed on to the attached process. */
3385 set_sigint_trap ();
3386 }
3387
3388 /* Translate generic target_wait options into waitpid options. */
3389 if (target_options & TARGET_WNOHANG)
3390 options |= WNOHANG;
3391
3392 while (lp == NULL)
3393 {
3394 pid_t lwpid;
3395
3396 lwpid = my_waitpid (pid, &status, options);
3397
3398 if (lwpid > 0)
3399 {
3400 gdb_assert (pid == -1 || lwpid == pid);
3401
3402 if (debug_linux_nat)
3403 {
3404 fprintf_unfiltered (gdb_stdlog,
3405 "LLW: waitpid %ld received %s\n",
3406 (long) lwpid, status_to_str (status));
3407 }
3408
3409 lp = linux_nat_filter_event (lwpid, status, options);
3410
3411 if (lp
3412 && ptid_is_pid (ptid)
3413 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3414 {
3415 if (debug_linux_nat)
3416 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3417 ptid_get_lwp (lp->ptid), status);
3418
3419 if (WIFSTOPPED (lp->status))
3420 {
3421 if (WSTOPSIG (lp->status) != SIGSTOP)
3422 {
3423 stop_callback (lp, NULL);
3424
3425 /* Resume in order to collect the sigstop. */
3426 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
3427
3428 stop_wait_callback (lp, NULL);
3429 }
3430 else
3431 {
3432 lp->stopped = 1;
3433 lp->signalled = 0;
3434 }
3435 }
3436 else if (WIFEXITED (status) || WIFSIGNALED (status))
3437 {
3438 if (debug_linux_nat)
3439 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3440 ptid_get_lwp (lp->ptid));
3441
3442 /* This was the last lwp in the process. Since
3443 events are serialized to GDB core, and we can't
3444 report this one right now, but GDB core and the
3445 other target layers will want to be notified
3446 about the exit code/signal, leave the status
3447 pending for the next time we're able to report
3448 it. */
3449
3450 /* Prevent trying to stop this thread again. We'll
3451 never try to resume it because it has a pending
3452 status. */
3453 lp->stopped = 1;
3454
3455 /* Dead LWP's aren't expected to reported a pending
3456 sigstop. */
3457 lp->signalled = 0;
3458
3459 /* Store the pending event in the waitstatus as
3460 well, because W_EXITCODE(0,0) == 0. */
3461 store_waitstatus (&lp->waitstatus, lp->status);
3462 }
3463
3464 /* Keep looking. */
3465 lp = NULL;
3466 continue;
3467 }
3468
3469 if (lp)
3470 break;
3471 else
3472 {
3473 if (pid == -1)
3474 {
3475 /* waitpid did return something. Restart over. */
3476 options |= __WCLONE;
3477 }
3478 continue;
3479 }
3480 }
3481
3482 if (pid == -1)
3483 {
3484 /* Alternate between checking cloned and uncloned processes. */
3485 options ^= __WCLONE;
3486
3487 /* And every time we have checked both:
3488 In async mode, return to event loop;
3489 In sync mode, suspend waiting for a SIGCHLD signal. */
3490 if (options & __WCLONE)
3491 {
3492 if (target_options & TARGET_WNOHANG)
3493 {
3494 /* No interesting event. */
3495 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3496
3497 if (debug_linux_nat_async)
3498 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3499
3500 restore_child_signals_mask (&prev_mask);
3501 return minus_one_ptid;
3502 }
3503
3504 sigsuspend (&suspend_mask);
3505 }
3506 }
3507 else if (target_options & TARGET_WNOHANG)
3508 {
3509 /* No interesting event for PID yet. */
3510 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3511
3512 if (debug_linux_nat_async)
3513 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3514
3515 restore_child_signals_mask (&prev_mask);
3516 return minus_one_ptid;
3517 }
3518
3519 /* We shouldn't end up here unless we want to try again. */
3520 gdb_assert (lp == NULL);
3521 }
3522
3523 if (!target_can_async_p ())
3524 clear_sigint_trap ();
3525
3526 gdb_assert (lp);
3527
3528 status = lp->status;
3529 lp->status = 0;
3530
3531 /* Don't report signals that GDB isn't interested in, such as
3532 signals that are neither printed nor stopped upon. Stopping all
3533 threads can be a bit time-consuming so if we want decent
3534 performance with heavily multi-threaded programs, especially when
3535 they're using a high frequency timer, we'd better avoid it if we
3536 can. */
3537
3538 if (WIFSTOPPED (status))
3539 {
3540 int signo = target_signal_from_host (WSTOPSIG (status));
3541 struct inferior *inf;
3542
3543 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3544 gdb_assert (inf);
3545
3546 /* Defer to common code if we get a signal while
3547 single-stepping, since that may need special care, e.g. to
3548 skip the signal handler, or, if we're gaining control of the
3549 inferior. */
3550 if (!lp->step
3551 && inf->stop_soon == NO_STOP_QUIETLY
3552 && signal_stop_state (signo) == 0
3553 && signal_print_state (signo) == 0
3554 && signal_pass_state (signo) == 1)
3555 {
3556 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3557 here? It is not clear we should. GDB may not expect
3558 other threads to run. On the other hand, not resuming
3559 newly attached threads may cause an unwanted delay in
3560 getting them running. */
3561 registers_changed ();
3562 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3563 lp->step, signo);
3564 if (debug_linux_nat)
3565 fprintf_unfiltered (gdb_stdlog,
3566 "LLW: %s %s, %s (preempt 'handle')\n",
3567 lp->step ?
3568 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3569 target_pid_to_str (lp->ptid),
3570 signo ? strsignal (signo) : "0");
3571 lp->stopped = 0;
3572 goto retry;
3573 }
3574
3575 if (!non_stop)
3576 {
3577 /* Only do the below in all-stop, as we currently use SIGINT
3578 to implement target_stop (see linux_nat_stop) in
3579 non-stop. */
3580 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3581 {
3582 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3583 forwarded to the entire process group, that is, all LWPs
3584 will receive it - unless they're using CLONE_THREAD to
3585 share signals. Since we only want to report it once, we
3586 mark it as ignored for all LWPs except this one. */
3587 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3588 set_ignore_sigint, NULL);
3589 lp->ignore_sigint = 0;
3590 }
3591 else
3592 maybe_clear_ignore_sigint (lp);
3593 }
3594 }
3595
3596 /* This LWP is stopped now. */
3597 lp->stopped = 1;
3598
3599 if (debug_linux_nat)
3600 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3601 status_to_str (status), target_pid_to_str (lp->ptid));
3602
3603 if (!non_stop)
3604 {
3605 /* Now stop all other LWP's ... */
3606 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3607
3608 /* ... and wait until all of them have reported back that
3609 they're no longer running. */
3610 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3611
3612 /* If we're not waiting for a specific LWP, choose an event LWP
3613 from among those that have had events. Giving equal priority
3614 to all LWPs that have had events helps prevent
3615 starvation. */
3616 if (pid == -1)
3617 select_event_lwp (ptid, &lp, &status);
3618 }
3619
3620 /* Now that we've selected our final event LWP, cancel any
3621 breakpoints in other LWPs that have hit a GDB breakpoint. See
3622 the comment in cancel_breakpoints_callback to find out why. */
3623 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3624
3625 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3626 {
3627 if (debug_linux_nat)
3628 fprintf_unfiltered (gdb_stdlog,
3629 "LLW: trap ptid is %s.\n",
3630 target_pid_to_str (lp->ptid));
3631 }
3632
3633 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3634 {
3635 *ourstatus = lp->waitstatus;
3636 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3637 }
3638 else
3639 store_waitstatus (ourstatus, status);
3640
3641 if (debug_linux_nat_async)
3642 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3643
3644 restore_child_signals_mask (&prev_mask);
3645 return lp->ptid;
3646 }
3647
3648 static ptid_t
3649 linux_nat_wait (struct target_ops *ops,
3650 ptid_t ptid, struct target_waitstatus *ourstatus,
3651 int target_options)
3652 {
3653 ptid_t event_ptid;
3654
3655 if (debug_linux_nat)
3656 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3657
3658 /* Flush the async file first. */
3659 if (target_can_async_p ())
3660 async_file_flush ();
3661
3662 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3663
3664 /* If we requested any event, and something came out, assume there
3665 may be more. If we requested a specific lwp or process, also
3666 assume there may be more. */
3667 if (target_can_async_p ()
3668 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3669 || !ptid_equal (ptid, minus_one_ptid)))
3670 async_file_mark ();
3671
3672 /* Get ready for the next event. */
3673 if (target_can_async_p ())
3674 target_async (inferior_event_handler, 0);
3675
3676 return event_ptid;
3677 }
3678
3679 static int
3680 kill_callback (struct lwp_info *lp, void *data)
3681 {
3682 errno = 0;
3683 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3684 if (debug_linux_nat)
3685 fprintf_unfiltered (gdb_stdlog,
3686 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3687 target_pid_to_str (lp->ptid),
