* breakpoint.c (should_be_inserted): Don't insert breakpoints if
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 static int linux_parent_pid;
274
275 struct simple_pid_list
276 {
277 int pid;
278 int status;
279 struct simple_pid_list *next;
280 };
281 struct simple_pid_list *stopped_pids;
282
283 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
284 can not be used, 1 if it can. */
285
286 static int linux_supports_tracefork_flag = -1;
287
288 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
289 can not be used, 1 if it can. */
290
291 static int linux_supports_tracesysgood_flag = -1;
292
293 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
294 PTRACE_O_TRACEVFORKDONE. */
295
296 static int linux_supports_tracevforkdone_flag = -1;
297
298 /* Async mode support */
299
300 /* Zero if the async mode, although enabled, is masked, which means
301 linux_nat_wait should behave as if async mode was off. */
302 static int linux_nat_async_mask_value = 1;
303
304 /* Stores the current used ptrace() options. */
305 static int current_ptrace_options = 0;
306
307 /* The read/write ends of the pipe registered as waitable file in the
308 event loop. */
309 static int linux_nat_event_pipe[2] = { -1, -1 };
310
311 /* Flush the event pipe. */
312
313 static void
314 async_file_flush (void)
315 {
316 int ret;
317 char buf;
318
319 do
320 {
321 ret = read (linux_nat_event_pipe[0], &buf, 1);
322 }
323 while (ret >= 0 || (ret == -1 && errno == EINTR));
324 }
325
326 /* Put something (anything, doesn't matter what, or how much) in event
327 pipe, so that the select/poll in the event-loop realizes we have
328 something to process. */
329
330 static void
331 async_file_mark (void)
332 {
333 int ret;
334
335 /* It doesn't really matter what the pipe contains, as long we end
336 up with something in it. Might as well flush the previous
337 left-overs. */
338 async_file_flush ();
339
340 do
341 {
342 ret = write (linux_nat_event_pipe[1], "+", 1);
343 }
344 while (ret == -1 && errno == EINTR);
345
346 /* Ignore EAGAIN. If the pipe is full, the event loop will already
347 be awakened anyway. */
348 }
349
350 static void linux_nat_async (void (*callback)
351 (enum inferior_event_type event_type, void *context),
352 void *context);
353 static int linux_nat_async_mask (int mask);
354 static int kill_lwp (int lwpid, int signo);
355
356 static int stop_callback (struct lwp_info *lp, void *data);
357
358 static void block_child_signals (sigset_t *prev_mask);
359 static void restore_child_signals_mask (sigset_t *prev_mask);
360
361 struct lwp_info;
362 static struct lwp_info *add_lwp (ptid_t ptid);
363 static void purge_lwp_list (int pid);
364 static struct lwp_info *find_lwp_pid (ptid_t ptid);
365
366 \f
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->pid = pid;
374 new_pid->status = status;
375 new_pid->next = *listp;
376 *listp = new_pid;
377 }
378
379 static int
380 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
381 {
382 struct simple_pid_list **p;
383
384 for (p = listp; *p != NULL; p = &(*p)->next)
385 if ((*p)->pid == pid)
386 {
387 struct simple_pid_list *next = (*p)->next;
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 int ret;
409
410 ptrace (PTRACE_TRACEME, 0, 0, 0);
411 kill (getpid (), SIGSTOP);
412 fork ();
413 _exit (0);
414 }
415
416 /* Wrapper function for waitpid which handles EINTR. */
417
418 static int
419 my_waitpid (int pid, int *status, int flags)
420 {
421 int ret;
422
423 do
424 {
425 ret = waitpid (pid, status, flags);
426 }
427 while (ret == -1 && errno == EINTR);
428
429 return ret;
430 }
431
432 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
433
434 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
435 we know that the feature is not available. This may change the tracing
436 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
437
438 However, if it succeeds, we don't know for sure that the feature is
439 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
440 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
441 fork tracing, and let it fork. If the process exits, we assume that we
442 can't use TRACEFORK; if we get the fork notification, and we can extract
443 the new child's PID, then we assume that we can. */
444
445 static void
446 linux_test_for_tracefork (int original_pid)
447 {
448 int child_pid, ret, status;
449 long second_pid;
450 sigset_t prev_mask;
451
452 /* We don't want those ptrace calls to be interrupted. */
453 block_child_signals (&prev_mask);
454
455 linux_supports_tracefork_flag = 0;
456 linux_supports_tracevforkdone_flag = 0;
457
458 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 if (ret != 0)
460 {
461 restore_child_signals_mask (&prev_mask);
462 return;
463 }
464
465 child_pid = fork ();
466 if (child_pid == -1)
467 perror_with_name (("fork"));
468
469 if (child_pid == 0)
470 linux_tracefork_child ();
471
472 ret = my_waitpid (child_pid, &status, 0);
473 if (ret == -1)
474 perror_with_name (("waitpid"));
475 else if (ret != child_pid)
476 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
477 if (! WIFSTOPPED (status))
478 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
479
480 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 if (ret != 0)
482 {
483 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 if (ret != 0)
485 {
486 warning (_("linux_test_for_tracefork: failed to kill child"));
487 restore_child_signals_mask (&prev_mask);
488 return;
489 }
490
491 ret = my_waitpid (child_pid, &status, 0);
492 if (ret != child_pid)
493 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
494 else if (!WIFSIGNALED (status))
495 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
496 "killed child"), status);
497
498 restore_child_signals_mask (&prev_mask);
499 return;
500 }
501
502 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
503 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
504 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
505 linux_supports_tracevforkdone_flag = (ret == 0);
506
507 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
508 if (ret != 0)
509 warning (_("linux_test_for_tracefork: failed to resume child"));
510
511 ret = my_waitpid (child_pid, &status, 0);
512
513 if (ret == child_pid && WIFSTOPPED (status)
514 && status >> 16 == PTRACE_EVENT_FORK)
515 {
516 second_pid = 0;
517 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
518 if (ret == 0 && second_pid != 0)
519 {
520 int second_status;
521
522 linux_supports_tracefork_flag = 1;
523 my_waitpid (second_pid, &second_status, 0);
524 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
525 if (ret != 0)
526 warning (_("linux_test_for_tracefork: failed to kill second child"));
527 my_waitpid (second_pid, &status, 0);
528 }
529 }
530 else
531 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
532 "(%d, status 0x%x)"), ret, status);
533
534 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
535 if (ret != 0)
536 warning (_("linux_test_for_tracefork: failed to kill child"));
537 my_waitpid (child_pid, &status, 0);
538
539 restore_child_signals_mask (&prev_mask);
540 }
541
542 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
543
544 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
545 we know that the feature is not available. This may change the tracing
546 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547
548 static void
549 linux_test_for_tracesysgood (int original_pid)
550 {
551 int ret;
552 sigset_t prev_mask;
553
554 /* We don't want those ptrace calls to be interrupted. */
555 block_child_signals (&prev_mask);
556
557 linux_supports_tracesysgood_flag = 0;
558
559 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
560 if (ret != 0)
561 goto out;
562
563 linux_supports_tracesysgood_flag = 1;
564 out:
565 restore_child_signals_mask (&prev_mask);
566 }
567
568 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
569 This function also sets linux_supports_tracesysgood_flag. */
570
571 static int
572 linux_supports_tracesysgood (int pid)
573 {
574 if (linux_supports_tracesysgood_flag == -1)
575 linux_test_for_tracesysgood (pid);
576 return linux_supports_tracesysgood_flag;
577 }
578
579 /* Return non-zero iff we have tracefork functionality available.
580 This function also sets linux_supports_tracefork_flag. */
581
582 static int
583 linux_supports_tracefork (int pid)
584 {
585 if (linux_supports_tracefork_flag == -1)
586 linux_test_for_tracefork (pid);
587 return linux_supports_tracefork_flag;
588 }
589
590 static int
591 linux_supports_tracevforkdone (int pid)
592 {
593 if (linux_supports_tracefork_flag == -1)
594 linux_test_for_tracefork (pid);
595 return linux_supports_tracevforkdone_flag;
596 }
597
598 static void
599 linux_enable_tracesysgood (ptid_t ptid)
600 {
601 int pid = ptid_get_lwp (ptid);
602
603 if (pid == 0)
604 pid = ptid_get_pid (ptid);
605
606 if (linux_supports_tracesysgood (pid) == 0)
607 return;
608
609 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
612 }
613
614 \f
615 void
616 linux_enable_event_reporting (ptid_t ptid)
617 {
618 int pid = ptid_get_lwp (ptid);
619
620 if (pid == 0)
621 pid = ptid_get_pid (ptid);
622
623 if (! linux_supports_tracefork (pid))
624 return;
625
626 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
627 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
628
629 if (linux_supports_tracevforkdone (pid))
630 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
631
632 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
633 read-only process state. */
634
635 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
636 }
637
638 static void
639 linux_child_post_attach (int pid)
640 {
641 linux_enable_event_reporting (pid_to_ptid (pid));
642 check_for_thread_db ();
643 linux_enable_tracesysgood (pid_to_ptid (pid));
644 }
645
646 static void
647 linux_child_post_startup_inferior (ptid_t ptid)
648 {
649 linux_enable_event_reporting (ptid);
650 check_for_thread_db ();
651 linux_enable_tracesysgood (ptid);
652 }
653
654 static int
655 linux_child_follow_fork (struct target_ops *ops, int follow_child)
656 {
657 sigset_t prev_mask;
658 int has_vforked;
659 int parent_pid, child_pid;
660
661 block_child_signals (&prev_mask);
662
663 has_vforked = (inferior_thread ()->pending_follow.kind
664 == TARGET_WAITKIND_VFORKED);
665 parent_pid = ptid_get_lwp (inferior_ptid);
666 if (parent_pid == 0)
667 parent_pid = ptid_get_pid (inferior_ptid);
668 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
669
670 if (!detach_fork)
671 linux_enable_event_reporting (pid_to_ptid (child_pid));
672
673 if (has_vforked
674 && !non_stop /* Non-stop always resumes both branches. */
675 && (!target_is_async_p () || sync_execution)
676 && !(follow_child || detach_fork || sched_multi))
677 {
678 /* The parent stays blocked inside the vfork syscall until the
679 child execs or exits. If we don't let the child run, then
680 the parent stays blocked. If we're telling the parent to run
681 in the foreground, the user will not be able to ctrl-c to get
682 back the terminal, effectively hanging the debug session. */
683 fprintf_filtered (gdb_stderr, _("\
684 Can not resume the parent process over vfork in the foreground while \n\
685 holding the child stopped. Try \"set detach-on-fork\" or \
686 \"set schedule-multiple\".\n"));
687 return 1;
688 }
689
690 if (! follow_child)
691 {
692 struct lwp_info *child_lp = NULL;
693
694 /* We're already attached to the parent, by default. */
695
696 /* Detach new forked process? */
697 if (detach_fork)
698 {
699 /* Before detaching from the child, remove all breakpoints
700 from it. If we forked, then this has already been taken
701 care of by infrun.c. If we vforked however, any
702 breakpoint inserted in the parent is visible in the
703 child, even those added while stopped in a vfork
704 catchpoint. This will remove the breakpoints from the
705 parent also, but they'll be reinserted below. */
706 if (has_vforked)
707 {
708 /* keep breakpoints list in sync. */
709 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 }
711
712 if (info_verbose || debug_linux_nat)
713 {
714 target_terminal_ours ();
715 fprintf_filtered (gdb_stdlog,
716 "Detaching after fork from child process %d.\n",
717 child_pid);
718 }
719
720 ptrace (PTRACE_DETACH, child_pid, 0, 0);
721 }
722 else
723 {
724 struct inferior *parent_inf, *child_inf;
725 struct cleanup *old_chain;
726
727 /* Add process to GDB's tables. */
728 child_inf = add_inferior (child_pid);
729
730 parent_inf = current_inferior ();
731 child_inf->attach_flag = parent_inf->attach_flag;
732 copy_terminal_info (child_inf, parent_inf);
733
734 old_chain = save_inferior_ptid ();
735 save_current_program_space ();
736
737 inferior_ptid = ptid_build (child_pid, child_pid, 0);
738 add_thread (inferior_ptid);
739 child_lp = add_lwp (inferior_ptid);
740 child_lp->stopped = 1;
741 child_lp->resumed = 1;
742
743 /* If this is a vfork child, then the address-space is
744 shared with the parent. */
745 if (has_vforked)
746 {
747 child_inf->pspace = parent_inf->pspace;
748 child_inf->aspace = parent_inf->aspace;
749
750 /* The parent will be frozen until the child is done
751 with the shared region. Keep track of the
752 parent. */
753 child_inf->vfork_parent = parent_inf;
754 child_inf->pending_detach = 0;
755 parent_inf->vfork_child = child_inf;
756 parent_inf->pending_detach = 0;
757 }
758 else
759 {
760 child_inf->aspace = new_address_space ();
761 child_inf->pspace = add_program_space (child_inf->aspace);
762 child_inf->removable = 1;
763 set_current_program_space (child_inf->pspace);
764 clone_program_space (child_inf->pspace, parent_inf->pspace);
765
766 /* Let the shared library layer (solib-svr4) learn about
767 this new process, relocate the cloned exec, pull in
768 shared libraries, and install the solib event
769 breakpoint. If a "cloned-VM" event was propagated
770 better throughout the core, this wouldn't be
771 required. */
772 solib_create_inferior_hook ();
773 }
774
775 /* Let the thread_db layer learn about this new process. */
776 check_for_thread_db ();
777
778 do_cleanups (old_chain);
779 }
780
781 if (has_vforked)
782 {
783 struct lwp_info *lp;
784 struct inferior *parent_inf;
785
786 parent_inf = current_inferior ();
787
788 /* If we detached from the child, then we have to be careful
789 to not insert breakpoints in the parent until the child
790 is done with the shared memory region. However, if we're
791 staying attached to the child, then we can and should
792 insert breakpoints, so that we can debug it. A
793 subsequent child exec or exit is enough to know when does
794 the child stops using the parent's address space. */
795 parent_inf->waiting_for_vfork_done = detach_fork;
796 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
797
798 lp = find_lwp_pid (pid_to_ptid (parent_pid));
799 gdb_assert (linux_supports_tracefork_flag >= 0);
800 if (linux_supports_tracevforkdone (0))
801 {
802 if (debug_linux_nat)
803 fprintf_unfiltered (gdb_stdlog,
804 "LCFF: waiting for VFORK_DONE on %d\n",
805 parent_pid);
806
807 lp->stopped = 1;
808 lp->resumed = 1;
809
810 /* We'll handle the VFORK_DONE event like any other
811 event, in target_wait. */
812 }
813 else
814 {
815 /* We can't insert breakpoints until the child has
816 finished with the shared memory region. We need to
817 wait until that happens. Ideal would be to just
818 call:
819 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
820 - waitpid (parent_pid, &status, __WALL);
821 However, most architectures can't handle a syscall
822 being traced on the way out if it wasn't traced on
823 the way in.
824
825 We might also think to loop, continuing the child
826 until it exits or gets a SIGTRAP. One problem is
827 that the child might call ptrace with PTRACE_TRACEME.
828
829 There's no simple and reliable way to figure out when
830 the vforked child will be done with its copy of the
831 shared memory. We could step it out of the syscall,
832 two instructions, let it go, and then single-step the
833 parent once. When we have hardware single-step, this
834 would work; with software single-step it could still
835 be made to work but we'd have to be able to insert
836 single-step breakpoints in the child, and we'd have
837 to insert -just- the single-step breakpoint in the
838 parent. Very awkward.
839
840 In the end, the best we can do is to make sure it
841 runs for a little while. Hopefully it will be out of
842 range of any breakpoints we reinsert. Usually this
843 is only the single-step breakpoint at vfork's return
844 point. */
845
846 if (debug_linux_nat)
847 fprintf_unfiltered (gdb_stdlog,
848 "LCFF: no VFORK_DONE support, sleeping a bit\n");
849
850 usleep (10000);
851
852 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
853 and leave it pending. The next linux_nat_resume call
854 will notice a pending event, and bypasses actually
855 resuming the inferior. */
856 lp->status = 0;
857 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
858 lp->stopped = 0;
859 lp->resumed = 1;
860
861 /* If we're in async mode, need to tell the event loop
862 there's something here to process. */
863 if (target_can_async_p ())
864 async_file_mark ();
865 }
866 }
867 }
868 else
869 {
870 struct thread_info *tp;
871 struct inferior *parent_inf, *child_inf;
872 struct lwp_info *lp;
873 struct program_space *parent_pspace;
874
875 if (info_verbose || debug_linux_nat)
876 {
877 target_terminal_ours ();
878 if (has_vforked)
879 fprintf_filtered (gdb_stdlog, _("\
880 Attaching after process %d vfork to child process %d.\n"),
881 parent_pid, child_pid);
882 else
883 fprintf_filtered (gdb_stdlog, _("\
884 Attaching after process %d fork to child process %d.\n"),
885 parent_pid, child_pid);
886 }
887
888 /* Add the new inferior first, so that the target_detach below
889 doesn't unpush the target. */
890
891 child_inf = add_inferior (child_pid);
892
893 parent_inf = current_inferior ();
894 child_inf->attach_flag = parent_inf->attach_flag;
895 copy_terminal_info (child_inf, parent_inf);
896
897 parent_pspace = parent_inf->pspace;
898
899 /* If we're vforking, we want to hold on to the parent until the
900 child exits or execs. At child exec or exit time we can
901 remove the old breakpoints from the parent and detach or
902 resume debugging it. Otherwise, detach the parent now; we'll
903 want to reuse it's program/address spaces, but we can't set
904 them to the child before removing breakpoints from the
905 parent, otherwise, the breakpoints module could decide to
906 remove breakpoints from the wrong process (since they'd be
907 assigned to the same address space). */
908
909 if (has_vforked)
910 {
911 gdb_assert (child_inf->vfork_parent == NULL);
912 gdb_assert (parent_inf->vfork_child == NULL);
913 child_inf->vfork_parent = parent_inf;
914 child_inf->pending_detach = 0;
915 parent_inf->vfork_child = child_inf;
916 parent_inf->pending_detach = detach_fork;
917 parent_inf->waiting_for_vfork_done = 0;
918 }
919 else if (detach_fork)
920 target_detach (NULL, 0);
921
922 /* Note that the detach above makes PARENT_INF dangling. */
923
924 /* Add the child thread to the appropriate lists, and switch to
925 this new thread, before cloning the program space, and
926 informing the solib layer about this new process. */
927
928 inferior_ptid = ptid_build (child_pid, child_pid, 0);
929 add_thread (inferior_ptid);
930 lp = add_lwp (inferior_ptid);
931 lp->stopped = 1;
932 lp->resumed = 1;
933
934 /* If this is a vfork child, then the address-space is shared
935 with the parent. If we detached from the parent, then we can
936 reuse the parent's program/address spaces. */
937 if (has_vforked || detach_fork)
938 {
939 child_inf->pspace = parent_pspace;
940 child_inf->aspace = child_inf->pspace->aspace;
941 }
942 else
943 {
944 child_inf->aspace = new_address_space ();
945 child_inf->pspace = add_program_space (child_inf->aspace);
946 child_inf->removable = 1;
947 set_current_program_space (child_inf->pspace);
948 clone_program_space (child_inf->pspace, parent_pspace);
949
950 /* Let the shared library layer (solib-svr4) learn about
951 this new process, relocate the cloned exec, pull in
952 shared libraries, and install the solib event breakpoint.
