Change signature of linux_target_ops.new_thread
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
167 the use of the multi-threaded target. */
168 static struct target_ops *linux_ops;
169 static struct target_ops linux_ops_saved;
170
171 /* The method to call, if any, when a new thread is attached. */
172 static void (*linux_nat_new_thread) (struct lwp_info *);
173
174 /* The method to call, if any, when a new fork is attached. */
175 static linux_nat_new_fork_ftype *linux_nat_new_fork;
176
177 /* The method to call, if any, when a process is no longer
178 attached. */
179 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
180
181 /* Hook to call prior to resuming a thread. */
182 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
183
184 /* The method to call, if any, when the siginfo object needs to be
185 converted between the layout returned by ptrace, and the layout in
186 the architecture of the inferior. */
187 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
188 gdb_byte *,
189 int);
190
191 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
192 Called by our to_xfer_partial. */
193 static target_xfer_partial_ftype *super_xfer_partial;
194
195 /* The saved to_close method, inherited from inf-ptrace.c.
196 Called by our to_close. */
197 static void (*super_close) (struct target_ops *);
198
199 static unsigned int debug_linux_nat;
200 static void
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
205 value);
206 }
207
208 struct simple_pid_list
209 {
210 int pid;
211 int status;
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Async mode support. */
217
218 /* The read/write ends of the pipe registered as waitable file in the
219 event loop. */
220 static int linux_nat_event_pipe[2] = { -1, -1 };
221
222 /* True if we're currently in async mode. */
223 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
224
225 /* Flush the event pipe. */
226
227 static void
228 async_file_flush (void)
229 {
230 int ret;
231 char buf;
232
233 do
234 {
235 ret = read (linux_nat_event_pipe[0], &buf, 1);
236 }
237 while (ret >= 0 || (ret == -1 && errno == EINTR));
238 }
239
240 /* Put something (anything, doesn't matter what, or how much) in event
241 pipe, so that the select/poll in the event-loop realizes we have
242 something to process. */
243
244 static void
245 async_file_mark (void)
246 {
247 int ret;
248
249 /* It doesn't really matter what the pipe contains, as long we end
250 up with something in it. Might as well flush the previous
251 left-overs. */
252 async_file_flush ();
253
254 do
255 {
256 ret = write (linux_nat_event_pipe[1], "+", 1);
257 }
258 while (ret == -1 && errno == EINTR);
259
260 /* Ignore EAGAIN. If the pipe is full, the event loop will already
261 be awakened anyway. */
262 }
263
264 static int kill_lwp (int lwpid, int signo);
265
266 static int stop_callback (struct lwp_info *lp, void *data);
267 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
268
269 static void block_child_signals (sigset_t *prev_mask);
270 static void restore_child_signals_mask (sigset_t *prev_mask);
271
272 struct lwp_info;
273 static struct lwp_info *add_lwp (ptid_t ptid);
274 static void purge_lwp_list (int pid);
275 static void delete_lwp (ptid_t ptid);
276 static struct lwp_info *find_lwp_pid (ptid_t ptid);
277
278 static int lwp_status_pending_p (struct lwp_info *lp);
279
280 static int check_stopped_by_breakpoint (struct lwp_info *lp);
281 static int sigtrap_is_event (int status);
282 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
283
284 \f
285 /* LWP accessors. */
286
287 /* See nat/linux-nat.h. */
288
289 ptid_t
290 ptid_of_lwp (struct lwp_info *lwp)
291 {
292 return lwp->ptid;
293 }
294
295 /* See nat/linux-nat.h. */
296
297 int
298 lwp_is_stopped (struct lwp_info *lwp)
299 {
300 return lwp->stopped;
301 }
302
303 /* See nat/linux-nat.h. */
304
305 enum target_stop_reason
306 lwp_stop_reason (struct lwp_info *lwp)
307 {
308 return lwp->stop_reason;
309 }
310
311 \f
312 /* Trivial list manipulation functions to keep track of a list of
313 new stopped processes. */
314 static void
315 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
316 {
317 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
318
319 new_pid->pid = pid;
320 new_pid->status = status;
321 new_pid->next = *listp;
322 *listp = new_pid;
323 }
324
325 static int
326 in_pid_list_p (struct simple_pid_list *list, int pid)
327 {
328 struct simple_pid_list *p;
329
330 for (p = list; p != NULL; p = p->next)
331 if (p->pid == pid)
332 return 1;
333 return 0;
334 }
335
336 static int
337 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
338 {
339 struct simple_pid_list **p;
340
341 for (p = listp; *p != NULL; p = &(*p)->next)
342 if ((*p)->pid == pid)
343 {
344 struct simple_pid_list *next = (*p)->next;
345
346 *statusp = (*p)->status;
347 xfree (*p);
348 *p = next;
349 return 1;
350 }
351 return 0;
352 }
353
354 /* Initialize ptrace warnings and check for supported ptrace
355 features given PID.
356
357 ATTACHED should be nonzero iff we attached to the inferior. */
358
359 static void
360 linux_init_ptrace (pid_t pid, int attached)
361 {
362 linux_enable_event_reporting (pid, attached);
363 linux_ptrace_init_warnings ();
364 }
365
366 static void
367 linux_child_post_attach (struct target_ops *self, int pid)
368 {
369 linux_init_ptrace (pid, 1);
370 }
371
372 static void
373 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
374 {
375 linux_init_ptrace (ptid_get_pid (ptid), 0);
376 }
377
378 /* Return the number of known LWPs in the tgid given by PID. */
379
380 static int
381 num_lwps (int pid)
382 {
383 int count = 0;
384 struct lwp_info *lp;
385
386 for (lp = lwp_list; lp; lp = lp->next)
387 if (ptid_get_pid (lp->ptid) == pid)
388 count++;
389
390 return count;
391 }
392
393 /* Call delete_lwp with prototype compatible for make_cleanup. */
394
395 static void
396 delete_lwp_cleanup (void *lp_voidp)
397 {
398 struct lwp_info *lp = lp_voidp;
399
400 delete_lwp (lp->ptid);
401 }
402
403 /* Target hook for follow_fork. On entry inferior_ptid must be the
404 ptid of the followed inferior. At return, inferior_ptid will be
405 unchanged. */
406
407 static int
408 linux_child_follow_fork (struct target_ops *ops, int follow_child,
409 int detach_fork)
410 {
411 if (!follow_child)
412 {
413 struct lwp_info *child_lp = NULL;
414 int status = W_STOPCODE (0);
415 struct cleanup *old_chain;
416 int has_vforked;
417 ptid_t parent_ptid, child_ptid;
418 int parent_pid, child_pid;
419
420 has_vforked = (inferior_thread ()->pending_follow.kind
421 == TARGET_WAITKIND_VFORKED);
422 parent_ptid = inferior_ptid;
423 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
424 parent_pid = ptid_get_lwp (parent_ptid);
425 child_pid = ptid_get_lwp (child_ptid);
426
427 /* We're already attached to the parent, by default. */
428 old_chain = save_inferior_ptid ();
429 inferior_ptid = child_ptid;
430 child_lp = add_lwp (inferior_ptid);
431 child_lp->stopped = 1;
432 child_lp->last_resume_kind = resume_stop;
433
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 make_cleanup (delete_lwp_cleanup, child_lp);
438
439 if (linux_nat_prepare_to_resume != NULL)
440 linux_nat_prepare_to_resume (child_lp);
441
442 /* When debugging an inferior in an architecture that supports
443 hardware single stepping on a kernel without commit
444 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
445 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
446 set if the parent process had them set.
447 To work around this, single step the child process
448 once before detaching to clear the flags. */
449
450 if (!gdbarch_software_single_step_p (target_thread_architecture
451 (child_lp->ptid)))
452 {
453 linux_disable_event_reporting (child_pid);
454 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
455 perror_with_name (_("Couldn't do single step"));
456 if (my_waitpid (child_pid, &status, 0) < 0)
457 perror_with_name (_("Couldn't wait vfork process"));
458 }
459
460 if (WIFSTOPPED (status))
461 {
462 int signo;
463
464 signo = WSTOPSIG (status);
465 if (signo != 0
466 && !signal_pass_state (gdb_signal_from_host (signo)))
467 signo = 0;
468 ptrace (PTRACE_DETACH, child_pid, 0, signo);
469 }
470
471 /* Resets value of inferior_ptid to parent ptid. */
472 do_cleanups (old_chain);
473 }
474 else
475 {
476 /* Let the thread_db layer learn about this new process. */
477 check_for_thread_db ();
478 }
479
480 do_cleanups (old_chain);
481
482 if (has_vforked)
483 {
484 struct lwp_info *parent_lp;
485
486 parent_lp = find_lwp_pid (parent_ptid);
487 gdb_assert (linux_supports_tracefork () >= 0);
488
489 if (linux_supports_tracevforkdone ())
490 {
491 if (debug_linux_nat)
492 fprintf_unfiltered (gdb_stdlog,
493 "LCFF: waiting for VFORK_DONE on %d\n",
494 parent_pid);
495 parent_lp->stopped = 1;
496
497 /* We'll handle the VFORK_DONE event like any other
498 event, in target_wait. */
499 }
500 else
501 {
502 /* We can't insert breakpoints until the child has
503 finished with the shared memory region. We need to
504 wait until that happens. Ideal would be to just
505 call:
506 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
507 - waitpid (parent_pid, &status, __WALL);
508 However, most architectures can't handle a syscall
509 being traced on the way out if it wasn't traced on
510 the way in.
511
512 We might also think to loop, continuing the child
513 until it exits or gets a SIGTRAP. One problem is
514 that the child might call ptrace with PTRACE_TRACEME.
515
516 There's no simple and reliable way to figure out when
517 the vforked child will be done with its copy of the
518 shared memory. We could step it out of the syscall,
519 two instructions, let it go, and then single-step the
520 parent once. When we have hardware single-step, this
521 would work; with software single-step it could still
522 be made to work but we'd have to be able to insert
523 single-step breakpoints in the child, and we'd have
524 to insert -just- the single-step breakpoint in the
525 parent. Very awkward.
526
527 In the end, the best we can do is to make sure it
528 runs for a little while. Hopefully it will be out of
529 range of any breakpoints we reinsert. Usually this
530 is only the single-step breakpoint at vfork's return
531 point. */
532
533 if (debug_linux_nat)
534 fprintf_unfiltered (gdb_stdlog,
535 "LCFF: no VFORK_DONE "
536 "support, sleeping a bit\n");
537
538 usleep (10000);
539
540 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
541 and leave it pending. The next linux_nat_resume call
542 will notice a pending event, and bypasses actually
543 resuming the inferior. */
544 parent_lp->status = 0;
545 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
546 parent_lp->stopped = 1;
547
548 /* If we're in async mode, need to tell the event loop
549 there's something here to process. */
550 if (target_is_async_p ())
551 async_file_mark ();
552 }
553 }
554 }
555 else
556 {
557 struct lwp_info *child_lp;
558
559 child_lp = add_lwp (inferior_ptid);
560 child_lp->stopped = 1;
561 child_lp->last_resume_kind = resume_stop;
562
563 /* Let the thread_db layer learn about this new process. */
564 check_for_thread_db ();
565 }
566
567 return 0;
568 }
569
570 \f
571 static int
572 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
573 {
574 return !linux_supports_tracefork ();
575 }
576
577 static int
578 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
579 {
580 return 0;
581 }
582
583 static int
584 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
585 {
586 return !linux_supports_tracefork ();
587 }
588
589 static int
590 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
591 {
592 return 0;
593 }
594
595 static int
596 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
597 {
598 return !linux_supports_tracefork ();
599 }
600
601 static int
602 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
603 {
604 return 0;
605 }
606
607 static int
608 linux_child_set_syscall_catchpoint (struct target_ops *self,
609 int pid, int needed, int any_count,
610 int table_size, int *table)
611 {
612 if (!linux_supports_tracesysgood ())
613 return 1;
614
615 /* On GNU/Linux, we ignore the arguments. It means that we only
616 enable the syscall catchpoints, but do not disable them.
617
618 Also, we do not use the `table' information because we do not
619 filter system calls here. We let GDB do the logic for us. */
620 return 0;
621 }
622
623 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
624 are processes sharing the same VM space. A multi-threaded process
625 is basically a group of such processes. However, such a grouping
626 is almost entirely a user-space issue; the kernel doesn't enforce
627 such a grouping at all (this might change in the future). In
628 general, we'll rely on the threads library (i.e. the GNU/Linux
629 Threads library) to provide such a grouping.
630
631 It is perfectly well possible to write a multi-threaded application
632 without the assistance of a threads library, by using the clone
633 system call directly. This module should be able to give some
634 rudimentary support for debugging such applications if developers
635 specify the CLONE_PTRACE flag in the clone system call, and are
636 using the Linux kernel 2.4 or above.
637
638 Note that there are some peculiarities in GNU/Linux that affect
639 this code:
640
641 - In general one should specify the __WCLONE flag to waitpid in
642 order to make it report events for any of the cloned processes
643 (and leave it out for the initial process). However, if a cloned
644 process has exited the exit status is only reported if the
645 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
646 we cannot use it since GDB must work on older systems too.
647
648 - When a traced, cloned process exits and is waited for by the
649 debugger, the kernel reassigns it to the original parent and
650 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
651 library doesn't notice this, which leads to the "zombie problem":
652 When debugged a multi-threaded process that spawns a lot of
653 threads will run out of processes, even if the threads exit,
654 because the "zombies" stay around. */
655
656 /* List of known LWPs. */
657 struct lwp_info *lwp_list;
658 \f
659
660 /* Original signal mask. */
661 static sigset_t normal_mask;
662
663 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
664 _initialize_linux_nat. */
665 static sigset_t suspend_mask;
666
667 /* Signals to block to make that sigsuspend work. */
668 static sigset_t blocked_mask;
669
670 /* SIGCHLD action. */
671 struct sigaction sigchld_action;
672
673 /* Block child signals (SIGCHLD and linux threads signals), and store
674 the previous mask in PREV_MASK. */
675
676 static void
677 block_child_signals (sigset_t *prev_mask)
678 {
679 /* Make sure SIGCHLD is blocked. */
680 if (!sigismember (&blocked_mask, SIGCHLD))
681 sigaddset (&blocked_mask, SIGCHLD);
682
683 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
684 }
685
686 /* Restore child signals mask, previously returned by
687 block_child_signals. */
688
689 static void
690 restore_child_signals_mask (sigset_t *prev_mask)
691 {
692 sigprocmask (SIG_SETMASK, prev_mask, NULL);
693 }
694
695 /* Mask of signals to pass directly to the inferior. */
696 static sigset_t pass_mask;
697
698 /* Update signals to pass to the inferior. */
699 static void
700 linux_nat_pass_signals (struct target_ops *self,
701 int numsigs, unsigned char *pass_signals)
702 {
703 int signo;
704
705 sigemptyset (&pass_mask);
706
707 for (signo = 1; signo < NSIG; signo++)
708 {
709 int target_signo = gdb_signal_from_host (signo);
710 if (target_signo < numsigs && pass_signals[target_signo])
711 sigaddset (&pass_mask, signo);
712 }
713 }
714
715 \f
716
717 /* Prototypes for local functions. */
718 static int stop_wait_callback (struct lwp_info *lp, void *data);
719 static int linux_thread_alive (ptid_t ptid);
720 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
721 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
722
723 \f
724
725 /* Destroy and free LP. */
726
727 static void
728 lwp_free (struct lwp_info *lp)
729 {
730 xfree (lp->arch_private);
731 xfree (lp);
732 }
733
734 /* Remove all LWPs belong to PID from the lwp list. */
735
736 static void
737 purge_lwp_list (int pid)
738 {
739 struct lwp_info *lp, *lpprev, *lpnext;
740
741 lpprev = NULL;
742
743 for (lp = lwp_list; lp; lp = lpnext)
744 {
745 lpnext = lp->next;
746
747 if (ptid_get_pid (lp->ptid) == pid)
748 {
749 if (lp == lwp_list)
750 lwp_list = lp->next;
751 else
752 lpprev->next = lp->next;
753
754 lwp_free (lp);
755 }
756 else
757 lpprev = lp;
758 }
759 }
760
761 /* Add the LWP specified by PTID to the list. PTID is the first LWP
762 in the process. Return a pointer to the structure describing the
763 new LWP.
764
765 This differs from add_lwp in that we don't let the arch specific
766 bits know about this new thread. Current clients of this callback
767 take the opportunity to install watchpoints in the new thread, and
768 we shouldn't do that for the first thread. If we're spawning a
769 child ("run"), the thread executes the shell wrapper first, and we
770 shouldn't touch it until it execs the program we want to debug.