3688 errno ? safe_strerror (errno) : "OK");
3689
3690 return 0;
3691 }
3692
3693 static int
3694 kill_wait_callback (struct lwp_info *lp, void *data)
3695 {
3696 pid_t pid;
3697
3698 /* We must make sure that there are no pending events (delayed
3699 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3700 program doesn't interfere with any following debugging session. */
3701
3702 /* For cloned processes we must check both with __WCLONE and
3703 without, since the exit status of a cloned process isn't reported
3704 with __WCLONE. */
3705 if (lp->cloned)
3706 {
3707 do
3708 {
3709 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3710 if (pid != (pid_t) -1)
3711 {
3712 if (debug_linux_nat)
3713 fprintf_unfiltered (gdb_stdlog,
3714 "KWC: wait %s received unknown.\n",
3715 target_pid_to_str (lp->ptid));
3716 /* The Linux kernel sometimes fails to kill a thread
3717 completely after PTRACE_KILL; that goes from the stop
3718 point in do_fork out to the one in
3719 get_signal_to_deliever and waits again. So kill it
3720 again. */
3721 kill_callback (lp, NULL);
3722 }
3723 }
3724 while (pid == GET_LWP (lp->ptid));
3725
3726 gdb_assert (pid == -1 && errno == ECHILD);
3727 }
3728
3729 do
3730 {
3731 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3732 if (pid != (pid_t) -1)
3733 {
3734 if (debug_linux_nat)
3735 fprintf_unfiltered (gdb_stdlog,
3736 "KWC: wait %s received unk.\n",
3737 target_pid_to_str (lp->ptid));
3738 /* See the call to kill_callback above. */
3739 kill_callback (lp, NULL);
3740 }
3741 }
3742 while (pid == GET_LWP (lp->ptid));
3743
3744 gdb_assert (pid == -1 && errno == ECHILD);
3745 return 0;
3746 }
3747
3748 static void
3749 linux_nat_kill (struct target_ops *ops)
3750 {
3751 struct target_waitstatus last;
3752 ptid_t last_ptid;
3753 int status;
3754
3755 /* If we're stopped while forking and we haven't followed yet,
3756 kill the other task. We need to do this first because the
3757 parent will be sleeping if this is a vfork. */
3758
3759 get_last_target_status (&last_ptid, &last);
3760
3761 if (last.kind == TARGET_WAITKIND_FORKED
3762 || last.kind == TARGET_WAITKIND_VFORKED)
3763 {
3764 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3765 wait (&status);
3766 }
3767
3768 if (forks_exist_p ())
3769 linux_fork_killall ();
3770 else
3771 {
3772 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3773 /* Stop all threads before killing them, since ptrace requires
3774 that the thread is stopped to sucessfully PTRACE_KILL. */
3775 iterate_over_lwps (ptid, stop_callback, NULL);
3776 /* ... and wait until all of them have reported back that
3777 they're no longer running. */
3778 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3779
3780 /* Kill all LWP's ... */
3781 iterate_over_lwps (ptid, kill_callback, NULL);
3782
3783 /* ... and wait until we've flushed all events. */
3784 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3785 }
3786
3787 target_mourn_inferior ();
3788 }
3789
3790 static void
3791 linux_nat_mourn_inferior (struct target_ops *ops)
3792 {
3793 purge_lwp_list (ptid_get_pid (inferior_ptid));
3794
3795 if (! forks_exist_p ())
3796 /* Normal case, no other forks available. */
3797 linux_ops->to_mourn_inferior (ops);
3798 else
3799 /* Multi-fork case. The current inferior_ptid has exited, but
3800 there are other viable forks to debug. Delete the exiting
3801 one and context-switch to the first available. */
3802 linux_fork_mourn_inferior ();
3803 }
3804
3805 /* Convert a native/host siginfo object, into/from the siginfo in the
3806 layout of the inferiors' architecture. */
3807
3808 static void
3809 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3810 {
3811 int done = 0;
3812
3813 if (linux_nat_siginfo_fixup != NULL)
3814 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3815
3816 /* If there was no callback, or the callback didn't do anything,
3817 then just do a straight memcpy. */
3818 if (!done)
3819 {
3820 if (direction == 1)
3821 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3822 else
3823 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3824 }
3825 }
3826
3827 static LONGEST
3828 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3829 const char *annex, gdb_byte *readbuf,
3830 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3831 {
3832 int pid;
3833 struct siginfo siginfo;
3834 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3835
3836 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3837 gdb_assert (readbuf || writebuf);
3838
3839 pid = GET_LWP (inferior_ptid);
3840 if (pid == 0)
3841 pid = GET_PID (inferior_ptid);
3842
3843 if (offset > sizeof (siginfo))
3844 return -1;
3845
3846 errno = 0;
3847 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3848 if (errno != 0)
3849 return -1;
3850
3851 /* When GDB is built as a 64-bit application, ptrace writes into
3852 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3853 inferior with a 64-bit GDB should look the same as debugging it
3854 with a 32-bit GDB, we need to convert it. GDB core always sees
3855 the converted layout, so any read/write will have to be done
3856 post-conversion. */
3857 siginfo_fixup (&siginfo, inf_siginfo, 0);
3858
3859 if (offset + len > sizeof (siginfo))
3860 len = sizeof (siginfo) - offset;
3861
3862 if (readbuf != NULL)
3863 memcpy (readbuf, inf_siginfo + offset, len);
3864 else
3865 {
3866 memcpy (inf_siginfo + offset, writebuf, len);
3867
3868 /* Convert back to ptrace layout before flushing it out. */
3869 siginfo_fixup (&siginfo, inf_siginfo, 1);
3870
3871 errno = 0;
3872 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3873 if (errno != 0)
3874 return -1;
3875 }
3876
3877 return len;
3878 }
3879
3880 static LONGEST
3881 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3882 const char *annex, gdb_byte *readbuf,
3883 const gdb_byte *writebuf,
3884 ULONGEST offset, LONGEST len)
3885 {
3886 struct cleanup *old_chain;
3887 LONGEST xfer;
3888
3889 if (object == TARGET_OBJECT_SIGNAL_INFO)
3890 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3891 offset, len);
3892
3893 /* The target is connected but no live inferior is selected. Pass
3894 this request down to a lower stratum (e.g., the executable
3895 file). */
3896 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3897 return 0;
3898
3899 old_chain = save_inferior_ptid ();
3900
3901 if (is_lwp (inferior_ptid))
3902 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3903
3904 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3905 offset, len);
3906
3907 do_cleanups (old_chain);
3908 return xfer;
3909 }
3910
3911 static int
3912 linux_thread_alive (ptid_t ptid)
3913 {
3914 int err;
3915
3916 gdb_assert (is_lwp (ptid));
3917
3918 /* Send signal 0 instead of anything ptrace, because ptracing a
3919 running thread errors out claiming that the thread doesn't
3920 exist. */
3921 err = kill_lwp (GET_LWP (ptid), 0);
3922
3923 if (debug_linux_nat)
3924 fprintf_unfiltered (gdb_stdlog,
3925 "LLTA: KILL(SIG0) %s (%s)\n",
3926 target_pid_to_str (ptid),
3927 err ? safe_strerror (err) : "OK");
3928
3929 if (err != 0)
3930 return 0;
3931
3932 return 1;
3933 }
3934
3935 static int
3936 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3937 {
3938 return linux_thread_alive (ptid);
3939 }
3940
3941 static char *
3942 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3943 {
3944 static char buf[64];
3945
3946 if (is_lwp (ptid)
3947 && (GET_PID (ptid) != GET_LWP (ptid)
3948 || num_lwps (GET_PID (ptid)) > 1))
3949 {
3950 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3951 return buf;
3952 }
3953
3954 return normal_pid_to_str (ptid);
3955 }
3956
3957 /* Accepts an integer PID; Returns a string representing a file that
3958 can be opened to get the symbols for the child process. */
3959
3960 static char *
3961 linux_child_pid_to_exec_file (int pid)
3962 {
3963 char *name1, *name2;
3964
3965 name1 = xmalloc (MAXPATHLEN);
3966 name2 = xmalloc (MAXPATHLEN);
3967 make_cleanup (xfree, name1);
3968 make_cleanup (xfree, name2);
3969 memset (name2, 0, MAXPATHLEN);
3970
3971 sprintf (name1, "/proc/%d/exe", pid);
3972 if (readlink (name1, name2, MAXPATHLEN) > 0)
3973 return name2;
3974 else
3975 return name1;
3976 }
3977
3978 /* Service function for corefiles and info proc. */
3979
3980 static int
3981 read_mapping (FILE *mapfile,
3982 long long *addr,
3983 long long *endaddr,
3984 char *permissions,
3985 long long *offset,
3986 char *device, long long *inode, char *filename)
3987 {
3988 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3989 addr, endaddr, permissions, offset, device, inode);
3990
3991 filename[0] = '\0';
3992 if (ret > 0 && ret != EOF)
3993 {
3994 /* Eat everything up to EOL for the filename. This will prevent
3995 weird filenames (such as one with embedded whitespace) from
3996 confusing this code. It also makes this code more robust in
3997 respect to annotations the kernel may add after the filename.