953 If a "cloned-VM" event was propagated better throughout
954 the core, this wouldn't be required. */
955 solib_create_inferior_hook ();
956 }
957
958 /* Let the thread_db layer learn about this new process. */
959 check_for_thread_db ();
960 }
961
962 restore_child_signals_mask (&prev_mask);
963 return 0;
964 }
965
966 \f
967 static void
968 linux_child_insert_fork_catchpoint (int pid)
969 {
970 if (! linux_supports_tracefork (pid))
971 error (_("Your system does not support fork catchpoints."));
972 }
973
974 static void
975 linux_child_insert_vfork_catchpoint (int pid)
976 {
977 if (!linux_supports_tracefork (pid))
978 error (_("Your system does not support vfork catchpoints."));
979 }
980
981 static void
982 linux_child_insert_exec_catchpoint (int pid)
983 {
984 if (!linux_supports_tracefork (pid))
985 error (_("Your system does not support exec catchpoints."));
986 }
987
988 static int
989 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
990 int table_size, int *table)
991 {
992 if (! linux_supports_tracesysgood (pid))
993 error (_("Your system does not support syscall catchpoints."));
994 /* On GNU/Linux, we ignore the arguments. It means that we only
995 enable the syscall catchpoints, but do not disable them.
996
997 Also, we do not use the `table' information because we do not
998 filter system calls here. We let GDB do the logic for us. */
999 return 0;
1000 }
1001
1002 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1003 are processes sharing the same VM space. A multi-threaded process
1004 is basically a group of such processes. However, such a grouping
1005 is almost entirely a user-space issue; the kernel doesn't enforce
1006 such a grouping at all (this might change in the future). In
1007 general, we'll rely on the threads library (i.e. the GNU/Linux
1008 Threads library) to provide such a grouping.
1009
1010 It is perfectly well possible to write a multi-threaded application
1011 without the assistance of a threads library, by using the clone
1012 system call directly. This module should be able to give some
1013 rudimentary support for debugging such applications if developers
1014 specify the CLONE_PTRACE flag in the clone system call, and are
1015 using the Linux kernel 2.4 or above.
1016
1017 Note that there are some peculiarities in GNU/Linux that affect
1018 this code:
1019
1020 - In general one should specify the __WCLONE flag to waitpid in
1021 order to make it report events for any of the cloned processes
1022 (and leave it out for the initial process). However, if a cloned
1023 process has exited the exit status is only reported if the
1024 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1025 we cannot use it since GDB must work on older systems too.
1026
1027 - When a traced, cloned process exits and is waited for by the
1028 debugger, the kernel reassigns it to the original parent and
1029 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1030 library doesn't notice this, which leads to the "zombie problem":
1031 When debugged a multi-threaded process that spawns a lot of
1032 threads will run out of processes, even if the threads exit,
1033 because the "zombies" stay around. */
1034
1035 /* List of known LWPs. */
1036 struct lwp_info *lwp_list;
1037 \f
1038
1039 /* Original signal mask. */
1040 static sigset_t normal_mask;
1041
1042 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1043 _initialize_linux_nat. */
1044 static sigset_t suspend_mask;
1045
1046 /* Signals to block to make that sigsuspend work. */
1047 static sigset_t blocked_mask;
1048
1049 /* SIGCHLD action. */
1050 struct sigaction sigchld_action;
1051
1052 /* Block child signals (SIGCHLD and linux threads signals), and store
1053 the previous mask in PREV_MASK. */
1054
1055 static void
1056 block_child_signals (sigset_t *prev_mask)
1057 {
1058 /* Make sure SIGCHLD is blocked. */
1059 if (!sigismember (&blocked_mask, SIGCHLD))
1060 sigaddset (&blocked_mask, SIGCHLD);
1061
1062 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1063 }
1064
1065 /* Restore child signals mask, previously returned by
1066 block_child_signals. */
1067
1068 static void
1069 restore_child_signals_mask (sigset_t *prev_mask)
1070 {
1071 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072 }
1073 \f
1074
1075 /* Prototypes for local functions. */
1076 static int stop_wait_callback (struct lwp_info *lp, void *data);
1077 static int linux_thread_alive (ptid_t ptid);
1078 static char *linux_child_pid_to_exec_file (int pid);
1079 static int cancel_breakpoint (struct lwp_info *lp);
1080
1081 \f
1082 /* Convert wait status STATUS to a string. Used for printing debug
1083 messages only. */
1084
1085 static char *
1086 status_to_str (int status)
1087 {
1088 static char buf[64];
1089
1090 if (WIFSTOPPED (status))
1091 {
1092 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1093 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1094 strsignal (SIGTRAP));
1095 else
1096 snprintf (buf, sizeof (buf), "%s (stopped)",
1097 strsignal (WSTOPSIG (status)));
1098 }
1099 else if (WIFSIGNALED (status))
1100 snprintf (buf, sizeof (buf), "%s (terminated)",
1101 strsignal (WSTOPSIG (status)));
1102 else
1103 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1104
1105 return buf;
1106 }
1107
1108 /* Initialize the list of LWPs. Note that this module, contrary to
1109 what GDB's generic threads layer does for its thread list,
1110 re-initializes the LWP lists whenever we mourn or detach (which
1111 doesn't involve mourning) the inferior. */
1112
1113 static void
1114 init_lwp_list (void)
1115 {
1116 struct lwp_info *lp, *lpnext;
1117
1118 for (lp = lwp_list; lp; lp = lpnext)
1119 {
1120 lpnext = lp->next;
1121 xfree (lp);
1122 }
1123
1124 lwp_list = NULL;
1125 }
1126
1127 /* Remove all LWPs belong to PID from the lwp list. */
1128
1129 static void
1130 purge_lwp_list (int pid)
1131 {
1132 struct lwp_info *lp, *lpprev, *lpnext;
1133
1134 lpprev = NULL;
1135
1136 for (lp = lwp_list; lp; lp = lpnext)
1137 {
1138 lpnext = lp->next;
1139
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 {
1142 if (lp == lwp_list)
1143 lwp_list = lp->next;
1144 else
1145 lpprev->next = lp->next;
1146
1147 xfree (lp);
1148 }
1149 else
1150 lpprev = lp;
1151 }
1152 }
1153
1154 /* Return the number of known LWPs in the tgid given by PID. */
1155
1156 static int
1157 num_lwps (int pid)
1158 {
1159 int count = 0;
1160 struct lwp_info *lp;
1161
1162 for (lp = lwp_list; lp; lp = lp->next)
1163 if (ptid_get_pid (lp->ptid) == pid)
1164 count++;
1165
1166 return count;
1167 }
1168
1169 /* Add the LWP specified by PID to the list. Return a pointer to the
1170 structure describing the new LWP. The LWP should already be stopped
1171 (with an exception for the very first LWP). */
1172
1173 static struct lwp_info *
1174 add_lwp (ptid_t ptid)
1175 {
1176 struct lwp_info *lp;
1177
1178 gdb_assert (is_lwp (ptid));
1179
1180 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1181
1182 memset (lp, 0, sizeof (struct lwp_info));
1183
1184 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1185
1186 lp->ptid = ptid;
1187
1188 lp->next = lwp_list;
1189 lwp_list = lp;
1190
1191 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1192 linux_nat_new_thread (ptid);
1193
1194 return lp;
1195 }
1196
1197 /* Remove the LWP specified by PID from the list. */
1198
1199 static void
1200 delete_lwp (ptid_t ptid)
1201 {
1202 struct lwp_info *lp, *lpprev;
1203
1204 lpprev = NULL;
1205
1206 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1207 if (ptid_equal (lp->ptid, ptid))
1208 break;
1209
1210 if (!lp)
1211 return;
1212
1213 if (lpprev)
1214 lpprev->next = lp->next;
1215 else
1216 lwp_list = lp->next;
1217
1218 xfree (lp);
1219 }
1220
1221 /* Return a pointer to the structure describing the LWP corresponding
1222 to PID. If no corresponding LWP could be found, return NULL. */
1223
1224 static struct lwp_info *
1225 find_lwp_pid (ptid_t ptid)
1226 {
1227 struct lwp_info *lp;
1228 int lwp;
1229
1230 if (is_lwp (ptid))
1231 lwp = GET_LWP (ptid);
1232 else
1233 lwp = GET_PID (ptid);
1234
1235 for (lp = lwp_list; lp; lp = lp->next)
1236 if (lwp == GET_LWP (lp->ptid))
1237 return lp;
1238
1239 return NULL;
1240 }
1241
1242 /* Returns true if PTID matches filter FILTER. FILTER can be the wild
1243 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1244 a process (ptid_is_pid returns true), in which case, all lwps of
1245 that give process match, lwps of other process do not; or, it can
1246 represent a specific thread, in which case, only that thread will
1247 match true. PTID must represent an LWP, it can never be a wild
1248 card. */
1249
1250 static int
1251 ptid_match (ptid_t ptid, ptid_t filter)
1252 {
1253 /* Since both parameters have the same type, prevent easy mistakes
1254 from happening. */
1255 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1256 && !ptid_equal (ptid, null_ptid));
1257
1258 if (ptid_equal (filter, minus_one_ptid))
1259 return 1;
1260 if (ptid_is_pid (filter)
1261 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1262 return 1;
1263 else if (ptid_equal (ptid, filter))
1264 return 1;
1265
1266 return 0;
1267 }
1268
1269 /* Call CALLBACK with its second argument set to DATA for every LWP in
1270 the list. If CALLBACK returns 1 for a particular LWP, return a
1271 pointer to the structure describing that LWP immediately.
1272 Otherwise return NULL. */
1273
1274 struct lwp_info *
1275 iterate_over_lwps (ptid_t filter,
1276 int (*callback) (struct lwp_info *, void *),
1277 void *data)
1278 {
1279 struct lwp_info *lp, *lpnext;
1280
1281 for (lp = lwp_list; lp; lp = lpnext)
1282 {
1283 lpnext = lp->next;
1284
1285 if (ptid_match (lp->ptid, filter))
1286 {
1287 if ((*callback) (lp, data))
1288 return lp;
1289 }
1290 }
1291
1292 return NULL;
1293 }
1294
1295 /* Update our internal state when changing from one checkpoint to
1296 another indicated by NEW_PTID. We can only switch single-threaded
1297 applications, so we only create one new LWP, and the previous list
1298 is discarded. */
1299
1300 void
1301 linux_nat_switch_fork (ptid_t new_ptid)
1302 {
1303 struct lwp_info *lp;
1304
1305 purge_lwp_list (GET_PID (inferior_ptid));
1306
1307 lp = add_lwp (new_ptid);
1308 lp->stopped = 1;
1309
1310 /* This changes the thread's ptid while preserving the gdb thread
1311 num. Also changes the inferior pid, while preserving the
1312 inferior num. */
1313 thread_change_ptid (inferior_ptid, new_ptid);
1314
1315 /* We've just told GDB core that the thread changed target id, but,
1316 in fact, it really is a different thread, with different register
1317 contents. */
1318 registers_changed ();
1319 }
1320
1321 /* Handle the exit of a single thread LP. */
1322
1323 static void
1324 exit_lwp (struct lwp_info *lp)
1325 {
1326 struct thread_info *th = find_thread_ptid (lp->ptid);
1327
1328 if (th)
1329 {
1330 if (print_thread_events)
1331 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1332
1333 delete_thread (lp->ptid);
1334 }
1335
1336 delete_lwp (lp->ptid);
1337 }
1338
1339 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1340
1341 int
1342 linux_proc_get_tgid (int lwpid)
1343 {
1344 FILE *status_file;
1345 char buf[100];
1346 int tgid = -1;
1347
1348 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1349 status_file = fopen (buf, "r");
1350 if (status_file != NULL)
1351 {
1352 while (fgets (buf, sizeof (buf), status_file))
1353 {
1354 if (strncmp (buf, "Tgid:", 5) == 0)
1355 {
1356 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1357 break;
1358 }
1359 }
1360
1361 fclose (status_file);
1362 }
1363
1364 return tgid;
1365 }
1366
1367 /* Detect `T (stopped)' in `/proc/PID/status'.
1368 Other states including `T (tracing stop)' are reported as false. */
1369
1370 static int
1371 pid_is_stopped (pid_t pid)
1372 {
1373 FILE *status_file;
1374 char buf[100];
1375 int retval = 0;
1376
1377 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1378 status_file = fopen (buf, "r");
1379 if (status_file != NULL)
1380 {
1381 int have_state = 0;
1382
1383 while (fgets (buf, sizeof (buf), status_file))
1384 {
1385 if (strncmp (buf, "State:", 6) == 0)
1386 {
1387 have_state = 1;
1388 break;
1389 }
1390 }
1391 if (have_state && strstr (buf, "T (stopped)") != NULL)
1392 retval = 1;
1393 fclose (status_file);
1394 }
1395 return retval;
1396 }
1397
1398 /* Wait for the LWP specified by LP, which we have just attached to.
1399 Returns a wait status for that LWP, to cache. */
1400
1401 static int
1402 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1403 int *signalled)
1404 {
1405 pid_t new_pid, pid = GET_LWP (ptid);
1406 int status;
1407
1408 if (pid_is_stopped (pid))
1409 {
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "LNPAW: Attaching to a stopped process\n");
1413
1414 /* The process is definitely stopped. It is in a job control
1415 stop, unless the kernel predates the TASK_STOPPED /
1416 TASK_TRACED distinction, in which case it might be in a
1417 ptrace stop. Make sure it is in a ptrace stop; from there we
1418 can kill it, signal it, et cetera.
1419
1420 First make sure there is a pending SIGSTOP. Since we are
1421 already attached, the process can not transition from stopped
1422 to running without a PTRACE_CONT; so we know this signal will
1423 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1424 probably already in the queue (unless this kernel is old
1425 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1426 is not an RT signal, it can only be queued once. */
1427 kill_lwp (pid, SIGSTOP);
1428
1429 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1430 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1431 ptrace (PTRACE_CONT, pid, 0, 0);
1432 }
1433
1434 /* Make sure the initial process is stopped. The user-level threads
1435 layer might want to poke around in the inferior, and that won't
1436 work if things haven't stabilized yet. */
1437 new_pid = my_waitpid (pid, &status, 0);
1438 if (new_pid == -1 && errno == ECHILD)
1439 {
1440 if (first)
1441 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1442
1443 /* Try again with __WCLONE to check cloned processes. */
1444 new_pid = my_waitpid (pid, &status, __WCLONE);
1445 *cloned = 1;
1446 }
1447
1448 gdb_assert (pid == new_pid);
1449
1450 if (!WIFSTOPPED (status))
1451 {
1452 /* The pid we tried to attach has apparently just exited. */
1453 if (debug_linux_nat)
1454 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1455 pid, status_to_str (status));
1456 return status;
1457 }
1458
1459 if (WSTOPSIG (status) != SIGSTOP)
1460 {
1461 *signalled = 1;
1462 if (debug_linux_nat)
1463 fprintf_unfiltered (gdb_stdlog,
1464 "LNPAW: Received %s after attaching\n",
1465 status_to_str (status));
1466 }
1467
1468 return status;
1469 }
1470
1471 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1472 if the new LWP could not be attached. */
1473
1474 int
1475 lin_lwp_attach_lwp (ptid_t ptid)
1476 {
1477 struct lwp_info *lp;
1478 sigset_t prev_mask;
1479
1480 gdb_assert (is_lwp (ptid));
1481
1482 block_child_signals (&prev_mask);
1483
1484 lp = find_lwp_pid (ptid);
1485
1486 /* We assume that we're already attached to any LWP that has an id
1487 equal to the overall process id, and to any LWP that is already
1488 in our list of LWPs. If we're not seeing exit events from threads
1489 and we've had PID wraparound since we last tried to stop all threads,
1490 this assumption might be wrong; fortunately, this is very unlikely
1491 to happen. */
1492 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1493 {
1494 int status, cloned = 0, signalled = 0;
1495
1496 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1497 {
1498 /* If we fail to attach to the thread, issue a warning,
1499 but continue. One way this can happen is if thread
1500 creation is interrupted; as of Linux kernel 2.6.19, a
1501 bug may place threads in the thread list and then fail
1502 to create them. */
1503 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1504 safe_strerror (errno));
1505 restore_child_signals_mask (&prev_mask);
1506 return -1;
1507 }
1508
1509 if (debug_linux_nat)
1510 fprintf_unfiltered (gdb_stdlog,
1511 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1512 target_pid_to_str (ptid));
1513
1514 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1515 if (!WIFSTOPPED (status))
1516 return -1;
1517
1518 lp = add_lwp (ptid);
1519 lp->stopped = 1;
1520 lp->cloned = cloned;
1521 lp->signalled = signalled;
1522 if (WSTOPSIG (status) != SIGSTOP)
1523 {
1524 lp->resumed = 1;
1525 lp->status = status;
1526 }
1527
1528 target_post_attach (GET_LWP (lp->ptid));
1529
1530 if (debug_linux_nat)
1531 {
1532 fprintf_unfiltered (gdb_stdlog,
1533 "LLAL: waitpid %s received %s\n",
1534 target_pid_to_str (ptid),
1535 status_to_str (status));
1536 }
1537 }
1538 else
1539 {
1540 /* We assume that the LWP representing the original process is
1541 already stopped. Mark it as stopped in the data structure
1542 that the GNU/linux ptrace layer uses to keep track of
1543 threads. Note that this won't have already been done since
1544 the main thread will have, we assume, been stopped by an
1545 attach from a different layer. */
1546 if (lp == NULL)
1547 lp = add_lwp (ptid);
1548 lp->stopped = 1;
1549 }
1550
1551 restore_child_signals_mask (&prev_mask);
1552 return 0;
1553 }
1554
1555 static void
1556 linux_nat_create_inferior (struct target_ops *ops,
1557 char *exec_file, char *allargs, char **env,
1558 int from_tty)
1559 {
1560 #ifdef HAVE_PERSONALITY
1561 int personality_orig = 0, personality_set = 0;
1562 #endif /* HAVE_PERSONALITY */
1563
1564 /* The fork_child mechanism is synchronous and calls target_wait, so
1565 we have to mask the async mode. */
1566
1567 #ifdef HAVE_PERSONALITY
1568 if (disable_randomization)
1569 {
1570 errno = 0;
1571 personality_orig = personality (0xffffffff);
1572 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1573 {
1574 personality_set = 1;
1575 personality (personality_orig | ADDR_NO_RANDOMIZE);
1576 }
1577 if (errno != 0 || (personality_set
1578 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1579 warning (_("Error disabling address space randomization: %s"),
1580 safe_strerror (errno));
1581 }
1582 #endif /* HAVE_PERSONALITY */
1583
1584 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1585
1586 #ifdef HAVE_PERSONALITY
1587 if (personality_set)
1588 {
1589 errno = 0;
1590 personality (personality_orig);
1591 if (errno != 0)
1592 warning (_("Error restoring address space randomization: %s"),
1593 safe_strerror (errno));
1594 }
1595 #endif /* HAVE_PERSONALITY */
1596 }
1597
1598 static void
1599 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1600 {
1601 struct lwp_info *lp;
1602 int status;
1603 ptid_t ptid;
1604
1605 linux_ops->to_attach (ops, args, from_tty);
1606
1607 /* The ptrace base target adds the main thread with (pid,0,0)
1608 format. Decorate it with lwp info. */
1609 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1610 thread_change_ptid (inferior_ptid, ptid);
1611
1612 /* Add the initial process as the first LWP to the list. */
1613 lp = add_lwp (ptid);
1614
1615 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1616 &lp->signalled);
1617 if (!WIFSTOPPED (status))
1618 {
1619 if (WIFEXITED (status))
1620 {
1621 int exit_code = WEXITSTATUS (status);
1622
1623 target_terminal_ours ();
1624 target_mourn_inferior ();
1625 if (exit_code == 0)
1626 error (_("Unable to attach: program exited normally."));
1627 else
1628 error (_("Unable to attach: program exited with code %d."),
1629 exit_code);
1630 }
1631 else if (WIFSIGNALED (status))
1632 {
1633 enum target_signal signo;
1634
1635 target_terminal_ours ();
1636 target_mourn_inferior ();
1637
1638 signo = target_signal_from_host (WTERMSIG (status));
1639 error (_("Unable to attach: program terminated with signal "
1640 "%s, %s."),
1641 target_signal_to_name (signo),
1642 target_signal_to_string (signo));
1643 }
1644
1645 internal_error (__FILE__, __LINE__,
1646 _("unexpected status %d for PID %ld"),
1647 status, (long) GET_LWP (ptid));
1648 }
1649
1650 lp->stopped = 1;
1651
1652 /* Save the wait status to report later. */
1653 lp->resumed = 1;
1654 if (debug_linux_nat)
1655 fprintf_unfiltered (gdb_stdlog,
1656 "LNA: waitpid %ld, saving status %s\n",
1657 (long) GET_PID (lp->ptid), status_to_str (status));
1658
1659 lp->status = status;
1660
1661 if (target_can_async_p ())
1662 target_async (inferior_event_handler, 0);
1663 }
1664
1665 /* Get pending status of LP. */
1666 static int
1667 get_pending_status (struct lwp_info *lp, int *status)
1668 {
1669 enum target_signal signo = TARGET_SIGNAL_0;
1670
1671 /* If we paused threads momentarily, we may have stored pending
1672 events in lp->status or lp->waitstatus (see stop_wait_callback),
1673 and GDB core hasn't seen any signal for those threads.