771 For "attach", it'd be okay to call the callback, but it's not
772 necessary, because watchpoints can't yet have been inserted into
773 the inferior. */
774
775 static struct lwp_info *
776 add_initial_lwp (ptid_t ptid)
777 {
778 struct lwp_info *lp;
779
780 gdb_assert (ptid_lwp_p (ptid));
781
782 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
783
784 memset (lp, 0, sizeof (struct lwp_info));
785
786 lp->last_resume_kind = resume_continue;
787 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
788
789 lp->ptid = ptid;
790 lp->core = -1;
791
792 lp->next = lwp_list;
793 lwp_list = lp;
794
795 return lp;
796 }
797
798 /* Add the LWP specified by PID to the list. Return a pointer to the
799 structure describing the new LWP. The LWP should already be
800 stopped. */
801
802 static struct lwp_info *
803 add_lwp (ptid_t ptid)
804 {
805 struct lwp_info *lp;
806
807 lp = add_initial_lwp (ptid);
808
809 /* Let the arch specific bits know about this new thread. Current
810 clients of this callback take the opportunity to install
811 watchpoints in the new thread. We don't do this for the first
812 thread though. See add_initial_lwp. */
813 if (linux_nat_new_thread != NULL)
814 linux_nat_new_thread (lp);
815
816 return lp;
817 }
818
819 /* Remove the LWP specified by PID from the list. */
820
821 static void
822 delete_lwp (ptid_t ptid)
823 {
824 struct lwp_info *lp, *lpprev;
825
826 lpprev = NULL;
827
828 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
829 if (ptid_equal (lp->ptid, ptid))
830 break;
831
832 if (!lp)
833 return;
834
835 if (lpprev)
836 lpprev->next = lp->next;
837 else
838 lwp_list = lp->next;
839
840 lwp_free (lp);
841 }
842
843 /* Return a pointer to the structure describing the LWP corresponding
844 to PID. If no corresponding LWP could be found, return NULL. */
845
846 static struct lwp_info *
847 find_lwp_pid (ptid_t ptid)
848 {
849 struct lwp_info *lp;
850 int lwp;
851
852 if (ptid_lwp_p (ptid))
853 lwp = ptid_get_lwp (ptid);
854 else
855 lwp = ptid_get_pid (ptid);
856
857 for (lp = lwp_list; lp; lp = lp->next)
858 if (lwp == ptid_get_lwp (lp->ptid))
859 return lp;
860
861 return NULL;
862 }
863
864 /* See nat/linux-nat.h. */
865
866 struct lwp_info *
867 iterate_over_lwps (ptid_t filter,
868 iterate_over_lwps_ftype callback,
869 void *data)
870 {
871 struct lwp_info *lp, *lpnext;
872
873 for (lp = lwp_list; lp; lp = lpnext)
874 {
875 lpnext = lp->next;
876
877 if (ptid_match (lp->ptid, filter))
878 {
879 if ((*callback) (lp, data) != 0)
880 return lp;
881 }
882 }
883
884 return NULL;
885 }
886
887 /* Update our internal state when changing from one checkpoint to
888 another indicated by NEW_PTID. We can only switch single-threaded
889 applications, so we only create one new LWP, and the previous list
890 is discarded. */
891
892 void
893 linux_nat_switch_fork (ptid_t new_ptid)
894 {
895 struct lwp_info *lp;
896
897 purge_lwp_list (ptid_get_pid (inferior_ptid));
898
899 lp = add_lwp (new_ptid);
900 lp->stopped = 1;
901
902 /* This changes the thread's ptid while preserving the gdb thread
903 num. Also changes the inferior pid, while preserving the
904 inferior num. */
905 thread_change_ptid (inferior_ptid, new_ptid);
906
907 /* We've just told GDB core that the thread changed target id, but,
908 in fact, it really is a different thread, with different register
909 contents. */
910 registers_changed ();
911 }
912
913 /* Handle the exit of a single thread LP. */
914
915 static void
916 exit_lwp (struct lwp_info *lp)
917 {
918 struct thread_info *th = find_thread_ptid (lp->ptid);
919
920 if (th)
921 {
922 if (print_thread_events)
923 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
924
925 delete_thread (lp->ptid);
926 }
927
928 delete_lwp (lp->ptid);
929 }
930
931 /* Wait for the LWP specified by LP, which we have just attached to.
932 Returns a wait status for that LWP, to cache. */
933
934 static int
935 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
936 int *signalled)
937 {
938 pid_t new_pid, pid = ptid_get_lwp (ptid);
939 int status;
940
941 if (linux_proc_pid_is_stopped (pid))
942 {
943 if (debug_linux_nat)
944 fprintf_unfiltered (gdb_stdlog,
945 "LNPAW: Attaching to a stopped process\n");
946
947 /* The process is definitely stopped. It is in a job control
948 stop, unless the kernel predates the TASK_STOPPED /
949 TASK_TRACED distinction, in which case it might be in a
950 ptrace stop. Make sure it is in a ptrace stop; from there we
951 can kill it, signal it, et cetera.
952
953 First make sure there is a pending SIGSTOP. Since we are
954 already attached, the process can not transition from stopped
955 to running without a PTRACE_CONT; so we know this signal will
956 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
957 probably already in the queue (unless this kernel is old
958 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
959 is not an RT signal, it can only be queued once. */
960 kill_lwp (pid, SIGSTOP);
961
962 /* Finally, resume the stopped process. This will deliver the SIGSTOP
963 (or a higher priority signal, just like normal PTRACE_ATTACH). */
964 ptrace (PTRACE_CONT, pid, 0, 0);
965 }
966
967 /* Make sure the initial process is stopped. The user-level threads
968 layer might want to poke around in the inferior, and that won't
969 work if things haven't stabilized yet. */
970 new_pid = my_waitpid (pid, &status, 0);
971 if (new_pid == -1 && errno == ECHILD)
972 {
973 if (first)
974 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
975
976 /* Try again with __WCLONE to check cloned processes. */
977 new_pid = my_waitpid (pid, &status, __WCLONE);
978 *cloned = 1;
979 }
980
981 gdb_assert (pid == new_pid);
982
983 if (!WIFSTOPPED (status))
984 {
985 /* The pid we tried to attach has apparently just exited. */
986 if (debug_linux_nat)
987 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
988 pid, status_to_str (status));
989 return status;
990 }
991
992 if (WSTOPSIG (status) != SIGSTOP)
993 {
994 *signalled = 1;
995 if (debug_linux_nat)
996 fprintf_unfiltered (gdb_stdlog,
997 "LNPAW: Received %s after attaching\n",
998 status_to_str (status));
999 }
1000
1001 return status;
1002 }
1003
1004 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1005 the new LWP could not be attached, or 1 if we're already auto
1006 attached to this thread, but haven't processed the
1007 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1008 its existance, without considering it an error. */
1009
1010 int
1011 lin_lwp_attach_lwp (ptid_t ptid)
1012 {
1013 struct lwp_info *lp;
1014 int lwpid;
1015
1016 gdb_assert (ptid_lwp_p (ptid));
1017
1018 lp = find_lwp_pid (ptid);
1019 lwpid = ptid_get_lwp (ptid);
1020
1021 /* We assume that we're already attached to any LWP that is already
1022 in our list of LWPs. If we're not seeing exit events from threads
1023 and we've had PID wraparound since we last tried to stop all threads,
1024 this assumption might be wrong; fortunately, this is very unlikely
1025 to happen. */
1026 if (lp == NULL)
1027 {
1028 int status, cloned = 0, signalled = 0;
1029
1030 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1031 {
1032 if (linux_supports_tracefork ())
1033 {
1034 /* If we haven't stopped all threads when we get here,
1035 we may have seen a thread listed in thread_db's list,
1036 but not processed the PTRACE_EVENT_CLONE yet. If
1037 that's the case, ignore this new thread, and let
1038 normal event handling discover it later. */
1039 if (in_pid_list_p (stopped_pids, lwpid))
1040 {
1041 /* We've already seen this thread stop, but we
1042 haven't seen the PTRACE_EVENT_CLONE extended
1043 event yet. */
1044 if (debug_linux_nat)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "LLAL: attach failed, but already seen "
1047 "this thread %s stop\n",
1048 target_pid_to_str (ptid));
1049 return 1;
1050 }
1051 else
1052 {
1053 int new_pid;
1054 int status;
1055
1056 if (debug_linux_nat)
1057 fprintf_unfiltered (gdb_stdlog,
1058 "LLAL: attach failed, and haven't seen "
1059 "this thread %s stop yet\n",
1060 target_pid_to_str (ptid));
1061
1062 /* We may or may not be attached to the LWP already.
1063 Try waitpid on it. If that errors, we're not
1064 attached to the LWP yet. Otherwise, we're
1065 already attached. */
1066 gdb_assert (lwpid > 0);
1067 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1068 if (new_pid == -1 && errno == ECHILD)
1069 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1070 if (new_pid != -1)
1071 {
1072 if (new_pid == 0)
1073 {
1074 /* The child hasn't stopped for its initial
1075 SIGSTOP stop yet. */
1076 if (debug_linux_nat)
1077 fprintf_unfiltered (gdb_stdlog,
1078 "LLAL: child hasn't "
1079 "stopped yet\n");
1080 }
1081 else if (WIFSTOPPED (status))
1082 {
1083 if (debug_linux_nat)
1084 fprintf_unfiltered (gdb_stdlog,
1085 "LLAL: adding to stopped_pids\n");
1086 add_to_pid_list (&stopped_pids, lwpid, status);
1087 }
1088 return 1;
1089 }
1090 }
1091 }
1092
1093 /* If we fail to attach to the thread, issue a warning,
1094 but continue. One way this can happen is if thread
1095 creation is interrupted; as of Linux kernel 2.6.19, a
1096 bug may place threads in the thread list and then fail
1097 to create them. */
1098 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1099 safe_strerror (errno));
1100 return -1;
1101 }
1102
1103 if (debug_linux_nat)
1104 fprintf_unfiltered (gdb_stdlog,
1105 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1106 target_pid_to_str (ptid));
1107
1108 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1109 if (!WIFSTOPPED (status))
1110 return 1;
1111
1112 lp = add_lwp (ptid);
1113 lp->stopped = 1;
1114 lp->last_resume_kind = resume_stop;
1115 lp->cloned = cloned;
1116 lp->signalled = signalled;
1117 if (WSTOPSIG (status) != SIGSTOP)
1118 {
1119 lp->resumed = 1;
1120 lp->status = status;
1121 }
1122
1123 target_post_attach (ptid_get_lwp (lp->ptid));
1124
1125 if (debug_linux_nat)
1126 {
1127 fprintf_unfiltered (gdb_stdlog,
1128 "LLAL: waitpid %s received %s\n",
1129 target_pid_to_str (ptid),
1130 status_to_str (status));
1131 }
1132 }
1133
1134 return 0;
1135 }
1136
1137 static void
1138 linux_nat_create_inferior (struct target_ops *ops,
1139 char *exec_file, char *allargs, char **env,
1140 int from_tty)
1141 {
1142 struct cleanup *restore_personality
1143 = maybe_disable_address_space_randomization (disable_randomization);
1144
1145 /* The fork_child mechanism is synchronous and calls target_wait, so
1146 we have to mask the async mode. */
1147
1148 /* Make sure we report all signals during startup. */
1149 linux_nat_pass_signals (ops, 0, NULL);
1150
1151 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1152
1153 do_cleanups (restore_personality);
1154 }
1155
1156 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1157 already attached. Returns true if a new LWP is found, false
1158 otherwise. */
1159
1160 static int
1161 attach_proc_task_lwp_callback (ptid_t ptid)
1162 {
1163 struct lwp_info *lp;
1164
1165 /* Ignore LWPs we're already attached to. */
1166 lp = find_lwp_pid (ptid);
1167 if (lp == NULL)
1168 {
1169 int lwpid = ptid_get_lwp (ptid);
1170
1171 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1172 {
1173 int err = errno;
1174
1175 /* Be quiet if we simply raced with the thread exiting.
1176 EPERM is returned if the thread's task still exists, and
1177 is marked as exited or zombie, as well as other
1178 conditions, so in that case, confirm the status in
1179 /proc/PID/status. */
1180 if (err == ESRCH
1181 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1182 {
1183 if (debug_linux_nat)
1184 {
1185 fprintf_unfiltered (gdb_stdlog,
1186 "Cannot attach to lwp %d: "
1187 "thread is gone (%d: %s)\n",
1188 lwpid, err, safe_strerror (err));
1189 }
1190 }
1191 else
1192 {
1193 warning (_("Cannot attach to lwp %d: %s"),
1194 lwpid,
1195 linux_ptrace_attach_fail_reason_string (ptid,
1196 err));
1197 }
1198 }
1199 else
1200 {
1201 if (debug_linux_nat)
1202 fprintf_unfiltered (gdb_stdlog,
1203 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1204 target_pid_to_str (ptid));
1205
1206 lp = add_lwp (ptid);
1207 lp->cloned = 1;
1208
1209 /* The next time we wait for this LWP we'll see a SIGSTOP as
1210 PTRACE_ATTACH brings it to a halt. */
1211 lp->signalled = 1;
1212
1213 /* We need to wait for a stop before being able to make the
1214 next ptrace call on this LWP. */
1215 lp->must_set_ptrace_flags = 1;
1216 }
1217
1218 return 1;
1219 }
1220 return 0;
1221 }
1222
1223 static void
1224 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1225 {
1226 struct lwp_info *lp;
1227 int status;
1228 ptid_t ptid;
1229
1230 /* Make sure we report all signals during attach. */
1231 linux_nat_pass_signals (ops, 0, NULL);
1232
1233 TRY
1234 {
1235 linux_ops->to_attach (ops, args, from_tty);
1236 }
1237 CATCH (ex, RETURN_MASK_ERROR)
1238 {
1239 pid_t pid = parse_pid_to_attach (args);
1240 struct buffer buffer;
1241 char *message, *buffer_s;
1242
1243 message = xstrdup (ex.message);
1244 make_cleanup (xfree, message);
1245
1246 buffer_init (&buffer);
1247 linux_ptrace_attach_fail_reason (pid, &buffer);
1248
1249 buffer_grow_str0 (&buffer, "");
1250 buffer_s = buffer_finish (&buffer);
1251 make_cleanup (xfree, buffer_s);
1252
1253 if (*buffer_s != '\0')
1254 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1255 else
1256 throw_error (ex.error, "%s", message);
1257 }
1258 END_CATCH
1259
1260 /* The ptrace base target adds the main thread with (pid,0,0)
1261 format. Decorate it with lwp info. */
1262 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1263 ptid_get_pid (inferior_ptid),
1264 0);
1265 thread_change_ptid (inferior_ptid, ptid);
1266
1267 /* Add the initial process as the first LWP to the list. */
1268 lp = add_initial_lwp (ptid);
1269
1270 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1271 &lp->signalled);
1272 if (!WIFSTOPPED (status))
1273 {
1274 if (WIFEXITED (status))
1275 {
1276 int exit_code = WEXITSTATUS (status);
1277
1278 target_terminal_ours ();
1279 target_mourn_inferior ();
1280 if (exit_code == 0)
1281 error (_("Unable to attach: program exited normally."));
1282 else
1283 error (_("Unable to attach: program exited with code %d."),
1284 exit_code);
1285 }
1286 else if (WIFSIGNALED (status))
1287 {
1288 enum gdb_signal signo;
1289
1290 target_terminal_ours ();
1291 target_mourn_inferior ();
1292
1293 signo = gdb_signal_from_host (WTERMSIG (status));
1294 error (_("Unable to attach: program terminated with signal "
1295 "%s, %s."),
1296 gdb_signal_to_name (signo),
1297 gdb_signal_to_string (signo));
1298 }
1299
1300 internal_error (__FILE__, __LINE__,
1301 _("unexpected status %d for PID %ld"),
1302 status, (long) ptid_get_lwp (ptid));
1303 }
1304
1305 lp->stopped = 1;
1306
1307 /* Save the wait status to report later. */
1308 lp->resumed = 1;
1309 if (debug_linux_nat)
1310 fprintf_unfiltered (gdb_stdlog,
1311 "LNA: waitpid %ld, saving status %s\n",
1312 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1313
1314 lp->status = status;
1315
1316 /* We must attach to every LWP. If /proc is mounted, use that to
1317 find them now. The inferior may be using raw clone instead of
1318 using pthreads. But even if it is using pthreads, thread_db
1319 walks structures in the inferior's address space to find the list
1320 of threads/LWPs, and those structures may well be corrupted.
1321 Note that once thread_db is loaded, we'll still use it to list
1322 threads and associate pthread info with each LWP. */
1323 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1324 attach_proc_task_lwp_callback);
1325
1326 if (target_can_async_p ())
1327 target_async (inferior_event_handler, 0);
1328 }
1329
1330 /* Get pending status of LP. */
1331 static int
1332 get_pending_status (struct lwp_info *lp, int *status)
1333 {
1334 enum gdb_signal signo = GDB_SIGNAL_0;
1335
1336 /* If we paused threads momentarily, we may have stored pending
1337 events in lp->status or lp->waitstatus (see stop_wait_callback),
1338 and GDB core hasn't seen any signal for those threads.
1339 Otherwise, the last signal reported to the core is found in the
1340 thread object's stop_signal.
1341
1342 There's a corner case that isn't handled here at present. Only
1343 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1344 stop_signal make sense as a real signal to pass to the inferior.