3998
3999 Note the filename is used for informational purposes
4000 only. */
4001 ret += fscanf (mapfile, "%[^\n]\n", filename);
4002 }
4003
4004 return (ret != 0 && ret != EOF);
4005 }
4006
4007 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4008 regions in the inferior for a corefile. */
4009
4010 static int
4011 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4012 unsigned long,
4013 int, int, int, void *), void *obfd)
4014 {
4015 int pid = PIDGET (inferior_ptid);
4016 char mapsfilename[MAXPATHLEN];
4017 FILE *mapsfile;
4018 long long addr, endaddr, size, offset, inode;
4019 char permissions[8], device[8], filename[MAXPATHLEN];
4020 int read, write, exec;
4021 int ret;
4022 struct cleanup *cleanup;
4023
4024 /* Compose the filename for the /proc memory map, and open it. */
4025 sprintf (mapsfilename, "/proc/%d/maps", pid);
4026 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4027 error (_("Could not open %s."), mapsfilename);
4028 cleanup = make_cleanup_fclose (mapsfile);
4029
4030 if (info_verbose)
4031 fprintf_filtered (gdb_stdout,
4032 "Reading memory regions from %s\n", mapsfilename);
4033
4034 /* Now iterate until end-of-file. */
4035 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4036 &offset, &device[0], &inode, &filename[0]))
4037 {
4038 size = endaddr - addr;
4039
4040 /* Get the segment's permissions. */
4041 read = (strchr (permissions, 'r') != 0);
4042 write = (strchr (permissions, 'w') != 0);
4043 exec = (strchr (permissions, 'x') != 0);
4044
4045 if (info_verbose)
4046 {
4047 fprintf_filtered (gdb_stdout,
4048 "Save segment, %lld bytes at %s (%c%c%c)",
4049 size, paddress (target_gdbarch, addr),
4050 read ? 'r' : ' ',
4051 write ? 'w' : ' ', exec ? 'x' : ' ');
4052 if (filename[0])
4053 fprintf_filtered (gdb_stdout, " for %s", filename);
4054 fprintf_filtered (gdb_stdout, "\n");
4055 }
4056
4057 /* Invoke the callback function to create the corefile
4058 segment. */
4059 func (addr, size, read, write, exec, obfd);
4060 }
4061 do_cleanups (cleanup);
4062 return 0;
4063 }
4064
4065 static int
4066 find_signalled_thread (struct thread_info *info, void *data)
4067 {
4068 if (info->stop_signal != TARGET_SIGNAL_0
4069 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4070 return 1;
4071
4072 return 0;
4073 }
4074
4075 static enum target_signal
4076 find_stop_signal (void)
4077 {
4078 struct thread_info *info =
4079 iterate_over_threads (find_signalled_thread, NULL);
4080
4081 if (info)
4082 return info->stop_signal;
4083 else
4084 return TARGET_SIGNAL_0;
4085 }
4086
4087 /* Records the thread's register state for the corefile note
4088 section. */
4089
4090 static char *
4091 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4092 char *note_data, int *note_size,
4093 enum target_signal stop_signal)
4094 {
4095 gdb_gregset_t gregs;
4096 gdb_fpregset_t fpregs;
4097 unsigned long lwp = ptid_get_lwp (ptid);
4098 struct gdbarch *gdbarch = target_gdbarch;
4099 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4100 const struct regset *regset;
4101 int core_regset_p;
4102 struct cleanup *old_chain;
4103 struct core_regset_section *sect_list;
4104 char *gdb_regset;
4105
4106 old_chain = save_inferior_ptid ();
4107 inferior_ptid = ptid;
4108 target_fetch_registers (regcache, -1);
4109 do_cleanups (old_chain);
4110
4111 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4112 sect_list = gdbarch_core_regset_sections (gdbarch);
4113
4114 if (core_regset_p
4115 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4116 sizeof (gregs))) != NULL
4117 && regset->collect_regset != NULL)
4118 regset->collect_regset (regset, regcache, -1,
4119 &gregs, sizeof (gregs));
4120 else
4121 fill_gregset (regcache, &gregs, -1);
4122
4123 note_data = (char *) elfcore_write_prstatus (obfd,
4124 note_data,
4125 note_size,
4126 lwp,
4127 stop_signal, &gregs);
4128
4129 /* The loop below uses the new struct core_regset_section, which stores
4130 the supported section names and sizes for the core file. Note that
4131 note PRSTATUS needs to be treated specially. But the other notes are
4132 structurally the same, so they can benefit from the new struct. */
4133 if (core_regset_p && sect_list != NULL)
4134 while (sect_list->sect_name != NULL)
4135 {
4136 /* .reg was already handled above. */
4137 if (strcmp (sect_list->sect_name, ".reg") == 0)
4138 {
4139 sect_list++;
4140 continue;
4141 }
4142 regset = gdbarch_regset_from_core_section (gdbarch,
4143 sect_list->sect_name,
4144 sect_list->size);
4145 gdb_assert (regset && regset->collect_regset);
4146 gdb_regset = xmalloc (sect_list->size);
4147 regset->collect_regset (regset, regcache, -1,
4148 gdb_regset, sect_list->size);
4149 note_data = (char *) elfcore_write_register_note (obfd,
4150 note_data,
4151 note_size,
4152 sect_list->sect_name,
4153 gdb_regset,
4154 sect_list->size);
4155 xfree (gdb_regset);
4156 sect_list++;
4157 }
4158
4159 /* For architectures that does not have the struct core_regset_section
4160 implemented, we use the old method. When all the architectures have
4161 the new support, the code below should be deleted. */
4162 else
4163 {
4164 if (core_regset_p
4165 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4166 sizeof (fpregs))) != NULL
4167 && regset->collect_regset != NULL)
4168 regset->collect_regset (regset, regcache, -1,
4169 &fpregs, sizeof (fpregs));
4170 else
4171 fill_fpregset (regcache, &fpregs, -1);
4172
4173 note_data = (char *) elfcore_write_prfpreg (obfd,
4174 note_data,
4175 note_size,
4176 &fpregs, sizeof (fpregs));
4177 }
4178
4179 return note_data;
4180 }
4181
4182 struct linux_nat_corefile_thread_data
4183 {
4184 bfd *obfd;
4185 char *note_data;
4186 int *note_size;
4187 int num_notes;
4188 enum target_signal stop_signal;
4189 };
4190
4191 /* Called by gdbthread.c once per thread. Records the thread's
4192 register state for the corefile note section. */
4193
4194 static int
4195 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4196 {
4197 struct linux_nat_corefile_thread_data *args = data;
4198
4199 args->note_data = linux_nat_do_thread_registers (args->obfd,
4200 ti->ptid,
4201 args->note_data,
4202 args->note_size,
4203 args->stop_signal);
4204 args->num_notes++;
4205
4206 return 0;
4207 }
4208
4209 /* Enumerate spufs IDs for process PID. */
4210
4211 static void
4212 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4213 {
4214 char path[128];
4215 DIR *dir;
4216 struct dirent *entry;
4217
4218 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4219 dir = opendir (path);
4220 if (!dir)
4221 return;
4222
4223 rewinddir (dir);
4224 while ((entry = readdir (dir)) != NULL)
4225 {
4226 struct stat st;
4227 struct statfs stfs;
4228 int fd;
4229
4230 fd = atoi (entry->d_name);
4231 if (!fd)
4232 continue;
4233
4234 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4235 if (stat (path, &st) != 0)
4236 continue;
4237 if (!S_ISDIR (st.st_mode))
4238 continue;
4239
4240 if (statfs (path, &stfs) != 0)
4241 continue;
4242 if (stfs.f_type != SPUFS_MAGIC)
4243 continue;
4244
4245 callback (data, fd);
4246 }
4247
4248 closedir (dir);
4249 }
4250
4251 /* Generate corefile notes for SPU contexts. */
4252
4253 struct linux_spu_corefile_data
4254 {
4255 bfd *obfd;
4256 char *note_data;
4257 int *note_size;
4258 };
4259
4260 static void
4261 linux_spu_corefile_callback (void *data, int fd)
4262 {
4263 struct linux_spu_corefile_data *args = data;
4264 int i;
4265
4266 static const char *spu_files[] =
4267 {
4268 "object-id",
4269 "mem",
4270 "regs",
4271 "fpcr",
4272 "lslr",
4273 "decr",
4274 "decr_status",
4275 "signal1",
4276 "signal1_type",
4277 "signal2",
4278 "signal2_type",
4279 "event_mask",
4280 "event_status",
4281 "mbox_info",
4282 "ibox_info",
4283 "wbox_info",
4284 "dma_info",
4285 "proxydma_info",
4286 };
4287
4288 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4289 {
4290 char annex[32], note_name[32];
4291 gdb_byte *spu_data;
4292 LONGEST spu_len;
4293
4294 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4295 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4296 annex, &spu_data);
4297 if (spu_len > 0)
4298 {
4299 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4300 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4301 args->note_size, note_name,
4302 NT_SPU, spu_data, spu_len);
4303 xfree (spu_data);
4304 }
4305 }
4306 }
4307
4308 static char *
4309 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4310 {
4311 struct linux_spu_corefile_data args;
4312 args.obfd = obfd;
4313 args.note_data = note_data;
4314 args.note_size = note_size;
4315
4316 iterate_over_spus (PIDGET (inferior_ptid),
4317 linux_spu_corefile_callback, &args);