1674 Otherwise, the last signal reported to the core is found in the
1675 thread object's stop_signal.
1676
1677 There's a corner case that isn't handled here at present. Only
1678 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1679 stop_signal make sense as a real signal to pass to the inferior.
1680 Some catchpoint related events, like
1681 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1682 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1683 those traps are debug API (ptrace in our case) related and
1684 induced; the inferior wouldn't see them if it wasn't being
1685 traced. Hence, we should never pass them to the inferior, even
1686 when set to pass state. Since this corner case isn't handled by
1687 infrun.c when proceeding with a signal, for consistency, neither
1688 do we handle it here (or elsewhere in the file we check for
1689 signal pass state). Normally SIGTRAP isn't set to pass state, so
1690 this is really a corner case. */
1691
1692 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1693 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1694 else if (lp->status)
1695 signo = target_signal_from_host (WSTOPSIG (lp->status));
1696 else if (non_stop && !is_executing (lp->ptid))
1697 {
1698 struct thread_info *tp = find_thread_ptid (lp->ptid);
1699 signo = tp->stop_signal;
1700 }
1701 else if (!non_stop)
1702 {
1703 struct target_waitstatus last;
1704 ptid_t last_ptid;
1705
1706 get_last_target_status (&last_ptid, &last);
1707
1708 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1709 {
1710 struct thread_info *tp = find_thread_ptid (lp->ptid);
1711 signo = tp->stop_signal;
1712 }
1713 }
1714
1715 *status = 0;
1716
1717 if (signo == TARGET_SIGNAL_0)
1718 {
1719 if (debug_linux_nat)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "GPT: lwp %s has no pending signal\n",
1722 target_pid_to_str (lp->ptid));
1723 }
1724 else if (!signal_pass_state (signo))
1725 {
1726 if (debug_linux_nat)
1727 fprintf_unfiltered (gdb_stdlog, "\
1728 GPT: lwp %s had signal %s, but it is in no pass state\n",
1729 target_pid_to_str (lp->ptid),
1730 target_signal_to_string (signo));
1731 }
1732 else
1733 {
1734 *status = W_STOPCODE (target_signal_to_host (signo));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "GPT: lwp %s has pending signal %s\n",
1739 target_pid_to_str (lp->ptid),
1740 target_signal_to_string (signo));
1741 }
1742
1743 return 0;
1744 }
1745
1746 static int
1747 detach_callback (struct lwp_info *lp, void *data)
1748 {
1749 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1750
1751 if (debug_linux_nat && lp->status)
1752 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1753 strsignal (WSTOPSIG (lp->status)),
1754 target_pid_to_str (lp->ptid));
1755
1756 /* If there is a pending SIGSTOP, get rid of it. */
1757 if (lp->signalled)
1758 {
1759 if (debug_linux_nat)
1760 fprintf_unfiltered (gdb_stdlog,
1761 "DC: Sending SIGCONT to %s\n",
1762 target_pid_to_str (lp->ptid));
1763
1764 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1765 lp->signalled = 0;
1766 }
1767
1768 /* We don't actually detach from the LWP that has an id equal to the
1769 overall process id just yet. */
1770 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1771 {
1772 int status = 0;
1773
1774 /* Pass on any pending signal for this LWP. */
1775 get_pending_status (lp, &status);
1776
1777 errno = 0;
1778 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1779 WSTOPSIG (status)) < 0)
1780 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1781 safe_strerror (errno));
1782
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1786 target_pid_to_str (lp->ptid),
1787 strsignal (WSTOPSIG (status)));
1788
1789 delete_lwp (lp->ptid);
1790 }
1791
1792 return 0;
1793 }
1794
1795 static void
1796 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1797 {
1798 int pid;
1799 int status;
1800 enum target_signal sig;
1801 struct lwp_info *main_lwp;
1802
1803 pid = GET_PID (inferior_ptid);
1804
1805 if (target_can_async_p ())
1806 linux_nat_async (NULL, 0);
1807
1808 /* Stop all threads before detaching. ptrace requires that the
1809 thread is stopped to sucessfully detach. */
1810 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1811 /* ... and wait until all of them have reported back that
1812 they're no longer running. */
1813 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1814
1815 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1816
1817 /* Only the initial process should be left right now. */
1818 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1819
1820 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1821
1822 /* Pass on any pending signal for the last LWP. */
1823 if ((args == NULL || *args == '\0')
1824 && get_pending_status (main_lwp, &status) != -1
1825 && WIFSTOPPED (status))
1826 {
1827 /* Put the signal number in ARGS so that inf_ptrace_detach will
1828 pass it along with PTRACE_DETACH. */
1829 args = alloca (8);
1830 sprintf (args, "%d", (int) WSTOPSIG (status));
1831 fprintf_unfiltered (gdb_stdlog,
1832 "LND: Sending signal %s to %s\n",
1833 args,
1834 target_pid_to_str (main_lwp->ptid));
1835 }
1836
1837 delete_lwp (main_lwp->ptid);
1838
1839 if (forks_exist_p ())
1840 {
1841 /* Multi-fork case. The current inferior_ptid is being detached
1842 from, but there are other viable forks to debug. Detach from
1843 the current fork, and context-switch to the first
1844 available. */
1845 linux_fork_detach (args, from_tty);
1846
1847 if (non_stop && target_can_async_p ())
1848 target_async (inferior_event_handler, 0);
1849 }
1850 else
1851 linux_ops->to_detach (ops, args, from_tty);
1852 }
1853
1854 /* Resume LP. */
1855
1856 static int
1857 resume_callback (struct lwp_info *lp, void *data)
1858 {
1859 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1860
1861 if (lp->stopped && inf->vfork_child != NULL)
1862 {
1863 if (debug_linux_nat)
1864 fprintf_unfiltered (gdb_stdlog,
1865 "RC: Not resuming %s (vfork parent)\n",
1866 target_pid_to_str (lp->ptid));
1867 }
1868 else if (lp->stopped && lp->status == 0)
1869 {
1870 if (debug_linux_nat)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1873 target_pid_to_str (lp->ptid));
1874
1875 linux_ops->to_resume (linux_ops,
1876 pid_to_ptid (GET_LWP (lp->ptid)),
1877 0, TARGET_SIGNAL_0);
1878 if (debug_linux_nat)
1879 fprintf_unfiltered (gdb_stdlog,
1880 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1881 target_pid_to_str (lp->ptid));
1882 lp->stopped = 0;
1883 lp->step = 0;
1884 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1885 }
1886 else if (lp->stopped && debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1888 target_pid_to_str (lp->ptid));
1889 else if (debug_linux_nat)
1890 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1891 target_pid_to_str (lp->ptid));
1892
1893 return 0;
1894 }
1895
1896 static int
1897 resume_clear_callback (struct lwp_info *lp, void *data)
1898 {
1899 lp->resumed = 0;
1900 return 0;
1901 }
1902
1903 static int
1904 resume_set_callback (struct lwp_info *lp, void *data)
1905 {
1906 lp->resumed = 1;
1907 return 0;
1908 }
1909
1910 static void
1911 linux_nat_resume (struct target_ops *ops,
1912 ptid_t ptid, int step, enum target_signal signo)
1913 {
1914 sigset_t prev_mask;
1915 struct lwp_info *lp;
1916 int resume_many;
1917
1918 if (debug_linux_nat)
1919 fprintf_unfiltered (gdb_stdlog,
1920 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1921 step ? "step" : "resume",
1922 target_pid_to_str (ptid),
1923 signo ? strsignal (signo) : "0",
1924 target_pid_to_str (inferior_ptid));
1925
1926 block_child_signals (&prev_mask);
1927
1928 /* A specific PTID means `step only this process id'. */
1929 resume_many = (ptid_equal (minus_one_ptid, ptid)
1930 || ptid_is_pid (ptid));
1931
1932 if (!non_stop)
1933 {
1934 /* Mark the lwps we're resuming as resumed. */
1935 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1936 iterate_over_lwps (ptid, resume_set_callback, NULL);
1937 }
1938 else
1939 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
1940
1941 /* See if it's the current inferior that should be handled
1942 specially. */
1943 if (resume_many)
1944 lp = find_lwp_pid (inferior_ptid);
1945 else
1946 lp = find_lwp_pid (ptid);
1947 gdb_assert (lp != NULL);
1948
1949 /* Remember if we're stepping. */
1950 lp->step = step;
1951
1952 /* If we have a pending wait status for this thread, there is no
1953 point in resuming the process. But first make sure that
1954 linux_nat_wait won't preemptively handle the event - we
1955 should never take this short-circuit if we are going to
1956 leave LP running, since we have skipped resuming all the
1957 other threads. This bit of code needs to be synchronized
1958 with linux_nat_wait. */
1959
1960 if (lp->status && WIFSTOPPED (lp->status))
1961 {
1962 int saved_signo;
1963 struct inferior *inf;
1964
1965 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1966 gdb_assert (inf);
1967 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1968
1969 /* Defer to common code if we're gaining control of the
1970 inferior. */
1971 if (inf->stop_soon == NO_STOP_QUIETLY
1972 && signal_stop_state (saved_signo) == 0
1973 && signal_print_state (saved_signo) == 0
1974 && signal_pass_state (saved_signo) == 1)
1975 {
1976 if (debug_linux_nat)
1977 fprintf_unfiltered (gdb_stdlog,
1978 "LLR: Not short circuiting for ignored "
1979 "status 0x%x\n", lp->status);
1980
1981 /* FIXME: What should we do if we are supposed to continue
1982 this thread with a signal? */
1983 gdb_assert (signo == TARGET_SIGNAL_0);
1984 signo = saved_signo;
1985 lp->status = 0;
1986 }
1987 }
1988
1989 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1990 {
1991 /* FIXME: What should we do if we are supposed to continue
1992 this thread with a signal? */
1993 gdb_assert (signo == TARGET_SIGNAL_0);
1994
1995 if (debug_linux_nat)
1996 fprintf_unfiltered (gdb_stdlog,
1997 "LLR: Short circuiting for status 0x%x\n",
1998 lp->status);
1999
2000 restore_child_signals_mask (&prev_mask);
2001 if (target_can_async_p ())
2002 {
2003 target_async (inferior_event_handler, 0);
2004 /* Tell the event loop we have something to process. */
2005 async_file_mark ();
2006 }
2007 return;
2008 }
2009
2010 /* Mark LWP as not stopped to prevent it from being continued by
2011 resume_callback. */
2012 lp->stopped = 0;
2013
2014 if (resume_many)
2015 iterate_over_lwps (ptid, resume_callback, NULL);
2016
2017 /* Convert to something the lower layer understands. */
2018 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2019
2020 linux_ops->to_resume (linux_ops, ptid, step, signo);
2021 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2022
2023 if (debug_linux_nat)
2024 fprintf_unfiltered (gdb_stdlog,
2025 "LLR: %s %s, %s (resume event thread)\n",
2026 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2027 target_pid_to_str (ptid),
2028 signo ? strsignal (signo) : "0");
2029
2030 restore_child_signals_mask (&prev_mask);
2031 if (target_can_async_p ())
2032 target_async (inferior_event_handler, 0);
2033 }
2034
2035 /* Issue kill to specified lwp. */
2036
2037 static int tkill_failed;
2038
2039 static int
2040 kill_lwp (int lwpid, int signo)
2041 {
2042 errno = 0;
2043
2044 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2045 fails, then we are not using nptl threads and we should be using kill. */
2046
2047 #ifdef HAVE_TKILL_SYSCALL
2048 if (!tkill_failed)
2049 {
2050 int ret = syscall (__NR_tkill, lwpid, signo);
2051 if (errno != ENOSYS)
2052 return ret;
2053 errno = 0;
2054 tkill_failed = 1;
2055 }
2056 #endif
2057
2058 return kill (lwpid, signo);
2059 }
2060
2061 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2062 event, check if the core is interested in it: if not, ignore the
2063 event, and keep waiting; otherwise, we need to toggle the LWP's
2064 syscall entry/exit status, since the ptrace event itself doesn't
2065 indicate it, and report the trap to higher layers. */
2066
2067 static int
2068 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2069 {
2070 struct target_waitstatus *ourstatus = &lp->waitstatus;
2071 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2072 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2073
2074 if (stopping)
2075 {
2076 /* If we're stopping threads, there's a SIGSTOP pending, which
2077 makes it so that the LWP reports an immediate syscall return,
2078 followed by the SIGSTOP. Skip seeing that "return" using
2079 PTRACE_CONT directly, and let stop_wait_callback collect the
2080 SIGSTOP. Later when the thread is resumed, a new syscall
2081 entry event. If we didn't do this (and returned 0), we'd
2082 leave a syscall entry pending, and our caller, by using
2083 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2084 itself. Later, when the user re-resumes this LWP, we'd see
2085 another syscall entry event and we'd mistake it for a return.
2086
2087 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2088 (leaving immediately with LWP->signalled set, without issuing
2089 a PTRACE_CONT), it would still be problematic to leave this
2090 syscall enter pending, as later when the thread is resumed,
2091 it would then see the same syscall exit mentioned above,
2092 followed by the delayed SIGSTOP, while the syscall didn't
2093 actually get to execute. It seems it would be even more
2094 confusing to the user. */
2095
2096 if (debug_linux_nat)
2097 fprintf_unfiltered (gdb_stdlog,
2098 "LHST: ignoring syscall %d "
2099 "for LWP %ld (stopping threads), "
2100 "resuming with PTRACE_CONT for SIGSTOP\n",
2101 syscall_number,
2102 GET_LWP (lp->ptid));
2103
2104 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2105 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2106 return 1;
2107 }
2108
2109 if (catch_syscall_enabled ())
2110 {
2111 /* Always update the entry/return state, even if this particular
2112 syscall isn't interesting to the core now. In async mode,
2113 the user could install a new catchpoint for this syscall
2114 between syscall enter/return, and we'll need to know to
2115 report a syscall return if that happens. */
2116 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2117 ? TARGET_WAITKIND_SYSCALL_RETURN
2118 : TARGET_WAITKIND_SYSCALL_ENTRY);
2119
2120 if (catching_syscall_number (syscall_number))
2121 {
2122 /* Alright, an event to report. */
2123 ourstatus->kind = lp->syscall_state;
2124 ourstatus->value.syscall_number = syscall_number;
2125
2126 if (debug_linux_nat)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "LHST: stopping for %s of syscall %d"
2129 " for LWP %ld\n",
2130 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2131 ? "entry" : "return",
2132 syscall_number,
2133 GET_LWP (lp->ptid));
2134 return 0;
2135 }
2136
2137 if (debug_linux_nat)
2138 fprintf_unfiltered (gdb_stdlog,
2139 "LHST: ignoring %s of syscall %d "
2140 "for LWP %ld\n",
2141 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2142 ? "entry" : "return",
2143 syscall_number,
2144 GET_LWP (lp->ptid));
2145 }
2146 else
2147 {
2148 /* If we had been syscall tracing, and hence used PT_SYSCALL
2149 before on this LWP, it could happen that the user removes all
2150 syscall catchpoints before we get to process this event.
2151 There are two noteworthy issues here:
2152
2153 - When stopped at a syscall entry event, resuming with
2154 PT_STEP still resumes executing the syscall and reports a
2155 syscall return.
2156
2157 - Only PT_SYSCALL catches syscall enters. If we last
2158 single-stepped this thread, then this event can't be a
2159 syscall enter. If we last single-stepped this thread, this
2160 has to be a syscall exit.
2161
2162 The points above mean that the next resume, be it PT_STEP or
2163 PT_CONTINUE, can not trigger a syscall trace event. */
2164 if (debug_linux_nat)
2165 fprintf_unfiltered (gdb_stdlog,
2166 "LHST: caught syscall event with no syscall catchpoints."
2167 " %d for LWP %ld, ignoring\n",
2168 syscall_number,
2169 GET_LWP (lp->ptid));
2170 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2171 }
2172
2173 /* The core isn't interested in this event. For efficiency, avoid
2174 stopping all threads only to have the core resume them all again.
2175 Since we're not stopping threads, if we're still syscall tracing
2176 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2177 subsequent syscall. Simply resume using the inf-ptrace layer,
2178 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2179
2180 /* Note that gdbarch_get_syscall_number may access registers, hence
2181 fill a regcache. */
2182 registers_changed ();
2183 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2184 lp->step, TARGET_SIGNAL_0);
2185 return 1;
2186 }
2187
2188 /* Handle a GNU/Linux extended wait response. If we see a clone
2189 event, we need to add the new LWP to our list (and not report the
2190 trap to higher layers). This function returns non-zero if the
2191 event should be ignored and we should wait again. If STOPPING is
2192 true, the new LWP remains stopped, otherwise it is continued. */
2193
2194 static int
2195 linux_handle_extended_wait (struct lwp_info *lp, int status,
2196 int stopping)
2197 {
2198 int pid = GET_LWP (lp->ptid);
2199 struct target_waitstatus *ourstatus = &lp->waitstatus;
2200 struct lwp_info *new_lp = NULL;
2201 int event = status >> 16;
2202
2203 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2204 || event == PTRACE_EVENT_CLONE)
2205 {
2206 unsigned long new_pid;
2207 int ret;
2208
2209 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2210
2211 /* If we haven't already seen the new PID stop, wait for it now. */
2212 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2213 {
2214 /* The new child has a pending SIGSTOP. We can't affect it until it
2215 hits the SIGSTOP, but we're already attached. */
2216 ret = my_waitpid (new_pid, &status,
2217 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2218 if (ret == -1)
2219 perror_with_name (_("waiting for new child"));
2220 else if (ret != new_pid)
2221 internal_error (__FILE__, __LINE__,
2222 _("wait returned unexpected PID %d"), ret);
2223 else if (!WIFSTOPPED (status))
2224 internal_error (__FILE__, __LINE__,
2225 _("wait returned unexpected status 0x%x"), status);
2226 }
2227
2228 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2229
2230 if (event == PTRACE_EVENT_FORK
2231 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2232 {
2233 struct fork_info *fp;
2234
2235 /* Handle checkpointing by linux-fork.c here as a special
2236 case. We don't want the follow-fork-mode or 'catch fork'
2237 to interfere with this. */
2238
2239 /* This won't actually modify the breakpoint list, but will
2240 physically remove the breakpoints from the child. */
2241 detach_breakpoints (new_pid);
2242
2243 /* Retain child fork in ptrace (stopped) state. */
2244 fp = find_fork_pid (new_pid);
2245 if (!fp)
2246 fp = add_fork (new_pid);
2247
2248 /* Report as spurious, so that infrun doesn't want to follow
2249 this fork. We're actually doing an infcall in
2250 linux-fork.c. */
2251 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2252 linux_enable_event_reporting (pid_to_ptid (new_pid));
2253
2254 /* Report the stop to the core. */
2255 return 0;
2256 }
2257
2258 if (event == PTRACE_EVENT_FORK)
2259 ourstatus->kind = TARGET_WAITKIND_FORKED;
2260 else if (event == PTRACE_EVENT_VFORK)
2261 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2262 else
2263 {
2264 struct cleanup *old_chain;
2265
2266 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2267 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2268 new_lp->cloned = 1;
2269 new_lp->stopped = 1;
2270
2271 if (WSTOPSIG (status) != SIGSTOP)
2272 {
2273 /* This can happen if someone starts sending signals to
2274 the new thread before it gets a chance to run, which
2275 have a lower number than SIGSTOP (e.g. SIGUSR1).