1345 Some catchpoint related events, like
1346 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1347 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1348 those traps are debug API (ptrace in our case) related and
1349 induced; the inferior wouldn't see them if it wasn't being
1350 traced. Hence, we should never pass them to the inferior, even
1351 when set to pass state. Since this corner case isn't handled by
1352 infrun.c when proceeding with a signal, for consistency, neither
1353 do we handle it here (or elsewhere in the file we check for
1354 signal pass state). Normally SIGTRAP isn't set to pass state, so
1355 this is really a corner case. */
1356
1357 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1358 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1359 else if (lp->status)
1360 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1361 else if (non_stop && !is_executing (lp->ptid))
1362 {
1363 struct thread_info *tp = find_thread_ptid (lp->ptid);
1364
1365 signo = tp->suspend.stop_signal;
1366 }
1367 else if (!non_stop)
1368 {
1369 struct target_waitstatus last;
1370 ptid_t last_ptid;
1371
1372 get_last_target_status (&last_ptid, &last);
1373
1374 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1375 {
1376 struct thread_info *tp = find_thread_ptid (lp->ptid);
1377
1378 signo = tp->suspend.stop_signal;
1379 }
1380 }
1381
1382 *status = 0;
1383
1384 if (signo == GDB_SIGNAL_0)
1385 {
1386 if (debug_linux_nat)
1387 fprintf_unfiltered (gdb_stdlog,
1388 "GPT: lwp %s has no pending signal\n",
1389 target_pid_to_str (lp->ptid));
1390 }
1391 else if (!signal_pass_state (signo))
1392 {
1393 if (debug_linux_nat)
1394 fprintf_unfiltered (gdb_stdlog,
1395 "GPT: lwp %s had signal %s, "
1396 "but it is in no pass state\n",
1397 target_pid_to_str (lp->ptid),
1398 gdb_signal_to_string (signo));
1399 }
1400 else
1401 {
1402 *status = W_STOPCODE (gdb_signal_to_host (signo));
1403
1404 if (debug_linux_nat)
1405 fprintf_unfiltered (gdb_stdlog,
1406 "GPT: lwp %s has pending signal %s\n",
1407 target_pid_to_str (lp->ptid),
1408 gdb_signal_to_string (signo));
1409 }
1410
1411 return 0;
1412 }
1413
1414 static int
1415 detach_callback (struct lwp_info *lp, void *data)
1416 {
1417 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1418
1419 if (debug_linux_nat && lp->status)
1420 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1421 strsignal (WSTOPSIG (lp->status)),
1422 target_pid_to_str (lp->ptid));
1423
1424 /* If there is a pending SIGSTOP, get rid of it. */
1425 if (lp->signalled)
1426 {
1427 if (debug_linux_nat)
1428 fprintf_unfiltered (gdb_stdlog,
1429 "DC: Sending SIGCONT to %s\n",
1430 target_pid_to_str (lp->ptid));
1431
1432 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1433 lp->signalled = 0;
1434 }
1435
1436 /* We don't actually detach from the LWP that has an id equal to the
1437 overall process id just yet. */
1438 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1439 {
1440 int status = 0;
1441
1442 /* Pass on any pending signal for this LWP. */
1443 get_pending_status (lp, &status);
1444
1445 if (linux_nat_prepare_to_resume != NULL)
1446 linux_nat_prepare_to_resume (lp);
1447 errno = 0;
1448 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1449 WSTOPSIG (status)) < 0)
1450 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1451 safe_strerror (errno));
1452
1453 if (debug_linux_nat)
1454 fprintf_unfiltered (gdb_stdlog,
1455 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1456 target_pid_to_str (lp->ptid),
1457 strsignal (WSTOPSIG (status)));
1458
1459 delete_lwp (lp->ptid);
1460 }
1461
1462 return 0;
1463 }
1464
1465 static void
1466 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1467 {
1468 int pid;
1469 int status;
1470 struct lwp_info *main_lwp;
1471
1472 pid = ptid_get_pid (inferior_ptid);
1473
1474 /* Don't unregister from the event loop, as there may be other
1475 inferiors running. */
1476
1477 /* Stop all threads before detaching. ptrace requires that the
1478 thread is stopped to sucessfully detach. */
1479 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1480 /* ... and wait until all of them have reported back that
1481 they're no longer running. */
1482 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1483
1484 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1485
1486 /* Only the initial process should be left right now. */
1487 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1488
1489 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1490
1491 /* Pass on any pending signal for the last LWP. */
1492 if ((args == NULL || *args == '\0')
1493 && get_pending_status (main_lwp, &status) != -1
1494 && WIFSTOPPED (status))
1495 {
1496 char *tem;
1497
1498 /* Put the signal number in ARGS so that inf_ptrace_detach will
1499 pass it along with PTRACE_DETACH. */
1500 tem = alloca (8);
1501 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1502 args = tem;
1503 if (debug_linux_nat)
1504 fprintf_unfiltered (gdb_stdlog,
1505 "LND: Sending signal %s to %s\n",
1506 args,
1507 target_pid_to_str (main_lwp->ptid));
1508 }
1509
1510 if (linux_nat_prepare_to_resume != NULL)
1511 linux_nat_prepare_to_resume (main_lwp);
1512 delete_lwp (main_lwp->ptid);
1513
1514 if (forks_exist_p ())
1515 {
1516 /* Multi-fork case. The current inferior_ptid is being detached
1517 from, but there are other viable forks to debug. Detach from
1518 the current fork, and context-switch to the first
1519 available. */
1520 linux_fork_detach (args, from_tty);
1521 }
1522 else
1523 linux_ops->to_detach (ops, args, from_tty);
1524 }
1525
1526 /* Resume execution of the inferior process. If STEP is nonzero,
1527 single-step it. If SIGNAL is nonzero, give it that signal. */
1528
1529 static void
1530 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1531 enum gdb_signal signo)
1532 {
1533 lp->step = step;
1534
1535 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1536 We only presently need that if the LWP is stepped though (to
1537 handle the case of stepping a breakpoint instruction). */
1538 if (step)
1539 {
1540 struct regcache *regcache = get_thread_regcache (lp->ptid);
1541
1542 lp->stop_pc = regcache_read_pc (regcache);
1543 }
1544 else
1545 lp->stop_pc = 0;
1546
1547 if (linux_nat_prepare_to_resume != NULL)
1548 linux_nat_prepare_to_resume (lp);
1549 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1550
1551 /* Successfully resumed. Clear state that no longer makes sense,
1552 and mark the LWP as running. Must not do this before resuming
1553 otherwise if that fails other code will be confused. E.g., we'd
1554 later try to stop the LWP and hang forever waiting for a stop
1555 status. Note that we must not throw after this is cleared,
1556 otherwise handle_zombie_lwp_error would get confused. */
1557 lp->stopped = 0;
1558 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1559 registers_changed_ptid (lp->ptid);
1560 }
1561
1562 /* Called when we try to resume a stopped LWP and that errors out. If
1563 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1564 or about to become), discard the error, clear any pending status
1565 the LWP may have, and return true (we'll collect the exit status
1566 soon enough). Otherwise, return false. */
1567
1568 static int
1569 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1570 {
1571 /* If we get an error after resuming the LWP successfully, we'd
1572 confuse !T state for the LWP being gone. */
1573 gdb_assert (lp->stopped);
1574
1575 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1576 because even if ptrace failed with ESRCH, the tracee may be "not
1577 yet fully dead", but already refusing ptrace requests. In that
1578 case the tracee has 'R (Running)' state for a little bit
1579 (observed in Linux 3.18). See also the note on ESRCH in the
1580 ptrace(2) man page. Instead, check whether the LWP has any state
1581 other than ptrace-stopped. */
1582
1583 /* Don't assume anything if /proc/PID/status can't be read. */
1584 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1585 {
1586 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1587 lp->status = 0;
1588 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1589 return 1;
1590 }
1591 return 0;
1592 }
1593
1594 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1595 disappears while we try to resume it. */
1596
1597 static void
1598 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1599 {
1600 TRY
1601 {
1602 linux_resume_one_lwp_throw (lp, step, signo);
1603 }
1604 CATCH (ex, RETURN_MASK_ERROR)
1605 {
1606 if (!check_ptrace_stopped_lwp_gone (lp))
1607 throw_exception (ex);
1608 }
1609 END_CATCH
1610 }
1611
1612 /* Resume LP. */
1613
1614 static void
1615 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1616 {
1617 if (lp->stopped)
1618 {
1619 struct inferior *inf = find_inferior_ptid (lp->ptid);
1620
1621 if (inf->vfork_child != NULL)
1622 {
1623 if (debug_linux_nat)
1624 fprintf_unfiltered (gdb_stdlog,
1625 "RC: Not resuming %s (vfork parent)\n",
1626 target_pid_to_str (lp->ptid));
1627 }
1628 else if (!lwp_status_pending_p (lp))
1629 {
1630 if (debug_linux_nat)
1631 fprintf_unfiltered (gdb_stdlog,
1632 "RC: Resuming sibling %s, %s, %s\n",
1633 target_pid_to_str (lp->ptid),
1634 (signo != GDB_SIGNAL_0
1635 ? strsignal (gdb_signal_to_host (signo))
1636 : "0"),
1637 step ? "step" : "resume");
1638
1639 linux_resume_one_lwp (lp, step, signo);
1640 }
1641 else
1642 {
1643 if (debug_linux_nat)
1644 fprintf_unfiltered (gdb_stdlog,
1645 "RC: Not resuming sibling %s (has pending)\n",
1646 target_pid_to_str (lp->ptid));
1647 }
1648 }
1649 else
1650 {
1651 if (debug_linux_nat)
1652 fprintf_unfiltered (gdb_stdlog,
1653 "RC: Not resuming sibling %s (not stopped)\n",
1654 target_pid_to_str (lp->ptid));
1655 }
1656 }
1657
1658 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1659 Resume LWP with the last stop signal, if it is in pass state. */
1660
1661 static int
1662 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1663 {
1664 enum gdb_signal signo = GDB_SIGNAL_0;
1665
1666 if (lp == except)
1667 return 0;
1668
1669 if (lp->stopped)
1670 {
1671 struct thread_info *thread;
1672
1673 thread = find_thread_ptid (lp->ptid);
1674 if (thread != NULL)
1675 {
1676 signo = thread->suspend.stop_signal;
1677 thread->suspend.stop_signal = GDB_SIGNAL_0;
1678 }
1679 }
1680
1681 resume_lwp (lp, 0, signo);
1682 return 0;
1683 }
1684
1685 static int
1686 resume_clear_callback (struct lwp_info *lp, void *data)
1687 {
1688 lp->resumed = 0;
1689 lp->last_resume_kind = resume_stop;
1690 return 0;
1691 }
1692
1693 static int
1694 resume_set_callback (struct lwp_info *lp, void *data)
1695 {
1696 lp->resumed = 1;
1697 lp->last_resume_kind = resume_continue;
1698 return 0;
1699 }
1700
1701 static void
1702 linux_nat_resume (struct target_ops *ops,
1703 ptid_t ptid, int step, enum gdb_signal signo)
1704 {
1705 struct lwp_info *lp;
1706 int resume_many;
1707
1708 if (debug_linux_nat)
1709 fprintf_unfiltered (gdb_stdlog,
1710 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1711 step ? "step" : "resume",
1712 target_pid_to_str (ptid),
1713 (signo != GDB_SIGNAL_0
1714 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1715 target_pid_to_str (inferior_ptid));
1716
1717 /* A specific PTID means `step only this process id'. */
1718 resume_many = (ptid_equal (minus_one_ptid, ptid)
1719 || ptid_is_pid (ptid));
1720
1721 /* Mark the lwps we're resuming as resumed. */
1722 iterate_over_lwps (ptid, resume_set_callback, NULL);
1723
1724 /* See if it's the current inferior that should be handled
1725 specially. */
1726 if (resume_many)
1727 lp = find_lwp_pid (inferior_ptid);
1728 else
1729 lp = find_lwp_pid (ptid);
1730 gdb_assert (lp != NULL);
1731
1732 /* Remember if we're stepping. */
1733 lp->last_resume_kind = step ? resume_step : resume_continue;
1734
1735 /* If we have a pending wait status for this thread, there is no
1736 point in resuming the process. But first make sure that
1737 linux_nat_wait won't preemptively handle the event - we
1738 should never take this short-circuit if we are going to
1739 leave LP running, since we have skipped resuming all the
1740 other threads. This bit of code needs to be synchronized
1741 with linux_nat_wait. */
1742
1743 if (lp->status && WIFSTOPPED (lp->status))
1744 {
1745 if (!lp->step
1746 && WSTOPSIG (lp->status)
1747 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1748 {
1749 if (debug_linux_nat)
1750 fprintf_unfiltered (gdb_stdlog,
1751 "LLR: Not short circuiting for ignored "
1752 "status 0x%x\n", lp->status);
1753
1754 /* FIXME: What should we do if we are supposed to continue
1755 this thread with a signal? */
1756 gdb_assert (signo == GDB_SIGNAL_0);
1757 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1758 lp->status = 0;
1759 }
1760 }
1761
1762 if (lwp_status_pending_p (lp))
1763 {
1764 /* FIXME: What should we do if we are supposed to continue
1765 this thread with a signal? */
1766 gdb_assert (signo == GDB_SIGNAL_0);
1767
1768 if (debug_linux_nat)
1769 fprintf_unfiltered (gdb_stdlog,
1770 "LLR: Short circuiting for status 0x%x\n",
1771 lp->status);
1772
1773 if (target_can_async_p ())
1774 {
1775 target_async (inferior_event_handler, 0);
1776 /* Tell the event loop we have something to process. */
1777 async_file_mark ();
1778 }
1779 return;
1780 }
1781
1782 if (resume_many)
1783 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1784
1785 linux_resume_one_lwp (lp, step, signo);
1786
1787 if (debug_linux_nat)
1788 fprintf_unfiltered (gdb_stdlog,
1789 "LLR: %s %s, %s (resume event thread)\n",
1790 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1791 target_pid_to_str (ptid),
1792 (signo != GDB_SIGNAL_0
1793 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1794
1795 if (target_can_async_p ())
1796 target_async (inferior_event_handler, 0);
1797 }
1798
1799 /* Send a signal to an LWP. */
1800
1801 static int
1802 kill_lwp (int lwpid, int signo)
1803 {
1804 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1805 fails, then we are not using nptl threads and we should be using kill. */
1806
1807 #ifdef HAVE_TKILL_SYSCALL
1808 {
1809 static int tkill_failed;
1810
1811 if (!tkill_failed)
1812 {
1813 int ret;
1814
1815 errno = 0;
1816 ret = syscall (__NR_tkill, lwpid, signo);
1817 if (errno != ENOSYS)
1818 return ret;
1819 tkill_failed = 1;
1820 }
1821 }
1822 #endif
1823
1824 return kill (lwpid, signo);
1825 }
1826
1827 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1828 event, check if the core is interested in it: if not, ignore the
1829 event, and keep waiting; otherwise, we need to toggle the LWP's
1830 syscall entry/exit status, since the ptrace event itself doesn't
1831 indicate it, and report the trap to higher layers. */
1832
1833 static int
1834 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1835 {
1836 struct target_waitstatus *ourstatus = &lp->waitstatus;
1837 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1838 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1839
1840 if (stopping)
1841 {
1842 /* If we're stopping threads, there's a SIGSTOP pending, which
1843 makes it so that the LWP reports an immediate syscall return,
1844 followed by the SIGSTOP. Skip seeing that "return" using
1845 PTRACE_CONT directly, and let stop_wait_callback collect the
1846 SIGSTOP. Later when the thread is resumed, a new syscall
1847 entry event. If we didn't do this (and returned 0), we'd
1848 leave a syscall entry pending, and our caller, by using
1849 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1850 itself. Later, when the user re-resumes this LWP, we'd see
1851 another syscall entry event and we'd mistake it for a return.
1852
1853 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1854 (leaving immediately with LWP->signalled set, without issuing
1855 a PTRACE_CONT), it would still be problematic to leave this
1856 syscall enter pending, as later when the thread is resumed,
1857 it would then see the same syscall exit mentioned above,
1858 followed by the delayed SIGSTOP, while the syscall didn't
1859 actually get to execute. It seems it would be even more
1860 confusing to the user. */
1861
1862 if (debug_linux_nat)
1863 fprintf_unfiltered (gdb_stdlog,
1864 "LHST: ignoring syscall %d "
1865 "for LWP %ld (stopping threads), "
1866 "resuming with PTRACE_CONT for SIGSTOP\n",
1867 syscall_number,
1868 ptid_get_lwp (lp->ptid));
1869
1870 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1871 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1872 lp->stopped = 0;
1873 return 1;
1874 }
1875
1876 if (catch_syscall_enabled ())
1877 {
1878 /* Always update the entry/return state, even if this particular
1879 syscall isn't interesting to the core now. In async mode,
1880 the user could install a new catchpoint for this syscall
1881 between syscall enter/return, and we'll need to know to
1882 report a syscall return if that happens. */
1883 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1884 ? TARGET_WAITKIND_SYSCALL_RETURN
1885 : TARGET_WAITKIND_SYSCALL_ENTRY);
1886
1887 if (catching_syscall_number (syscall_number))
1888 {
1889 /* Alright, an event to report. */
1890 ourstatus->kind = lp->syscall_state;
1891 ourstatus->value.syscall_number = syscall_number;
1892
1893 if (debug_linux_nat)
1894 fprintf_unfiltered (gdb_stdlog,
1895 "LHST: stopping for %s of syscall %d"
1896 " for LWP %ld\n",
1897 lp->syscall_state
1898 == TARGET_WAITKIND_SYSCALL_ENTRY
1899 ? "entry" : "return",
1900 syscall_number,
1901 ptid_get_lwp (lp->ptid));
1902 return 0;
1903 }
1904
1905 if (debug_linux_nat)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "LHST: ignoring %s of syscall %d "
1908 "for LWP %ld\n",
1909 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1910 ? "entry" : "return",
1911 syscall_number,
1912 ptid_get_lwp (lp->ptid));
1913 }
1914 else
1915 {
1916 /* If we had been syscall tracing, and hence used PT_SYSCALL
1917 before on this LWP, it could happen that the user removes all
1918 syscall catchpoints before we get to process this event.
1919 There are two noteworthy issues here:
1920
1921 - When stopped at a syscall entry event, resuming with
1922 PT_STEP still resumes executing the syscall and reports a
1923 syscall return.
1924
1925 - Only PT_SYSCALL catches syscall enters. If we last
1926 single-stepped this thread, then this event can't be a
1927 syscall enter. If we last single-stepped this thread, this
1928 has to be a syscall exit.
1929
1930 The points above mean that the next resume, be it PT_STEP or
1931 PT_CONTINUE, can not trigger a syscall trace event. */
1932 if (debug_linux_nat)
1933 fprintf_unfiltered (gdb_stdlog,
1934 "LHST: caught syscall event "
1935 "with no syscall catchpoints."
1936 " %d for LWP %ld, ignoring\n",
1937 syscall_number,
1938 ptid_get_lwp (lp->ptid));
1939 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1940 }
1941
1942 /* The core isn't interested in this event. For efficiency, avoid
1943 stopping all threads only to have the core resume them all again.
1944 Since we're not stopping threads, if we're still syscall tracing
1945 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1946 subsequent syscall. Simply resume using the inf-ptrace layer,
1947 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1948
1949 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1950 return 1;
1951 }
1952
1953 /* Handle a GNU/Linux extended wait response. If we see a clone
1954 event, we need to add the new LWP to our list (and not report the
1955 trap to higher layers). This function returns non-zero if the
1956 event should be ignored and we should wait again. If STOPPING is
1957 true, the new LWP remains stopped, otherwise it is continued. */
1958
1959 static int
1960 linux_handle_extended_wait (struct lwp_info *lp, int status,
1961 int stopping)
1962 {
1963 int pid = ptid_get_lwp (lp->ptid);
1964 struct target_waitstatus *ourstatus = &lp->waitstatus;
1965 int event = linux_ptrace_get_extended_event (status);
1966
1967 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1968 || event == PTRACE_EVENT_CLONE)
1969 {
1970 unsigned long new_pid;
1971 int ret;
1972
1973 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1974
1975 /* If we haven't already seen the new PID stop, wait for it now. */
1976 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1977 {
1978 /* The new child has a pending SIGSTOP. We can't affect it until it
1979 hits the SIGSTOP, but we're already attached. */
1980 ret = my_waitpid (new_pid, &status,
1981 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1982 if (ret == -1)
1983 perror_with_name (_("waiting for new child"));
1984 else if (ret != new_pid)
1985 internal_error (__FILE__, __LINE__,
1986 _("wait returned unexpected PID %d"), ret);
1987 else if (!WIFSTOPPED (status))
1988 internal_error (__FILE__, __LINE__,
1989 _("wait returned unexpected status 0x%x"), status);
1990 }
1991
1992 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1993
1994 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1995 {
1996 /* The arch-specific native code may need to know about new
1997 forks even if those end up never mapped to an
1998 inferior. */
1999 if (linux_nat_new_fork != NULL)
2000 linux_nat_new_fork (lp, new_pid);
2001 }
2002
2003 if (event == PTRACE_EVENT_FORK
2004 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2005 {
2006 /* Handle checkpointing by linux-fork.c here as a special
2007 case. We don't want the follow-fork-mode or 'catch fork'
2008 to interfere with this. */
2009
2010 /* This won't actually modify the breakpoint list, but will
2011 physically remove the breakpoints from the child. */
2012 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2013
2014 /* Retain child fork in ptrace (stopped) state. */
2015 if (!find_fork_pid (new_pid))
2016 add_fork (new_pid);
2017
2018 /* Report as spurious, so that infrun doesn't want to follow
2019 this fork. We're actually doing an infcall in
2020 linux-fork.c. */
2021 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2022
2023 /* Report the stop to the core. */
2024 return 0;
2025 }
2026
2027 if (event == PTRACE_EVENT_FORK)
2028 ourstatus->kind = TARGET_WAITKIND_FORKED;
2029 else if (event == PTRACE_EVENT_VFORK)
2030 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2031 else
2032 {
2033 struct lwp_info *new_lp;
2034
2035 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2036
2037 if (debug_linux_nat)
2038 fprintf_unfiltered (gdb_stdlog,
2039 "LHEW: Got clone event "
2040 "from LWP %d, new child is LWP %ld\n",
2041 pid, new_pid);
2042
2043 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2044 new_lp->cloned = 1;
2045 new_lp->stopped = 1;
2046
2047 if (WSTOPSIG (status) != SIGSTOP)
2048 {
2049 /* This can happen if someone starts sending signals to
2050 the new thread before it gets a chance to run, which
2051 have a lower number than SIGSTOP (e.g. SIGUSR1).