4318
4319 return args.note_data;
4320 }
4321
4322 /* Fills the "to_make_corefile_note" target vector. Builds the note
4323 section for a corefile, and returns it in a malloc buffer. */
4324
4325 static char *
4326 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4327 {
4328 struct linux_nat_corefile_thread_data thread_args;
4329 struct cleanup *old_chain;
4330 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4331 char fname[16] = { '\0' };
4332 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4333 char psargs[80] = { '\0' };
4334 char *note_data = NULL;
4335 ptid_t current_ptid = inferior_ptid;
4336 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4337 gdb_byte *auxv;
4338 int auxv_len;
4339
4340 if (get_exec_file (0))
4341 {
4342 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4343 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4344 if (get_inferior_args ())
4345 {
4346 char *string_end;
4347 char *psargs_end = psargs + sizeof (psargs);
4348
4349 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4350 strings fine. */
4351 string_end = memchr (psargs, 0, sizeof (psargs));
4352 if (string_end != NULL)
4353 {
4354 *string_end++ = ' ';
4355 strncpy (string_end, get_inferior_args (),
4356 psargs_end - string_end);
4357 }
4358 }
4359 note_data = (char *) elfcore_write_prpsinfo (obfd,
4360 note_data,
4361 note_size, fname, psargs);
4362 }
4363
4364 /* Dump information for threads. */
4365 thread_args.obfd = obfd;
4366 thread_args.note_data = note_data;
4367 thread_args.note_size = note_size;
4368 thread_args.num_notes = 0;
4369 thread_args.stop_signal = find_stop_signal ();
4370 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4371 gdb_assert (thread_args.num_notes != 0);
4372 note_data = thread_args.note_data;
4373
4374 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4375 NULL, &auxv);
4376 if (auxv_len > 0)
4377 {
4378 note_data = elfcore_write_note (obfd, note_data, note_size,
4379 "CORE", NT_AUXV, auxv, auxv_len);
4380 xfree (auxv);
4381 }
4382
4383 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4384
4385 make_cleanup (xfree, note_data);
4386 return note_data;
4387 }
4388
4389 /* Implement the "info proc" command. */
4390
4391 static void
4392 linux_nat_info_proc_cmd (char *args, int from_tty)
4393 {
4394 /* A long is used for pid instead of an int to avoid a loss of precision
4395 compiler warning from the output of strtoul. */
4396 long pid = PIDGET (inferior_ptid);
4397 FILE *procfile;
4398 char **argv = NULL;
4399 char buffer[MAXPATHLEN];
4400 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4401 int cmdline_f = 1;
4402 int cwd_f = 1;
4403 int exe_f = 1;
4404 int mappings_f = 0;
4405 int environ_f = 0;
4406 int status_f = 0;
4407 int stat_f = 0;
4408 int all = 0;
4409 struct stat dummy;
4410
4411 if (args)
4412 {
4413 /* Break up 'args' into an argv array. */
4414 argv = gdb_buildargv (args);
4415 make_cleanup_freeargv (argv);
4416 }
4417 while (argv != NULL && *argv != NULL)
4418 {
4419 if (isdigit (argv[0][0]))
4420 {
4421 pid = strtoul (argv[0], NULL, 10);
4422 }
4423 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4424 {
4425 mappings_f = 1;
4426 }
4427 else if (strcmp (argv[0], "status") == 0)
4428 {
4429 status_f = 1;
4430 }
4431 else if (strcmp (argv[0], "stat") == 0)
4432 {
4433 stat_f = 1;
4434 }
4435 else if (strcmp (argv[0], "cmd") == 0)
4436 {
4437 cmdline_f = 1;
4438 }
4439 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4440 {
4441 exe_f = 1;
4442 }
4443 else if (strcmp (argv[0], "cwd") == 0)
4444 {
4445 cwd_f = 1;
4446 }
4447 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4448 {
4449 all = 1;
4450 }
4451 else
4452 {
4453 /* [...] (future options here) */
4454 }
4455 argv++;
4456 }
4457 if (pid == 0)
4458 error (_("No current process: you must name one."));
4459
4460 sprintf (fname1, "/proc/%ld", pid);
4461 if (stat (fname1, &dummy) != 0)
4462 error (_("No /proc directory: '%s'"), fname1);
4463
4464 printf_filtered (_("process %ld\n"), pid);
4465 if (cmdline_f || all)
4466 {
4467 sprintf (fname1, "/proc/%ld/cmdline", pid);
4468 if ((procfile = fopen (fname1, "r")) != NULL)
4469 {
4470 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4471 if (fgets (buffer, sizeof (buffer), procfile))
4472 printf_filtered ("cmdline = '%s'\n", buffer);
4473 else
4474 warning (_("unable to read '%s'"), fname1);
4475 do_cleanups (cleanup);
4476 }
4477 else
4478 warning (_("unable to open /proc file '%s'"), fname1);
4479 }
4480 if (cwd_f || all)
4481 {
4482 sprintf (fname1, "/proc/%ld/cwd", pid);
4483 memset (fname2, 0, sizeof (fname2));
4484 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4485 printf_filtered ("cwd = '%s'\n", fname2);
4486 else
4487 warning (_("unable to read link '%s'"), fname1);
4488 }
4489 if (exe_f || all)
4490 {
4491 sprintf (fname1, "/proc/%ld/exe", pid);
4492 memset (fname2, 0, sizeof (fname2));
4493 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4494 printf_filtered ("exe = '%s'\n", fname2);
4495 else
4496 warning (_("unable to read link '%s'"), fname1);
4497 }
4498 if (mappings_f || all)
4499 {
4500 sprintf (fname1, "/proc/%ld/maps", pid);
4501 if ((procfile = fopen (fname1, "r")) != NULL)
4502 {
4503 long long addr, endaddr, size, offset, inode;
4504 char permissions[8], device[8], filename[MAXPATHLEN];
4505 struct cleanup *cleanup;
4506
4507 cleanup = make_cleanup_fclose (procfile);
4508 printf_filtered (_("Mapped address spaces:\n\n"));
4509 if (gdbarch_addr_bit (target_gdbarch) == 32)
4510 {
4511 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4512 "Start Addr",
4513 " End Addr",
4514 " Size", " Offset", "objfile");
4515 }
4516 else
4517 {
4518 printf_filtered (" %18s %18s %10s %10s %7s\n",
4519 "Start Addr",
4520 " End Addr",
4521 " Size", " Offset", "objfile");
4522 }
4523
4524 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4525 &offset, &device[0], &inode, &filename[0]))
4526 {
4527 size = endaddr - addr;
4528
4529 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4530 calls here (and possibly above) should be abstracted
4531 out into their own functions? Andrew suggests using
4532 a generic local_address_string instead to print out
4533 the addresses; that makes sense to me, too. */
4534
4535 if (gdbarch_addr_bit (target_gdbarch) == 32)
4536 {
4537 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4538 (unsigned long) addr, /* FIXME: pr_addr */
4539 (unsigned long) endaddr,
4540 (int) size,
4541 (unsigned int) offset,
4542 filename[0] ? filename : "");
4543 }
4544 else
4545 {
4546 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4547 (unsigned long) addr, /* FIXME: pr_addr */
4548 (unsigned long) endaddr,
4549 (int) size,
4550 (unsigned int) offset,
4551 filename[0] ? filename : "");
4552 }
4553 }
4554
4555 do_cleanups (cleanup);
4556 }
4557 else
4558 warning (_("unable to open /proc file '%s'"), fname1);
4559 }
4560 if (status_f || all)
4561 {
4562 sprintf (fname1, "/proc/%ld/status", pid);
4563 if ((procfile = fopen (fname1, "r")) != NULL)
4564 {
4565 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4566 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4567 puts_filtered (buffer);
4568 do_cleanups (cleanup);
4569 }
4570 else
4571 warning (_("unable to open /proc file '%s'"), fname1);
4572 }
4573 if (stat_f || all)
4574 {
4575 sprintf (fname1, "/proc/%ld/stat", pid);
4576 if ((procfile = fopen (fname1, "r")) != NULL)
4577 {
4578 int itmp;
4579 char ctmp;
4580 long ltmp;
4581 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4582
4583 if (fscanf (procfile, "%d ", &itmp) > 0)
4584 printf_filtered (_("Process: %d\n"), itmp);
4585 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4586 printf_filtered (_("Exec file: %s\n"), buffer);
4587 if (fscanf (procfile, "%c ", &ctmp) > 0)
4588 printf_filtered (_("State: %c\n"), ctmp);
4589 if (fscanf (procfile, "%d ", &itmp) > 0)
4590 printf_filtered (_("Parent process: %d\n"), itmp);
4591 if (fscanf (procfile, "%d ", &itmp) > 0)
4592 printf_filtered (_("Process group: %d\n"), itmp);
4593 if (fscanf (procfile, "%d ", &itmp) > 0)
4594 printf_filtered (_("Session id: %d\n"), itmp);
4595 if (fscanf (procfile, "%d ", &itmp) > 0)
4596 printf_filtered (_("TTY: %d\n"), itmp);
4597 if (fscanf (procfile, "%d ", &itmp) > 0)
4598 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4599 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4600 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4601 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4602 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4603 (unsigned long) ltmp);