2276 This is an unlikely case, and harder to handle for
2277 fork / vfork than for clone, so we do not try - but
2278 we handle it for clone events here. We'll send
2279 the other signal on to the thread below. */
2280
2281 new_lp->signalled = 1;
2282 }
2283 else
2284 status = 0;
2285
2286 if (non_stop)
2287 {
2288 /* Add the new thread to GDB's lists as soon as possible
2289 so that:
2290
2291 1) the frontend doesn't have to wait for a stop to
2292 display them, and,
2293
2294 2) we tag it with the correct running state. */
2295
2296 /* If the thread_db layer is active, let it know about
2297 this new thread, and add it to GDB's list. */
2298 if (!thread_db_attach_lwp (new_lp->ptid))
2299 {
2300 /* We're not using thread_db. Add it to GDB's
2301 list. */
2302 target_post_attach (GET_LWP (new_lp->ptid));
2303 add_thread (new_lp->ptid);
2304 }
2305
2306 if (!stopping)
2307 {
2308 set_running (new_lp->ptid, 1);
2309 set_executing (new_lp->ptid, 1);
2310 }
2311 }
2312
2313 /* Note the need to use the low target ops to resume, to
2314 handle resuming with PT_SYSCALL if we have syscall
2315 catchpoints. */
2316 if (!stopping)
2317 {
2318 int signo;
2319
2320 new_lp->stopped = 0;
2321 new_lp->resumed = 1;
2322
2323 signo = (status
2324 ? target_signal_from_host (WSTOPSIG (status))
2325 : TARGET_SIGNAL_0);
2326
2327 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2328 0, signo);
2329 }
2330
2331 if (debug_linux_nat)
2332 fprintf_unfiltered (gdb_stdlog,
2333 "LHEW: Got clone event from LWP %ld, resuming\n",
2334 GET_LWP (lp->ptid));
2335 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2336 0, TARGET_SIGNAL_0);
2337
2338 return 1;
2339 }
2340
2341 return 0;
2342 }
2343
2344 if (event == PTRACE_EVENT_EXEC)
2345 {
2346 if (debug_linux_nat)
2347 fprintf_unfiltered (gdb_stdlog,
2348 "LHEW: Got exec event from LWP %ld\n",
2349 GET_LWP (lp->ptid));
2350
2351 ourstatus->kind = TARGET_WAITKIND_EXECD;
2352 ourstatus->value.execd_pathname
2353 = xstrdup (linux_child_pid_to_exec_file (pid));
2354
2355 return 0;
2356 }
2357
2358 if (event == PTRACE_EVENT_VFORK_DONE)
2359 {
2360 if (current_inferior ()->waiting_for_vfork_done)
2361 {
2362 if (debug_linux_nat)
2363 fprintf_unfiltered (gdb_stdlog, "\
2364 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2365 GET_LWP (lp->ptid));
2366
2367 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2368 return 0;
2369 }
2370
2371 if (debug_linux_nat)
2372 fprintf_unfiltered (gdb_stdlog, "\
2373 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2374 GET_LWP (lp->ptid));
2375 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2376 return 1;
2377 }
2378
2379 internal_error (__FILE__, __LINE__,
2380 _("unknown ptrace event %d"), event);
2381 }
2382
2383 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2384 exited. */
2385
2386 static int
2387 wait_lwp (struct lwp_info *lp)
2388 {
2389 pid_t pid;
2390 int status;
2391 int thread_dead = 0;
2392
2393 gdb_assert (!lp->stopped);
2394 gdb_assert (lp->status == 0);
2395
2396 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2397 if (pid == -1 && errno == ECHILD)
2398 {
2399 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2400 if (pid == -1 && errno == ECHILD)
2401 {
2402 /* The thread has previously exited. We need to delete it
2403 now because, for some vendor 2.4 kernels with NPTL
2404 support backported, there won't be an exit event unless
2405 it is the main thread. 2.6 kernels will report an exit
2406 event for each thread that exits, as expected. */
2407 thread_dead = 1;
2408 if (debug_linux_nat)
2409 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2410 target_pid_to_str (lp->ptid));
2411 }
2412 }
2413
2414 if (!thread_dead)
2415 {
2416 gdb_assert (pid == GET_LWP (lp->ptid));
2417
2418 if (debug_linux_nat)
2419 {
2420 fprintf_unfiltered (gdb_stdlog,
2421 "WL: waitpid %s received %s\n",
2422 target_pid_to_str (lp->ptid),
2423 status_to_str (status));
2424 }
2425 }
2426
2427 /* Check if the thread has exited. */
2428 if (WIFEXITED (status) || WIFSIGNALED (status))
2429 {
2430 thread_dead = 1;
2431 if (debug_linux_nat)
2432 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2433 target_pid_to_str (lp->ptid));
2434 }
2435
2436 if (thread_dead)
2437 {
2438 exit_lwp (lp);
2439 return 0;
2440 }
2441
2442 gdb_assert (WIFSTOPPED (status));
2443
2444 /* Handle GNU/Linux's syscall SIGTRAPs. */
2445 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2446 {
2447 /* No longer need the sysgood bit. The ptrace event ends up
2448 recorded in lp->waitstatus if we care for it. We can carry
2449 on handling the event like a regular SIGTRAP from here
2450 on. */
2451 status = W_STOPCODE (SIGTRAP);
2452 if (linux_handle_syscall_trap (lp, 1))
2453 return wait_lwp (lp);
2454 }
2455
2456 /* Handle GNU/Linux's extended waitstatus for trace events. */
2457 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2458 {
2459 if (debug_linux_nat)
2460 fprintf_unfiltered (gdb_stdlog,
2461 "WL: Handling extended status 0x%06x\n",
2462 status);
2463 if (linux_handle_extended_wait (lp, status, 1))
2464 return wait_lwp (lp);
2465 }
2466
2467 return status;
2468 }
2469
2470 /* Save the most recent siginfo for LP. This is currently only called
2471 for SIGTRAP; some ports use the si_addr field for
2472 target_stopped_data_address. In the future, it may also be used to
2473 restore the siginfo of requeued signals. */
2474
2475 static void
2476 save_siginfo (struct lwp_info *lp)
2477 {
2478 errno = 0;
2479 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2480 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2481
2482 if (errno != 0)
2483 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2484 }
2485
2486 /* Send a SIGSTOP to LP. */
2487
2488 static int
2489 stop_callback (struct lwp_info *lp, void *data)
2490 {
2491 if (!lp->stopped && !lp->signalled)
2492 {
2493 int ret;
2494
2495 if (debug_linux_nat)
2496 {
2497 fprintf_unfiltered (gdb_stdlog,
2498 "SC: kill %s **<SIGSTOP>**\n",
2499 target_pid_to_str (lp->ptid));
2500 }
2501 errno = 0;
2502 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2503 if (debug_linux_nat)
2504 {
2505 fprintf_unfiltered (gdb_stdlog,
2506 "SC: lwp kill %d %s\n",
2507 ret,
2508 errno ? safe_strerror (errno) : "ERRNO-OK");
2509 }
2510
2511 lp->signalled = 1;
2512 gdb_assert (lp->status == 0);
2513 }
2514
2515 return 0;
2516 }
2517
2518 /* Return non-zero if LWP PID has a pending SIGINT. */
2519
2520 static int
2521 linux_nat_has_pending_sigint (int pid)
2522 {
2523 sigset_t pending, blocked, ignored;
2524 int i;
2525
2526 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2527
2528 if (sigismember (&pending, SIGINT)
2529 && !sigismember (&ignored, SIGINT))
2530 return 1;
2531
2532 return 0;
2533 }
2534
2535 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2536
2537 static int
2538 set_ignore_sigint (struct lwp_info *lp, void *data)
2539 {
2540 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2541 flag to consume the next one. */
2542 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2543 && WSTOPSIG (lp->status) == SIGINT)
2544 lp->status = 0;
2545 else
2546 lp->ignore_sigint = 1;
2547
2548 return 0;
2549 }
2550
2551 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2552 This function is called after we know the LWP has stopped; if the LWP
2553 stopped before the expected SIGINT was delivered, then it will never have
2554 arrived. Also, if the signal was delivered to a shared queue and consumed
2555 by a different thread, it will never be delivered to this LWP. */
2556
2557 static void
2558 maybe_clear_ignore_sigint (struct lwp_info *lp)
2559 {
2560 if (!lp->ignore_sigint)
2561 return;
2562
2563 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2564 {
2565 if (debug_linux_nat)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "MCIS: Clearing bogus flag for %s\n",
2568 target_pid_to_str (lp->ptid));
2569 lp->ignore_sigint = 0;
2570 }
2571 }
2572
2573 /* Wait until LP is stopped. */
2574
2575 static int
2576 stop_wait_callback (struct lwp_info *lp, void *data)
2577 {
2578 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2579
2580 /* If this is a vfork parent, bail out, it is not going to report
2581 any SIGSTOP until the vfork is done with. */
2582 if (inf->vfork_child != NULL)
2583 return 0;
2584
2585 if (!lp->stopped)
2586 {
2587 int status;
2588
2589 status = wait_lwp (lp);
2590 if (status == 0)
2591 return 0;
2592
2593 if (lp->ignore_sigint && WIFSTOPPED (status)
2594 && WSTOPSIG (status) == SIGINT)
2595 {
2596 lp->ignore_sigint = 0;
2597
2598 errno = 0;
2599 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2600 if (debug_linux_nat)
2601 fprintf_unfiltered (gdb_stdlog,
2602 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2603 target_pid_to_str (lp->ptid),
2604 errno ? safe_strerror (errno) : "OK");
2605
2606 return stop_wait_callback (lp, NULL);
2607 }
2608
2609 maybe_clear_ignore_sigint (lp);
2610
2611 if (WSTOPSIG (status) != SIGSTOP)
2612 {
2613 if (WSTOPSIG (status) == SIGTRAP)
2614 {
2615 /* If a LWP other than the LWP that we're reporting an
2616 event for has hit a GDB breakpoint (as opposed to
2617 some random trap signal), then just arrange for it to
2618 hit it again later. We don't keep the SIGTRAP status
2619 and don't forward the SIGTRAP signal to the LWP. We
2620 will handle the current event, eventually we will
2621 resume all LWPs, and this one will get its breakpoint
2622 trap again.
2623
2624 If we do not do this, then we run the risk that the
2625 user will delete or disable the breakpoint, but the
2626 thread will have already tripped on it. */
2627
2628 /* Save the trap's siginfo in case we need it later. */
2629 save_siginfo (lp);
2630
2631 /* Now resume this LWP and get the SIGSTOP event. */
2632 errno = 0;
2633 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2634 if (debug_linux_nat)
2635 {
2636 fprintf_unfiltered (gdb_stdlog,
2637 "PTRACE_CONT %s, 0, 0 (%s)\n",
2638 target_pid_to_str (lp->ptid),
2639 errno ? safe_strerror (errno) : "OK");
2640
2641 fprintf_unfiltered (gdb_stdlog,
2642 "SWC: Candidate SIGTRAP event in %s\n",
2643 target_pid_to_str (lp->ptid));
2644 }
2645 /* Hold this event/waitstatus while we check to see if
2646 there are any more (we still want to get that SIGSTOP). */
2647 stop_wait_callback (lp, NULL);
2648
2649 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2650 there's another event, throw it back into the
2651 queue. */
2652 if (lp->status)
2653 {
2654 if (debug_linux_nat)
2655 fprintf_unfiltered (gdb_stdlog,
2656 "SWC: kill %s, %s\n",
2657 target_pid_to_str (lp->ptid),
2658 status_to_str ((int) status));
2659 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2660 }
2661
2662 /* Save the sigtrap event. */
2663 lp->status = status;
2664 return 0;
2665 }
2666 else
2667 {
2668 /* The thread was stopped with a signal other than
2669 SIGSTOP, and didn't accidentally trip a breakpoint. */
2670
2671 if (debug_linux_nat)
2672 {
2673 fprintf_unfiltered (gdb_stdlog,
2674 "SWC: Pending event %s in %s\n",
2675 status_to_str ((int) status),
2676 target_pid_to_str (lp->ptid));
2677 }
2678 /* Now resume this LWP and get the SIGSTOP event. */
2679 errno = 0;
2680 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2681 if (debug_linux_nat)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2684 target_pid_to_str (lp->ptid),
2685 errno ? safe_strerror (errno) : "OK");
2686
2687 /* Hold this event/waitstatus while we check to see if
2688 there are any more (we still want to get that SIGSTOP). */
2689 stop_wait_callback (lp, NULL);
2690
2691 /* If the lp->status field is still empty, use it to
2692 hold this event. If not, then this event must be
2693 returned to the event queue of the LWP. */
2694 if (lp->status)
2695 {
2696 if (debug_linux_nat)
2697 {
2698 fprintf_unfiltered (gdb_stdlog,
2699 "SWC: kill %s, %s\n",
2700 target_pid_to_str (lp->ptid),
2701 status_to_str ((int) status));
2702 }
2703 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2704 }
2705 else
2706 lp->status = status;
2707 return 0;
2708 }
2709 }
2710 else
2711 {
2712 /* We caught the SIGSTOP that we intended to catch, so
2713 there's no SIGSTOP pending. */
2714 lp->stopped = 1;
2715 lp->signalled = 0;
2716 }
2717 }
2718
2719 return 0;
2720 }
2721
2722 /* Return non-zero if LP has a wait status pending. */
2723
2724 static int
2725 status_callback (struct lwp_info *lp, void *data)
2726 {
2727 /* Only report a pending wait status if we pretend that this has
2728 indeed been resumed. */
2729 if (!lp->resumed)
2730 return 0;
2731
2732 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2733 {
2734 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2735 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2736 0', so a clean process exit can not be stored pending in
2737 lp->status, it is indistinguishable from
2738 no-pending-status. */
2739 return 1;
2740 }
2741
2742 if (lp->status != 0)
2743 return 1;
2744
2745 return 0;
2746 }
2747
2748 /* Return non-zero if LP isn't stopped. */
2749
2750 static int
2751 running_callback (struct lwp_info *lp, void *data)
2752 {
2753 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2754 }
2755
2756 /* Count the LWP's that have had events. */
2757
2758 static int
2759 count_events_callback (struct lwp_info *lp, void *data)
2760 {
2761 int *count = data;
2762
2763 gdb_assert (count != NULL);
2764
2765 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2766 if (lp->status != 0 && lp->resumed
2767 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2768 (*count)++;
2769
2770 return 0;
2771 }
2772
2773 /* Select the LWP (if any) that is currently being single-stepped. */
2774
2775 static int
2776 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2777 {
2778 if (lp->step && lp->status != 0)
2779 return 1;
2780 else
2781 return 0;
2782 }
2783
2784 /* Select the Nth LWP that has had a SIGTRAP event. */
2785
2786 static int
2787 select_event_lwp_callback (struct lwp_info *lp, void *data)
2788 {
2789 int *selector = data;
2790
2791 gdb_assert (selector != NULL);
2792
2793 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2794 if (lp->status != 0 && lp->resumed
2795 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2796 if ((*selector)-- == 0)
2797 return 1;
2798
2799 return 0;
2800 }
2801
2802 static int
2803 cancel_breakpoint (struct lwp_info *lp)
2804 {
2805 /* Arrange for a breakpoint to be hit again later. We don't keep
2806 the SIGTRAP status and don't forward the SIGTRAP signal to the
2807 LWP. We will handle the current event, eventually we will resume
2808 this LWP, and this breakpoint will trap again.
2809
2810 If we do not do this, then we run the risk that the user will
2811 delete or disable the breakpoint, but the LWP will have already
2812 tripped on it. */
2813
2814 struct regcache *regcache = get_thread_regcache (lp->ptid);
2815 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2816 CORE_ADDR pc;
2817
2818 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2819 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2820 {
2821 if (debug_linux_nat)
2822 fprintf_unfiltered (gdb_stdlog,
2823 "CB: Push back breakpoint for %s\n",
2824 target_pid_to_str (lp->ptid));
2825
2826 /* Back up the PC if necessary. */
2827 if (gdbarch_decr_pc_after_break (gdbarch))
2828 regcache_write_pc (regcache, pc);
2829
2830 return 1;
2831 }
2832 return 0;
2833 }
2834
2835 static int
2836 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2837 {
2838 struct lwp_info *event_lp = data;
2839
2840 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2841 if (lp == event_lp)
2842 return 0;
2843
2844 /* If a LWP other than the LWP that we're reporting an event for has
2845 hit a GDB breakpoint (as opposed to some random trap signal),
2846 then just arrange for it to hit it again later. We don't keep
2847 the SIGTRAP status and don't forward the SIGTRAP signal to the
2848 LWP. We will handle the current event, eventually we will resume
2849 all LWPs, and this one will get its breakpoint trap again.
2850
2851 If we do not do this, then we run the risk that the user will
2852 delete or disable the breakpoint, but the LWP will have already
2853 tripped on it. */
2854
2855 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2856 && lp->status != 0
2857 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2858 && cancel_breakpoint (lp))
2859 /* Throw away the SIGTRAP. */
2860 lp->status = 0;
2861
2862 return 0;
2863 }
2864
2865 /* Select one LWP out of those that have events pending. */
2866
2867 static void
2868 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2869 {
2870 int num_events = 0;
2871 int random_selector;
2872 struct lwp_info *event_lp;
2873
2874 /* Record the wait status for the original LWP. */
2875 (*orig_lp)->status = *status;
2876
2877 /* Give preference to any LWP that is being single-stepped. */
2878 event_lp = iterate_over_lwps (filter,
2879 select_singlestep_lwp_callback, NULL);
2880 if (event_lp != NULL)
2881 {
2882 if (debug_linux_nat)
2883 fprintf_unfiltered (gdb_stdlog,
2884 "SEL: Select single-step %s\n",
2885 target_pid_to_str (event_lp->ptid));
2886 }
2887 else
2888 {
2889 /* No single-stepping LWP. Select one at random, out of those
2890 which have had SIGTRAP events. */
2891
2892 /* First see how many SIGTRAP events we have. */
2893 iterate_over_lwps (filter, count_events_callback, &num_events);
2894
2895 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2896 random_selector = (int)
2897 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2898
2899 if (debug_linux_nat && num_events > 1)
2900 fprintf_unfiltered (gdb_stdlog,
2901 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2902 num_events, random_selector);
2903
2904 event_lp = iterate_over_lwps (filter,
2905 select_event_lwp_callback,
2906 &random_selector);
2907 }
2908
2909 if (event_lp != NULL)
2910 {
2911 /* Switch the event LWP. */
2912 *orig_lp = event_lp;
2913 *status = event_lp->status;
2914 }
2915
2916 /* Flush the wait status for the event LWP. */
2917 (*orig_lp)->status = 0;
2918 }
2919
2920 /* Return non-zero if LP has been resumed. */
2921
2922 static int
2923 resumed_callback (struct lwp_info *lp, void *data)
2924 {
2925 return lp->resumed;
2926 }
2927
2928 /* Stop an active thread, verify it still exists, then resume it. */
2929
2930 static int
2931 stop_and_resume_callback (struct lwp_info *lp, void *data)
2932 {
2933 struct lwp_info *ptr;
2934
2935 if (!lp->stopped && !lp->signalled)
2936 {
2937 stop_callback (lp, NULL);
2938 stop_wait_callback (lp, NULL);
2939 /* Resume if the lwp still exists. */
2940 for (ptr = lwp_list; ptr; ptr = ptr->next)
2941 if (lp == ptr)
2942 {
2943 resume_callback (lp, NULL);
2944 resume_set_callback (lp, NULL);
2945 }
2946 }
2947 return 0;
2948 }
2949
2950 /* Check if we should go on and pass this event to common code.