2052 This is an unlikely case, and harder to handle for
2053 fork / vfork than for clone, so we do not try - but
2054 we handle it for clone events here. We'll send
2055 the other signal on to the thread below. */
2056
2057 new_lp->signalled = 1;
2058 }
2059 else
2060 {
2061 struct thread_info *tp;
2062
2063 /* When we stop for an event in some other thread, and
2064 pull the thread list just as this thread has cloned,
2065 we'll have seen the new thread in the thread_db list
2066 before handling the CLONE event (glibc's
2067 pthread_create adds the new thread to the thread list
2068 before clone'ing, and has the kernel fill in the
2069 thread's tid on the clone call with
2070 CLONE_PARENT_SETTID). If that happened, and the core
2071 had requested the new thread to stop, we'll have
2072 killed it with SIGSTOP. But since SIGSTOP is not an
2073 RT signal, it can only be queued once. We need to be
2074 careful to not resume the LWP if we wanted it to
2075 stop. In that case, we'll leave the SIGSTOP pending.
2076 It will later be reported as GDB_SIGNAL_0. */
2077 tp = find_thread_ptid (new_lp->ptid);
2078 if (tp != NULL && tp->stop_requested)
2079 new_lp->last_resume_kind = resume_stop;
2080 else
2081 status = 0;
2082 }
2083
2084 /* If the thread_db layer is active, let it record the user
2085 level thread id and status, and add the thread to GDB's
2086 list. */
2087 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2088 {
2089 /* The process is not using thread_db. Add the LWP to
2090 GDB's list. */
2091 target_post_attach (ptid_get_lwp (new_lp->ptid));
2092 add_thread (new_lp->ptid);
2093 }
2094
2095 if (!stopping)
2096 {
2097 set_running (new_lp->ptid, 1);
2098 set_executing (new_lp->ptid, 1);
2099 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2100 resume_stop. */
2101 new_lp->last_resume_kind = resume_continue;
2102 }
2103
2104 if (status != 0)
2105 {
2106 /* We created NEW_LP so it cannot yet contain STATUS. */
2107 gdb_assert (new_lp->status == 0);
2108
2109 /* Save the wait status to report later. */
2110 if (debug_linux_nat)
2111 fprintf_unfiltered (gdb_stdlog,
2112 "LHEW: waitpid of new LWP %ld, "
2113 "saving status %s\n",
2114 (long) ptid_get_lwp (new_lp->ptid),
2115 status_to_str (status));
2116 new_lp->status = status;
2117 }
2118
2119 new_lp->resumed = !stopping;
2120 return 1;
2121 }
2122
2123 return 0;
2124 }
2125
2126 if (event == PTRACE_EVENT_EXEC)
2127 {
2128 if (debug_linux_nat)
2129 fprintf_unfiltered (gdb_stdlog,
2130 "LHEW: Got exec event from LWP %ld\n",
2131 ptid_get_lwp (lp->ptid));
2132
2133 ourstatus->kind = TARGET_WAITKIND_EXECD;
2134 ourstatus->value.execd_pathname
2135 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2136
2137 /* The thread that execed must have been resumed, but, when a
2138 thread execs, it changes its tid to the tgid, and the old
2139 tgid thread might have not been resumed. */
2140 lp->resumed = 1;
2141 return 0;
2142 }
2143
2144 if (event == PTRACE_EVENT_VFORK_DONE)
2145 {
2146 if (current_inferior ()->waiting_for_vfork_done)
2147 {
2148 if (debug_linux_nat)
2149 fprintf_unfiltered (gdb_stdlog,
2150 "LHEW: Got expected PTRACE_EVENT_"
2151 "VFORK_DONE from LWP %ld: stopping\n",
2152 ptid_get_lwp (lp->ptid));
2153
2154 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2155 return 0;
2156 }
2157
2158 if (debug_linux_nat)
2159 fprintf_unfiltered (gdb_stdlog,
2160 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2161 "from LWP %ld: ignoring\n",
2162 ptid_get_lwp (lp->ptid));
2163 return 1;
2164 }
2165
2166 internal_error (__FILE__, __LINE__,
2167 _("unknown ptrace event %d"), event);
2168 }
2169
2170 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2171 exited. */
2172
2173 static int
2174 wait_lwp (struct lwp_info *lp)
2175 {
2176 pid_t pid;
2177 int status = 0;
2178 int thread_dead = 0;
2179 sigset_t prev_mask;
2180
2181 gdb_assert (!lp->stopped);
2182 gdb_assert (lp->status == 0);
2183
2184 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2185 block_child_signals (&prev_mask);
2186
2187 for (;;)
2188 {
2189 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2190 was right and we should just call sigsuspend. */
2191
2192 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2193 if (pid == -1 && errno == ECHILD)
2194 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2195 if (pid == -1 && errno == ECHILD)
2196 {
2197 /* The thread has previously exited. We need to delete it
2198 now because, for some vendor 2.4 kernels with NPTL
2199 support backported, there won't be an exit event unless
2200 it is the main thread. 2.6 kernels will report an exit
2201 event for each thread that exits, as expected. */
2202 thread_dead = 1;
2203 if (debug_linux_nat)
2204 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2205 target_pid_to_str (lp->ptid));
2206 }
2207 if (pid != 0)
2208 break;
2209
2210 /* Bugs 10970, 12702.
2211 Thread group leader may have exited in which case we'll lock up in
2212 waitpid if there are other threads, even if they are all zombies too.
2213 Basically, we're not supposed to use waitpid this way.
2214 __WCLONE is not applicable for the leader so we can't use that.
2215 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2216 process; it gets ESRCH both for the zombie and for running processes.
2217
2218 As a workaround, check if we're waiting for the thread group leader and
2219 if it's a zombie, and avoid calling waitpid if it is.
2220
2221 This is racy, what if the tgl becomes a zombie right after we check?
2222 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2223 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2224
2225 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2226 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2227 {
2228 thread_dead = 1;
2229 if (debug_linux_nat)
2230 fprintf_unfiltered (gdb_stdlog,
2231 "WL: Thread group leader %s vanished.\n",
2232 target_pid_to_str (lp->ptid));
2233 break;
2234 }
2235
2236 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2237 get invoked despite our caller had them intentionally blocked by
2238 block_child_signals. This is sensitive only to the loop of
2239 linux_nat_wait_1 and there if we get called my_waitpid gets called
2240 again before it gets to sigsuspend so we can safely let the handlers
2241 get executed here. */
2242
2243 if (debug_linux_nat)
2244 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2245 sigsuspend (&suspend_mask);
2246 }
2247
2248 restore_child_signals_mask (&prev_mask);
2249
2250 if (!thread_dead)
2251 {
2252 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2253
2254 if (debug_linux_nat)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "WL: waitpid %s received %s\n",
2258 target_pid_to_str (lp->ptid),
2259 status_to_str (status));
2260 }
2261
2262 /* Check if the thread has exited. */
2263 if (WIFEXITED (status) || WIFSIGNALED (status))
2264 {
2265 thread_dead = 1;
2266 if (debug_linux_nat)
2267 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2268 target_pid_to_str (lp->ptid));
2269 }
2270 }
2271
2272 if (thread_dead)
2273 {
2274 exit_lwp (lp);
2275 return 0;
2276 }
2277
2278 gdb_assert (WIFSTOPPED (status));
2279 lp->stopped = 1;
2280
2281 if (lp->must_set_ptrace_flags)
2282 {
2283 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2284
2285 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2286 lp->must_set_ptrace_flags = 0;
2287 }
2288
2289 /* Handle GNU/Linux's syscall SIGTRAPs. */
2290 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2291 {
2292 /* No longer need the sysgood bit. The ptrace event ends up
2293 recorded in lp->waitstatus if we care for it. We can carry
2294 on handling the event like a regular SIGTRAP from here
2295 on. */
2296 status = W_STOPCODE (SIGTRAP);
2297 if (linux_handle_syscall_trap (lp, 1))
2298 return wait_lwp (lp);
2299 }
2300
2301 /* Handle GNU/Linux's extended waitstatus for trace events. */
2302 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2303 && linux_is_extended_waitstatus (status))
2304 {
2305 if (debug_linux_nat)
2306 fprintf_unfiltered (gdb_stdlog,
2307 "WL: Handling extended status 0x%06x\n",
2308 status);
2309 linux_handle_extended_wait (lp, status, 1);
2310 return 0;
2311 }
2312
2313 return status;
2314 }
2315
2316 /* Send a SIGSTOP to LP. */
2317
2318 static int
2319 stop_callback (struct lwp_info *lp, void *data)
2320 {
2321 if (!lp->stopped && !lp->signalled)
2322 {
2323 int ret;
2324
2325 if (debug_linux_nat)
2326 {
2327 fprintf_unfiltered (gdb_stdlog,
2328 "SC: kill %s **<SIGSTOP>**\n",
2329 target_pid_to_str (lp->ptid));
2330 }
2331 errno = 0;
2332 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2333 if (debug_linux_nat)
2334 {
2335 fprintf_unfiltered (gdb_stdlog,
2336 "SC: lwp kill %d %s\n",
2337 ret,
2338 errno ? safe_strerror (errno) : "ERRNO-OK");
2339 }
2340
2341 lp->signalled = 1;
2342 gdb_assert (lp->status == 0);
2343 }
2344
2345 return 0;
2346 }
2347
2348 /* Request a stop on LWP. */
2349
2350 void
2351 linux_stop_lwp (struct lwp_info *lwp)
2352 {
2353 stop_callback (lwp, NULL);
2354 }
2355
2356 /* See linux-nat.h */
2357
2358 void
2359 linux_stop_and_wait_all_lwps (void)
2360 {
2361 /* Stop all LWP's ... */
2362 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2363
2364 /* ... and wait until all of them have reported back that
2365 they're no longer running. */
2366 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2367 }
2368
2369 /* See linux-nat.h */
2370
2371 void
2372 linux_unstop_all_lwps (void)
2373 {
2374 iterate_over_lwps (minus_one_ptid,
2375 resume_stopped_resumed_lwps, &minus_one_ptid);
2376 }
2377
2378 /* Return non-zero if LWP PID has a pending SIGINT. */
2379
2380 static int
2381 linux_nat_has_pending_sigint (int pid)
2382 {
2383 sigset_t pending, blocked, ignored;
2384
2385 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2386
2387 if (sigismember (&pending, SIGINT)
2388 && !sigismember (&ignored, SIGINT))
2389 return 1;
2390
2391 return 0;
2392 }
2393
2394 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2395
2396 static int
2397 set_ignore_sigint (struct lwp_info *lp, void *data)
2398 {
2399 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2400 flag to consume the next one. */
2401 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2402 && WSTOPSIG (lp->status) == SIGINT)
2403 lp->status = 0;
2404 else
2405 lp->ignore_sigint = 1;
2406
2407 return 0;
2408 }
2409
2410 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2411 This function is called after we know the LWP has stopped; if the LWP
2412 stopped before the expected SIGINT was delivered, then it will never have
2413 arrived. Also, if the signal was delivered to a shared queue and consumed
2414 by a different thread, it will never be delivered to this LWP. */
2415
2416 static void
2417 maybe_clear_ignore_sigint (struct lwp_info *lp)
2418 {
2419 if (!lp->ignore_sigint)
2420 return;
2421
2422 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2423 {
2424 if (debug_linux_nat)
2425 fprintf_unfiltered (gdb_stdlog,
2426 "MCIS: Clearing bogus flag for %s\n",
2427 target_pid_to_str (lp->ptid));
2428 lp->ignore_sigint = 0;
2429 }
2430 }
2431
2432 /* Fetch the possible triggered data watchpoint info and store it in
2433 LP.
2434
2435 On some archs, like x86, that use debug registers to set
2436 watchpoints, it's possible that the way to know which watched
2437 address trapped, is to check the register that is used to select
2438 which address to watch. Problem is, between setting the watchpoint
2439 and reading back which data address trapped, the user may change
2440 the set of watchpoints, and, as a consequence, GDB changes the
2441 debug registers in the inferior. To avoid reading back a stale
2442 stopped-data-address when that happens, we cache in LP the fact
2443 that a watchpoint trapped, and the corresponding data address, as
2444 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2445 registers meanwhile, we have the cached data we can rely on. */
2446
2447 static int
2448 check_stopped_by_watchpoint (struct lwp_info *lp)
2449 {
2450 struct cleanup *old_chain;
2451
2452 if (linux_ops->to_stopped_by_watchpoint == NULL)
2453 return 0;
2454
2455 old_chain = save_inferior_ptid ();
2456 inferior_ptid = lp->ptid;
2457
2458 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2459 {
2460 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2461
2462 if (linux_ops->to_stopped_data_address != NULL)
2463 lp->stopped_data_address_p =
2464 linux_ops->to_stopped_data_address (&current_target,
2465 &lp->stopped_data_address);
2466 else
2467 lp->stopped_data_address_p = 0;
2468 }
2469
2470 do_cleanups (old_chain);
2471
2472 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2473 }
2474
2475 /* Called when the LWP stopped for a trap that could be explained by a
2476 watchpoint or a breakpoint. */
2477
2478 static void
2479 save_sigtrap (struct lwp_info *lp)
2480 {
2481 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2482 gdb_assert (lp->status != 0);
2483
2484 /* Check first if this was a SW/HW breakpoint before checking
2485 watchpoints, because at least s390 can't tell the data address of
2486 hardware watchpoint hits, and the kernel returns
2487 stopped-by-watchpoint as long as there's a watchpoint set. */
2488 if (linux_nat_status_is_event (lp->status))
2489 check_stopped_by_breakpoint (lp);
2490
2491 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2492 or hardware watchpoint. Check which is which if we got
2493 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2494 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2495 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2496 check_stopped_by_watchpoint (lp);
2497 }
2498
2499 /* Returns true if the LWP had stopped for a watchpoint. */
2500
2501 static int
2502 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2503 {
2504 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2505
2506 gdb_assert (lp != NULL);
2507
2508 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2509 }
2510
2511 static int
2512 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2513 {
2514 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2515
2516 gdb_assert (lp != NULL);
2517
2518 *addr_p = lp->stopped_data_address;
2519
2520 return lp->stopped_data_address_p;
2521 }
2522
2523 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2524
2525 static int
2526 sigtrap_is_event (int status)
2527 {
2528 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2529 }
2530
2531 /* Set alternative SIGTRAP-like events recognizer. If
2532 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2533 applied. */
2534
2535 void
2536 linux_nat_set_status_is_event (struct target_ops *t,
2537 int (*status_is_event) (int status))
2538 {
2539 linux_nat_status_is_event = status_is_event;
2540 }
2541
2542 /* Wait until LP is stopped. */
2543
2544 static int
2545 stop_wait_callback (struct lwp_info *lp, void *data)
2546 {
2547 struct inferior *inf = find_inferior_ptid (lp->ptid);
2548
2549 /* If this is a vfork parent, bail out, it is not going to report
2550 any SIGSTOP until the vfork is done with. */
2551 if (inf->vfork_child != NULL)
2552 return 0;
2553
2554 if (!lp->stopped)
2555 {
2556 int status;
2557
2558 status = wait_lwp (lp);
2559 if (status == 0)
2560 return 0;
2561
2562 if (lp->ignore_sigint && WIFSTOPPED (status)
2563 && WSTOPSIG (status) == SIGINT)
2564 {
2565 lp->ignore_sigint = 0;
2566
2567 errno = 0;
2568 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2569 lp->stopped = 0;
2570 if (debug_linux_nat)
2571 fprintf_unfiltered (gdb_stdlog,
2572 "PTRACE_CONT %s, 0, 0 (%s) "
2573 "(discarding SIGINT)\n",
2574 target_pid_to_str (lp->ptid),
2575 errno ? safe_strerror (errno) : "OK");
2576
2577 return stop_wait_callback (lp, NULL);
2578 }
2579
2580 maybe_clear_ignore_sigint (lp);
2581
2582 if (WSTOPSIG (status) != SIGSTOP)
2583 {
2584 /* The thread was stopped with a signal other than SIGSTOP. */
2585
2586 if (debug_linux_nat)
2587 fprintf_unfiltered (gdb_stdlog,
2588 "SWC: Pending event %s in %s\n",
2589 status_to_str ((int) status),
2590 target_pid_to_str (lp->ptid));
2591
2592 /* Save the sigtrap event. */
2593 lp->status = status;
2594 gdb_assert (lp->signalled);
2595 save_sigtrap (lp);
2596 }
2597 else
2598 {
2599 /* We caught the SIGSTOP that we intended to catch, so
2600 there's no SIGSTOP pending. */
2601
2602 if (debug_linux_nat)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "SWC: Delayed SIGSTOP caught for %s.\n",
2605 target_pid_to_str (lp->ptid));
2606
2607 /* Reset SIGNALLED only after the stop_wait_callback call
2608 above as it does gdb_assert on SIGNALLED. */
2609 lp->signalled = 0;
2610 }
2611 }
2612
2613 return 0;
2614 }
2615
2616 /* Return non-zero if LP has a wait status pending. Discard the
2617 pending event and resume the LWP if the event that originally
2618 caused the stop became uninteresting. */
2619
2620 static int
2621 status_callback (struct lwp_info *lp, void *data)
2622 {
2623 /* Only report a pending wait status if we pretend that this has
2624 indeed been resumed. */
2625 if (!lp->resumed)
2626 return 0;
2627
2628 if (!lwp_status_pending_p (lp))
2629 return 0;
2630
2631 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2632 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2633 {
2634 struct regcache *regcache = get_thread_regcache (lp->ptid);
2635 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2636 CORE_ADDR pc;
2637 int discard = 0;
2638
2639 pc = regcache_read_pc (regcache);
2640
2641 if (pc != lp->stop_pc)
2642 {
2643 if (debug_linux_nat)
2644 fprintf_unfiltered (gdb_stdlog,
2645 "SC: PC of %s changed. was=%s, now=%s\n",
2646 target_pid_to_str (lp->ptid),
2647 paddress (target_gdbarch (), lp->stop_pc),
2648 paddress (target_gdbarch (), pc));
2649 discard = 1;
2650 }
2651
2652 #if !USE_SIGTRAP_SIGINFO
2653 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2654 {
2655 if (debug_linux_nat)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "SC: previous breakpoint of %s, at %s gone\n",
2658 target_pid_to_str (lp->ptid),
2659 paddress (target_gdbarch (), lp->stop_pc));
2660
2661 discard = 1;
2662 }
2663 #endif
2664
2665 if (discard)
2666 {
2667 if (debug_linux_nat)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "SC: pending event of %s cancelled.\n",
2670 target_pid_to_str (lp->ptid));
2671
2672 lp->status = 0;
2673 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2674 return 0;
2675 }
2676 }
2677
2678 return 1;
2679 }
2680
2681 /* Return non-zero if LP isn't stopped. */
2682
2683 static int
2684 running_callback (struct lwp_info *lp, void *data)
2685 {
2686 return (!lp->stopped
2687 || (lwp_status_pending_p (lp) && lp->resumed));
2688 }
2689
2690 /* Count the LWP's that have had events. */
2691
2692 static int
2693 count_events_callback (struct lwp_info *lp, void *data)
2694 {
2695 int *count = data;
2696
2697 gdb_assert (count != NULL);
2698
2699 /* Select only resumed LWPs that have an event pending. */
2700 if (lp->resumed && lwp_status_pending_p (lp))
2701 (*count)++;
2702
2703 return 0;
2704 }
2705
2706 /* Select the LWP (if any) that is currently being single-stepped. */
2707
2708 static int
2709 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2710 {
2711 if (lp->last_resume_kind == resume_step
2712 && lp->status != 0)
2713 return 1;
2714 else
2715 return 0;
2716 }
2717
2718 /* Returns true if LP has a status pending. */
2719
2720 static int
2721 lwp_status_pending_p (struct lwp_info *lp)
2722 {
2723 /* We check for lp->waitstatus in addition to lp->status, because we
2724 can have pending process exits recorded in lp->status and
2725 W_EXITCODE(0,0) happens to be 0. */
2726 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2727 }
2728
2729 /* Select the Nth LWP that has had an event. */
2730
2731 static int
2732 select_event_lwp_callback (struct lwp_info *lp, void *data)
2733 {
2734 int *selector = data;
2735
2736 gdb_assert (selector != NULL);
2737
2738 /* Select only resumed LWPs that have an event pending. */
2739 if (lp->resumed && lwp_status_pending_p (lp))
2740 if ((*selector)-- == 0)
2741 return 1;
2742
2743 return 0;
2744 }
2745
2746 /* Called when the LWP got a signal/trap that could be explained by a
2747 software or hardware breakpoint. */
2748
2749 static int
2750 check_stopped_by_breakpoint (struct lwp_info *lp)
2751 {
2752 /* Arrange for a breakpoint to be hit again later. We don't keep
2753 the SIGTRAP status and don't forward the SIGTRAP signal to the
2754 LWP. We will handle the current event, eventually we will resume
2755 this LWP, and this breakpoint will trap again.