4604 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4605 printf_filtered (_("Minor faults, children: %lu\n"),
4606 (unsigned long) ltmp);
4607 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4608 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4609 (unsigned long) ltmp);
4610 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4611 printf_filtered (_("Major faults, children: %lu\n"),
4612 (unsigned long) ltmp);
4613 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4614 printf_filtered (_("utime: %ld\n"), ltmp);
4615 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4616 printf_filtered (_("stime: %ld\n"), ltmp);
4617 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4618 printf_filtered (_("utime, children: %ld\n"), ltmp);
4619 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4620 printf_filtered (_("stime, children: %ld\n"), ltmp);
4621 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4622 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4623 ltmp);
4624 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4625 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4626 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4627 printf_filtered (_("jiffies until next timeout: %lu\n"),
4628 (unsigned long) ltmp);
4629 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4630 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4631 (unsigned long) ltmp);
4632 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4633 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4634 ltmp);
4635 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4636 printf_filtered (_("Virtual memory size: %lu\n"),
4637 (unsigned long) ltmp);
4638 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4639 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4640 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4641 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4642 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4643 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4644 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4645 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4646 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4647 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4648 #if 0 /* Don't know how architecture-dependent the rest is...
4649 Anyway the signal bitmap info is available from "status". */
4650 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4651 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4652 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4653 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4654 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4655 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4656 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4657 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4658 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4659 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4660 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4661 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4662 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4663 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4664 #endif
4665 do_cleanups (cleanup);
4666 }
4667 else
4668 warning (_("unable to open /proc file '%s'"), fname1);
4669 }
4670 }
4671
4672 /* Implement the to_xfer_partial interface for memory reads using the /proc
4673 filesystem. Because we can use a single read() call for /proc, this
4674 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4675 but it doesn't support writes. */
4676
4677 static LONGEST
4678 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4679 const char *annex, gdb_byte *readbuf,
4680 const gdb_byte *writebuf,
4681 ULONGEST offset, LONGEST len)
4682 {
4683 LONGEST ret;
4684 int fd;
4685 char filename[64];
4686
4687 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4688 return 0;
4689
4690 /* Don't bother for one word. */
4691 if (len < 3 * sizeof (long))
4692 return 0;
4693
4694 /* We could keep this file open and cache it - possibly one per
4695 thread. That requires some juggling, but is even faster. */
4696 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4697 fd = open (filename, O_RDONLY | O_LARGEFILE);
4698 if (fd == -1)
4699 return 0;
4700
4701 /* If pread64 is available, use it. It's faster if the kernel
4702 supports it (only one syscall), and it's 64-bit safe even on
4703 32-bit platforms (for instance, SPARC debugging a SPARC64
4704 application). */
4705 #ifdef HAVE_PREAD64
4706 if (pread64 (fd, readbuf, len, offset) != len)
4707 #else
4708 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4709 #endif
4710 ret = 0;
4711 else
4712 ret = len;
4713
4714 close (fd);
4715 return ret;
4716 }
4717
4718
4719 /* Enumerate spufs IDs for process PID. */
4720 static LONGEST
4721 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4722 {
4723 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4724 LONGEST pos = 0;
4725 LONGEST written = 0;
4726 char path[128];
4727 DIR *dir;
4728 struct dirent *entry;
4729
4730 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4731 dir = opendir (path);
4732 if (!dir)
4733 return -1;
4734
4735 rewinddir (dir);
4736 while ((entry = readdir (dir)) != NULL)
4737 {
4738 struct stat st;
4739 struct statfs stfs;
4740 int fd;
4741
4742 fd = atoi (entry->d_name);
4743 if (!fd)
4744 continue;
4745
4746 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4747 if (stat (path, &st) != 0)
4748 continue;
4749 if (!S_ISDIR (st.st_mode))
4750 continue;
4751
4752 if (statfs (path, &stfs) != 0)
4753 continue;
4754 if (stfs.f_type != SPUFS_MAGIC)
4755 continue;
4756
4757 if (pos >= offset && pos + 4 <= offset + len)
4758 {
4759 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4760 written += 4;
4761 }
4762 pos += 4;
4763 }
4764
4765 closedir (dir);
4766 return written;
4767 }
4768
4769 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4770 object type, using the /proc file system. */
4771 static LONGEST
4772 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4773 const char *annex, gdb_byte *readbuf,
4774 const gdb_byte *writebuf,
4775 ULONGEST offset, LONGEST len)
4776 {
4777 char buf[128];
4778 int fd = 0;
4779 int ret = -1;
4780 int pid = PIDGET (inferior_ptid);
4781
4782 if (!annex)
4783 {
4784 if (!readbuf)
4785 return -1;
4786 else
4787 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4788 }
4789
4790 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4791 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4792 if (fd <= 0)
4793 return -1;
4794
4795 if (offset != 0
4796 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4797 {
4798 close (fd);
4799 return 0;
4800 }
4801
4802 if (writebuf)
4803 ret = write (fd, writebuf, (size_t) len);
4804 else if (readbuf)
4805 ret = read (fd, readbuf, (size_t) len);
4806
4807 close (fd);
4808 return ret;
4809 }
4810
4811
4812 /* Parse LINE as a signal set and add its set bits to SIGS. */
4813
4814 static void
4815 add_line_to_sigset (const char *line, sigset_t *sigs)
4816 {
4817 int len = strlen (line) - 1;
4818 const char *p;
4819 int signum;
4820
4821 if (line[len] != '\n')
4822 error (_("Could not parse signal set: %s"), line);
4823
4824 p = line;
4825 signum = len * 4;
4826 while (len-- > 0)
4827 {
4828 int digit;
4829
4830 if (*p >= '0' && *p <= '9')
4831 digit = *p - '0';
4832 else if (*p >= 'a' && *p <= 'f')
4833 digit = *p - 'a' + 10;
4834 else
4835 error (_("Could not parse signal set: %s"), line);
4836
4837 signum -= 4;
4838
4839 if (digit & 1)
4840 sigaddset (sigs, signum + 1);
4841 if (digit & 2)
4842 sigaddset (sigs, signum + 2);
4843 if (digit & 4)
4844 sigaddset (sigs, signum + 3);
4845 if (digit & 8)
4846 sigaddset (sigs, signum + 4);
4847
4848 p++;
4849 }
4850 }
4851
4852 /* Find process PID's pending signals from /proc/pid/status and set
4853 SIGS to match. */
4854
4855 void
4856 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4857 {
4858 FILE *procfile;
4859 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4860 int signum;
4861 struct cleanup *cleanup;
4862
4863 sigemptyset (pending);
4864 sigemptyset (blocked);
4865 sigemptyset (ignored);
4866 sprintf (fname, "/proc/%d/status", pid);
4867 procfile = fopen (fname, "r");
4868 if (procfile == NULL)
4869 error (_("Could not open %s"), fname);
4870 cleanup = make_cleanup_fclose (procfile);
4871
4872 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4873 {
4874 /* Normal queued signals are on the SigPnd line in the status
4875 file. However, 2.6 kernels also have a "shared" pending
4876 queue for delivering signals to a thread group, so check for
4877 a ShdPnd line also.
