2010-05-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371 new_pid->pid = pid;
372 new_pid->status = status;
373 new_pid->next = *listp;
374 *listp = new_pid;
375 }
376
377 static int
378 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
379 {
380 struct simple_pid_list **p;
381
382 for (p = listp; *p != NULL; p = &(*p)->next)
383 if ((*p)->pid == pid)
384 {
385 struct simple_pid_list *next = (*p)->next;
386 *status = (*p)->status;
387 xfree (*p);
388 *p = next;
389 return 1;
390 }
391 return 0;
392 }
393
394 static void
395 linux_record_stopped_pid (int pid, int status)
396 {
397 add_to_pid_list (&stopped_pids, pid, status);
398 }
399
400 \f
401 /* A helper function for linux_test_for_tracefork, called after fork (). */
402
403 static void
404 linux_tracefork_child (void)
405 {
406 ptrace (PTRACE_TRACEME, 0, 0, 0);
407 kill (getpid (), SIGSTOP);
408 fork ();
409 _exit (0);
410 }
411
412 /* Wrapper function for waitpid which handles EINTR. */
413
414 static int
415 my_waitpid (int pid, int *status, int flags)
416 {
417 int ret;
418
419 do
420 {
421 ret = waitpid (pid, status, flags);
422 }
423 while (ret == -1 && errno == EINTR);
424
425 return ret;
426 }
427
428 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
429
430 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
431 we know that the feature is not available. This may change the tracing
432 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
433
434 However, if it succeeds, we don't know for sure that the feature is
435 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
436 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
437 fork tracing, and let it fork. If the process exits, we assume that we
438 can't use TRACEFORK; if we get the fork notification, and we can extract
439 the new child's PID, then we assume that we can. */
440
441 static void
442 linux_test_for_tracefork (int original_pid)
443 {
444 int child_pid, ret, status;
445 long second_pid;
446 sigset_t prev_mask;
447
448 /* We don't want those ptrace calls to be interrupted. */
449 block_child_signals (&prev_mask);
450
451 linux_supports_tracefork_flag = 0;
452 linux_supports_tracevforkdone_flag = 0;
453
454 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
455 if (ret != 0)
456 {
457 restore_child_signals_mask (&prev_mask);
458 return;
459 }
460
461 child_pid = fork ();
462 if (child_pid == -1)
463 perror_with_name (("fork"));
464
465 if (child_pid == 0)
466 linux_tracefork_child ();
467
468 ret = my_waitpid (child_pid, &status, 0);
469 if (ret == -1)
470 perror_with_name (("waitpid"));
471 else if (ret != child_pid)
472 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
473 if (! WIFSTOPPED (status))
474 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
475
476 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
477 if (ret != 0)
478 {
479 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
480 if (ret != 0)
481 {
482 warning (_("linux_test_for_tracefork: failed to kill child"));
483 restore_child_signals_mask (&prev_mask);
484 return;
485 }
486
487 ret = my_waitpid (child_pid, &status, 0);
488 if (ret != child_pid)
489 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
490 else if (!WIFSIGNALED (status))
491 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
492 "killed child"), status);
493
494 restore_child_signals_mask (&prev_mask);
495 return;
496 }
497
498 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
499 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
500 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
501 linux_supports_tracevforkdone_flag = (ret == 0);
502
503 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
504 if (ret != 0)
505 warning (_("linux_test_for_tracefork: failed to resume child"));
506
507 ret = my_waitpid (child_pid, &status, 0);
508
509 if (ret == child_pid && WIFSTOPPED (status)
510 && status >> 16 == PTRACE_EVENT_FORK)
511 {
512 second_pid = 0;
513 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
514 if (ret == 0 && second_pid != 0)
515 {
516 int second_status;
517
518 linux_supports_tracefork_flag = 1;
519 my_waitpid (second_pid, &second_status, 0);
520 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
521 if (ret != 0)
522 warning (_("linux_test_for_tracefork: failed to kill second child"));
523 my_waitpid (second_pid, &status, 0);
524 }
525 }
526 else
527 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
528 "(%d, status 0x%x)"), ret, status);
529
530 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
531 if (ret != 0)
532 warning (_("linux_test_for_tracefork: failed to kill child"));
533 my_waitpid (child_pid, &status, 0);
534
535 restore_child_signals_mask (&prev_mask);
536 }
537
538 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
539
540 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
541 we know that the feature is not available. This may change the tracing
542 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
543
544 static void
545 linux_test_for_tracesysgood (int original_pid)
546 {
547 int ret;
548 sigset_t prev_mask;
549
550 /* We don't want those ptrace calls to be interrupted. */
551 block_child_signals (&prev_mask);
552
553 linux_supports_tracesysgood_flag = 0;
554
555 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
556 if (ret != 0)
557 goto out;
558
559 linux_supports_tracesysgood_flag = 1;
560 out:
561 restore_child_signals_mask (&prev_mask);
562 }
563
564 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
565 This function also sets linux_supports_tracesysgood_flag. */
566
567 static int
568 linux_supports_tracesysgood (int pid)
569 {
570 if (linux_supports_tracesysgood_flag == -1)
571 linux_test_for_tracesysgood (pid);
572 return linux_supports_tracesysgood_flag;
573 }
574
575 /* Return non-zero iff we have tracefork functionality available.