2951 Return the affected lwp if we are, or NULL otherwise. */
2952 static struct lwp_info *
2953 linux_nat_filter_event (int lwpid, int status, int options)
2954 {
2955 struct lwp_info *lp;
2956
2957 lp = find_lwp_pid (pid_to_ptid (lwpid));
2958
2959 /* Check for stop events reported by a process we didn't already
2960 know about - anything not already in our LWP list.
2961
2962 If we're expecting to receive stopped processes after
2963 fork, vfork, and clone events, then we'll just add the
2964 new one to our list and go back to waiting for the event
2965 to be reported - the stopped process might be returned
2966 from waitpid before or after the event is. */
2967 if (WIFSTOPPED (status) && !lp)
2968 {
2969 linux_record_stopped_pid (lwpid, status);
2970 return NULL;
2971 }
2972
2973 /* Make sure we don't report an event for the exit of an LWP not in
2974 our list, i.e. not part of the current process. This can happen
2975 if we detach from a program we original forked and then it
2976 exits. */
2977 if (!WIFSTOPPED (status) && !lp)
2978 return NULL;
2979
2980 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2981 CLONE_PTRACE processes which do not use the thread library -
2982 otherwise we wouldn't find the new LWP this way. That doesn't
2983 currently work, and the following code is currently unreachable
2984 due to the two blocks above. If it's fixed some day, this code
2985 should be broken out into a function so that we can also pick up
2986 LWPs from the new interface. */
2987 if (!lp)
2988 {
2989 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2990 if (options & __WCLONE)
2991 lp->cloned = 1;
2992
2993 gdb_assert (WIFSTOPPED (status)
2994 && WSTOPSIG (status) == SIGSTOP);
2995 lp->signalled = 1;
2996
2997 if (!in_thread_list (inferior_ptid))
2998 {
2999 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3000 GET_PID (inferior_ptid));
3001 add_thread (inferior_ptid);
3002 }
3003
3004 add_thread (lp->ptid);
3005 }
3006
3007 /* Handle GNU/Linux's syscall SIGTRAPs. */
3008 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3009 {
3010 /* No longer need the sysgood bit. The ptrace event ends up
3011 recorded in lp->waitstatus if we care for it. We can carry
3012 on handling the event like a regular SIGTRAP from here
3013 on. */
3014 status = W_STOPCODE (SIGTRAP);
3015 if (linux_handle_syscall_trap (lp, 0))
3016 return NULL;
3017 }
3018
3019 /* Handle GNU/Linux's extended waitstatus for trace events. */
3020 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3021 {
3022 if (debug_linux_nat)
3023 fprintf_unfiltered (gdb_stdlog,
3024 "LLW: Handling extended status 0x%06x\n",
3025 status);
3026 if (linux_handle_extended_wait (lp, status, 0))
3027 return NULL;
3028 }
3029
3030 /* Save the trap's siginfo in case we need it later. */
3031 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3032 save_siginfo (lp);
3033
3034 /* Check if the thread has exited. */
3035 if ((WIFEXITED (status) || WIFSIGNALED (status))
3036 && num_lwps (GET_PID (lp->ptid)) > 1)
3037 {
3038 /* If this is the main thread, we must stop all threads and verify
3039 if they are still alive. This is because in the nptl thread model
3040 on Linux 2.4, there is no signal issued for exiting LWPs
3041 other than the main thread. We only get the main thread exit
3042 signal once all child threads have already exited. If we
3043 stop all the threads and use the stop_wait_callback to check
3044 if they have exited we can determine whether this signal
3045 should be ignored or whether it means the end of the debugged
3046 application, regardless of which threading model is being
3047 used. */
3048 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3049 {
3050 lp->stopped = 1;
3051 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3052 stop_and_resume_callback, NULL);
3053 }
3054
3055 if (debug_linux_nat)
3056 fprintf_unfiltered (gdb_stdlog,
3057 "LLW: %s exited.\n",
3058 target_pid_to_str (lp->ptid));
3059
3060 if (num_lwps (GET_PID (lp->ptid)) > 1)
3061 {
3062 /* If there is at least one more LWP, then the exit signal
3063 was not the end of the debugged application and should be
3064 ignored. */
3065 exit_lwp (lp);
3066 return NULL;
3067 }
3068 }
3069
3070 /* Check if the current LWP has previously exited. In the nptl
3071 thread model, LWPs other than the main thread do not issue
3072 signals when they exit so we must check whenever the thread has
3073 stopped. A similar check is made in stop_wait_callback(). */
3074 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3075 {
3076 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3077
3078 if (debug_linux_nat)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "LLW: %s exited.\n",
3081 target_pid_to_str (lp->ptid));
3082
3083 exit_lwp (lp);
3084
3085 /* Make sure there is at least one thread running. */
3086 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3087
3088 /* Discard the event. */
3089 return NULL;
3090 }
3091
3092 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3093 an attempt to stop an LWP. */
3094 if (lp->signalled
3095 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3096 {
3097 if (debug_linux_nat)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "LLW: Delayed SIGSTOP caught for %s.\n",
3100 target_pid_to_str (lp->ptid));
3101
3102 /* This is a delayed SIGSTOP. */
3103 lp->signalled = 0;
3104
3105 registers_changed ();
3106
3107 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3108 lp->step, TARGET_SIGNAL_0);
3109 if (debug_linux_nat)
3110 fprintf_unfiltered (gdb_stdlog,
3111 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3112 lp->step ?
3113 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3114 target_pid_to_str (lp->ptid));
3115
3116 lp->stopped = 0;
3117 gdb_assert (lp->resumed);
3118
3119 /* Discard the event. */
3120 return NULL;
3121 }
3122
3123 /* Make sure we don't report a SIGINT that we have already displayed
3124 for another thread. */
3125 if (lp->ignore_sigint
3126 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3127 {
3128 if (debug_linux_nat)
3129 fprintf_unfiltered (gdb_stdlog,
3130 "LLW: Delayed SIGINT caught for %s.\n",
3131 target_pid_to_str (lp->ptid));
3132
3133 /* This is a delayed SIGINT. */
3134 lp->ignore_sigint = 0;
3135
3136 registers_changed ();
3137 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3138 lp->step, TARGET_SIGNAL_0);
3139 if (debug_linux_nat)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3142 lp->step ?
3143 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3144 target_pid_to_str (lp->ptid));
3145
3146 lp->stopped = 0;
3147 gdb_assert (lp->resumed);
3148
3149 /* Discard the event. */
3150 return NULL;
3151 }
3152
3153 /* An interesting event. */
3154 gdb_assert (lp);
3155 lp->status = status;
3156 return lp;
3157 }
3158
3159 static ptid_t
3160 linux_nat_wait_1 (struct target_ops *ops,
3161 ptid_t ptid, struct target_waitstatus *ourstatus,
3162 int target_options)
3163 {
3164 static sigset_t prev_mask;
3165 struct lwp_info *lp = NULL;
3166 int options = 0;
3167 int status = 0;
3168 pid_t pid;
3169
3170 if (debug_linux_nat_async)
3171 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3172
3173 /* The first time we get here after starting a new inferior, we may
3174 not have added it to the LWP list yet - this is the earliest
3175 moment at which we know its PID. */
3176 if (ptid_is_pid (inferior_ptid))
3177 {
3178 /* Upgrade the main thread's ptid. */
3179 thread_change_ptid (inferior_ptid,
3180 BUILD_LWP (GET_PID (inferior_ptid),
3181 GET_PID (inferior_ptid)));
3182
3183 lp = add_lwp (inferior_ptid);
3184 lp->resumed = 1;
3185 }
3186
3187 /* Make sure SIGCHLD is blocked. */
3188 block_child_signals (&prev_mask);
3189
3190 if (ptid_equal (ptid, minus_one_ptid))
3191 pid = -1;
3192 else if (ptid_is_pid (ptid))
3193 /* A request to wait for a specific tgid. This is not possible
3194 with waitpid, so instead, we wait for any child, and leave
3195 children we're not interested in right now with a pending
3196 status to report later. */
3197 pid = -1;
3198 else
3199 pid = GET_LWP (ptid);
3200
3201 retry:
3202 lp = NULL;
3203 status = 0;
3204
3205 /* Make sure there is at least one LWP that has been resumed. */
3206 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
3207
3208 /* First check if there is a LWP with a wait status pending. */
3209 if (pid == -1)
3210 {
3211 /* Any LWP that's been resumed will do. */
3212 lp = iterate_over_lwps (ptid, status_callback, NULL);
3213 if (lp)
3214 {
3215 if (debug_linux_nat && lp->status)
3216 fprintf_unfiltered (gdb_stdlog,
3217 "LLW: Using pending wait status %s for %s.\n",
3218 status_to_str (lp->status),
3219 target_pid_to_str (lp->ptid));
3220 }
3221
3222 /* But if we don't find one, we'll have to wait, and check both
3223 cloned and uncloned processes. We start with the cloned
3224 processes. */
3225 options = __WCLONE | WNOHANG;
3226 }
3227 else if (is_lwp (ptid))
3228 {
3229 if (debug_linux_nat)
3230 fprintf_unfiltered (gdb_stdlog,
3231 "LLW: Waiting for specific LWP %s.\n",
3232 target_pid_to_str (ptid));
3233
3234 /* We have a specific LWP to check. */
3235 lp = find_lwp_pid (ptid);
3236 gdb_assert (lp);
3237
3238 if (debug_linux_nat && lp->status)
3239 fprintf_unfiltered (gdb_stdlog,
3240 "LLW: Using pending wait status %s for %s.\n",
3241 status_to_str (lp->status),
3242 target_pid_to_str (lp->ptid));
3243
3244 /* If we have to wait, take into account whether PID is a cloned
3245 process or not. And we have to convert it to something that
3246 the layer beneath us can understand. */
3247 options = lp->cloned ? __WCLONE : 0;
3248 pid = GET_LWP (ptid);
3249
3250 /* We check for lp->waitstatus in addition to lp->status,
3251 because we can have pending process exits recorded in
3252 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3253 an additional lp->status_p flag. */
3254 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3255 lp = NULL;
3256 }
3257
3258 if (lp && lp->signalled)
3259 {
3260 /* A pending SIGSTOP may interfere with the normal stream of
3261 events. In a typical case where interference is a problem,
3262 we have a SIGSTOP signal pending for LWP A while
3263 single-stepping it, encounter an event in LWP B, and take the
3264 pending SIGSTOP while trying to stop LWP A. After processing
3265 the event in LWP B, LWP A is continued, and we'll never see
3266 the SIGTRAP associated with the last time we were
3267 single-stepping LWP A. */
3268
3269 /* Resume the thread. It should halt immediately returning the
3270 pending SIGSTOP. */
3271 registers_changed ();
3272 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3273 lp->step, TARGET_SIGNAL_0);
3274 if (debug_linux_nat)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3277 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3278 target_pid_to_str (lp->ptid));
3279 lp->stopped = 0;
3280 gdb_assert (lp->resumed);
3281
3282 /* Catch the pending SIGSTOP. */
3283 status = lp->status;
3284 lp->status = 0;
3285
3286 stop_wait_callback (lp, NULL);
3287
3288 /* If the lp->status field isn't empty, we caught another signal
3289 while flushing the SIGSTOP. Return it back to the event
3290 queue of the LWP, as we already have an event to handle. */
3291 if (lp->status)
3292 {
3293 if (debug_linux_nat)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "LLW: kill %s, %s\n",
3296 target_pid_to_str (lp->ptid),
3297 status_to_str (lp->status));
3298 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3299 }
3300
3301 lp->status = status;
3302 }
3303
3304 if (!target_can_async_p ())
3305 {
3306 /* Causes SIGINT to be passed on to the attached process. */
3307 set_sigint_trap ();
3308 }
3309
3310 /* Translate generic target_wait options into waitpid options. */
3311 if (target_options & TARGET_WNOHANG)
3312 options |= WNOHANG;
3313
3314 while (lp == NULL)
3315 {
3316 pid_t lwpid;
3317
3318 lwpid = my_waitpid (pid, &status, options);
3319
3320 if (lwpid > 0)
3321 {
3322 gdb_assert (pid == -1 || lwpid == pid);
3323
3324 if (debug_linux_nat)
3325 {
3326 fprintf_unfiltered (gdb_stdlog,
3327 "LLW: waitpid %ld received %s\n",
3328 (long) lwpid, status_to_str (status));
3329 }
3330
3331 lp = linux_nat_filter_event (lwpid, status, options);
3332
3333 if (lp
3334 && ptid_is_pid (ptid)
3335 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3336 {
3337 if (debug_linux_nat)
3338 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3339 ptid_get_lwp (lp->ptid), status);
3340
3341 if (WIFSTOPPED (lp->status))
3342 {
3343 if (WSTOPSIG (lp->status) != SIGSTOP)
3344 {
3345 stop_callback (lp, NULL);
3346
3347 /* Resume in order to collect the sigstop. */
3348 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
3349
3350 stop_wait_callback (lp, NULL);
3351 }
3352 else
3353 {
3354 lp->stopped = 1;
3355 lp->signalled = 0;
3356 }
3357 }
3358 else if (WIFEXITED (status) || WIFSIGNALED (status))
3359 {
3360 if (debug_linux_nat)
3361 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3362 ptid_get_lwp (lp->ptid));
3363
3364 /* This was the last lwp in the process. Since
3365 events are serialized to GDB core, and we can't
3366 report this one right now, but GDB core and the
3367 other target layers will want to be notified
3368 about the exit code/signal, leave the status
3369 pending for the next time we're able to report
3370 it. */
3371
3372 /* Prevent trying to stop this thread again. We'll
3373 never try to resume it because it has a pending
3374 status. */
3375 lp->stopped = 1;
3376
3377 /* Dead LWP's aren't expected to reported a pending
3378 sigstop. */
3379 lp->signalled = 0;
3380
3381 /* Store the pending event in the waitstatus as
3382 well, because W_EXITCODE(0,0) == 0. */
3383 store_waitstatus (&lp->waitstatus, lp->status);
3384 }
3385
3386 /* Keep looking. */
3387 lp = NULL;
3388 continue;
3389 }
3390
3391 if (lp)
3392 break;
3393 else
3394 {
3395 if (pid == -1)
3396 {
3397 /* waitpid did return something. Restart over. */
3398 options |= __WCLONE;
3399 }
3400 continue;
3401 }
3402 }
3403
3404 if (pid == -1)
3405 {
3406 /* Alternate between checking cloned and uncloned processes. */
3407 options ^= __WCLONE;
3408
3409 /* And every time we have checked both:
3410 In async mode, return to event loop;
3411 In sync mode, suspend waiting for a SIGCHLD signal. */
3412 if (options & __WCLONE)
3413 {
3414 if (target_options & TARGET_WNOHANG)
3415 {
3416 /* No interesting event. */
3417 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3418
3419 if (debug_linux_nat_async)
3420 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3421
3422 restore_child_signals_mask (&prev_mask);
3423 return minus_one_ptid;
3424 }
3425
3426 sigsuspend (&suspend_mask);
3427 }
3428 }
3429 else if (target_options & TARGET_WNOHANG)
3430 {
3431 /* No interesting event for PID yet. */
3432 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3433
3434 if (debug_linux_nat_async)
3435 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3436
3437 restore_child_signals_mask (&prev_mask);
3438 return minus_one_ptid;
3439 }
3440
3441 /* We shouldn't end up here unless we want to try again. */
3442 gdb_assert (lp == NULL);
3443 }
3444
3445 if (!target_can_async_p ())
3446 clear_sigint_trap ();
3447
3448 gdb_assert (lp);
3449
3450 status = lp->status;
3451 lp->status = 0;
3452
3453 /* Don't report signals that GDB isn't interested in, such as
3454 signals that are neither printed nor stopped upon. Stopping all
3455 threads can be a bit time-consuming so if we want decent
3456 performance with heavily multi-threaded programs, especially when
3457 they're using a high frequency timer, we'd better avoid it if we
3458 can. */
3459
3460 if (WIFSTOPPED (status))
3461 {
3462 int signo = target_signal_from_host (WSTOPSIG (status));
3463 struct inferior *inf;
3464
3465 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3466 gdb_assert (inf);
3467
3468 /* Defer to common code if we get a signal while
3469 single-stepping, since that may need special care, e.g. to
3470 skip the signal handler, or, if we're gaining control of the
3471 inferior. */
3472 if (!lp->step
3473 && inf->stop_soon == NO_STOP_QUIETLY
3474 && signal_stop_state (signo) == 0
3475 && signal_print_state (signo) == 0
3476 && signal_pass_state (signo) == 1)
3477 {
3478 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3479 here? It is not clear we should. GDB may not expect
3480 other threads to run. On the other hand, not resuming
3481 newly attached threads may cause an unwanted delay in
3482 getting them running. */
3483 registers_changed ();
3484 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3485 lp->step, signo);
3486 if (debug_linux_nat)
3487 fprintf_unfiltered (gdb_stdlog,
3488 "LLW: %s %s, %s (preempt 'handle')\n",
3489 lp->step ?