4878
4879 Unfortunately some Red Hat kernels include the shared pending
4880 queue but not the ShdPnd status field. */
4881
4882 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4883 add_line_to_sigset (buffer + 8, pending);
4884 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4885 add_line_to_sigset (buffer + 8, pending);
4886 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4887 add_line_to_sigset (buffer + 8, blocked);
4888 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4889 add_line_to_sigset (buffer + 8, ignored);
4890 }
4891
4892 do_cleanups (cleanup);
4893 }
4894
4895 static LONGEST
4896 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4897 const char *annex, gdb_byte *readbuf,
4898 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4899 {
4900 /* We make the process list snapshot when the object starts to be
4901 read. */
4902 static const char *buf;
4903 static LONGEST len_avail = -1;
4904 static struct obstack obstack;
4905
4906 DIR *dirp;
4907
4908 gdb_assert (object == TARGET_OBJECT_OSDATA);
4909
4910 if (strcmp (annex, "processes") != 0)
4911 return 0;
4912
4913 gdb_assert (readbuf && !writebuf);
4914
4915 if (offset == 0)
4916 {
4917 if (len_avail != -1 && len_avail != 0)
4918 obstack_free (&obstack, NULL);
4919 len_avail = 0;
4920 buf = NULL;
4921 obstack_init (&obstack);
4922 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4923
4924 dirp = opendir ("/proc");
4925 if (dirp)
4926 {
4927 struct dirent *dp;
4928 while ((dp = readdir (dirp)) != NULL)
4929 {
4930 struct stat statbuf;
4931 char procentry[sizeof ("/proc/4294967295")];
4932
4933 if (!isdigit (dp->d_name[0])
4934 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4935 continue;
4936
4937 sprintf (procentry, "/proc/%s", dp->d_name);
4938 if (stat (procentry, &statbuf) == 0
4939 && S_ISDIR (statbuf.st_mode))
4940 {
4941 char *pathname;
4942 FILE *f;
4943 char cmd[MAXPATHLEN + 1];
4944 struct passwd *entry;
4945
4946 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4947 entry = getpwuid (statbuf.st_uid);
4948
4949 if ((f = fopen (pathname, "r")) != NULL)
4950 {
4951 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4952 if (len > 0)
4953 {
4954 int i;
4955 for (i = 0; i < len; i++)
4956 if (cmd[i] == '\0')
4957 cmd[i] = ' ';
4958 cmd[len] = '\0';
4959
4960 obstack_xml_printf (
4961 &obstack,
4962 "<item>"
4963 "<column name=\"pid\">%s</column>"
4964 "<column name=\"user\">%s</column>"
4965 "<column name=\"command\">%s</column>"
4966 "</item>",
4967 dp->d_name,
4968 entry ? entry->pw_name : "?",
4969 cmd);
4970 }
4971 fclose (f);
4972 }
4973
4974 xfree (pathname);
4975 }
4976 }
4977
4978 closedir (dirp);
4979 }
4980
4981 obstack_grow_str0 (&obstack, "</osdata>\n");
4982 buf = obstack_finish (&obstack);
4983 len_avail = strlen (buf);
4984 }
4985
4986 if (offset >= len_avail)
4987 {
4988 /* Done. Get rid of the obstack. */
4989 obstack_free (&obstack, NULL);
4990 buf = NULL;
4991 len_avail = 0;
4992 return 0;
4993 }
4994
4995 if (len > len_avail - offset)
4996 len = len_avail - offset;
4997 memcpy (readbuf, buf + offset, len);
4998
4999 return len;
5000 }
5001
5002 static LONGEST
5003 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5004 const char *annex, gdb_byte *readbuf,
5005 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5006 {
5007 LONGEST xfer;
5008
5009 if (object == TARGET_OBJECT_AUXV)
5010 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
5011 offset, len);
5012
5013 if (object == TARGET_OBJECT_OSDATA)
5014 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5015 offset, len);
5016
5017 if (object == TARGET_OBJECT_SPU)
5018 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5019 offset, len);
5020
5021 /* GDB calculates all the addresses in possibly larget width of the address.
5022 Address width needs to be masked before its final use - either by
5023 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5024
5025 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5026
5027 if (object == TARGET_OBJECT_MEMORY)
5028 {
5029 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5030
5031 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5032 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5033 }
5034
5035 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5036 offset, len);
5037 if (xfer != 0)
5038 return xfer;
5039
5040 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5041 offset, len);
5042 }
5043
5044 /* Create a prototype generic GNU/Linux target. The client can override
5045 it with local methods. */
5046
5047 static void
5048 linux_target_install_ops (struct target_ops *t)
5049 {
5050 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5051 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5052 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5053 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5054 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5055 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5056 t->to_post_attach = linux_child_post_attach;
5057 t->to_follow_fork = linux_child_follow_fork;
5058 t->to_find_memory_regions = linux_nat_find_memory_regions;
5059 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5060
5061 super_xfer_partial = t->to_xfer_partial;
5062 t->to_xfer_partial = linux_xfer_partial;
5063 }
5064
5065 struct target_ops *
5066 linux_target (void)
5067 {
5068 struct target_ops *t;
5069
5070 t = inf_ptrace_target ();
5071 linux_target_install_ops (t);
5072
5073 return t;
5074 }
5075
5076 struct target_ops *
5077 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5078 {
5079 struct target_ops *t;
5080
5081 t = inf_ptrace_trad_target (register_u_offset);
5082 linux_target_install_ops (t);
5083
5084 return t;
5085 }
5086
5087 /* target_is_async_p implementation. */
5088
5089 static int
5090 linux_nat_is_async_p (void)
5091 {
5092 /* NOTE: palves 2008-03-21: We're only async when the user requests
5093 it explicitly with the "set target-async" command.
5094 Someday, linux will always be async. */
5095 if (!target_async_permitted)
5096 return 0;
5097
5098 /* See target.h/target_async_mask. */
5099 return linux_nat_async_mask_value;
5100 }
5101
5102 /* target_can_async_p implementation. */
5103
5104 static int
5105 linux_nat_can_async_p (void)
5106 {
5107 /* NOTE: palves 2008-03-21: We're only async when the user requests
5108 it explicitly with the "set target-async" command.