576 This function also sets linux_supports_tracefork_flag. */
577
578 static int
579 linux_supports_tracefork (int pid)
580 {
581 if (linux_supports_tracefork_flag == -1)
582 linux_test_for_tracefork (pid);
583 return linux_supports_tracefork_flag;
584 }
585
586 static int
587 linux_supports_tracevforkdone (int pid)
588 {
589 if (linux_supports_tracefork_flag == -1)
590 linux_test_for_tracefork (pid);
591 return linux_supports_tracevforkdone_flag;
592 }
593
594 static void
595 linux_enable_tracesysgood (ptid_t ptid)
596 {
597 int pid = ptid_get_lwp (ptid);
598
599 if (pid == 0)
600 pid = ptid_get_pid (ptid);
601
602 if (linux_supports_tracesysgood (pid) == 0)
603 return;
604
605 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
606
607 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
608 }
609
610 \f
611 void
612 linux_enable_event_reporting (ptid_t ptid)
613 {
614 int pid = ptid_get_lwp (ptid);
615
616 if (pid == 0)
617 pid = ptid_get_pid (ptid);
618
619 if (! linux_supports_tracefork (pid))
620 return;
621
622 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
623 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
624
625 if (linux_supports_tracevforkdone (pid))
626 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
627
628 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
629 read-only process state. */
630
631 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
632 }
633
634 static void
635 linux_child_post_attach (int pid)
636 {
637 linux_enable_event_reporting (pid_to_ptid (pid));
638 check_for_thread_db ();
639 linux_enable_tracesysgood (pid_to_ptid (pid));
640 }
641
642 static void
643 linux_child_post_startup_inferior (ptid_t ptid)
644 {
645 linux_enable_event_reporting (ptid);
646 check_for_thread_db ();
647 linux_enable_tracesysgood (ptid);
648 }
649
650 static int
651 linux_child_follow_fork (struct target_ops *ops, int follow_child)
652 {
653 sigset_t prev_mask;
654 int has_vforked;
655 int parent_pid, child_pid;
656
657 block_child_signals (&prev_mask);
658
659 has_vforked = (inferior_thread ()->pending_follow.kind
660 == TARGET_WAITKIND_VFORKED);
661 parent_pid = ptid_get_lwp (inferior_ptid);
662 if (parent_pid == 0)
663 parent_pid = ptid_get_pid (inferior_ptid);
664 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
665
666 if (!detach_fork)
667 linux_enable_event_reporting (pid_to_ptid (child_pid));
668
669 if (has_vforked
670 && !non_stop /* Non-stop always resumes both branches. */
671 && (!target_is_async_p () || sync_execution)
672 && !(follow_child || detach_fork || sched_multi))
673 {
674 /* The parent stays blocked inside the vfork syscall until the
675 child execs or exits. If we don't let the child run, then
676 the parent stays blocked. If we're telling the parent to run
677 in the foreground, the user will not be able to ctrl-c to get
678 back the terminal, effectively hanging the debug session. */
679 fprintf_filtered (gdb_stderr, _("\
680 Can not resume the parent process over vfork in the foreground while \n\
681 holding the child stopped. Try \"set detach-on-fork\" or \
682 \"set schedule-multiple\".\n"));
683 return 1;
684 }
685
686 if (! follow_child)
687 {
688 struct lwp_info *child_lp = NULL;
689
690 /* We're already attached to the parent, by default. */
691
692 /* Detach new forked process? */
693 if (detach_fork)
694 {
695 /* Before detaching from the child, remove all breakpoints
696 from it. If we forked, then this has already been taken
697 care of by infrun.c. If we vforked however, any
698 breakpoint inserted in the parent is visible in the
699 child, even those added while stopped in a vfork
700 catchpoint. This will remove the breakpoints from the
701 parent also, but they'll be reinserted below. */
702 if (has_vforked)
703 {
704 /* keep breakpoints list in sync. */
705 remove_breakpoints_pid (GET_PID (inferior_ptid));
706 }
707
708 if (info_verbose || debug_linux_nat)
709 {
710 target_terminal_ours ();
711 fprintf_filtered (gdb_stdlog,
712 "Detaching after fork from child process %d.\n",
713 child_pid);
714 }
715