3490 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3491 target_pid_to_str (lp->ptid),
3492 signo ? strsignal (signo) : "0");
3493 lp->stopped = 0;
3494 goto retry;
3495 }
3496
3497 if (!non_stop)
3498 {
3499 /* Only do the below in all-stop, as we currently use SIGINT
3500 to implement target_stop (see linux_nat_stop) in
3501 non-stop. */
3502 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3503 {
3504 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3505 forwarded to the entire process group, that is, all LWPs
3506 will receive it - unless they're using CLONE_THREAD to
3507 share signals. Since we only want to report it once, we
3508 mark it as ignored for all LWPs except this one. */
3509 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3510 set_ignore_sigint, NULL);
3511 lp->ignore_sigint = 0;
3512 }
3513 else
3514 maybe_clear_ignore_sigint (lp);
3515 }
3516 }
3517
3518 /* This LWP is stopped now. */
3519 lp->stopped = 1;
3520
3521 if (debug_linux_nat)
3522 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3523 status_to_str (status), target_pid_to_str (lp->ptid));
3524
3525 if (!non_stop)
3526 {
3527 /* Now stop all other LWP's ... */
3528 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3529
3530 /* ... and wait until all of them have reported back that
3531 they're no longer running. */
3532 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3533
3534 /* If we're not waiting for a specific LWP, choose an event LWP
3535 from among those that have had events. Giving equal priority
3536 to all LWPs that have had events helps prevent
3537 starvation. */
3538 if (pid == -1)
3539 select_event_lwp (ptid, &lp, &status);
3540 }
3541
3542 /* Now that we've selected our final event LWP, cancel any
3543 breakpoints in other LWPs that have hit a GDB breakpoint. See
3544 the comment in cancel_breakpoints_callback to find out why. */
3545 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3546
3547 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3548 {
3549 if (debug_linux_nat)
3550 fprintf_unfiltered (gdb_stdlog,
3551 "LLW: trap ptid is %s.\n",
3552 target_pid_to_str (lp->ptid));
3553 }
3554
3555 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3556 {
3557 *ourstatus = lp->waitstatus;
3558 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3559 }
3560 else
3561 store_waitstatus (ourstatus, status);
3562
3563 if (debug_linux_nat_async)
3564 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3565
3566 restore_child_signals_mask (&prev_mask);
3567 return lp->ptid;
3568 }
3569
3570 static ptid_t
3571 linux_nat_wait (struct target_ops *ops,
3572 ptid_t ptid, struct target_waitstatus *ourstatus,
3573 int target_options)
3574 {
3575 ptid_t event_ptid;
3576
3577 if (debug_linux_nat)
3578 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3579
3580 /* Flush the async file first. */
3581 if (target_can_async_p ())
3582 async_file_flush ();
3583
3584 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3585
3586 /* If we requested any event, and something came out, assume there
3587 may be more. If we requested a specific lwp or process, also
3588 assume there may be more. */
3589 if (target_can_async_p ()
3590 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3591 || !ptid_equal (ptid, minus_one_ptid)))
3592 async_file_mark ();
3593
3594 /* Get ready for the next event. */
3595 if (target_can_async_p ())
3596 target_async (inferior_event_handler, 0);
3597
3598 return event_ptid;
3599 }
3600
3601 static int
3602 kill_callback (struct lwp_info *lp, void *data)
3603 {
3604 errno = 0;
3605 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3606 if (debug_linux_nat)
3607 fprintf_unfiltered (gdb_stdlog,
3608 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3609 target_pid_to_str (lp->ptid),
3610 errno ? safe_strerror (errno) : "OK");
3611
3612 return 0;
3613 }
3614
3615 static int
3616 kill_wait_callback (struct lwp_info *lp, void *data)
3617 {
3618 pid_t pid;
3619
3620 /* We must make sure that there are no pending events (delayed
3621 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3622 program doesn't interfere with any following debugging session. */
3623
3624 /* For cloned processes we must check both with __WCLONE and
3625 without, since the exit status of a cloned process isn't reported
3626 with __WCLONE. */
3627 if (lp->cloned)
3628 {
3629 do
3630 {
3631 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3632 if (pid != (pid_t) -1)
3633 {
3634 if (debug_linux_nat)
3635 fprintf_unfiltered (gdb_stdlog,
3636 "KWC: wait %s received unknown.\n",
3637 target_pid_to_str (lp->ptid));
3638 /* The Linux kernel sometimes fails to kill a thread
3639 completely after PTRACE_KILL; that goes from the stop
3640 point in do_fork out to the one in
3641 get_signal_to_deliever and waits again. So kill it
3642 again. */
3643 kill_callback (lp, NULL);
3644 }
3645 }
3646 while (pid == GET_LWP (lp->ptid));
3647
3648 gdb_assert (pid == -1 && errno == ECHILD);
3649 }
3650
3651 do
3652 {
3653 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3654 if (pid != (pid_t) -1)
3655 {
3656 if (debug_linux_nat)
3657 fprintf_unfiltered (gdb_stdlog,
3658 "KWC: wait %s received unk.\n",
3659 target_pid_to_str (lp->ptid));
3660 /* See the call to kill_callback above. */
3661 kill_callback (lp, NULL);
3662 }
3663 }
3664 while (pid == GET_LWP (lp->ptid));
3665
3666 gdb_assert (pid == -1 && errno == ECHILD);
3667 return 0;
3668 }
3669
3670 static void
3671 linux_nat_kill (struct target_ops *ops)
3672 {
3673 struct target_waitstatus last;
3674 ptid_t last_ptid;
3675 int status;
3676
3677 /* If we're stopped while forking and we haven't followed yet,
3678 kill the other task. We need to do this first because the
3679 parent will be sleeping if this is a vfork. */
3680
3681 get_last_target_status (&last_ptid, &last);
3682
3683 if (last.kind == TARGET_WAITKIND_FORKED
3684 || last.kind == TARGET_WAITKIND_VFORKED)
3685 {
3686 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3687 wait (&status);
3688 }
3689
3690 if (forks_exist_p ())
3691 linux_fork_killall ();
3692 else
3693 {
3694 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3695 /* Stop all threads before killing them, since ptrace requires
3696 that the thread is stopped to sucessfully PTRACE_KILL. */
3697 iterate_over_lwps (ptid, stop_callback, NULL);
3698 /* ... and wait until all of them have reported back that
3699 they're no longer running. */
3700 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3701
3702 /* Kill all LWP's ... */
3703 iterate_over_lwps (ptid, kill_callback, NULL);
3704
3705 /* ... and wait until we've flushed all events. */
3706 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3707 }
3708
3709 target_mourn_inferior ();
3710 }
3711
3712 static void
3713 linux_nat_mourn_inferior (struct target_ops *ops)
3714 {
3715 purge_lwp_list (ptid_get_pid (inferior_ptid));
3716
3717 if (! forks_exist_p ())
3718 /* Normal case, no other forks available. */
3719 linux_ops->to_mourn_inferior (ops);
3720 else
3721 /* Multi-fork case. The current inferior_ptid has exited, but
3722 there are other viable forks to debug. Delete the exiting
3723 one and context-switch to the first available. */
3724 linux_fork_mourn_inferior ();
3725 }
3726
3727 /* Convert a native/host siginfo object, into/from the siginfo in the
3728 layout of the inferiors' architecture. */
3729
3730 static void
3731 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3732 {
3733 int done = 0;
3734
3735 if (linux_nat_siginfo_fixup != NULL)
3736 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3737
3738 /* If there was no callback, or the callback didn't do anything,
3739 then just do a straight memcpy. */
3740 if (!done)
3741 {
3742 if (direction == 1)
3743 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3744 else
3745 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3746 }
3747 }
3748
3749 static LONGEST
3750 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3751 const char *annex, gdb_byte *readbuf,
3752 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3753 {
3754 int pid;
3755 struct siginfo siginfo;
3756 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3757
3758 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3759 gdb_assert (readbuf || writebuf);
3760
3761 pid = GET_LWP (inferior_ptid);
3762 if (pid == 0)
3763 pid = GET_PID (inferior_ptid);
3764
3765 if (offset > sizeof (siginfo))
3766 return -1;
3767
3768 errno = 0;
3769 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3770 if (errno != 0)
3771 return -1;
3772
3773 /* When GDB is built as a 64-bit application, ptrace writes into
3774 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3775 inferior with a 64-bit GDB should look the same as debugging it
3776 with a 32-bit GDB, we need to convert it. GDB core always sees
3777 the converted layout, so any read/write will have to be done
3778 post-conversion. */
3779 siginfo_fixup (&siginfo, inf_siginfo, 0);
3780
3781 if (offset + len > sizeof (siginfo))
3782 len = sizeof (siginfo) - offset;
3783
3784 if (readbuf != NULL)
3785 memcpy (readbuf, inf_siginfo + offset, len);
3786 else
3787 {
3788 memcpy (inf_siginfo + offset, writebuf, len);
3789
3790 /* Convert back to ptrace layout before flushing it out. */
3791 siginfo_fixup (&siginfo, inf_siginfo, 1);
3792
3793 errno = 0;
3794 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3795 if (errno != 0)
3796 return -1;
3797 }
3798
3799 return len;
3800 }
3801
3802 static LONGEST
3803 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3804 const char *annex, gdb_byte *readbuf,
3805 const gdb_byte *writebuf,
3806 ULONGEST offset, LONGEST len)
3807 {
3808 struct cleanup *old_chain;
3809 LONGEST xfer;
3810
3811 if (object == TARGET_OBJECT_SIGNAL_INFO)
3812 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3813 offset, len);
3814
3815 /* The target is connected but no live inferior is selected. Pass
3816 this request down to a lower stratum (e.g., the executable
3817 file). */
3818 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3819 return 0;
3820
3821 old_chain = save_inferior_ptid ();
3822
3823 if (is_lwp (inferior_ptid))
3824 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3825
3826 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3827 offset, len);
3828
3829 do_cleanups (old_chain);
3830 return xfer;
3831 }
3832
3833 static int
3834 linux_thread_alive (ptid_t ptid)
3835 {
3836 int err;
3837
3838 gdb_assert (is_lwp (ptid));
3839
3840 /* Send signal 0 instead of anything ptrace, because ptracing a
3841 running thread errors out claiming that the thread doesn't
3842 exist. */
3843 err = kill_lwp (GET_LWP (ptid), 0);
3844
3845 if (debug_linux_nat)
3846 fprintf_unfiltered (gdb_stdlog,
3847 "LLTA: KILL(SIG0) %s (%s)\n",
3848 target_pid_to_str (ptid),
3849 err ? safe_strerror (err) : "OK");
3850
3851 if (err != 0)
3852 return 0;
3853
3854 return 1;
3855 }
3856
3857 static int
3858 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3859 {
3860 return linux_thread_alive (ptid);
3861 }
3862
3863 static char *
3864 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3865 {
3866 static char buf[64];
3867
3868 if (is_lwp (ptid)
3869 && (GET_PID (ptid) != GET_LWP (ptid)
3870 || num_lwps (GET_PID (ptid)) > 1))
3871 {
3872 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3873 return buf;
3874 }
3875
3876 return normal_pid_to_str (ptid);
3877 }
3878
3879 /* Accepts an integer PID; Returns a string representing a file that
3880 can be opened to get the symbols for the child process. */
3881
3882 static char *
3883 linux_child_pid_to_exec_file (int pid)
3884 {
3885 char *name1, *name2;
3886
3887 name1 = xmalloc (MAXPATHLEN);
3888 name2 = xmalloc (MAXPATHLEN);
3889 make_cleanup (xfree, name1);
3890 make_cleanup (xfree, name2);
3891 memset (name2, 0, MAXPATHLEN);
3892
3893 sprintf (name1, "/proc/%d/exe", pid);
3894 if (readlink (name1, name2, MAXPATHLEN) > 0)
3895 return name2;
3896 else
3897 return name1;
3898 }
3899
3900 /* Service function for corefiles and info proc. */
3901
3902 static int
3903 read_mapping (FILE *mapfile,
3904 long long *addr,
3905 long long *endaddr,
3906 char *permissions,
3907 long long *offset,
3908 char *device, long long *inode, char *filename)
3909 {
3910 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3911 addr, endaddr, permissions, offset, device, inode);
3912
3913 filename[0] = '\0';
3914 if (ret > 0 && ret != EOF)
3915 {
3916 /* Eat everything up to EOL for the filename. This will prevent
3917 weird filenames (such as one with embedded whitespace) from
3918 confusing this code. It also makes this code more robust in
3919 respect to annotations the kernel may add after the filename.
3920
3921 Note the filename is used for informational purposes
3922 only. */
3923 ret += fscanf (mapfile, "%[^\n]\n", filename);
3924 }
3925
3926 return (ret != 0 && ret != EOF);
3927 }
3928
3929 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3930 regions in the inferior for a corefile. */
3931
3932 static int
3933 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3934 unsigned long,
3935 int, int, int, void *), void *obfd)
3936 {
3937 int pid = PIDGET (inferior_ptid);
3938 char mapsfilename[MAXPATHLEN];
3939 FILE *mapsfile;
3940 long long addr, endaddr, size, offset, inode;
3941 char permissions[8], device[8], filename[MAXPATHLEN];
3942 int read, write, exec;
3943 int ret;
3944 struct cleanup *cleanup;
3945
3946 /* Compose the filename for the /proc memory map, and open it. */
3947 sprintf (mapsfilename, "/proc/%d/maps", pid);
3948 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3949 error (_("Could not open %s."), mapsfilename);
3950 cleanup = make_cleanup_fclose (mapsfile);
3951
3952 if (info_verbose)
3953 fprintf_filtered (gdb_stdout,
3954 "Reading memory regions from %s\n", mapsfilename);
3955
3956 /* Now iterate until end-of-file. */
3957 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3958 &offset, &device[0], &inode, &filename[0]))
3959 {
3960 size = endaddr - addr;
3961
3962 /* Get the segment's permissions. */
3963 read = (strchr (permissions, 'r') != 0);
3964 write = (strchr (permissions, 'w') != 0);
3965 exec = (strchr (permissions, 'x') != 0);
3966
3967 if (info_verbose)
3968 {
3969 fprintf_filtered (gdb_stdout,
3970 "Save segment, %lld bytes at %s (%c%c%c)",
3971 size, paddress (target_gdbarch, addr),
3972 read ? 'r' : ' ',
3973 write ? 'w' : ' ', exec ? 'x' : ' ');
3974 if (filename[0])
3975 fprintf_filtered (gdb_stdout, " for %s", filename);
3976 fprintf_filtered (gdb_stdout, "\n");
3977 }
3978
3979 /* Invoke the callback function to create the corefile
3980 segment. */
3981 func (addr, size, read, write, exec, obfd);
3982 }
3983 do_cleanups (cleanup);
3984 return 0;
3985 }
3986
3987 static int
3988 find_signalled_thread (struct thread_info *info, void *data)
3989 {
3990 if (info->stop_signal != TARGET_SIGNAL_0
3991 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3992 return 1;
3993
3994 return 0;
3995 }
3996
3997 static enum target_signal
3998 find_stop_signal (void)
3999 {
4000 struct thread_info *info =
4001 iterate_over_threads (find_signalled_thread, NULL);
4002
4003 if (info)
4004 return info->stop_signal;
4005 else
4006 return TARGET_SIGNAL_0;
4007 }
4008
4009 /* Records the thread's register state for the corefile note
4010 section. */
4011
4012 static char *
4013 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4014 char *note_data, int *note_size,
4015 enum target_signal stop_signal)
4016 {
4017 gdb_gregset_t gregs;
4018 gdb_fpregset_t fpregs;
4019 unsigned long lwp = ptid_get_lwp (ptid);
4020 struct gdbarch *gdbarch = target_gdbarch;
4021 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4022 const struct regset *regset;
4023 int core_regset_p;
4024 struct cleanup *old_chain;
4025 struct core_regset_section *sect_list;
4026 char *gdb_regset;
4027
4028 old_chain = save_inferior_ptid ();
4029 inferior_ptid = ptid;
4030 target_fetch_registers (regcache, -1);
4031 do_cleanups (old_chain);
4032
4033 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4034 sect_list = gdbarch_core_regset_sections (gdbarch);
4035
4036 if (core_regset_p
4037 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4038 sizeof (gregs))) != NULL
4039 && regset->collect_regset != NULL)
4040 regset->collect_regset (regset, regcache, -1,
4041 &gregs, sizeof (gregs));
4042 else
4043 fill_gregset (regcache, &gregs, -1);
4044
4045 note_data = (char *) elfcore_write_prstatus (obfd,
4046 note_data,
4047 note_size,
4048 lwp,
4049 stop_signal, &gregs);
4050
4051 /* The loop below uses the new struct core_regset_section, which stores
4052 the supported section names and sizes for the core file. Note that
4053 note PRSTATUS needs to be treated specially. But the other notes are
4054 structurally the same, so they can benefit from the new struct. */
4055 if (core_regset_p && sect_list != NULL)
4056 while (sect_list->sect_name != NULL)
4057 {
4058 /* .reg was already handled above. */
4059 if (strcmp (sect_list->sect_name, ".reg") == 0)
4060 {
4061 sect_list++;
4062 continue;
4063 }
4064 regset = gdbarch_regset_from_core_section (gdbarch,
4065 sect_list->sect_name,
4066 sect_list->size);
4067 gdb_assert (regset && regset->collect_regset);
4068 gdb_regset = xmalloc (sect_list->size);
4069 regset->collect_regset (regset, regcache, -1,
4070 gdb_regset, sect_list->size);
4071 note_data = (char *) elfcore_write_register_note (obfd,
4072 note_data,
4073 note_size,
4074 sect_list->sect_name,
4075 gdb_regset,
4076 sect_list->size);
4077 xfree (gdb_regset);
4078 sect_list++;
4079 }
4080
4081 /* For architectures that does not have the struct core_regset_section
4082 implemented, we use the old method. When all the architectures have
4083 the new support, the code below should be deleted. */
4084 else
4085 {
4086 if (core_regset_p
4087 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4088 sizeof (fpregs))) != NULL
4089 && regset->collect_regset != NULL)
4090 regset->collect_regset (regset, regcache, -1,
4091 &fpregs, sizeof (fpregs));
4092 else
4093 fill_fpregset (regcache, &fpregs, -1);
4094
4095 note_data = (char *) elfcore_write_prfpreg (obfd,
4096 note_data,
4097 note_size,
4098 &fpregs, sizeof (fpregs));
4099 }
4100
4101 return note_data;
4102 }
4103
4104 struct linux_nat_corefile_thread_data
4105 {
4106 bfd *obfd;
4107 char *note_data;
4108 int *note_size;
4109 int num_notes;
4110 enum target_signal stop_signal;
4111 };
4112
4113 /* Called by gdbthread.c once per thread. Records the thread's
4114 register state for the corefile note section. */
4115
4116 static int
4117 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4118 {
4119 struct linux_nat_corefile_thread_data *args = data;
4120
4121 args->note_data = linux_nat_do_thread_registers (args->obfd,
4122 ti->ptid,
4123 args->note_data,
4124 args->note_size,
4125 args->stop_signal);
4126 args->num_notes++;
4127
4128 return 0;
4129 }
4130
4131 /* Enumerate spufs IDs for process PID. */
4132
4133 static void
4134 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4135 {
4136 char path[128];
4137 DIR *dir;
4138 struct dirent *entry;
4139
4140 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4141 dir = opendir (path);
4142 if (!dir)
4143 return;
4144
4145 rewinddir (dir);
4146 while ((entry = readdir (dir)) != NULL)
4147 {
4148 struct stat st;
4149 struct statfs stfs;
4150 int fd;
4151
4152 fd = atoi (entry->d_name);
4153 if (!fd)
4154 continue;
4155
4156 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4157 if (stat (path, &st) != 0)
4158 continue;
4159 if (!S_ISDIR (st.st_mode))
4160 continue;
4161
4162 if (statfs (path, &stfs) != 0)
4163 continue;
4164 if (stfs.f_type != SPUFS_MAGIC)
4165 continue;
4166
4167 callback (data, fd);
4168 }
4169
4170 closedir (dir);
4171 }
4172
4173 /* Generate corefile notes for SPU contexts. */
4174
4175 struct linux_spu_corefile_data
4176 {
4177 bfd *obfd;
4178 char *note_data;
4179 int *note_size;
4180 };
4181
4182 static void
4183 linux_spu_corefile_callback (void *data, int fd)
4184 {
4185 struct linux_spu_corefile_data *args = data;
4186 int i;
4187
4188 static const char *spu_files[] =
4189 {
4190 "object-id",
4191 "mem",
4192 "regs",
4193 "fpcr",
4194 "lslr",
4195 "decr",
4196 "decr_status",
4197 "signal1",
4198 "signal1_type",
4199 "signal2",
4200 "signal2_type",
4201 "event_mask",
4202 "event_status",
4203 "mbox_info",
4204 "ibox_info",
4205 "wbox_info",
4206 "dma_info",
4207 "proxydma_info",
4208 };
4209
4210 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4211 {
4212 char annex[32], note_name[32];
4213 gdb_byte *spu_data;
4214 LONGEST spu_len;
4215
4216 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4217 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4218 annex, &spu_data);
4219 if (spu_len > 0)
4220 {
4221 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4222 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4223 args->note_size, note_name,
4224 NT_SPU, spu_data, spu_len);
4225 xfree (spu_data);
4226 }
4227 }
4228 }
4229
4230 static char *
4231 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4232 {
4233 struct linux_spu_corefile_data args;
4234 args.obfd = obfd;