5109 Someday, linux will always be async. */
5110 if (!target_async_permitted)
5111 return 0;
5112
5113 /* See target.h/target_async_mask. */
5114 return linux_nat_async_mask_value;
5115 }
5116
5117 static int
5118 linux_nat_supports_non_stop (void)
5119 {
5120 return 1;
5121 }
5122
5123 /* True if we want to support multi-process. To be removed when GDB
5124 supports multi-exec. */
5125
5126 int linux_multi_process = 1;
5127
5128 static int
5129 linux_nat_supports_multi_process (void)
5130 {
5131 return linux_multi_process;
5132 }
5133
5134 /* target_async_mask implementation. */
5135
5136 static int
5137 linux_nat_async_mask (int new_mask)
5138 {
5139 int curr_mask = linux_nat_async_mask_value;
5140
5141 if (curr_mask != new_mask)
5142 {
5143 if (new_mask == 0)
5144 {
5145 linux_nat_async (NULL, 0);
5146 linux_nat_async_mask_value = new_mask;
5147 }
5148 else
5149 {
5150 linux_nat_async_mask_value = new_mask;
5151
5152 /* If we're going out of async-mask in all-stop, then the
5153 inferior is stopped. The next resume will call
5154 target_async. In non-stop, the target event source
5155 should be always registered in the event loop. Do so
5156 now. */
5157 if (non_stop)
5158 linux_nat_async (inferior_event_handler, 0);
5159 }
5160 }
5161
5162 return curr_mask;
5163 }
5164
5165 static int async_terminal_is_ours = 1;
5166
5167 /* target_terminal_inferior implementation. */
5168
5169 static void
5170 linux_nat_terminal_inferior (void)
5171 {
5172 if (!target_is_async_p ())
5173 {
5174 /* Async mode is disabled. */
5175 terminal_inferior ();
5176 return;
5177 }
5178
5179 terminal_inferior ();
5180
5181 /* Calls to target_terminal_*() are meant to be idempotent. */
5182 if (!async_terminal_is_ours)
5183 return;
5184
5185 delete_file_handler (input_fd);
5186 async_terminal_is_ours = 0;
5187 set_sigint_trap ();
5188 }
5189
5190 /* target_terminal_ours implementation. */
5191
5192 static void
5193 linux_nat_terminal_ours (void)
5194 {
5195 if (!target_is_async_p ())
5196 {
5197 /* Async mode is disabled. */
5198 terminal_ours ();
5199 return;
5200 }
5201
5202 /* GDB should never give the terminal to the inferior if the
5203 inferior is running in the background (run&, continue&, etc.),
5204 but claiming it sure should. */
5205 terminal_ours ();
5206
5207 if (async_terminal_is_ours)
5208 return;
5209
5210 clear_sigint_trap ();
5211 add_file_handler (input_fd, stdin_event_handler, 0);
5212 async_terminal_is_ours = 1;
5213 }
5214
5215 static void (*async_client_callback) (enum inferior_event_type event_type,
5216 void *context);
5217 static void *async_client_context;
5218
5219 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5220 so we notice when any child changes state, and notify the
5221 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5222 above to wait for the arrival of a SIGCHLD. */
5223
5224 static void
5225 sigchld_handler (int signo)
5226 {
5227 int old_errno = errno;
5228
5229 if (debug_linux_nat_async)
5230 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5231
5232 if (signo == SIGCHLD
5233 && linux_nat_event_pipe[0] != -1)
5234 async_file_mark (); /* Let the event loop know that there are
5235 events to handle. */
5236
5237 errno = old_errno;
5238 }
5239
5240 /* Callback registered with the target events file descriptor. */
5241
5242 static void
5243 handle_target_event (int error, gdb_client_data client_data)
5244 {
5245 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5246 }
5247
5248 /* Create/destroy the target events pipe. Returns previous state. */
5249
5250 static int
5251 linux_async_pipe (int enable)
5252 {
5253 int previous = (linux_nat_event_pipe[0] != -1);
5254
5255 if (previous != enable)
5256 {
5257 sigset_t prev_mask;
5258
5259 block_child_signals (&prev_mask);
5260
5261 if (enable)
5262 {
5263 if (pipe (linux_nat_event_pipe) == -1)
5264 internal_error (__FILE__, __LINE__,
5265 "creating event pipe failed.");
5266
5267 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5268 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5269 }
5270 else
5271 {
5272 close (linux_nat_event_pipe[0]);
5273 close (linux_nat_event_pipe[1]);
5274 linux_nat_event_pipe[0] = -1;
5275 linux_nat_event_pipe[1] = -1;
5276 }
5277
5278 restore_child_signals_mask (&prev_mask);
5279 }
5280
5281 return previous;
5282 }
5283
5284 /* target_async implementation. */
5285
5286 static void
5287 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5288 void *context), void *context)
5289 {
5290 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5291 internal_error (__FILE__, __LINE__,
5292 "Calling target_async when async is masked");
5293
5294 if (callback != NULL)
5295 {
5296 async_client_callback = callback;
5297 async_client_context = context;
5298 if (!linux_async_pipe (1))
5299 {
5300 add_file_handler (linux_nat_event_pipe[0],
5301 handle_target_event, NULL);
5302 /* There may be pending events to handle. Tell the event loop
5303 to poll them. */
5304 async_file_mark ();
5305 }
5306 }
5307 else
5308 {
5309 async_client_callback = callback;
5310 async_client_context = context;
5311 delete_file_handler (linux_nat_event_pipe[0]);
5312 linux_async_pipe (0);
5313 }
5314 return;
5315 }
5316
5317 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5318 event came out. */
5319
5320 static int
5321 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5322 {
5323 if (!lwp->stopped)
5324 {
5325 int pid, status;
5326 ptid_t ptid = lwp->ptid;
5327
5328 if (debug_linux_nat)
5329 fprintf_unfiltered (gdb_stdlog,
5330 "LNSL: running -> suspending %s\n",
5331 target_pid_to_str (lwp->ptid));
5332
5333
5334 stop_callback (lwp, NULL);
5335 stop_wait_callback (lwp, NULL);
5336
5337 /* If the lwp exits while we try to stop it, there's nothing
5338 else to do. */
5339 lwp = find_lwp_pid (ptid);
5340 if (lwp == NULL)
5341 return 0;
5342
5343 /* If we didn't collect any signal other than SIGSTOP while
5344 stopping the LWP, push a SIGNAL_0 event. In either case, the
5345 event-loop will end up calling target_wait which will collect
5346 these. */
5347 if (lwp->status == 0)
5348 lwp->status = W_STOPCODE (0);
5349 async_file_mark ();
5350 }
5351 else
5352 {
5353 /* Already known to be stopped; do nothing. */
5354
5355 if (debug_linux_nat)
5356 {
5357 if (find_thread_ptid (lwp->ptid)->stop_requested)
5358 fprintf_unfiltered (gdb_stdlog, "\
5359 LNSL: already stopped/stop_requested %s\n",
5360 target_pid_to_str (lwp->ptid));
5361 else
5362 fprintf_unfiltered (gdb_stdlog, "\
5363 LNSL: already stopped/no stop_requested yet %s\n",
5364 target_pid_to_str (lwp->ptid));
5365 }
5366 }
5367 return 0;
5368 }
5369
5370 static void
5371 linux_nat_stop (ptid_t ptid)
5372 {
5373 if (non_stop)
5374 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5375 else
5376 linux_ops->to_stop (ptid);
5377 }
5378
5379 static void
5380 linux_nat_close (int quitting)
5381 {
5382 /* Unregister from the event loop. */
5383 if (target_is_async_p ())
5384 target_async (NULL, 0);
5385
5386 /* Reset the async_masking. */
5387 linux_nat_async_mask_value = 1;
5388
5389 if (linux_ops->to_close)
5390 linux_ops->to_close (quitting);
5391 }
5392
5393 /* When requests are passed down from the linux-nat layer to the
5394 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5395 used. The address space pointer is stored in the inferior object,
5396 but the common code that is passed such ptid can't tell whether
5397 lwpid is a "main" process id or not (it assumes so). We reverse
5398 look up the "main" process id from the lwp here. */
5399
5400 struct address_space *
5401 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5402 {
5403 struct lwp_info *lwp;
5404 struct inferior *inf;
5405 int pid;
5406
5407 pid = GET_LWP (ptid);
5408 if (GET_LWP (ptid) == 0)
5409 {
5410 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5411 tgid. */
5412 lwp = find_lwp_pid (ptid);
5413 pid = GET_PID (lwp->ptid);
5414 }
5415 else