2756
2757 If we do not do this, then we run the risk that the user will
2758 delete or disable the breakpoint, but the LWP will have already
2759 tripped on it. */
2760
2761 struct regcache *regcache = get_thread_regcache (lp->ptid);
2762 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2763 CORE_ADDR pc;
2764 CORE_ADDR sw_bp_pc;
2765 #if USE_SIGTRAP_SIGINFO
2766 siginfo_t siginfo;
2767 #endif
2768
2769 pc = regcache_read_pc (regcache);
2770 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2771
2772 #if USE_SIGTRAP_SIGINFO
2773 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2774 {
2775 if (siginfo.si_signo == SIGTRAP)
2776 {
2777 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
2778 {
2779 if (debug_linux_nat)
2780 fprintf_unfiltered (gdb_stdlog,
2781 "CSBB: Push back software "
2782 "breakpoint for %s\n",
2783 target_pid_to_str (lp->ptid));
2784
2785 /* Back up the PC if necessary. */
2786 if (pc != sw_bp_pc)
2787 regcache_write_pc (regcache, sw_bp_pc);
2788
2789 lp->stop_pc = sw_bp_pc;
2790 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2791 return 1;
2792 }
2793 else if (siginfo.si_code == TRAP_HWBKPT)
2794 {
2795 if (debug_linux_nat)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "CSBB: Push back hardware "
2798 "breakpoint/watchpoint for %s\n",
2799 target_pid_to_str (lp->ptid));
2800
2801 lp->stop_pc = pc;
2802 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2803 return 1;
2804 }
2805 }
2806 }
2807 #else
2808 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2809 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2810 sw_bp_pc))
2811 {
2812 /* The LWP was either continued, or stepped a software
2813 breakpoint instruction. */
2814 if (debug_linux_nat)
2815 fprintf_unfiltered (gdb_stdlog,
2816 "CB: Push back software breakpoint for %s\n",
2817 target_pid_to_str (lp->ptid));
2818
2819 /* Back up the PC if necessary. */
2820 if (pc != sw_bp_pc)
2821 regcache_write_pc (regcache, sw_bp_pc);
2822
2823 lp->stop_pc = sw_bp_pc;
2824 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2825 return 1;
2826 }
2827
2828 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2829 {
2830 if (debug_linux_nat)
2831 fprintf_unfiltered (gdb_stdlog,
2832 "CB: Push back hardware breakpoint for %s\n",
2833 target_pid_to_str (lp->ptid));
2834
2835 lp->stop_pc = pc;
2836 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2837 return 1;
2838 }
2839 #endif
2840
2841 return 0;
2842 }
2843
2844
2845 /* Returns true if the LWP had stopped for a software breakpoint. */
2846
2847 static int
2848 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2849 {
2850 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2851
2852 gdb_assert (lp != NULL);
2853
2854 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2855 }
2856
2857 /* Implement the supports_stopped_by_sw_breakpoint method. */
2858
2859 static int
2860 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2861 {
2862 return USE_SIGTRAP_SIGINFO;
2863 }
2864
2865 /* Returns true if the LWP had stopped for a hardware
2866 breakpoint/watchpoint. */
2867
2868 static int
2869 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2870 {
2871 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2872
2873 gdb_assert (lp != NULL);
2874
2875 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2876 }
2877
2878 /* Implement the supports_stopped_by_hw_breakpoint method. */
2879
2880 static int
2881 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2882 {
2883 return USE_SIGTRAP_SIGINFO;
2884 }
2885
2886 /* Select one LWP out of those that have events pending. */
2887
2888 static void
2889 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2890 {
2891 int num_events = 0;
2892 int random_selector;
2893 struct lwp_info *event_lp = NULL;
2894
2895 /* Record the wait status for the original LWP. */
2896 (*orig_lp)->status = *status;
2897
2898 /* In all-stop, give preference to the LWP that is being
2899 single-stepped. There will be at most one, and it will be the
2900 LWP that the core is most interested in. If we didn't do this,
2901 then we'd have to handle pending step SIGTRAPs somehow in case
2902 the core later continues the previously-stepped thread, as
2903 otherwise we'd report the pending SIGTRAP then, and the core, not
2904 having stepped the thread, wouldn't understand what the trap was
2905 for, and therefore would report it to the user as a random
2906 signal. */
2907 if (!non_stop)
2908 {
2909 event_lp = iterate_over_lwps (filter,
2910 select_singlestep_lwp_callback, NULL);
2911 if (event_lp != NULL)
2912 {
2913 if (debug_linux_nat)
2914 fprintf_unfiltered (gdb_stdlog,
2915 "SEL: Select single-step %s\n",
2916 target_pid_to_str (event_lp->ptid));
2917 }
2918 }
2919
2920 if (event_lp == NULL)
2921 {
2922 /* Pick one at random, out of those which have had events. */
2923
2924 /* First see how many events we have. */
2925 iterate_over_lwps (filter, count_events_callback, &num_events);
2926 gdb_assert (num_events > 0);
2927
2928 /* Now randomly pick a LWP out of those that have had
2929 events. */
2930 random_selector = (int)
2931 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2932
2933 if (debug_linux_nat && num_events > 1)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "SEL: Found %d events, selecting #%d\n",
2936 num_events, random_selector);
2937
2938 event_lp = iterate_over_lwps (filter,
2939 select_event_lwp_callback,
2940 &random_selector);
2941 }
2942
2943 if (event_lp != NULL)
2944 {
2945 /* Switch the event LWP. */
2946 *orig_lp = event_lp;
2947 *status = event_lp->status;
2948 }
2949
2950 /* Flush the wait status for the event LWP. */
2951 (*orig_lp)->status = 0;
2952 }
2953
2954 /* Return non-zero if LP has been resumed. */
2955
2956 static int
2957 resumed_callback (struct lwp_info *lp, void *data)
2958 {
2959 return lp->resumed;
2960 }
2961
2962 /* Stop an active thread, verify it still exists, then resume it. If
2963 the thread ends up with a pending status, then it is not resumed,
2964 and *DATA (really a pointer to int), is set. */
2965
2966 static int
2967 stop_and_resume_callback (struct lwp_info *lp, void *data)
2968 {
2969 if (!lp->stopped)
2970 {
2971 ptid_t ptid = lp->ptid;
2972
2973 stop_callback (lp, NULL);
2974 stop_wait_callback (lp, NULL);
2975
2976 /* Resume if the lwp still exists, and the core wanted it
2977 running. */
2978 lp = find_lwp_pid (ptid);
2979 if (lp != NULL)
2980 {
2981 if (lp->last_resume_kind == resume_stop
2982 && !lwp_status_pending_p (lp))
2983 {
2984 /* The core wanted the LWP to stop. Even if it stopped
2985 cleanly (with SIGSTOP), leave the event pending. */
2986 if (debug_linux_nat)
2987 fprintf_unfiltered (gdb_stdlog,
2988 "SARC: core wanted LWP %ld stopped "
2989 "(leaving SIGSTOP pending)\n",
2990 ptid_get_lwp (lp->ptid));
2991 lp->status = W_STOPCODE (SIGSTOP);
2992 }
2993
2994 if (!lwp_status_pending_p (lp))
2995 {
2996 if (debug_linux_nat)
2997 fprintf_unfiltered (gdb_stdlog,
2998 "SARC: re-resuming LWP %ld\n",
2999 ptid_get_lwp (lp->ptid));
3000 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3001 }
3002 else
3003 {
3004 if (debug_linux_nat)
3005 fprintf_unfiltered (gdb_stdlog,
3006 "SARC: not re-resuming LWP %ld "
3007 "(has pending)\n",
3008 ptid_get_lwp (lp->ptid));
3009 }
3010 }
3011 }
3012 return 0;
3013 }
3014
3015 /* Check if we should go on and pass this event to common code.
3016 Return the affected lwp if we are, or NULL otherwise. */
3017
3018 static struct lwp_info *
3019 linux_nat_filter_event (int lwpid, int status)
3020 {
3021 struct lwp_info *lp;
3022 int event = linux_ptrace_get_extended_event (status);
3023
3024 lp = find_lwp_pid (pid_to_ptid (lwpid));
3025
3026 /* Check for stop events reported by a process we didn't already
3027 know about - anything not already in our LWP list.
3028
3029 If we're expecting to receive stopped processes after
3030 fork, vfork, and clone events, then we'll just add the
3031 new one to our list and go back to waiting for the event
3032 to be reported - the stopped process might be returned
3033 from waitpid before or after the event is.
3034
3035 But note the case of a non-leader thread exec'ing after the
3036 leader having exited, and gone from our lists. The non-leader
3037 thread changes its tid to the tgid. */
3038
3039 if (WIFSTOPPED (status) && lp == NULL
3040 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
3041 {
3042 /* A multi-thread exec after we had seen the leader exiting. */
3043 if (debug_linux_nat)
3044 fprintf_unfiltered (gdb_stdlog,
3045 "LLW: Re-adding thread group leader LWP %d.\n",
3046 lwpid);
3047
3048 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3049 lp->stopped = 1;
3050 lp->resumed = 1;
3051 add_thread (lp->ptid);
3052 }
3053
3054 if (WIFSTOPPED (status) && !lp)
3055 {
3056 if (debug_linux_nat)
3057 fprintf_unfiltered (gdb_stdlog,
3058 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3059 (long) lwpid, status_to_str (status));
3060 add_to_pid_list (&stopped_pids, lwpid, status);
3061 return NULL;
3062 }
3063
3064 /* Make sure we don't report an event for the exit of an LWP not in
3065 our list, i.e. not part of the current process. This can happen
3066 if we detach from a program we originally forked and then it
3067 exits. */
3068 if (!WIFSTOPPED (status) && !lp)
3069 return NULL;
3070
3071 /* This LWP is stopped now. (And if dead, this prevents it from
3072 ever being continued.) */
3073 lp->stopped = 1;
3074
3075 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3076 {
3077 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3078
3079 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
3080 lp->must_set_ptrace_flags = 0;
3081 }
3082
3083 /* Handle GNU/Linux's syscall SIGTRAPs. */
3084 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3085 {
3086 /* No longer need the sysgood bit. The ptrace event ends up
3087 recorded in lp->waitstatus if we care for it. We can carry
3088 on handling the event like a regular SIGTRAP from here
3089 on. */
3090 status = W_STOPCODE (SIGTRAP);
3091 if (linux_handle_syscall_trap (lp, 0))
3092 return NULL;
3093 }
3094
3095 /* Handle GNU/Linux's extended waitstatus for trace events. */
3096 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3097 && linux_is_extended_waitstatus (status))
3098 {
3099 if (debug_linux_nat)
3100 fprintf_unfiltered (gdb_stdlog,
3101 "LLW: Handling extended status 0x%06x\n",
3102 status);
3103 if (linux_handle_extended_wait (lp, status, 0))
3104 return NULL;
3105 }
3106
3107 /* Check if the thread has exited. */
3108 if (WIFEXITED (status) || WIFSIGNALED (status))
3109 {
3110 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3111 {
3112 /* If this is the main thread, we must stop all threads and
3113 verify if they are still alive. This is because in the
3114 nptl thread model on Linux 2.4, there is no signal issued
3115 for exiting LWPs other than the main thread. We only get
3116 the main thread exit signal once all child threads have
3117 already exited. If we stop all the threads and use the
3118 stop_wait_callback to check if they have exited we can
3119 determine whether this signal should be ignored or
3120 whether it means the end of the debugged application,
3121 regardless of which threading model is being used. */
3122 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3123 {
3124 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3125 stop_and_resume_callback, NULL);
3126 }
3127
3128 if (debug_linux_nat)
3129 fprintf_unfiltered (gdb_stdlog,
3130 "LLW: %s exited.\n",
3131 target_pid_to_str (lp->ptid));
3132
3133 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3134 {
3135 /* If there is at least one more LWP, then the exit signal
3136 was not the end of the debugged application and should be
3137 ignored. */
3138 exit_lwp (lp);
3139 return NULL;
3140 }
3141 }
3142
3143 gdb_assert (lp->resumed);
3144
3145 if (debug_linux_nat)
3146 fprintf_unfiltered (gdb_stdlog,
3147 "Process %ld exited\n",
3148 ptid_get_lwp (lp->ptid));
3149
3150 /* This was the last lwp in the process. Since events are
3151 serialized to GDB core, we may not be able report this one
3152 right now, but GDB core and the other target layers will want
3153 to be notified about the exit code/signal, leave the status
3154 pending for the next time we're able to report it. */
3155
3156 /* Dead LWP's aren't expected to reported a pending sigstop. */
3157 lp->signalled = 0;
3158
3159 /* Store the pending event in the waitstatus, because
3160 W_EXITCODE(0,0) == 0. */
3161 store_waitstatus (&lp->waitstatus, status);
3162 return lp;
3163 }
3164
3165 /* Check if the current LWP has previously exited. In the nptl
3166 thread model, LWPs other than the main thread do not issue
3167 signals when they exit so we must check whenever the thread has
3168 stopped. A similar check is made in stop_wait_callback(). */
3169 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3170 {
3171 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3172
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "LLW: %s exited.\n",
3176 target_pid_to_str (lp->ptid));
3177
3178 exit_lwp (lp);
3179
3180 /* Make sure there is at least one thread running. */
3181 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3182
3183 /* Discard the event. */
3184 return NULL;
3185 }
3186
3187 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3188 an attempt to stop an LWP. */
3189 if (lp->signalled
3190 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3191 {
3192 if (debug_linux_nat)
3193 fprintf_unfiltered (gdb_stdlog,
3194 "LLW: Delayed SIGSTOP caught for %s.\n",
3195 target_pid_to_str (lp->ptid));
3196
3197 lp->signalled = 0;
3198
3199 if (lp->last_resume_kind != resume_stop)
3200 {
3201 /* This is a delayed SIGSTOP. */
3202
3203 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3204 if (debug_linux_nat)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3207 lp->step ?
3208 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3209 target_pid_to_str (lp->ptid));
3210
3211 gdb_assert (lp->resumed);
3212
3213 /* Discard the event. */
3214 return NULL;
3215 }
3216 }
3217
3218 /* Make sure we don't report a SIGINT that we have already displayed
3219 for another thread. */
3220 if (lp->ignore_sigint
3221 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3222 {
3223 if (debug_linux_nat)
3224 fprintf_unfiltered (gdb_stdlog,
3225 "LLW: Delayed SIGINT caught for %s.\n",
3226 target_pid_to_str (lp->ptid));
3227
3228 /* This is a delayed SIGINT. */
3229 lp->ignore_sigint = 0;
3230
3231 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3232 if (debug_linux_nat)
3233 fprintf_unfiltered (gdb_stdlog,
3234 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3235 lp->step ?