716 ptrace (PTRACE_DETACH, child_pid, 0, 0);
717 }
718 else
719 {
720 struct inferior *parent_inf, *child_inf;
721 struct cleanup *old_chain;
722
723 /* Add process to GDB's tables. */
724 child_inf = add_inferior (child_pid);
725
726 parent_inf = current_inferior ();
727 child_inf->attach_flag = parent_inf->attach_flag;
728 copy_terminal_info (child_inf, parent_inf);
729
730 old_chain = save_inferior_ptid ();
731 save_current_program_space ();
732
733 inferior_ptid = ptid_build (child_pid, child_pid, 0);
734 add_thread (inferior_ptid);
735 child_lp = add_lwp (inferior_ptid);
736 child_lp->stopped = 1;
737 child_lp->resumed = 1;
738
739 /* If this is a vfork child, then the address-space is
740 shared with the parent. */
741 if (has_vforked)
742 {
743 child_inf->pspace = parent_inf->pspace;
744 child_inf->aspace = parent_inf->aspace;
745
746 /* The parent will be frozen until the child is done
747 with the shared region. Keep track of the
748 parent. */
749 child_inf->vfork_parent = parent_inf;
750 child_inf->pending_detach = 0;
751 parent_inf->vfork_child = child_inf;
752 parent_inf->pending_detach = 0;
753 }
754 else
755 {
756 child_inf->aspace = new_address_space ();
757 child_inf->pspace = add_program_space (child_inf->aspace);
758 child_inf->removable = 1;
759 set_current_program_space (child_inf->pspace);
760 clone_program_space (child_inf->pspace, parent_inf->pspace);
761
762 /* Let the shared library layer (solib-svr4) learn about
763 this new process, relocate the cloned exec, pull in
764 shared libraries, and install the solib event
765 breakpoint. If a "cloned-VM" event was propagated
766 better throughout the core, this wouldn't be
767 required. */
768 solib_create_inferior_hook (0);
769 }
770
771 /* Let the thread_db layer learn about this new process. */
772 check_for_thread_db ();
773
774 do_cleanups (old_chain);
775 }
776
777 if (has_vforked)
778 {
779 struct lwp_info *lp;
780 struct inferior *parent_inf;
781
782 parent_inf = current_inferior ();
783
784 /* If we detached from the child, then we have to be careful
785 to not insert breakpoints in the parent until the child
786 is done with the shared memory region. However, if we're
787 staying attached to the child, then we can and should
788 insert breakpoints, so that we can debug it. A
789 subsequent child exec or exit is enough to know when does
790 the child stops using the parent's address space. */
791 parent_inf->waiting_for_vfork_done = detach_fork;
792 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
793
794 lp = find_lwp_pid (pid_to_ptid (parent_pid));
795 gdb_assert (linux_supports_tracefork_flag >= 0);
796 if (linux_supports_tracevforkdone (0))
797 {
798 if (debug_linux_nat)
799 fprintf_unfiltered (gdb_stdlog,
800 "LCFF: waiting for VFORK_DONE on %d\n",
801 parent_pid);
802
803 lp->stopped = 1;
804 lp->resumed = 1;
805
806 /* We'll handle the VFORK_DONE event like any other
807 event, in target_wait. */
808 }
809 else
810 {
811 /* We can't insert breakpoints until the child has
812 finished with the shared memory region. We need to
813 wait until that happens. Ideal would be to just
814 call:
815 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
816 - waitpid (parent_pid, &status, __WALL);
817 However, most architectures can't handle a syscall
818 being traced on the way out if it wasn't traced on
819 the way in.
820
821 We might also think to loop, continuing the child
822 until it exits or gets a SIGTRAP. One problem is
823 that the child might call ptrace with PTRACE_TRACEME.
824
825 There's no simple and reliable way to figure out when
826 the vforked child will be done with its copy of the
827 shared memory. We could step it out of the syscall,
828 two instructions, let it go, and then single-step the
829 parent once. When we have hardware single-step, this
830 would work; with software single-step it could still
831 be made to work but we'd have to be able to insert
832 single-step breakpoints in the child, and we'd have
833 to insert -just- the single-step breakpoint in the
834 parent. Very awkward.