5416 {
5417 /* A (pid,lwpid,0) ptid. */
5418 pid = GET_PID (ptid);
5419 }
5420
5421 inf = find_inferior_pid (pid);
5422 gdb_assert (inf != NULL);
5423 return inf->aspace;
5424 }
5425
5426 void
5427 linux_nat_add_target (struct target_ops *t)
5428 {
5429 /* Save the provided single-threaded target. We save this in a separate
5430 variable because another target we've inherited from (e.g. inf-ptrace)
5431 may have saved a pointer to T; we want to use it for the final
5432 process stratum target. */
5433 linux_ops_saved = *t;
5434 linux_ops = &linux_ops_saved;
5435
5436 /* Override some methods for multithreading. */
5437 t->to_create_inferior = linux_nat_create_inferior;
5438 t->to_attach = linux_nat_attach;
5439 t->to_detach = linux_nat_detach;
5440 t->to_resume = linux_nat_resume;
5441 t->to_wait = linux_nat_wait;
5442 t->to_xfer_partial = linux_nat_xfer_partial;
5443 t->to_kill = linux_nat_kill;
5444 t->to_mourn_inferior = linux_nat_mourn_inferior;
5445 t->to_thread_alive = linux_nat_thread_alive;
5446 t->to_pid_to_str = linux_nat_pid_to_str;
5447 t->to_has_thread_control = tc_schedlock;
5448 t->to_thread_address_space = linux_nat_thread_address_space;
5449 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5450 t->to_stopped_data_address = linux_nat_stopped_data_address;
5451
5452 t->to_can_async_p = linux_nat_can_async_p;
5453 t->to_is_async_p = linux_nat_is_async_p;
5454 t->to_supports_non_stop = linux_nat_supports_non_stop;
5455 t->to_async = linux_nat_async;
5456 t->to_async_mask = linux_nat_async_mask;
5457 t->to_terminal_inferior = linux_nat_terminal_inferior;
5458 t->to_terminal_ours = linux_nat_terminal_ours;
5459 t->to_close = linux_nat_close;
5460
5461 /* Methods for non-stop support. */
5462 t->to_stop = linux_nat_stop;
5463
5464 t->to_supports_multi_process = linux_nat_supports_multi_process;
5465
5466 /* We don't change the stratum; this target will sit at
5467 process_stratum and thread_db will set at thread_stratum. This
5468 is a little strange, since this is a multi-threaded-capable
5469 target, but we want to be on the stack below thread_db, and we
5470 also want to be used for single-threaded processes. */
5471
5472 add_target (t);
5473 }
5474
5475 /* Register a method to call whenever a new thread is attached. */
5476 void
5477 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5478 {
5479 /* Save the pointer. We only support a single registered instance
5480 of the GNU/Linux native target, so we do not need to map this to
5481 T. */
5482 linux_nat_new_thread = new_thread;
5483 }
5484
5485 /* Register a method that converts a siginfo object between the layout
5486 that ptrace returns, and the layout in the architecture of the
5487 inferior. */
5488 void
5489 linux_nat_set_siginfo_fixup (struct target_ops *t,
5490 int (*siginfo_fixup) (struct siginfo *,
5491 gdb_byte *,
5492 int))
5493 {
5494 /* Save the pointer. */
5495 linux_nat_siginfo_fixup = siginfo_fixup;
5496 }
5497
5498 /* Return the saved siginfo associated with PTID. */
5499 struct siginfo *
5500 linux_nat_get_siginfo (ptid_t ptid)
5501 {
5502 struct lwp_info *lp = find_lwp_pid (ptid);
5503
5504 gdb_assert (lp != NULL);
5505
5506 return &lp->siginfo;
5507 }
5508
5509 /* Provide a prototype to silence -Wmissing-prototypes. */
5510 extern initialize_file_ftype _initialize_linux_nat;
5511
5512 void
5513 _initialize_linux_nat (void)
5514 {
5515 sigset_t mask;
5516
5517 add_info ("proc", linux_nat_info_proc_cmd, _("\
5518 Show /proc process information about any running process.\n\
5519 Specify any process id, or use the program being debugged by default.\n\
5520 Specify any of the following keywords for detailed info:\n\
5521 mappings -- list of mapped memory regions.\n\
5522 stat -- list a bunch of random process info.\n\
5523 status -- list a different bunch of random process info.\n\
5524 all -- list all available /proc info."));
5525
5526 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5527 &debug_linux_nat, _("\
5528 Set debugging of GNU/Linux lwp module."), _("\
5529 Show debugging of GNU/Linux lwp module."), _("\
5530 Enables printf debugging output."),
5531 NULL,
5532 show_debug_linux_nat,
5533 &setdebuglist, &showdebuglist);
5534
5535 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5536 &debug_linux_nat_async, _("\
5537 Set debugging of GNU/Linux async lwp module."), _("\
5538 Show debugging of GNU/Linux async lwp module."), _("\
5539 Enables printf debugging output."),
5540 NULL,
5541 show_debug_linux_nat_async,
5542 &setdebuglist, &showdebuglist);
5543
5544 /* Save this mask as the default. */
5545 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5546
5547 /* Install a SIGCHLD handler. */
5548 sigchld_action.sa_handler = sigchld_handler;
5549 sigemptyset (&sigchld_action.sa_mask);
5550 sigchld_action.sa_flags = SA_RESTART;
5551
5552 /* Make it the default. */
5553 sigaction (SIGCHLD, &sigchld_action, NULL);
5554
5555 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5556 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5557 sigdelset (&suspend_mask, SIGCHLD);
5558
5559 sigemptyset (&blocked_mask);
5560
5561 add_setshow_boolean_cmd ("disable-randomization", class_support,
5562 &disable_randomization, _("\
5563 Set disabling of debuggee's virtual address space randomization."), _("\
5564 Show disabling of debuggee's virtual address space randomization."), _("\
5565 When this mode is on (which is the default), randomization of the virtual\n\
5566 address space is disabled. Standalone programs run with the randomization\n\
5567 enabled by default on some platforms."),
5568 &set_disable_randomization,
5569 &show_disable_randomization,
5570 &setlist, &showlist);
5571 }
5572 \f
5573
5574 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5575 the GNU/Linux Threads library and therefore doesn't really belong
5576 here. */
5577
5578 /* Read variable NAME in the target and return its value if found.
5579 Otherwise return zero. It is assumed that the type of the variable
5580 is `int'. */
5581
5582 static int
5583 get_signo (const char *name)
5584 {
5585 struct minimal_symbol *ms;
5586 int signo;
5587
5588 ms = lookup_minimal_symbol (name, NULL, NULL);
5589 if (ms == NULL)
5590 return 0;
5591
5592 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5593 sizeof (signo)) != 0)
5594 return 0;
5595
5596 return signo;
5597 }
5598
5599 /* Return the set of signals used by the threads library in *SET. */
5600
5601 void
5602 lin_thread_get_thread_signals (sigset_t *set)
5603 {
5604 struct sigaction action;
5605 int restart, cancel;
5606
5607 sigemptyset (&blocked_mask);
5608 sigemptyset (set);
5609
5610 restart = get_signo ("__pthread_sig_restart");
5611 cancel = get_signo ("__pthread_sig_cancel");
5612
5613 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5614 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5615 not provide any way for the debugger to query the signal numbers -
5616 fortunately they don't change! */
5617
5618 if (restart == 0)
5619 restart = __SIGRTMIN;
5620
5621 if (cancel == 0)
5622 cancel = __SIGRTMIN + 1;
5623
5624 sigaddset (set, restart);
5625 sigaddset (set, cancel);
5626
5627 /* The GNU/Linux Threads library makes terminating threads send a
5628 special "cancel" signal instead of SIGCHLD. Make sure we catch
5629 those (to prevent them from terminating GDB itself, which is
5630 likely to be their default action) and treat them the same way as
5631 SIGCHLD. */
5632
5633 action.sa_handler = sigchld_handler;
5634 sigemptyset (&action.sa_mask);
5635 action.sa_flags = SA_RESTART;
5636 sigaction (cancel, &action, NULL);
5637
5638 /* We block the "cancel" signal throughout this code ... */
5639 sigaddset (&blocked_mask, cancel);
5640 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5641
5642 /* ... except during a sigsuspend. */
5643 sigdelset (&suspend_mask, cancel);
5644 }
This page took 0.146749 seconds and 5 git commands to generate.