3236 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3237 target_pid_to_str (lp->ptid));
3238 gdb_assert (lp->resumed);
3239
3240 /* Discard the event. */
3241 return NULL;
3242 }
3243
3244 /* Don't report signals that GDB isn't interested in, such as
3245 signals that are neither printed nor stopped upon. Stopping all
3246 threads can be a bit time-consuming so if we want decent
3247 performance with heavily multi-threaded programs, especially when
3248 they're using a high frequency timer, we'd better avoid it if we
3249 can. */
3250 if (WIFSTOPPED (status))
3251 {
3252 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3253
3254 if (!non_stop)
3255 {
3256 /* Only do the below in all-stop, as we currently use SIGSTOP
3257 to implement target_stop (see linux_nat_stop) in
3258 non-stop. */
3259 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3260 {
3261 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3262 forwarded to the entire process group, that is, all LWPs
3263 will receive it - unless they're using CLONE_THREAD to
3264 share signals. Since we only want to report it once, we
3265 mark it as ignored for all LWPs except this one. */
3266 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3267 set_ignore_sigint, NULL);
3268 lp->ignore_sigint = 0;
3269 }
3270 else
3271 maybe_clear_ignore_sigint (lp);
3272 }
3273
3274 /* When using hardware single-step, we need to report every signal.
3275 Otherwise, signals in pass_mask may be short-circuited
3276 except signals that might be caused by a breakpoint. */
3277 if (!lp->step
3278 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3279 && !linux_wstatus_maybe_breakpoint (status))
3280 {
3281 linux_resume_one_lwp (lp, lp->step, signo);
3282 if (debug_linux_nat)
3283 fprintf_unfiltered (gdb_stdlog,
3284 "LLW: %s %s, %s (preempt 'handle')\n",
3285 lp->step ?
3286 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3287 target_pid_to_str (lp->ptid),
3288 (signo != GDB_SIGNAL_0
3289 ? strsignal (gdb_signal_to_host (signo))
3290 : "0"));
3291 return NULL;
3292 }
3293 }
3294
3295 /* An interesting event. */
3296 gdb_assert (lp);
3297 lp->status = status;
3298 save_sigtrap (lp);
3299 return lp;
3300 }
3301
3302 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3303 their exits until all other threads in the group have exited. */
3304
3305 static void
3306 check_zombie_leaders (void)
3307 {
3308 struct inferior *inf;
3309
3310 ALL_INFERIORS (inf)
3311 {
3312 struct lwp_info *leader_lp;
3313
3314 if (inf->pid == 0)
3315 continue;
3316
3317 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3318 if (leader_lp != NULL
3319 /* Check if there are other threads in the group, as we may
3320 have raced with the inferior simply exiting. */
3321 && num_lwps (inf->pid) > 1
3322 && linux_proc_pid_is_zombie (inf->pid))
3323 {
3324 if (debug_linux_nat)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "CZL: Thread group leader %d zombie "
3327 "(it exited, or another thread execd).\n",
3328 inf->pid);
3329
3330 /* A leader zombie can mean one of two things:
3331
3332 - It exited, and there's an exit status pending
3333 available, or only the leader exited (not the whole
3334 program). In the latter case, we can't waitpid the
3335 leader's exit status until all other threads are gone.
3336
3337 - There are 3 or more threads in the group, and a thread
3338 other than the leader exec'd. On an exec, the Linux
3339 kernel destroys all other threads (except the execing
3340 one) in the thread group, and resets the execing thread's
3341 tid to the tgid. No exit notification is sent for the
3342 execing thread -- from the ptracer's perspective, it
3343 appears as though the execing thread just vanishes.
3344 Until we reap all other threads except the leader and the
3345 execing thread, the leader will be zombie, and the
3346 execing thread will be in `D (disc sleep)'. As soon as
3347 all other threads are reaped, the execing thread changes
3348 it's tid to the tgid, and the previous (zombie) leader
3349 vanishes, giving place to the "new" leader. We could try
3350 distinguishing the exit and exec cases, by waiting once
3351 more, and seeing if something comes out, but it doesn't
3352 sound useful. The previous leader _does_ go away, and
3353 we'll re-add the new one once we see the exec event
3354 (which is just the same as what would happen if the
3355 previous leader did exit voluntarily before some other
3356 thread execs). */
3357
3358 if (debug_linux_nat)
3359 fprintf_unfiltered (gdb_stdlog,
3360 "CZL: Thread group leader %d vanished.\n",
3361 inf->pid);
3362 exit_lwp (leader_lp);
3363 }
3364 }
3365 }
3366
3367 static ptid_t
3368 linux_nat_wait_1 (struct target_ops *ops,
3369 ptid_t ptid, struct target_waitstatus *ourstatus,
3370 int target_options)
3371 {
3372 sigset_t prev_mask;
3373 enum resume_kind last_resume_kind;
3374 struct lwp_info *lp;
3375 int status;
3376
3377 if (debug_linux_nat)
3378 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3379
3380 /* The first time we get here after starting a new inferior, we may
3381 not have added it to the LWP list yet - this is the earliest
3382 moment at which we know its PID. */
3383 if (ptid_is_pid (inferior_ptid))
3384 {
3385 /* Upgrade the main thread's ptid. */
3386 thread_change_ptid (inferior_ptid,
3387 ptid_build (ptid_get_pid (inferior_ptid),
3388 ptid_get_pid (inferior_ptid), 0));
3389
3390 lp = add_initial_lwp (inferior_ptid);
3391 lp->resumed = 1;
3392 }
3393
3394 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3395 block_child_signals (&prev_mask);
3396
3397 /* First check if there is a LWP with a wait status pending. */
3398 lp = iterate_over_lwps (ptid, status_callback, NULL);
3399 if (lp != NULL)
3400 {
3401 if (debug_linux_nat)
3402 fprintf_unfiltered (gdb_stdlog,
3403 "LLW: Using pending wait status %s for %s.\n",
3404 status_to_str (lp->status),
3405 target_pid_to_str (lp->ptid));
3406 }
3407
3408 if (!target_is_async_p ())
3409 {
3410 /* Causes SIGINT to be passed on to the attached process. */
3411 set_sigint_trap ();
3412 }
3413
3414 /* But if we don't find a pending event, we'll have to wait. Always
3415 pull all events out of the kernel. We'll randomly select an
3416 event LWP out of all that have events, to prevent starvation. */
3417
3418 while (lp == NULL)
3419 {
3420 pid_t lwpid;
3421
3422 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3423 quirks:
3424
3425 - If the thread group leader exits while other threads in the
3426 thread group still exist, waitpid(TGID, ...) hangs. That
3427 waitpid won't return an exit status until the other threads
3428 in the group are reapped.
3429
3430 - When a non-leader thread execs, that thread just vanishes
3431 without reporting an exit (so we'd hang if we waited for it
3432 explicitly in that case). The exec event is reported to
3433 the TGID pid. */
3434
3435 errno = 0;
3436 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3437 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3438 lwpid = my_waitpid (-1, &status, WNOHANG);
3439
3440 if (debug_linux_nat)
3441 fprintf_unfiltered (gdb_stdlog,
3442 "LNW: waitpid(-1, ...) returned %d, %s\n",
3443 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3444
3445 if (lwpid > 0)
3446 {
3447 if (debug_linux_nat)
3448 {
3449 fprintf_unfiltered (gdb_stdlog,
3450 "LLW: waitpid %ld received %s\n",
3451 (long) lwpid, status_to_str (status));
3452 }
3453
3454 linux_nat_filter_event (lwpid, status);
3455 /* Retry until nothing comes out of waitpid. A single
3456 SIGCHLD can indicate more than one child stopped. */
3457 continue;
3458 }
3459
3460 /* Now that we've pulled all events out of the kernel, resume
3461 LWPs that don't have an interesting event to report. */
3462 iterate_over_lwps (minus_one_ptid,
3463 resume_stopped_resumed_lwps, &minus_one_ptid);
3464
3465 /* ... and find an LWP with a status to report to the core, if
3466 any. */
3467 lp = iterate_over_lwps (ptid, status_callback, NULL);
3468 if (lp != NULL)
3469 break;
3470
3471 /* Check for zombie thread group leaders. Those can't be reaped
3472 until all other threads in the thread group are. */
3473 check_zombie_leaders ();
3474
3475 /* If there are no resumed children left, bail. We'd be stuck
3476 forever in the sigsuspend call below otherwise. */
3477 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3478 {
3479 if (debug_linux_nat)
3480 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3481
3482 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3483
3484 if (!target_is_async_p ())
3485 clear_sigint_trap ();
3486
3487 restore_child_signals_mask (&prev_mask);
3488 return minus_one_ptid;
3489 }
3490
3491 /* No interesting event to report to the core. */
3492
3493 if (target_options & TARGET_WNOHANG)
3494 {
3495 if (debug_linux_nat)
3496 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3497
3498 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3499 restore_child_signals_mask (&prev_mask);
3500 return minus_one_ptid;
3501 }
3502
3503 /* We shouldn't end up here unless we want to try again. */
3504 gdb_assert (lp == NULL);
3505
3506 /* Block until we get an event reported with SIGCHLD. */
3507 if (debug_linux_nat)
3508 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3509 sigsuspend (&suspend_mask);
3510 }
3511
3512 if (!target_is_async_p ())
3513 clear_sigint_trap ();
3514
3515 gdb_assert (lp);
3516
3517 status = lp->status;
3518 lp->status = 0;
3519
3520 if (!non_stop)
3521 {
3522 /* Now stop all other LWP's ... */
3523 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3524
3525 /* ... and wait until all of them have reported back that
3526 they're no longer running. */
3527 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3528 }
3529
3530 /* If we're not waiting for a specific LWP, choose an event LWP from
3531 among those that have had events. Giving equal priority to all
3532 LWPs that have had events helps prevent starvation. */
3533 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3534 select_event_lwp (ptid, &lp, &status);
3535
3536 gdb_assert (lp != NULL);
3537
3538 /* Now that we've selected our final event LWP, un-adjust its PC if
3539 it was a software breakpoint, and we can't reliably support the
3540 "stopped by software breakpoint" stop reason. */
3541 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3542 && !USE_SIGTRAP_SIGINFO)
3543 {
3544 struct regcache *regcache = get_thread_regcache (lp->ptid);
3545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3546 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3547
3548 if (decr_pc != 0)
3549 {
3550 CORE_ADDR pc;
3551
3552 pc = regcache_read_pc (regcache);
3553 regcache_write_pc (regcache, pc + decr_pc);
3554 }
3555 }
3556
3557 /* We'll need this to determine whether to report a SIGSTOP as
3558 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3559 clears it. */
3560 last_resume_kind = lp->last_resume_kind;
3561
3562 if (!non_stop)
3563 {
3564 /* In all-stop, from the core's perspective, all LWPs are now
3565 stopped until a new resume action is sent over. */
3566 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3567 }
3568 else
3569 {
3570 resume_clear_callback (lp, NULL);
3571 }
3572
3573 if (linux_nat_status_is_event (status))
3574 {
3575 if (debug_linux_nat)
3576 fprintf_unfiltered (gdb_stdlog,
3577 "LLW: trap ptid is %s.\n",
3578 target_pid_to_str (lp->ptid));
3579 }
3580
3581 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3582 {
3583 *ourstatus = lp->waitstatus;
3584 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3585 }
3586 else
3587 store_waitstatus (ourstatus, status);
3588
3589 if (debug_linux_nat)
3590 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3591
3592 restore_child_signals_mask (&prev_mask);
3593
3594 if (last_resume_kind == resume_stop
3595 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3596 && WSTOPSIG (status) == SIGSTOP)
3597 {
3598 /* A thread that has been requested to stop by GDB with
3599 target_stop, and it stopped cleanly, so report as SIG0. The
3600 use of SIGSTOP is an implementation detail. */
3601 ourstatus->value.sig = GDB_SIGNAL_0;
3602 }
3603
3604 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3605 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3606 lp->core = -1;
3607 else
3608 lp->core = linux_common_core_of_thread (lp->ptid);
3609
3610 return lp->ptid;
3611 }
3612
3613 /* Resume LWPs that are currently stopped without any pending status
3614 to report, but are resumed from the core's perspective. */
3615
3616 static int
3617 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3618 {
3619 ptid_t *wait_ptid_p = data;
3620
3621 if (lp->stopped
3622 && lp->resumed
3623 && !lwp_status_pending_p (lp))
3624 {
3625 struct regcache *regcache = get_thread_regcache (lp->ptid);
3626 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3627
3628 TRY
3629 {
3630 CORE_ADDR pc = regcache_read_pc (regcache);
3631 int leave_stopped = 0;
3632
3633 /* Don't bother if there's a breakpoint at PC that we'd hit
3634 immediately, and we're not waiting for this LWP. */
3635 if (!ptid_match (lp->ptid, *wait_ptid_p))
3636 {
3637 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3638 leave_stopped = 1;
3639 }
3640
3641 if (!leave_stopped)
3642 {
3643 if (debug_linux_nat)
3644 fprintf_unfiltered (gdb_stdlog,
3645 "RSRL: resuming stopped-resumed LWP %s at "
3646 "%s: step=%d\n",
3647 target_pid_to_str (lp->ptid),
3648 paddress (gdbarch, pc),
3649 lp->step);
3650
3651 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3652 }
3653 }
3654 CATCH (ex, RETURN_MASK_ERROR)
3655 {
3656 if (!check_ptrace_stopped_lwp_gone (lp))
3657 throw_exception (ex);
3658 }
3659 END_CATCH
3660 }
3661
3662 return 0;
3663 }
3664
3665 static ptid_t
3666 linux_nat_wait (struct target_ops *ops,
3667 ptid_t ptid, struct target_waitstatus *ourstatus,
3668 int target_options)
3669 {
3670 ptid_t event_ptid;
3671
3672 if (debug_linux_nat)
3673 {
3674 char *options_string;
3675
3676 options_string = target_options_to_string (target_options);
3677 fprintf_unfiltered (gdb_stdlog,
3678 "linux_nat_wait: [%s], [%s]\n",
3679 target_pid_to_str (ptid),
3680 options_string);
3681 xfree (options_string);
3682 }
3683
3684 /* Flush the async file first. */
3685 if (target_is_async_p ())
3686 async_file_flush ();
3687
3688 /* Resume LWPs that are currently stopped without any pending status
3689 to report, but are resumed from the core's perspective. LWPs get
3690 in this state if we find them stopping at a time we're not
3691 interested in reporting the event (target_wait on a
3692 specific_process, for example, see linux_nat_wait_1), and
3693 meanwhile the event became uninteresting. Don't bother resuming
3694 LWPs we're not going to wait for if they'd stop immediately. */
3695 if (non_stop)
3696 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3697
3698 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3699
3700 /* If we requested any event, and something came out, assume there
3701 may be more. If we requested a specific lwp or process, also
3702 assume there may be more. */
3703 if (target_is_async_p ()
3704 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3705 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3706 || !ptid_equal (ptid, minus_one_ptid)))
3707 async_file_mark ();
3708
3709 return event_ptid;
3710 }
3711
3712 static int
3713 kill_callback (struct lwp_info *lp, void *data)
3714 {
3715 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3716
3717 errno = 0;
3718 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3719 if (debug_linux_nat)
3720 {
3721 int save_errno = errno;
3722
3723 fprintf_unfiltered (gdb_stdlog,
3724 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3725 target_pid_to_str (lp->ptid),
3726 save_errno ? safe_strerror (save_errno) : "OK");
3727 }
3728
3729 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3730
3731 errno = 0;
3732 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3733 if (debug_linux_nat)
3734 {
3735 int save_errno = errno;
3736
3737 fprintf_unfiltered (gdb_stdlog,
3738 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3739 target_pid_to_str (lp->ptid),
3740 save_errno ? safe_strerror (save_errno) : "OK");
3741 }
3742
3743 return 0;
3744 }
3745
3746 static int
3747 kill_wait_callback (struct lwp_info *lp, void *data)
3748 {
3749 pid_t pid;
3750
3751 /* We must make sure that there are no pending events (delayed
3752 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3753 program doesn't interfere with any following debugging session. */
3754
3755 /* For cloned processes we must check both with __WCLONE and
3756 without, since the exit status of a cloned process isn't reported
3757 with __WCLONE. */
3758 if (lp->cloned)
3759 {
3760 do
3761 {
3762 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3763 if (pid != (pid_t) -1)
3764 {
3765 if (debug_linux_nat)
3766 fprintf_unfiltered (gdb_stdlog,
3767 "KWC: wait %s received unknown.\n",
3768 target_pid_to_str (lp->ptid));
3769 /* The Linux kernel sometimes fails to kill a thread
3770 completely after PTRACE_KILL; that goes from the stop
3771 point in do_fork out to the one in
3772 get_signal_to_deliever and waits again. So kill it
3773 again. */
3774 kill_callback (lp, NULL);
3775 }
3776 }
3777 while (pid == ptid_get_lwp (lp->ptid));
3778
3779 gdb_assert (pid == -1 && errno == ECHILD);
3780 }
3781
3782 do
3783 {
3784 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3785 if (pid != (pid_t) -1)
3786 {
3787 if (debug_linux_nat)
3788 fprintf_unfiltered (gdb_stdlog,
3789 "KWC: wait %s received unk.\n",
3790 target_pid_to_str (lp->ptid));
3791 /* See the call to kill_callback above. */
3792 kill_callback (lp, NULL);
3793 }
3794 }
3795 while (pid == ptid_get_lwp (lp->ptid));
3796
3797 gdb_assert (pid == -1 && errno == ECHILD);
3798 return 0;
3799 }
3800
3801 static void
3802 linux_nat_kill (struct target_ops *ops)
3803 {
3804 struct target_waitstatus last;
3805 ptid_t last_ptid;
3806 int status;
3807
3808 /* If we're stopped while forking and we haven't followed yet,
3809 kill the other task. We need to do this first because the
3810 parent will be sleeping if this is a vfork. */
3811
3812 get_last_target_status (&last_ptid, &last);
3813
3814 if (last.kind == TARGET_WAITKIND_FORKED
3815 || last.kind == TARGET_WAITKIND_VFORKED)
3816 {
3817 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3818 wait (&status);
3819
3820 /* Let the arch-specific native code know this process is
3821 gone. */
3822 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3823 }
3824
3825 if (forks_exist_p ())
3826 linux_fork_killall ();
3827 else
3828 {
3829 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3830
3831 /* Stop all threads before killing them, since ptrace requires
3832 that the thread is stopped to sucessfully PTRACE_KILL. */
3833 iterate_over_lwps (ptid, stop_callback, NULL);
3834 /* ... and wait until all of them have reported back that