4235 args.note_data = note_data;
4236 args.note_size = note_size;
4237
4238 iterate_over_spus (PIDGET (inferior_ptid),
4239 linux_spu_corefile_callback, &args);
4240
4241 return args.note_data;
4242 }
4243
4244 /* Fills the "to_make_corefile_note" target vector. Builds the note
4245 section for a corefile, and returns it in a malloc buffer. */
4246
4247 static char *
4248 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4249 {
4250 struct linux_nat_corefile_thread_data thread_args;
4251 struct cleanup *old_chain;
4252 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4253 char fname[16] = { '\0' };
4254 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4255 char psargs[80] = { '\0' };
4256 char *note_data = NULL;
4257 ptid_t current_ptid = inferior_ptid;
4258 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4259 gdb_byte *auxv;
4260 int auxv_len;
4261
4262 if (get_exec_file (0))
4263 {
4264 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4265 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4266 if (get_inferior_args ())
4267 {
4268 char *string_end;
4269 char *psargs_end = psargs + sizeof (psargs);
4270
4271 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4272 strings fine. */
4273 string_end = memchr (psargs, 0, sizeof (psargs));
4274 if (string_end != NULL)
4275 {
4276 *string_end++ = ' ';
4277 strncpy (string_end, get_inferior_args (),
4278 psargs_end - string_end);
4279 }
4280 }
4281 note_data = (char *) elfcore_write_prpsinfo (obfd,
4282 note_data,
4283 note_size, fname, psargs);
4284 }
4285
4286 /* Dump information for threads. */
4287 thread_args.obfd = obfd;
4288 thread_args.note_data = note_data;
4289 thread_args.note_size = note_size;
4290 thread_args.num_notes = 0;
4291 thread_args.stop_signal = find_stop_signal ();
4292 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4293 gdb_assert (thread_args.num_notes != 0);
4294 note_data = thread_args.note_data;
4295
4296 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4297 NULL, &auxv);
4298 if (auxv_len > 0)
4299 {
4300 note_data = elfcore_write_note (obfd, note_data, note_size,
4301 "CORE", NT_AUXV, auxv, auxv_len);
4302 xfree (auxv);
4303 }
4304
4305 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4306
4307 make_cleanup (xfree, note_data);
4308 return note_data;
4309 }
4310
4311 /* Implement the "info proc" command. */
4312
4313 static void
4314 linux_nat_info_proc_cmd (char *args, int from_tty)
4315 {
4316 /* A long is used for pid instead of an int to avoid a loss of precision
4317 compiler warning from the output of strtoul. */
4318 long pid = PIDGET (inferior_ptid);
4319 FILE *procfile;
4320 char **argv = NULL;
4321 char buffer[MAXPATHLEN];
4322 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4323 int cmdline_f = 1;
4324 int cwd_f = 1;
4325 int exe_f = 1;
4326 int mappings_f = 0;
4327 int environ_f = 0;
4328 int status_f = 0;
4329 int stat_f = 0;
4330 int all = 0;
4331 struct stat dummy;
4332
4333 if (args)
4334 {
4335 /* Break up 'args' into an argv array. */
4336 argv = gdb_buildargv (args);
4337 make_cleanup_freeargv (argv);
4338 }
4339 while (argv != NULL && *argv != NULL)
4340 {
4341 if (isdigit (argv[0][0]))
4342 {
4343 pid = strtoul (argv[0], NULL, 10);
4344 }
4345 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4346 {
4347 mappings_f = 1;
4348 }
4349 else if (strcmp (argv[0], "status") == 0)
4350 {
4351 status_f = 1;
4352 }
4353 else if (strcmp (argv[0], "stat") == 0)
4354 {
4355 stat_f = 1;
4356 }
4357 else if (strcmp (argv[0], "cmd") == 0)
4358 {
4359 cmdline_f = 1;
4360 }
4361 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4362 {
4363 exe_f = 1;
4364 }
4365 else if (strcmp (argv[0], "cwd") == 0)
4366 {
4367 cwd_f = 1;
4368 }
4369 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4370 {
4371 all = 1;
4372 }
4373 else
4374 {
4375 /* [...] (future options here) */
4376 }
4377 argv++;
4378 }
4379 if (pid == 0)
4380 error (_("No current process: you must name one."));
4381
4382 sprintf (fname1, "/proc/%ld", pid);
4383 if (stat (fname1, &dummy) != 0)
4384 error (_("No /proc directory: '%s'"), fname1);
4385
4386 printf_filtered (_("process %ld\n"), pid);
4387 if (cmdline_f || all)
4388 {
4389 sprintf (fname1, "/proc/%ld/cmdline", pid);
4390 if ((procfile = fopen (fname1, "r")) != NULL)
4391 {
4392 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4393 if (fgets (buffer, sizeof (buffer), procfile))
4394 printf_filtered ("cmdline = '%s'\n", buffer);
4395 else
4396 warning (_("unable to read '%s'"), fname1);
4397 do_cleanups (cleanup);
4398 }
4399 else
4400 warning (_("unable to open /proc file '%s'"), fname1);
4401 }
4402 if (cwd_f || all)
4403 {
4404 sprintf (fname1, "/proc/%ld/cwd", pid);
4405 memset (fname2, 0, sizeof (fname2));
4406 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4407 printf_filtered ("cwd = '%s'\n", fname2);
4408 else
4409 warning (_("unable to read link '%s'"), fname1);
4410 }
4411 if (exe_f || all)
4412 {
4413 sprintf (fname1, "/proc/%ld/exe", pid);
4414 memset (fname2, 0, sizeof (fname2));
4415 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4416 printf_filtered ("exe = '%s'\n", fname2);
4417 else
4418 warning (_("unable to read link '%s'"), fname1);
4419 }
4420 if (mappings_f || all)
4421 {
4422 sprintf (fname1, "/proc/%ld/maps", pid);
4423 if ((procfile = fopen (fname1, "r")) != NULL)
4424 {
4425 long long addr, endaddr, size, offset, inode;
4426 char permissions[8], device[8], filename[MAXPATHLEN];
4427 struct cleanup *cleanup;
4428
4429 cleanup = make_cleanup_fclose (procfile);
4430 printf_filtered (_("Mapped address spaces:\n\n"));
4431 if (gdbarch_addr_bit (target_gdbarch) == 32)
4432 {
4433 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4434 "Start Addr",
4435 " End Addr",
4436 " Size", " Offset", "objfile");
4437 }
4438 else
4439 {
4440 printf_filtered (" %18s %18s %10s %10s %7s\n",
4441 "Start Addr",
4442 " End Addr",
4443 " Size", " Offset", "objfile");
4444 }
4445
4446 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4447 &offset, &device[0], &inode, &filename[0]))
4448 {
4449 size = endaddr - addr;
4450
4451 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4452 calls here (and possibly above) should be abstracted
4453 out into their own functions? Andrew suggests using
4454 a generic local_address_string instead to print out
4455 the addresses; that makes sense to me, too. */
4456
4457 if (gdbarch_addr_bit (target_gdbarch) == 32)
4458 {
4459 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4460 (unsigned long) addr, /* FIXME: pr_addr */
4461 (unsigned long) endaddr,
4462 (int) size,
4463 (unsigned int) offset,
4464 filename[0] ? filename : "");
4465 }
4466 else
4467 {
4468 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4469 (unsigned long) addr, /* FIXME: pr_addr */
4470 (unsigned long) endaddr,
4471 (int) size,
4472 (unsigned int) offset,
4473 filename[0] ? filename : "");
4474 }
4475 }
4476
4477 do_cleanups (cleanup);
4478 }
4479 else
4480 warning (_("unable to open /proc file '%s'"), fname1);
4481 }
4482 if (status_f || all)
4483 {
4484 sprintf (fname1, "/proc/%ld/status", pid);
4485 if ((procfile = fopen (fname1, "r")) != NULL)
4486 {
4487 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4488 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4489 puts_filtered (buffer);
4490 do_cleanups (cleanup);
4491 }
4492 else
4493 warning (_("unable to open /proc file '%s'"), fname1);
4494 }
4495 if (stat_f || all)
4496 {
4497 sprintf (fname1, "/proc/%ld/stat", pid);
4498 if ((procfile = fopen (fname1, "r")) != NULL)
4499 {
4500 int itmp;
4501 char ctmp;
4502 long ltmp;
4503 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4504
4505 if (fscanf (procfile, "%d ", &itmp) > 0)
4506 printf_filtered (_("Process: %d\n"), itmp);
4507 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4508 printf_filtered (_("Exec file: %s\n"), buffer);
4509 if (fscanf (procfile, "%c ", &ctmp) > 0)
4510 printf_filtered (_("State: %c\n"), ctmp);
4511 if (fscanf (procfile, "%d ", &itmp) > 0)
4512 printf_filtered (_("Parent process: %d\n"), itmp);
4513 if (fscanf (procfile, "%d ", &itmp) > 0)
4514 printf_filtered (_("Process group: %d\n"), itmp);
4515 if (fscanf (procfile, "%d ", &itmp) > 0)
4516 printf_filtered (_("Session id: %d\n"), itmp);
4517 if (fscanf (procfile, "%d ", &itmp) > 0)
4518 printf_filtered (_("TTY: %d\n"), itmp);
4519 if (fscanf (procfile, "%d ", &itmp) > 0)
4520 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4521 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4522 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4523 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4524 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4525 (unsigned long) ltmp);
4526 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4527 printf_filtered (_("Minor faults, children: %lu\n"),
4528 (unsigned long) ltmp);
4529 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4530 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4531 (unsigned long) ltmp);
4532 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4533 printf_filtered (_("Major faults, children: %lu\n"),
4534 (unsigned long) ltmp);
4535 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4536 printf_filtered (_("utime: %ld\n"), ltmp);
4537 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4538 printf_filtered (_("stime: %ld\n"), ltmp);
4539 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4540 printf_filtered (_("utime, children: %ld\n"), ltmp);
4541 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4542 printf_filtered (_("stime, children: %ld\n"), ltmp);
4543 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4544 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4545 ltmp);
4546 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4547 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4548 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4549 printf_filtered (_("jiffies until next timeout: %lu\n"),
4550 (unsigned long) ltmp);
4551 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4552 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4553 (unsigned long) ltmp);
4554 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4555 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4556 ltmp);
4557 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4558 printf_filtered (_("Virtual memory size: %lu\n"),
4559 (unsigned long) ltmp);
4560 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4561 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4562 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4563 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4564 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4565 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4566 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4567 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4568 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4569 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4570 #if 0 /* Don't know how architecture-dependent the rest is...
4571 Anyway the signal bitmap info is available from "status". */
4572 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4573 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4574 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4575 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4576 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4577 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4578 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4579 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4580 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4581 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4582 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4583 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4584 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4585 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4586 #endif
4587 do_cleanups (cleanup);
4588 }
4589 else
4590 warning (_("unable to open /proc file '%s'"), fname1);
4591 }
4592 }
4593
4594 /* Implement the to_xfer_partial interface for memory reads using the /proc
4595 filesystem. Because we can use a single read() call for /proc, this
4596 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4597 but it doesn't support writes. */
4598
4599 static LONGEST
4600 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4601 const char *annex, gdb_byte *readbuf,
4602 const gdb_byte *writebuf,
4603 ULONGEST offset, LONGEST len)
4604 {
4605 LONGEST ret;
4606 int fd;
4607 char filename[64];
4608
4609 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4610 return 0;
4611
4612 /* Don't bother for one word. */
4613 if (len < 3 * sizeof (long))
4614 return 0;
4615
4616 /* We could keep this file open and cache it - possibly one per
4617 thread. That requires some juggling, but is even faster. */
4618 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4619 fd = open (filename, O_RDONLY | O_LARGEFILE);
4620 if (fd == -1)
4621 return 0;
4622
4623 /* If pread64 is available, use it. It's faster if the kernel
4624 supports it (only one syscall), and it's 64-bit safe even on
4625 32-bit platforms (for instance, SPARC debugging a SPARC64
4626 application). */
4627 #ifdef HAVE_PREAD64
4628 if (pread64 (fd, readbuf, len, offset) != len)
4629 #else
4630 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4631 #endif
4632 ret = 0;
4633 else
4634 ret = len;
4635
4636 close (fd);
4637 return ret;
4638 }
4639
4640
4641 /* Enumerate spufs IDs for process PID. */
4642 static LONGEST
4643 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4644 {
4645 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4646 LONGEST pos = 0;
4647 LONGEST written = 0;
4648 char path[128];
4649 DIR *dir;
4650 struct dirent *entry;
4651
4652 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4653 dir = opendir (path);
4654 if (!dir)
4655 return -1;
4656
4657 rewinddir (dir);
4658 while ((entry = readdir (dir)) != NULL)
4659 {
4660 struct stat st;
4661 struct statfs stfs;
4662 int fd;
4663
4664 fd = atoi (entry->d_name);
4665 if (!fd)
4666 continue;
4667
4668 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4669 if (stat (path, &st) != 0)
4670 continue;
4671 if (!S_ISDIR (st.st_mode))
4672 continue;
4673
4674 if (statfs (path, &stfs) != 0)
4675 continue;
4676 if (stfs.f_type != SPUFS_MAGIC)
4677 continue;
4678
4679 if (pos >= offset && pos + 4 <= offset + len)
4680 {
4681 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4682 written += 4;
4683 }
4684 pos += 4;
4685 }
4686
4687 closedir (dir);
4688 return written;
4689 }
4690
4691 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4692 object type, using the /proc file system. */
4693 static LONGEST
4694 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4695 const char *annex, gdb_byte *readbuf,
4696 const gdb_byte *writebuf,
4697 ULONGEST offset, LONGEST len)
4698 {
4699 char buf[128];
4700 int fd = 0;
4701 int ret = -1;
4702 int pid = PIDGET (inferior_ptid);
4703
4704 if (!annex)
4705 {
4706 if (!readbuf)
4707 return -1;
4708 else
4709 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4710 }
4711
4712 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4713 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4714 if (fd <= 0)
4715 return -1;
4716
4717 if (offset != 0
4718 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4719 {
4720 close (fd);
4721 return 0;
4722 }
4723
4724 if (writebuf)
4725 ret = write (fd, writebuf, (size_t) len);
4726 else if (readbuf)
4727 ret = read (fd, readbuf, (size_t) len);
4728
4729 close (fd);
4730 return ret;
4731 }
4732
4733
4734 /* Parse LINE as a signal set and add its set bits to SIGS. */
4735
4736 static void
4737 add_line_to_sigset (const char *line, sigset_t *sigs)
4738 {
4739 int len = strlen (line) - 1;
4740 const char *p;
4741 int signum;
4742
4743 if (line[len] != '\n')
4744 error (_("Could not parse signal set: %s"), line);
4745
4746 p = line;
4747 signum = len * 4;
4748 while (len-- > 0)
4749 {
4750 int digit;
4751
4752 if (*p >= '0' && *p <= '9')
4753 digit = *p - '0';
4754 else if (*p >= 'a' && *p <= 'f')
4755 digit = *p - 'a' + 10;
4756 else
4757 error (_("Could not parse signal set: %s"), line);
4758
4759 signum -= 4;
4760
4761 if (digit & 1)
4762 sigaddset (sigs, signum + 1);
4763 if (digit & 2)
4764 sigaddset (sigs, signum + 2);
4765 if (digit & 4)
4766 sigaddset (sigs, signum + 3);
4767 if (digit & 8)
4768 sigaddset (sigs, signum + 4);
4769
4770 p++;
4771 }
4772 }
4773
4774 /* Find process PID's pending signals from /proc/pid/status and set
4775 SIGS to match. */
4776
4777 void
4778 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4779 {
4780 FILE *procfile;
4781 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4782 int signum;
4783 struct cleanup *cleanup;
4784
4785 sigemptyset (pending);
4786 sigemptyset (blocked);
4787 sigemptyset (ignored);
4788 sprintf (fname, "/proc/%d/status", pid);
4789 procfile = fopen (fname, "r");
4790 if (procfile == NULL)
4791 error (_("Could not open %s"), fname);
4792 cleanup = make_cleanup_fclose (procfile);
4793
4794 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4795 {
4796 /* Normal queued signals are on the SigPnd line in the status
4797 file. However, 2.6 kernels also have a "shared" pending
4798 queue for delivering signals to a thread group, so check for
4799 a ShdPnd line also.
4800
4801 Unfortunately some Red Hat kernels include the shared pending
4802 queue but not the ShdPnd status field. */
4803
4804 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4805 add_line_to_sigset (buffer + 8, pending);
4806 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4807 add_line_to_sigset (buffer + 8, pending);
4808 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4809 add_line_to_sigset (buffer + 8, blocked);
4810 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4811 add_line_to_sigset (buffer + 8, ignored);
4812 }
4813
4814 do_cleanups (cleanup);
4815 }
4816
4817 static LONGEST
4818 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4819 const char *annex, gdb_byte *readbuf,
4820 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4821 {
4822 /* We make the process list snapshot when the object starts to be
4823 read. */
4824 static const char *buf;
4825 static LONGEST len_avail = -1;
4826 static struct obstack obstack;
4827
4828 DIR *dirp;
4829
4830 gdb_assert (object == TARGET_OBJECT_OSDATA);
4831
4832 if (strcmp (annex, "processes") != 0)
4833 return 0;
4834
4835 gdb_assert (readbuf && !writebuf);
4836
4837 if (offset == 0)
4838 {
4839 if (len_avail != -1 && len_avail != 0)
4840 obstack_free (&obstack, NULL);
4841 len_avail = 0;
4842 buf = NULL;
4843 obstack_init (&obstack);
4844 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4845
4846 dirp = opendir ("/proc");
4847 if (dirp)
4848 {
4849 struct dirent *dp;
4850 while ((dp = readdir (dirp)) != NULL)
4851 {
4852 struct stat statbuf;
4853 char procentry[sizeof ("/proc/4294967295")];
4854
4855 if (!isdigit (dp->d_name[0])
4856 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4857 continue;
4858
4859 sprintf (procentry, "/proc/%s", dp->d_name);
4860 if (stat (procentry, &statbuf) == 0
4861 && S_ISDIR (statbuf.st_mode))
4862 {
4863 char *pathname;
4864 FILE *f;
4865 char cmd[MAXPATHLEN + 1];
4866 struct passwd *entry;
4867
4868 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4869 entry = getpwuid (statbuf.st_uid);
4870
4871 if ((f = fopen (pathname, "r")) != NULL)
4872 {
4873 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4874 if (len > 0)
4875 {
4876 int i;
4877 for (i = 0; i < len; i++)
4878 if (cmd[i] == '\0')
4879 cmd[i] = ' ';
4880 cmd[len] = '\0';
4881
4882 obstack_xml_printf (
4883 &obstack,
4884 "<item>"
4885 "<column name=\"pid\">%s</column>"
4886 "<column name=\"user\">%s</column>"
4887 "<column name=\"command\">%s</column>"
4888 "</item>",
4889 dp->d_name,
4890 entry ? entry->pw_name : "?",
4891 cmd);
4892 }
4893 fclose (f);
4894 }
4895
4896 xfree (pathname);
4897 }
4898 }
4899
4900 closedir (dirp);
4901 }
4902
4903 obstack_grow_str0 (&obstack, "</osdata>\n");
4904 buf = obstack_finish (&obstack);
4905 len_avail = strlen (buf);
4906 }
4907
4908 if (offset >= len_avail)
4909 {
4910 /* Done. Get rid of the obstack. */
4911 obstack_free (&obstack, NULL);
4912 buf = NULL;
4913 len_avail = 0;
4914 return 0;
4915 }
4916
4917 if (len > len_avail - offset)
4918 len = len_avail - offset;
4919 memcpy (readbuf, buf + offset, len);
4920
4921 return len;
4922 }
4923
4924 static LONGEST
4925 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4926 const char *annex, gdb_byte *readbuf,
4927 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4928 {
4929 LONGEST xfer;
4930
4931 if (object == TARGET_OBJECT_AUXV)
4932 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4933 offset, len);
4934
4935 if (object == TARGET_OBJECT_OSDATA)
4936 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4937 offset, len);
4938
4939 if (object == TARGET_OBJECT_SPU)
4940 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4941 offset, len);
4942
4943 /* GDB calculates all the addresses in possibly larget width of the address.