3835 they're no longer running. */
3836 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3837
3838 /* Kill all LWP's ... */
3839 iterate_over_lwps (ptid, kill_callback, NULL);
3840
3841 /* ... and wait until we've flushed all events. */
3842 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3843 }
3844
3845 target_mourn_inferior ();
3846 }
3847
3848 static void
3849 linux_nat_mourn_inferior (struct target_ops *ops)
3850 {
3851 int pid = ptid_get_pid (inferior_ptid);
3852
3853 purge_lwp_list (pid);
3854
3855 if (! forks_exist_p ())
3856 /* Normal case, no other forks available. */
3857 linux_ops->to_mourn_inferior (ops);
3858 else
3859 /* Multi-fork case. The current inferior_ptid has exited, but
3860 there are other viable forks to debug. Delete the exiting
3861 one and context-switch to the first available. */
3862 linux_fork_mourn_inferior ();
3863
3864 /* Let the arch-specific native code know this process is gone. */
3865 linux_nat_forget_process (pid);
3866 }
3867
3868 /* Convert a native/host siginfo object, into/from the siginfo in the
3869 layout of the inferiors' architecture. */
3870
3871 static void
3872 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3873 {
3874 int done = 0;
3875
3876 if (linux_nat_siginfo_fixup != NULL)
3877 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3878
3879 /* If there was no callback, or the callback didn't do anything,
3880 then just do a straight memcpy. */
3881 if (!done)
3882 {
3883 if (direction == 1)
3884 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3885 else
3886 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3887 }
3888 }
3889
3890 static enum target_xfer_status
3891 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3892 const char *annex, gdb_byte *readbuf,
3893 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3894 ULONGEST *xfered_len)
3895 {
3896 int pid;
3897 siginfo_t siginfo;
3898 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3899
3900 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3901 gdb_assert (readbuf || writebuf);
3902
3903 pid = ptid_get_lwp (inferior_ptid);
3904 if (pid == 0)
3905 pid = ptid_get_pid (inferior_ptid);
3906
3907 if (offset > sizeof (siginfo))
3908 return TARGET_XFER_E_IO;
3909
3910 errno = 0;
3911 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3912 if (errno != 0)
3913 return TARGET_XFER_E_IO;
3914
3915 /* When GDB is built as a 64-bit application, ptrace writes into
3916 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3917 inferior with a 64-bit GDB should look the same as debugging it
3918 with a 32-bit GDB, we need to convert it. GDB core always sees
3919 the converted layout, so any read/write will have to be done
3920 post-conversion. */
3921 siginfo_fixup (&siginfo, inf_siginfo, 0);
3922
3923 if (offset + len > sizeof (siginfo))
3924 len = sizeof (siginfo) - offset;
3925
3926 if (readbuf != NULL)
3927 memcpy (readbuf, inf_siginfo + offset, len);
3928 else
3929 {
3930 memcpy (inf_siginfo + offset, writebuf, len);
3931
3932 /* Convert back to ptrace layout before flushing it out. */
3933 siginfo_fixup (&siginfo, inf_siginfo, 1);
3934
3935 errno = 0;
3936 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3937 if (errno != 0)
3938 return TARGET_XFER_E_IO;
3939 }
3940
3941 *xfered_len = len;
3942 return TARGET_XFER_OK;
3943 }
3944
3945 static enum target_xfer_status
3946 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3947 const char *annex, gdb_byte *readbuf,
3948 const gdb_byte *writebuf,
3949 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3950 {
3951 struct cleanup *old_chain;
3952 enum target_xfer_status xfer;
3953
3954 if (object == TARGET_OBJECT_SIGNAL_INFO)
3955 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3956 offset, len, xfered_len);
3957
3958 /* The target is connected but no live inferior is selected. Pass
3959 this request down to a lower stratum (e.g., the executable
3960 file). */
3961 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3962 return TARGET_XFER_EOF;
3963
3964 old_chain = save_inferior_ptid ();
3965
3966 if (ptid_lwp_p (inferior_ptid))
3967 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3968
3969 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3970 offset, len, xfered_len);
3971
3972 do_cleanups (old_chain);
3973 return xfer;
3974 }
3975
3976 static int
3977 linux_thread_alive (ptid_t ptid)
3978 {
3979 int err, tmp_errno;
3980
3981 gdb_assert (ptid_lwp_p (ptid));
3982
3983 /* Send signal 0 instead of anything ptrace, because ptracing a
3984 running thread errors out claiming that the thread doesn't
3985 exist. */
3986 err = kill_lwp (ptid_get_lwp (ptid), 0);
3987 tmp_errno = errno;
3988 if (debug_linux_nat)
3989 fprintf_unfiltered (gdb_stdlog,
3990 "LLTA: KILL(SIG0) %s (%s)\n",
3991 target_pid_to_str (ptid),
3992 err ? safe_strerror (tmp_errno) : "OK");
3993
3994 if (err != 0)
3995 return 0;
3996
3997 return 1;
3998 }
3999
4000 static int
4001 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4002 {
4003 return linux_thread_alive (ptid);
4004 }
4005
4006 static char *
4007 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4008 {
4009 static char buf[64];
4010
4011 if (ptid_lwp_p (ptid)
4012 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4013 || num_lwps (ptid_get_pid (ptid)) > 1))
4014 {
4015 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4016 return buf;
4017 }
4018
4019 return normal_pid_to_str (ptid);
4020 }
4021
4022 static char *
4023 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4024 {
4025 int pid = ptid_get_pid (thr->ptid);
4026 long lwp = ptid_get_lwp (thr->ptid);
4027 #define FORMAT "/proc/%d/task/%ld/comm"
4028 char buf[sizeof (FORMAT) + 30];
4029 FILE *comm_file;
4030 char *result = NULL;
4031
4032 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4033 comm_file = gdb_fopen_cloexec (buf, "r");
4034 if (comm_file)
4035 {
4036 /* Not exported by the kernel, so we define it here. */
4037 #define COMM_LEN 16
4038 static char line[COMM_LEN + 1];
4039
4040 if (fgets (line, sizeof (line), comm_file))
4041 {
4042 char *nl = strchr (line, '\n');
4043
4044 if (nl)
4045 *nl = '\0';
4046 if (*line != '\0')
4047 result = line;
4048 }
4049
4050 fclose (comm_file);
4051 }
4052
4053 #undef COMM_LEN
4054 #undef FORMAT
4055
4056 return result;
4057 }
4058
4059 /* Accepts an integer PID; Returns a string representing a file that
4060 can be opened to get the symbols for the child process. */
4061
4062 static char *
4063 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4064 {
4065 static char buf[PATH_MAX];
4066 char name[PATH_MAX];
4067
4068 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
4069 memset (buf, 0, PATH_MAX);
4070 if (readlink (name, buf, PATH_MAX - 1) <= 0)
4071 strcpy (buf, name);
4072
4073 return buf;
4074 }
4075
4076 /* Implement the to_xfer_partial interface for memory reads using the /proc
4077 filesystem. Because we can use a single read() call for /proc, this
4078 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4079 but it doesn't support writes. */
4080
4081 static enum target_xfer_status
4082 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4083 const char *annex, gdb_byte *readbuf,
4084 const gdb_byte *writebuf,
4085 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4086 {
4087 LONGEST ret;
4088 int fd;
4089 char filename[64];
4090
4091 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4092 return 0;
4093
4094 /* Don't bother for one word. */
4095 if (len < 3 * sizeof (long))
4096 return TARGET_XFER_EOF;
4097
4098 /* We could keep this file open and cache it - possibly one per
4099 thread. That requires some juggling, but is even faster. */
4100 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4101 ptid_get_pid (inferior_ptid));
4102 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4103 if (fd == -1)
4104 return TARGET_XFER_EOF;
4105
4106 /* If pread64 is available, use it. It's faster if the kernel
4107 supports it (only one syscall), and it's 64-bit safe even on
4108 32-bit platforms (for instance, SPARC debugging a SPARC64
4109 application). */
4110 #ifdef HAVE_PREAD64
4111 if (pread64 (fd, readbuf, len, offset) != len)
4112 #else
4113 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4114 #endif
4115 ret = 0;
4116 else
4117 ret = len;
4118
4119 close (fd);
4120
4121 if (ret == 0)
4122 return TARGET_XFER_EOF;
4123 else
4124 {
4125 *xfered_len = ret;
4126 return TARGET_XFER_OK;
4127 }
4128 }
4129
4130
4131 /* Enumerate spufs IDs for process PID. */
4132 static LONGEST
4133 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4134 {
4135 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4136 LONGEST pos = 0;
4137 LONGEST written = 0;
4138 char path[128];
4139 DIR *dir;
4140 struct dirent *entry;
4141
4142 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4143 dir = opendir (path);
4144 if (!dir)
4145 return -1;
4146
4147 rewinddir (dir);
4148 while ((entry = readdir (dir)) != NULL)
4149 {
4150 struct stat st;
4151 struct statfs stfs;
4152 int fd;
4153
4154 fd = atoi (entry->d_name);
4155 if (!fd)
4156 continue;
4157
4158 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4159 if (stat (path, &st) != 0)
4160 continue;
4161 if (!S_ISDIR (st.st_mode))
4162 continue;
4163
4164 if (statfs (path, &stfs) != 0)
4165 continue;
4166 if (stfs.f_type != SPUFS_MAGIC)
4167 continue;
4168
4169 if (pos >= offset && pos + 4 <= offset + len)
4170 {
4171 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4172 written += 4;
4173 }
4174 pos += 4;
4175 }
4176
4177 closedir (dir);
4178 return written;
4179 }
4180
4181 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4182 object type, using the /proc file system. */
4183
4184 static enum target_xfer_status
4185 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4186 const char *annex, gdb_byte *readbuf,
4187 const gdb_byte *writebuf,
4188 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4189 {
4190 char buf[128];
4191 int fd = 0;
4192 int ret = -1;
4193 int pid = ptid_get_pid (inferior_ptid);
4194
4195 if (!annex)
4196 {
4197 if (!readbuf)
4198 return TARGET_XFER_E_IO;
4199 else
4200 {
4201 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4202
4203 if (l < 0)
4204 return TARGET_XFER_E_IO;
4205 else if (l == 0)
4206 return TARGET_XFER_EOF;
4207 else
4208 {
4209 *xfered_len = (ULONGEST) l;
4210 return TARGET_XFER_OK;
4211 }
4212 }
4213 }
4214
4215 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4216 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4217 if (fd <= 0)
4218 return TARGET_XFER_E_IO;
4219
4220 if (offset != 0
4221 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4222 {
4223 close (fd);
4224 return TARGET_XFER_EOF;
4225 }
4226
4227 if (writebuf)
4228 ret = write (fd, writebuf, (size_t) len);
4229 else if (readbuf)
4230 ret = read (fd, readbuf, (size_t) len);
4231
4232 close (fd);
4233
4234 if (ret < 0)
4235 return TARGET_XFER_E_IO;
4236 else if (ret == 0)
4237 return TARGET_XFER_EOF;
4238 else
4239 {
4240 *xfered_len = (ULONGEST) ret;
4241 return TARGET_XFER_OK;
4242 }
4243 }
4244
4245
4246 /* Parse LINE as a signal set and add its set bits to SIGS. */
4247
4248 static void
4249 add_line_to_sigset (const char *line, sigset_t *sigs)
4250 {
4251 int len = strlen (line) - 1;
4252 const char *p;
4253 int signum;
4254
4255 if (line[len] != '\n')
4256 error (_("Could not parse signal set: %s"), line);
4257
4258 p = line;
4259 signum = len * 4;
4260 while (len-- > 0)
4261 {
4262 int digit;
4263
4264 if (*p >= '0' && *p <= '9')
4265 digit = *p - '0';
4266 else if (*p >= 'a' && *p <= 'f')
4267 digit = *p - 'a' + 10;
4268 else
4269 error (_("Could not parse signal set: %s"), line);
4270
4271 signum -= 4;
4272
4273 if (digit & 1)
4274 sigaddset (sigs, signum + 1);
4275 if (digit & 2)
4276 sigaddset (sigs, signum + 2);
4277 if (digit & 4)
4278 sigaddset (sigs, signum + 3);
4279 if (digit & 8)
4280 sigaddset (sigs, signum + 4);
4281
4282 p++;
4283 }
4284 }
4285
4286 /* Find process PID's pending signals from /proc/pid/status and set
4287 SIGS to match. */
4288
4289 void
4290 linux_proc_pending_signals (int pid, sigset_t *pending,
4291 sigset_t *blocked, sigset_t *ignored)
4292 {
4293 FILE *procfile;
4294 char buffer[PATH_MAX], fname[PATH_MAX];
4295 struct cleanup *cleanup;
4296
4297 sigemptyset (pending);
4298 sigemptyset (blocked);
4299 sigemptyset (ignored);
4300 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4301 procfile = gdb_fopen_cloexec (fname, "r");
4302 if (procfile == NULL)
4303 error (_("Could not open %s"), fname);
4304 cleanup = make_cleanup_fclose (procfile);
4305
4306 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4307 {
4308 /* Normal queued signals are on the SigPnd line in the status
4309 file. However, 2.6 kernels also have a "shared" pending
4310 queue for delivering signals to a thread group, so check for
4311 a ShdPnd line also.
4312
4313 Unfortunately some Red Hat kernels include the shared pending
4314 queue but not the ShdPnd status field. */
4315
4316 if (startswith (buffer, "SigPnd:\t"))
4317 add_line_to_sigset (buffer + 8, pending);
4318 else if (startswith (buffer, "ShdPnd:\t"))
4319 add_line_to_sigset (buffer + 8, pending);
4320 else if (startswith (buffer, "SigBlk:\t"))
4321 add_line_to_sigset (buffer + 8, blocked);
4322 else if (startswith (buffer, "SigIgn:\t"))
4323 add_line_to_sigset (buffer + 8, ignored);
4324 }
4325
4326 do_cleanups (cleanup);
4327 }
4328
4329 static enum target_xfer_status
4330 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4331 const char *annex, gdb_byte *readbuf,
4332 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4333 ULONGEST *xfered_len)
4334 {
4335 gdb_assert (object == TARGET_OBJECT_OSDATA);
4336
4337 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4338 if (*xfered_len == 0)
4339 return TARGET_XFER_EOF;
4340 else
4341 return TARGET_XFER_OK;
4342 }
4343
4344 static enum target_xfer_status
4345 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4346 const char *annex, gdb_byte *readbuf,
4347 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4348 ULONGEST *xfered_len)
4349 {
4350 enum target_xfer_status xfer;
4351
4352 if (object == TARGET_OBJECT_AUXV)
4353 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4354 offset, len, xfered_len);
4355
4356 if (object == TARGET_OBJECT_OSDATA)
4357 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4358 offset, len, xfered_len);
4359
4360 if (object == TARGET_OBJECT_SPU)
4361 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4362 offset, len, xfered_len);
4363
4364 /* GDB calculates all the addresses in possibly larget width of the address.
4365 Address width needs to be masked before its final use - either by
4366 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4367
4368 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4369
4370 if (object == TARGET_OBJECT_MEMORY)
4371 {
4372 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4373
4374 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4375 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4376 }
4377
4378 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4379 offset, len, xfered_len);
4380 if (xfer != TARGET_XFER_EOF)
4381 return xfer;
4382
4383 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4384 offset, len, xfered_len);
4385 }
4386
4387 static void
4388 cleanup_target_stop (void *arg)
4389 {
4390 ptid_t *ptid = (ptid_t *) arg;
4391
4392 gdb_assert (arg != NULL);
4393
4394 /* Unpause all */
4395 target_resume (*ptid, 0, GDB_SIGNAL_0);
4396 }
4397
4398 static VEC(static_tracepoint_marker_p) *
4399 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4400 const char *strid)
4401 {
4402 char s[IPA_CMD_BUF_SIZE];
4403 struct cleanup *old_chain;
4404 int pid = ptid_get_pid (inferior_ptid);
4405 VEC(static_tracepoint_marker_p) *markers = NULL;
4406 struct static_tracepoint_marker *marker = NULL;
4407 char *p = s;
4408 ptid_t ptid = ptid_build (pid, 0, 0);
4409
4410 /* Pause all */
4411 target_stop (ptid);
4412
4413 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4414 s[sizeof ("qTfSTM")] = 0;
4415
4416 agent_run_command (pid, s, strlen (s) + 1);
4417
4418 old_chain = make_cleanup (free_current_marker, &marker);
4419 make_cleanup (cleanup_target_stop, &ptid);
4420
4421 while (*p++ == 'm')
4422 {
4423 if (marker == NULL)
4424 marker = XCNEW (struct static_tracepoint_marker);
4425
4426 do
4427 {
4428 parse_static_tracepoint_marker_definition (p, &p, marker);
4429
4430 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4431 {
4432 VEC_safe_push (static_tracepoint_marker_p,
4433 markers, marker);
4434 marker = NULL;
4435 }
4436 else
4437 {
4438 release_static_tracepoint_marker (marker);
4439 memset (marker, 0, sizeof (*marker));
4440 }
4441 }
4442 while (*p++ == ','); /* comma-separated list */
4443
4444 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4445 s[sizeof ("qTsSTM")] = 0;
4446 agent_run_command (pid, s, strlen (s) + 1);
4447 p = s;
4448 }
4449
4450 do_cleanups (old_chain);
4451
4452 return markers;
4453 }
4454
4455 /* Create a prototype generic GNU/Linux target. The client can override
4456 it with local methods. */
4457
4458 static void
4459 linux_target_install_ops (struct target_ops *t)
4460 {
4461 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4462 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4463 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4464 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4465 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4466 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4467 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4468 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4469 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4470 t->to_post_attach = linux_child_post_attach;
4471 t->to_follow_fork = linux_child_follow_fork;
4472
4473 super_xfer_partial = t->to_xfer_partial;
4474 t->to_xfer_partial = linux_xfer_partial;
4475
4476 t->to_static_tracepoint_markers_by_strid
4477 = linux_child_static_tracepoint_markers_by_strid;
4478 }
4479
4480 struct target_ops *
4481 linux_target (void)
4482 {
4483 struct target_ops *t;
4484
4485 t = inf_ptrace_target ();
4486 linux_target_install_ops (t);
4487
4488 return t;
4489 }
4490
4491 struct target_ops *
4492 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4493 {
4494 struct target_ops *t;
4495
4496 t = inf_ptrace_trad_target (register_u_offset);
4497 linux_target_install_ops (t);
4498
4499 return t;
4500 }
4501
4502 /* target_is_async_p implementation. */
4503
4504 static int
4505 linux_nat_is_async_p (struct target_ops *ops)
4506 {
4507 return linux_is_async_p ();
4508 }
4509
4510 /* target_can_async_p implementation. */
4511
4512 static int
4513 linux_nat_can_async_p (struct target_ops *ops)
4514 {
4515 /* NOTE: palves 2008-03-21: We're only async when the user requests
4516 it explicitly with the "set target-async" command.