4944 Address width needs to be masked before its final use - either by
4945 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4946
4947 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4948
4949 if (object == TARGET_OBJECT_MEMORY)
4950 {
4951 int addr_bit = gdbarch_addr_bit (target_gdbarch);
4952
4953 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4954 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4955 }
4956
4957 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4958 offset, len);
4959 if (xfer != 0)
4960 return xfer;
4961
4962 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4963 offset, len);
4964 }
4965
4966 /* Create a prototype generic GNU/Linux target. The client can override
4967 it with local methods. */
4968
4969 static void
4970 linux_target_install_ops (struct target_ops *t)
4971 {
4972 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4973 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4974 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4975 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4976 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4977 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4978 t->to_post_attach = linux_child_post_attach;
4979 t->to_follow_fork = linux_child_follow_fork;
4980 t->to_find_memory_regions = linux_nat_find_memory_regions;
4981 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4982
4983 super_xfer_partial = t->to_xfer_partial;
4984 t->to_xfer_partial = linux_xfer_partial;
4985 }
4986
4987 struct target_ops *
4988 linux_target (void)
4989 {
4990 struct target_ops *t;
4991
4992 t = inf_ptrace_target ();
4993 linux_target_install_ops (t);
4994
4995 return t;
4996 }
4997
4998 struct target_ops *
4999 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5000 {
5001 struct target_ops *t;
5002
5003 t = inf_ptrace_trad_target (register_u_offset);
5004 linux_target_install_ops (t);
5005
5006 return t;
5007 }
5008
5009 /* target_is_async_p implementation. */
5010
5011 static int
5012 linux_nat_is_async_p (void)
5013 {
5014 /* NOTE: palves 2008-03-21: We're only async when the user requests
5015 it explicitly with the "set target-async" command.
5016 Someday, linux will always be async. */
5017 if (!target_async_permitted)
5018 return 0;
5019
5020 /* See target.h/target_async_mask. */
5021 return linux_nat_async_mask_value;
5022 }
5023
5024 /* target_can_async_p implementation. */
5025
5026 static int
5027 linux_nat_can_async_p (void)
5028 {
5029 /* NOTE: palves 2008-03-21: We're only async when the user requests
5030 it explicitly with the "set target-async" command.
5031 Someday, linux will always be async. */
5032 if (!target_async_permitted)
5033 return 0;
5034
5035 /* See target.h/target_async_mask. */
5036 return linux_nat_async_mask_value;
5037 }
5038
5039 static int
5040 linux_nat_supports_non_stop (void)
5041 {
5042 return 1;
5043 }
5044
5045 /* True if we want to support multi-process. To be removed when GDB
5046 supports multi-exec. */
5047
5048 int linux_multi_process = 1;
5049
5050 static int
5051 linux_nat_supports_multi_process (void)
5052 {
5053 return linux_multi_process;
5054 }
5055
5056 /* target_async_mask implementation. */
5057
5058 static int
5059 linux_nat_async_mask (int new_mask)
5060 {
5061 int curr_mask = linux_nat_async_mask_value;
5062
5063 if (curr_mask != new_mask)
5064 {
5065 if (new_mask == 0)
5066 {
5067 linux_nat_async (NULL, 0);
5068 linux_nat_async_mask_value = new_mask;
5069 }
5070 else
5071 {
5072 linux_nat_async_mask_value = new_mask;
5073
5074 /* If we're going out of async-mask in all-stop, then the
5075 inferior is stopped. The next resume will call
5076 target_async. In non-stop, the target event source
5077 should be always registered in the event loop. Do so
5078 now. */
5079 if (non_stop)
5080 linux_nat_async (inferior_event_handler, 0);
5081 }
5082 }
5083
5084 return curr_mask;
5085 }
5086
5087 static int async_terminal_is_ours = 1;
5088
5089 /* target_terminal_inferior implementation. */
5090
5091 static void
5092 linux_nat_terminal_inferior (void)
5093 {
5094 if (!target_is_async_p ())
5095 {
5096 /* Async mode is disabled. */
5097 terminal_inferior ();
5098 return;
5099 }
5100
5101 terminal_inferior ();
5102
5103 /* Calls to target_terminal_*() are meant to be idempotent. */
5104 if (!async_terminal_is_ours)
5105 return;
5106
5107 delete_file_handler (input_fd);
5108 async_terminal_is_ours = 0;
5109 set_sigint_trap ();
5110 }
5111
5112 /* target_terminal_ours implementation. */
5113
5114 static void
5115 linux_nat_terminal_ours (void)
5116 {
5117 if (!target_is_async_p ())
5118 {
5119 /* Async mode is disabled. */
5120 terminal_ours ();
5121 return;
5122 }
5123
5124 /* GDB should never give the terminal to the inferior if the
5125 inferior is running in the background (run&, continue&, etc.),
5126 but claiming it sure should. */
5127 terminal_ours ();
5128
5129 if (async_terminal_is_ours)
5130 return;
5131
5132 clear_sigint_trap ();
5133 add_file_handler (input_fd, stdin_event_handler, 0);
5134 async_terminal_is_ours = 1;
5135 }
5136
5137 static void (*async_client_callback) (enum inferior_event_type event_type,
5138 void *context);
5139 static void *async_client_context;
5140
5141 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5142 so we notice when any child changes state, and notify the
5143 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5144 above to wait for the arrival of a SIGCHLD. */
5145
5146 static void
5147 sigchld_handler (int signo)
5148 {
5149 int old_errno = errno;
5150
5151 if (debug_linux_nat_async)
5152 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5153
5154 if (signo == SIGCHLD
5155 && linux_nat_event_pipe[0] != -1)
5156 async_file_mark (); /* Let the event loop know that there are
5157 events to handle. */
5158
5159 errno = old_errno;
5160 }
5161
5162 /* Callback registered with the target events file descriptor. */
5163
5164 static void
5165 handle_target_event (int error, gdb_client_data client_data)
5166 {
5167 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5168 }
5169
5170 /* Create/destroy the target events pipe. Returns previous state. */
5171
5172 static int
5173 linux_async_pipe (int enable)
5174 {
5175 int previous = (linux_nat_event_pipe[0] != -1);
5176
5177 if (previous != enable)
5178 {
5179 sigset_t prev_mask;
5180
5181 block_child_signals (&prev_mask);
5182
5183 if (enable)
5184 {
5185 if (pipe (linux_nat_event_pipe) == -1)
5186 internal_error (__FILE__, __LINE__,
5187 "creating event pipe failed.");
5188
5189 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5190 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5191 }
5192 else
5193 {
5194 close (linux_nat_event_pipe[0]);
5195 close (linux_nat_event_pipe[1]);
5196 linux_nat_event_pipe[0] = -1;
5197 linux_nat_event_pipe[1] = -1;
5198 }
5199
5200 restore_child_signals_mask (&prev_mask);
5201 }
5202
5203 return previous;
5204 }
5205
5206 /* target_async implementation. */
5207
5208 static void
5209 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5210 void *context), void *context)
5211 {
5212 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5213 internal_error (__FILE__, __LINE__,
5214 "Calling target_async when async is masked");
5215
5216 if (callback != NULL)
5217 {
5218 async_client_callback = callback;
5219 async_client_context = context;
5220 if (!linux_async_pipe (1))
5221 {
5222 add_file_handler (linux_nat_event_pipe[0],
5223 handle_target_event, NULL);
5224 /* There may be pending events to handle. Tell the event loop
5225 to poll them. */
5226 async_file_mark ();
5227 }
5228 }
5229 else
5230 {
5231 async_client_callback = callback;
5232 async_client_context = context;
5233 delete_file_handler (linux_nat_event_pipe[0]);
5234 linux_async_pipe (0);
5235 }
5236 return;
5237 }
5238
5239 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5240 event came out. */
5241
5242 static int
5243 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5244 {
5245 if (!lwp->stopped)
5246 {
5247 int pid, status;
5248 ptid_t ptid = lwp->ptid;
5249
5250 if (debug_linux_nat)
5251 fprintf_unfiltered (gdb_stdlog,
5252 "LNSL: running -> suspending %s\n",
5253 target_pid_to_str (lwp->ptid));
5254
5255
5256 stop_callback (lwp, NULL);
5257 stop_wait_callback (lwp, NULL);
5258
5259 /* If the lwp exits while we try to stop it, there's nothing
5260 else to do. */
5261 lwp = find_lwp_pid (ptid);
5262 if (lwp == NULL)
5263 return 0;
5264
5265 /* If we didn't collect any signal other than SIGSTOP while
5266 stopping the LWP, push a SIGNAL_0 event. In either case, the
5267 event-loop will end up calling target_wait which will collect
5268 these. */
5269 if (lwp->status == 0)
5270 lwp->status = W_STOPCODE (0);
5271 async_file_mark ();
5272 }
5273 else
5274 {
5275 /* Already known to be stopped; do nothing. */
5276
5277 if (debug_linux_nat)
5278 {
5279 if (find_thread_ptid (lwp->ptid)->stop_requested)
5280 fprintf_unfiltered (gdb_stdlog, "\
5281 LNSL: already stopped/stop_requested %s\n",
5282 target_pid_to_str (lwp->ptid));
5283 else
5284 fprintf_unfiltered (gdb_stdlog, "\
5285 LNSL: already stopped/no stop_requested yet %s\n",
5286 target_pid_to_str (lwp->ptid));
5287 }
5288 }
5289 return 0;
5290 }
5291
5292 static void
5293 linux_nat_stop (ptid_t ptid)
5294 {
5295 if (non_stop)
5296 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5297 else
5298 linux_ops->to_stop (ptid);
5299 }
5300
5301 static void
5302 linux_nat_close (int quitting)
5303 {
5304 /* Unregister from the event loop. */
5305 if (target_is_async_p ())
5306 target_async (NULL, 0);
5307
5308 /* Reset the async_masking. */
5309 linux_nat_async_mask_value = 1;
5310
5311 if (linux_ops->to_close)
5312 linux_ops->to_close (quitting);
5313 }
5314
5315 /* When requests are passed down from the linux-nat layer to the
5316 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5317 used. The address space pointer is stored in the inferior object,
5318 but the common code that is passed such ptid can't tell whether
5319 lwpid is a "main" process id or not (it assumes so). We reverse
5320 look up the "main" process id from the lwp here. */
5321
5322 struct address_space *
5323 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5324 {
5325 struct lwp_info *lwp;
5326 struct inferior *inf;
5327 int pid;
5328
5329 pid = GET_LWP (ptid);
5330 if (GET_LWP (ptid) == 0)
5331 {
5332 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5333 tgid. */
5334 lwp = find_lwp_pid (ptid);
5335 pid = GET_PID (lwp->ptid);
5336 }
5337 else
5338 {
5339 /* A (pid,lwpid,0) ptid. */
5340 pid = GET_PID (ptid);
5341 }
5342
5343 inf = find_inferior_pid (pid);
5344 gdb_assert (inf != NULL);
5345 return inf->aspace;
5346 }
5347
5348 void
5349 linux_nat_add_target (struct target_ops *t)
5350 {
5351 /* Save the provided single-threaded target. We save this in a separate
5352 variable because another target we've inherited from (e.g. inf-ptrace)
5353 may have saved a pointer to T; we want to use it for the final
5354 process stratum target. */
5355 linux_ops_saved = *t;
5356 linux_ops = &linux_ops_saved;
5357
5358 /* Override some methods for multithreading. */
5359 t->to_create_inferior = linux_nat_create_inferior;
5360 t->to_attach = linux_nat_attach;
5361 t->to_detach = linux_nat_detach;
5362 t->to_resume = linux_nat_resume;
5363 t->to_wait = linux_nat_wait;
5364 t->to_xfer_partial = linux_nat_xfer_partial;
5365 t->to_kill = linux_nat_kill;
5366 t->to_mourn_inferior = linux_nat_mourn_inferior;
5367 t->to_thread_alive = linux_nat_thread_alive;
5368 t->to_pid_to_str = linux_nat_pid_to_str;
5369 t->to_has_thread_control = tc_schedlock;
5370 t->to_thread_address_space = linux_nat_thread_address_space;
5371
5372 t->to_can_async_p = linux_nat_can_async_p;
5373 t->to_is_async_p = linux_nat_is_async_p;
5374 t->to_supports_non_stop = linux_nat_supports_non_stop;
5375 t->to_async = linux_nat_async;
5376 t->to_async_mask = linux_nat_async_mask;
5377 t->to_terminal_inferior = linux_nat_terminal_inferior;
5378 t->to_terminal_ours = linux_nat_terminal_ours;
5379 t->to_close = linux_nat_close;
5380
5381 /* Methods for non-stop support. */
5382 t->to_stop = linux_nat_stop;
5383
5384 t->to_supports_multi_process = linux_nat_supports_multi_process;
5385
5386 /* We don't change the stratum; this target will sit at
5387 process_stratum and thread_db will set at thread_stratum. This
5388 is a little strange, since this is a multi-threaded-capable
5389 target, but we want to be on the stack below thread_db, and we
5390 also want to be used for single-threaded processes. */
5391
5392 add_target (t);
5393 }
5394
5395 /* Register a method to call whenever a new thread is attached. */
5396 void
5397 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5398 {
5399 /* Save the pointer. We only support a single registered instance
5400 of the GNU/Linux native target, so we do not need to map this to
5401 T. */
5402 linux_nat_new_thread = new_thread;
5403 }
5404
5405 /* Register a method that converts a siginfo object between the layout
5406 that ptrace returns, and the layout in the architecture of the
5407 inferior. */
5408 void
5409 linux_nat_set_siginfo_fixup (struct target_ops *t,
5410 int (*siginfo_fixup) (struct siginfo *,
5411 gdb_byte *,
5412 int))
5413 {
5414 /* Save the pointer. */
5415 linux_nat_siginfo_fixup = siginfo_fixup;
5416 }
5417
5418 /* Return the saved siginfo associated with PTID. */
5419 struct siginfo *
5420 linux_nat_get_siginfo (ptid_t ptid)
5421 {
5422 struct lwp_info *lp = find_lwp_pid (ptid);
5423
5424 gdb_assert (lp != NULL);
5425
5426 return &lp->siginfo;
5427 }
5428
5429 /* Provide a prototype to silence -Wmissing-prototypes. */
5430 extern initialize_file_ftype _initialize_linux_nat;
5431
5432 void
5433 _initialize_linux_nat (void)
5434 {
5435 sigset_t mask;
5436
5437 add_info ("proc", linux_nat_info_proc_cmd, _("\
5438 Show /proc process information about any running process.\n\
5439 Specify any process id, or use the program being debugged by default.\n\
5440 Specify any of the following keywords for detailed info:\n\
5441 mappings -- list of mapped memory regions.\n\
5442 stat -- list a bunch of random process info.\n\
5443 status -- list a different bunch of random process info.\n\
5444 all -- list all available /proc info."));
5445
5446 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5447 &debug_linux_nat, _("\
5448 Set debugging of GNU/Linux lwp module."), _("\
5449 Show debugging of GNU/Linux lwp module."), _("\
5450 Enables printf debugging output."),
5451 NULL,
5452 show_debug_linux_nat,
5453 &setdebuglist, &showdebuglist);
5454
5455 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5456 &debug_linux_nat_async, _("\
5457 Set debugging of GNU/Linux async lwp module."), _("\
5458 Show debugging of GNU/Linux async lwp module."), _("\
5459 Enables printf debugging output."),
5460 NULL,
5461 show_debug_linux_nat_async,
5462 &setdebuglist, &showdebuglist);
5463
5464 /* Save this mask as the default. */
5465 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5466
5467 /* Install a SIGCHLD handler. */
5468 sigchld_action.sa_handler = sigchld_handler;
5469 sigemptyset (&sigchld_action.sa_mask);
5470 sigchld_action.sa_flags = SA_RESTART;
5471
5472 /* Make it the default. */
5473 sigaction (SIGCHLD, &sigchld_action, NULL);
5474
5475 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5476 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5477 sigdelset (&suspend_mask, SIGCHLD);
5478
5479 sigemptyset (&blocked_mask);
5480
5481 add_setshow_boolean_cmd ("disable-randomization", class_support,
5482 &disable_randomization, _("\
5483 Set disabling of debuggee's virtual address space randomization."), _("\
5484 Show disabling of debuggee's virtual address space randomization."), _("\
5485 When this mode is on (which is the default), randomization of the virtual\n\
5486 address space is disabled. Standalone programs run with the randomization\n\
5487 enabled by default on some platforms."),
5488 &set_disable_randomization,
5489 &show_disable_randomization,
5490 &setlist, &showlist);
5491 }
5492 \f
5493
5494 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5495 the GNU/Linux Threads library and therefore doesn't really belong
5496 here. */
5497
5498 /* Read variable NAME in the target and return its value if found.
5499 Otherwise return zero. It is assumed that the type of the variable
5500 is `int'. */
5501
5502 static int
5503 get_signo (const char *name)
5504 {
5505 struct minimal_symbol *ms;
5506 int signo;
5507
5508 ms = lookup_minimal_symbol (name, NULL, NULL);
5509 if (ms == NULL)
5510 return 0;
5511
5512 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5513 sizeof (signo)) != 0)
5514 return 0;
5515
5516 return signo;
5517 }
5518
5519 /* Return the set of signals used by the threads library in *SET. */
5520
5521 void
5522 lin_thread_get_thread_signals (sigset_t *set)
5523 {
5524 struct sigaction action;
5525 int restart, cancel;
5526
5527 sigemptyset (&blocked_mask);
5528 sigemptyset (set);
5529
5530 restart = get_signo ("__pthread_sig_restart");
5531 cancel = get_signo ("__pthread_sig_cancel");
5532
5533 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5534 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5535 not provide any way for the debugger to query the signal numbers -
5536 fortunately they don't change! */
5537
5538 if (restart == 0)
5539 restart = __SIGRTMIN;
5540
5541 if (cancel == 0)
5542 cancel = __SIGRTMIN + 1;
5543
5544 sigaddset (set, restart);
5545 sigaddset (set, cancel);
5546
5547 /* The GNU/Linux Threads library makes terminating threads send a
5548 special "cancel" signal instead of SIGCHLD. Make sure we catch
5549 those (to prevent them from terminating GDB itself, which is
5550 likely to be their default action) and treat them the same way as
5551 SIGCHLD. */
5552
5553 action.sa_handler = sigchld_handler;
5554 sigemptyset (&action.sa_mask);
5555 action.sa_flags = SA_RESTART;
5556 sigaction (cancel, &action, NULL);
5557
5558 /* We block the "cancel" signal throughout this code ... */
5559 sigaddset (&blocked_mask, cancel);
5560 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5561
5562 /* ... except during a sigsuspend. */
5563 sigdelset (&suspend_mask, cancel);
5564 }
This page took 0.175149 seconds and 5 git commands to generate.