4517 Someday, linux will always be async. */
4518 return target_async_permitted;
4519 }
4520
4521 static int
4522 linux_nat_supports_non_stop (struct target_ops *self)
4523 {
4524 return 1;
4525 }
4526
4527 /* True if we want to support multi-process. To be removed when GDB
4528 supports multi-exec. */
4529
4530 int linux_multi_process = 1;
4531
4532 static int
4533 linux_nat_supports_multi_process (struct target_ops *self)
4534 {
4535 return linux_multi_process;
4536 }
4537
4538 static int
4539 linux_nat_supports_disable_randomization (struct target_ops *self)
4540 {
4541 #ifdef HAVE_PERSONALITY
4542 return 1;
4543 #else
4544 return 0;
4545 #endif
4546 }
4547
4548 static int async_terminal_is_ours = 1;
4549
4550 /* target_terminal_inferior implementation.
4551
4552 This is a wrapper around child_terminal_inferior to add async support. */
4553
4554 static void
4555 linux_nat_terminal_inferior (struct target_ops *self)
4556 {
4557 /* Like target_terminal_inferior, use target_can_async_p, not
4558 target_is_async_p, since at this point the target is not async
4559 yet. If it can async, then we know it will become async prior to
4560 resume. */
4561 if (!target_can_async_p ())
4562 {
4563 /* Async mode is disabled. */
4564 child_terminal_inferior (self);
4565 return;
4566 }
4567
4568 child_terminal_inferior (self);
4569
4570 /* Calls to target_terminal_*() are meant to be idempotent. */
4571 if (!async_terminal_is_ours)
4572 return;
4573
4574 delete_file_handler (input_fd);
4575 async_terminal_is_ours = 0;
4576 set_sigint_trap ();
4577 }
4578
4579 /* target_terminal_ours implementation.
4580
4581 This is a wrapper around child_terminal_ours to add async support (and
4582 implement the target_terminal_ours vs target_terminal_ours_for_output
4583 distinction). child_terminal_ours is currently no different than
4584 child_terminal_ours_for_output.
4585 We leave target_terminal_ours_for_output alone, leaving it to
4586 child_terminal_ours_for_output. */
4587
4588 static void
4589 linux_nat_terminal_ours (struct target_ops *self)
4590 {
4591 /* GDB should never give the terminal to the inferior if the
4592 inferior is running in the background (run&, continue&, etc.),
4593 but claiming it sure should. */
4594 child_terminal_ours (self);
4595
4596 if (async_terminal_is_ours)
4597 return;
4598
4599 clear_sigint_trap ();
4600 add_file_handler (input_fd, stdin_event_handler, 0);
4601 async_terminal_is_ours = 1;
4602 }
4603
4604 static void (*async_client_callback) (enum inferior_event_type event_type,
4605 void *context);
4606 static void *async_client_context;
4607
4608 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4609 so we notice when any child changes state, and notify the
4610 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4611 above to wait for the arrival of a SIGCHLD. */
4612
4613 static void
4614 sigchld_handler (int signo)
4615 {
4616 int old_errno = errno;
4617
4618 if (debug_linux_nat)
4619 ui_file_write_async_safe (gdb_stdlog,
4620 "sigchld\n", sizeof ("sigchld\n") - 1);
4621
4622 if (signo == SIGCHLD
4623 && linux_nat_event_pipe[0] != -1)
4624 async_file_mark (); /* Let the event loop know that there are
4625 events to handle. */
4626
4627 errno = old_errno;
4628 }
4629
4630 /* Callback registered with the target events file descriptor. */
4631
4632 static void
4633 handle_target_event (int error, gdb_client_data client_data)
4634 {
4635 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4636 }
4637
4638 /* Create/destroy the target events pipe. Returns previous state. */
4639
4640 static int
4641 linux_async_pipe (int enable)
4642 {
4643 int previous = linux_is_async_p ();
4644
4645 if (previous != enable)
4646 {
4647 sigset_t prev_mask;
4648
4649 /* Block child signals while we create/destroy the pipe, as
4650 their handler writes to it. */
4651 block_child_signals (&prev_mask);
4652
4653 if (enable)
4654 {
4655 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4656 internal_error (__FILE__, __LINE__,
4657 "creating event pipe failed.");
4658
4659 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4660 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4661 }
4662 else
4663 {
4664 close (linux_nat_event_pipe[0]);
4665 close (linux_nat_event_pipe[1]);
4666 linux_nat_event_pipe[0] = -1;
4667 linux_nat_event_pipe[1] = -1;
4668 }
4669
4670 restore_child_signals_mask (&prev_mask);
4671 }
4672
4673 return previous;
4674 }
4675
4676 /* target_async implementation. */
4677
4678 static void
4679 linux_nat_async (struct target_ops *ops,
4680 void (*callback) (enum inferior_event_type event_type,
4681 void *context),
4682 void *context)
4683 {
4684 if (callback != NULL)
4685 {
4686 async_client_callback = callback;
4687 async_client_context = context;
4688 if (!linux_async_pipe (1))
4689 {
4690 add_file_handler (linux_nat_event_pipe[0],
4691 handle_target_event, NULL);
4692 /* There may be pending events to handle. Tell the event loop
4693 to poll them. */
4694 async_file_mark ();
4695 }
4696 }
4697 else
4698 {
4699 async_client_callback = callback;
4700 async_client_context = context;
4701 delete_file_handler (linux_nat_event_pipe[0]);
4702 linux_async_pipe (0);
4703 }
4704 return;
4705 }
4706
4707 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4708 event came out. */
4709
4710 static int
4711 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4712 {
4713 if (!lwp->stopped)
4714 {
4715 if (debug_linux_nat)
4716 fprintf_unfiltered (gdb_stdlog,
4717 "LNSL: running -> suspending %s\n",
4718 target_pid_to_str (lwp->ptid));
4719
4720
4721 if (lwp->last_resume_kind == resume_stop)
4722 {
4723 if (debug_linux_nat)
4724 fprintf_unfiltered (gdb_stdlog,
4725 "linux-nat: already stopping LWP %ld at "
4726 "GDB's request\n",
4727 ptid_get_lwp (lwp->ptid));
4728 return 0;
4729 }
4730
4731 stop_callback (lwp, NULL);
4732 lwp->last_resume_kind = resume_stop;
4733 }
4734 else
4735 {
4736 /* Already known to be stopped; do nothing. */
4737
4738 if (debug_linux_nat)
4739 {
4740 if (find_thread_ptid (lwp->ptid)->stop_requested)
4741 fprintf_unfiltered (gdb_stdlog,
4742 "LNSL: already stopped/stop_requested %s\n",
4743 target_pid_to_str (lwp->ptid));
4744 else
4745 fprintf_unfiltered (gdb_stdlog,
4746 "LNSL: already stopped/no "
4747 "stop_requested yet %s\n",
4748 target_pid_to_str (lwp->ptid));
4749 }
4750 }
4751 return 0;
4752 }
4753
4754 static void
4755 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4756 {
4757 if (non_stop)
4758 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4759 else
4760 linux_ops->to_stop (linux_ops, ptid);
4761 }
4762
4763 static void
4764 linux_nat_close (struct target_ops *self)
4765 {
4766 /* Unregister from the event loop. */
4767 if (linux_nat_is_async_p (self))
4768 linux_nat_async (self, NULL, NULL);
4769
4770 if (linux_ops->to_close)
4771 linux_ops->to_close (linux_ops);
4772
4773 super_close (self);
4774 }
4775
4776 /* When requests are passed down from the linux-nat layer to the
4777 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4778 used. The address space pointer is stored in the inferior object,
4779 but the common code that is passed such ptid can't tell whether
4780 lwpid is a "main" process id or not (it assumes so). We reverse
4781 look up the "main" process id from the lwp here. */
4782
4783 static struct address_space *
4784 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4785 {
4786 struct lwp_info *lwp;
4787 struct inferior *inf;
4788 int pid;
4789
4790 if (ptid_get_lwp (ptid) == 0)
4791 {
4792 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4793 tgid. */
4794 lwp = find_lwp_pid (ptid);
4795 pid = ptid_get_pid (lwp->ptid);
4796 }
4797 else
4798 {
4799 /* A (pid,lwpid,0) ptid. */
4800 pid = ptid_get_pid (ptid);
4801 }
4802
4803 inf = find_inferior_pid (pid);
4804 gdb_assert (inf != NULL);
4805 return inf->aspace;
4806 }
4807
4808 /* Return the cached value of the processor core for thread PTID. */
4809
4810 static int
4811 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4812 {
4813 struct lwp_info *info = find_lwp_pid (ptid);
4814
4815 if (info)
4816 return info->core;
4817 return -1;
4818 }
4819
4820 void
4821 linux_nat_add_target (struct target_ops *t)
4822 {
4823 /* Save the provided single-threaded target. We save this in a separate
4824 variable because another target we've inherited from (e.g. inf-ptrace)
4825 may have saved a pointer to T; we want to use it for the final
4826 process stratum target. */
4827 linux_ops_saved = *t;
4828 linux_ops = &linux_ops_saved;
4829
4830 /* Override some methods for multithreading. */
4831 t->to_create_inferior = linux_nat_create_inferior;
4832 t->to_attach = linux_nat_attach;
4833 t->to_detach = linux_nat_detach;
4834 t->to_resume = linux_nat_resume;
4835 t->to_wait = linux_nat_wait;
4836 t->to_pass_signals = linux_nat_pass_signals;
4837 t->to_xfer_partial = linux_nat_xfer_partial;
4838 t->to_kill = linux_nat_kill;
4839 t->to_mourn_inferior = linux_nat_mourn_inferior;
4840 t->to_thread_alive = linux_nat_thread_alive;
4841 t->to_pid_to_str = linux_nat_pid_to_str;
4842 t->to_thread_name = linux_nat_thread_name;
4843 t->to_has_thread_control = tc_schedlock;
4844 t->to_thread_address_space = linux_nat_thread_address_space;
4845 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4846 t->to_stopped_data_address = linux_nat_stopped_data_address;
4847 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4848 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4849 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4850 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4851
4852 t->to_can_async_p = linux_nat_can_async_p;
4853 t->to_is_async_p = linux_nat_is_async_p;
4854 t->to_supports_non_stop = linux_nat_supports_non_stop;
4855 t->to_async = linux_nat_async;
4856 t->to_terminal_inferior = linux_nat_terminal_inferior;
4857 t->to_terminal_ours = linux_nat_terminal_ours;
4858
4859 super_close = t->to_close;
4860 t->to_close = linux_nat_close;
4861
4862 /* Methods for non-stop support. */
4863 t->to_stop = linux_nat_stop;
4864
4865 t->to_supports_multi_process = linux_nat_supports_multi_process;
4866
4867 t->to_supports_disable_randomization
4868 = linux_nat_supports_disable_randomization;
4869
4870 t->to_core_of_thread = linux_nat_core_of_thread;
4871
4872 /* We don't change the stratum; this target will sit at
4873 process_stratum and thread_db will set at thread_stratum. This
4874 is a little strange, since this is a multi-threaded-capable
4875 target, but we want to be on the stack below thread_db, and we
4876 also want to be used for single-threaded processes. */
4877
4878 add_target (t);
4879 }
4880
4881 /* Register a method to call whenever a new thread is attached. */
4882 void
4883 linux_nat_set_new_thread (struct target_ops *t,
4884 void (*new_thread) (struct lwp_info *))
4885 {
4886 /* Save the pointer. We only support a single registered instance
4887 of the GNU/Linux native target, so we do not need to map this to
4888 T. */
4889 linux_nat_new_thread = new_thread;
4890 }
4891
4892 /* See declaration in linux-nat.h. */
4893
4894 void
4895 linux_nat_set_new_fork (struct target_ops *t,
4896 linux_nat_new_fork_ftype *new_fork)
4897 {
4898 /* Save the pointer. */
4899 linux_nat_new_fork = new_fork;
4900 }
4901
4902 /* See declaration in linux-nat.h. */
4903
4904 void
4905 linux_nat_set_forget_process (struct target_ops *t,
4906 linux_nat_forget_process_ftype *fn)
4907 {
4908 /* Save the pointer. */
4909 linux_nat_forget_process_hook = fn;
4910 }
4911
4912 /* See declaration in linux-nat.h. */
4913
4914 void
4915 linux_nat_forget_process (pid_t pid)
4916 {
4917 if (linux_nat_forget_process_hook != NULL)
4918 linux_nat_forget_process_hook (pid);
4919 }
4920
4921 /* Register a method that converts a siginfo object between the layout
4922 that ptrace returns, and the layout in the architecture of the
4923 inferior. */
4924 void
4925 linux_nat_set_siginfo_fixup (struct target_ops *t,
4926 int (*siginfo_fixup) (siginfo_t *,
4927 gdb_byte *,
4928 int))
4929 {
4930 /* Save the pointer. */
4931 linux_nat_siginfo_fixup = siginfo_fixup;
4932 }
4933
4934 /* Register a method to call prior to resuming a thread. */
4935
4936 void
4937 linux_nat_set_prepare_to_resume (struct target_ops *t,
4938 void (*prepare_to_resume) (struct lwp_info *))
4939 {
4940 /* Save the pointer. */
4941 linux_nat_prepare_to_resume = prepare_to_resume;
4942 }
4943
4944 /* See linux-nat.h. */
4945
4946 int
4947 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4948 {
4949 int pid;
4950
4951 pid = ptid_get_lwp (ptid);
4952 if (pid == 0)
4953 pid = ptid_get_pid (ptid);
4954
4955 errno = 0;
4956 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4957 if (errno != 0)
4958 {
4959 memset (siginfo, 0, sizeof (*siginfo));
4960 return 0;
4961 }
4962 return 1;
4963 }
4964
4965 /* See nat/linux-nat.h. */
4966
4967 ptid_t
4968 current_lwp_ptid (void)
4969 {
4970 gdb_assert (ptid_lwp_p (inferior_ptid));
4971 return inferior_ptid;
4972 }
4973
4974 /* Provide a prototype to silence -Wmissing-prototypes. */
4975 extern initialize_file_ftype _initialize_linux_nat;
4976
4977 void
4978 _initialize_linux_nat (void)
4979 {
4980 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4981 &debug_linux_nat, _("\
4982 Set debugging of GNU/Linux lwp module."), _("\
4983 Show debugging of GNU/Linux lwp module."), _("\
4984 Enables printf debugging output."),
4985 NULL,
4986 show_debug_linux_nat,
4987 &setdebuglist, &showdebuglist);
4988
4989 /* Save this mask as the default. */
4990 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4991
4992 /* Install a SIGCHLD handler. */
4993 sigchld_action.sa_handler = sigchld_handler;
4994 sigemptyset (&sigchld_action.sa_mask);
4995 sigchld_action.sa_flags = SA_RESTART;
4996
4997 /* Make it the default. */
4998 sigaction (SIGCHLD, &sigchld_action, NULL);
4999
5000 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5001 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5002 sigdelset (&suspend_mask, SIGCHLD);
5003
5004 sigemptyset (&blocked_mask);
5005
5006 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
5007 support read-only process state. */
5008 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
5009 | PTRACE_O_TRACEVFORKDONE
5010 | PTRACE_O_TRACEVFORK
5011 | PTRACE_O_TRACEFORK
5012 | PTRACE_O_TRACEEXEC);
5013 }
5014 \f
5015
5016 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5017 the GNU/Linux Threads library and therefore doesn't really belong
5018 here. */
5019
5020 /* Read variable NAME in the target and return its value if found.
5021 Otherwise return zero. It is assumed that the type of the variable
5022 is `int'. */
5023
5024 static int
5025 get_signo (const char *name)
5026 {
5027 struct bound_minimal_symbol ms;
5028 int signo;
5029
5030 ms = lookup_minimal_symbol (name, NULL, NULL);
5031 if (ms.minsym == NULL)
5032 return 0;
5033
5034 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5035 sizeof (signo)) != 0)
5036 return 0;
5037
5038 return signo;
5039 }
5040
5041 /* Return the set of signals used by the threads library in *SET. */
5042
5043 void
5044 lin_thread_get_thread_signals (sigset_t *set)
5045 {
5046 struct sigaction action;
5047 int restart, cancel;
5048
5049 sigemptyset (&blocked_mask);
5050 sigemptyset (set);
5051
5052 restart = get_signo ("__pthread_sig_restart");
5053 cancel = get_signo ("__pthread_sig_cancel");
5054
5055 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5056 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5057 not provide any way for the debugger to query the signal numbers -
5058 fortunately they don't change! */
5059
5060 if (restart == 0)
5061 restart = __SIGRTMIN;
5062
5063 if (cancel == 0)
5064 cancel = __SIGRTMIN + 1;
5065
5066 sigaddset (set, restart);
5067 sigaddset (set, cancel);
5068
5069 /* The GNU/Linux Threads library makes terminating threads send a
5070 special "cancel" signal instead of SIGCHLD. Make sure we catch
5071 those (to prevent them from terminating GDB itself, which is
5072 likely to be their default action) and treat them the same way as
5073 SIGCHLD. */
5074
5075 action.sa_handler = sigchld_handler;
5076 sigemptyset (&action.sa_mask);
5077 action.sa_flags = SA_RESTART;
5078 sigaction (cancel, &action, NULL);
5079
5080 /* We block the "cancel" signal throughout this code ... */
5081 sigaddset (&blocked_mask, cancel);
5082 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5083
5084 /* ... except during a sigsuspend. */
5085 sigdelset (&suspend_mask, cancel);
5086 }
This page took 0.125645 seconds and 5 git commands to generate.