835
836 In the end, the best we can do is to make sure it
837 runs for a little while. Hopefully it will be out of
838 range of any breakpoints we reinsert. Usually this
839 is only the single-step breakpoint at vfork's return
840 point. */
841
842 if (debug_linux_nat)
843 fprintf_unfiltered (gdb_stdlog,
844 "LCFF: no VFORK_DONE support, sleeping a bit\n");
845
846 usleep (10000);
847
848 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
849 and leave it pending. The next linux_nat_resume call
850 will notice a pending event, and bypasses actually
851 resuming the inferior. */
852 lp->status = 0;
853 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
854 lp->stopped = 0;
855 lp->resumed = 1;
856
857 /* If we're in async mode, need to tell the event loop
858 there's something here to process. */
859 if (target_can_async_p ())
860 async_file_mark ();
861 }
862 }
863 }
864 else
865 {
866 struct inferior *parent_inf, *child_inf;
867 struct lwp_info *lp;
868 struct program_space *parent_pspace;
869
870 if (info_verbose || debug_linux_nat)
871 {
872 target_terminal_ours ();
873 if (has_vforked)
874 fprintf_filtered (gdb_stdlog, _("\
875 Attaching after process %d vfork to child process %d.\n"),
876 parent_pid, child_pid);
877 else
878 fprintf_filtered (gdb_stdlog, _("\
879 Attaching after process %d fork to child process %d.\n"),
880 parent_pid, child_pid);
881 }
882
883 /* Add the new inferior first, so that the target_detach below
884 doesn't unpush the target. */
885
886 child_inf = add_inferior (child_pid);
887
888 parent_inf = current_inferior ();
889 child_inf->attach_flag = parent_inf->attach_flag;
890 copy_terminal_info (child_inf, parent_inf);
891
892 parent_pspace = parent_inf->pspace;
893
894 /* If we're vforking, we want to hold on to the parent until the
895 child exits or execs. At child exec or exit time we can
896 remove the old breakpoints from the parent and detach or
897 resume debugging it. Otherwise, detach the parent now; we'll
898 want to reuse it's program/address spaces, but we can't set
899 them to the child before removing breakpoints from the
900 parent, otherwise, the breakpoints module could decide to
901 remove breakpoints from the wrong process (since they'd be
902 assigned to the same address space). */
903
904 if (has_vforked)
905 {
906 gdb_assert (child_inf->vfork_parent == NULL);
907 gdb_assert (parent_inf->vfork_child == NULL);
908 child_inf->vfork_parent = parent_inf;
909 child_inf->pending_detach = 0;
910 parent_inf->vfork_child = child_inf;
911 parent_inf->pending_detach = detach_fork;
912 parent_inf->waiting_for_vfork_done = 0;
913 }
914 else if (detach_fork)
915 target_detach (NULL, 0);
916
917 /* Note that the detach above makes PARENT_INF dangling. */
918
919 /* Add the child thread to the appropriate lists, and switch to
920 this new thread, before cloning the program space, and
921 informing the solib layer about this new process. */
922
923 inferior_ptid = ptid_build (child_pid, child_pid, 0);
924 add_thread (inferior_ptid);
925 lp = add_lwp (inferior_ptid);
926 lp->stopped = 1;
927 lp->resumed = 1;
928
929 /* If this is a vfork child, then the address-space is shared
930 with the parent. If we detached from the parent, then we can
931 reuse the parent's program/address spaces. */
932 if (has_vforked || detach_fork)
933 {
934 child_inf->pspace = parent_pspace;
935 child_inf->aspace = child_inf->pspace->aspace;
936 }
937 else
938 {
939 child_inf->aspace = new_address_space ();
940 child_inf->pspace = add_program_space (child_inf->aspace);
941 child_inf->removable = 1;
942 set_current_program_space (child_inf->pspace);
943 clone_program_space (child_inf->pspace, parent_pspace);
944
945 /* Let the shared library layer (solib-svr4) learn about
946 this new process, relocate the cloned exec, pull in
947 shared libraries, and install the solib event breakpoint.
948 If a "cloned-VM" event was propagated better throughout
949 the core, this wouldn't be required. */
950 solib_create_inferior_hook (0);
951 }
952
953 /* Let the thread_db layer learn about this new process. */
954 check_for_thread_db ();
955 }
956
957 restore_child_signals_mask (&prev_mask);
958 return 0;
959 }
960
961 \f
962 static void
963 linux_child_insert_fork_catchpoint (int pid)
964 {
965 if (! linux_supports_tracefork (pid))
966 error (_("Your system does not support fork catchpoints."));
967 }
968
969 static void
970 linux_child_insert_vfork_catchpoint (int pid)
971 {
972 if (!linux_supports_tracefork (pid))
973 error (_("Your system does not support vfork catchpoints."));
974 }
975
976 static void
977 linux_child_insert_exec_catchpoint (int pid)
978 {
979 if (!linux_supports_tracefork (pid))
980 error (_("Your system does not support exec catchpoints."));
981 }
982
983 static int
984 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
985 int table_size, int *table)
986 {
987 if (! linux_supports_tracesysgood (pid))
988 error (_("Your system does not support syscall catchpoints."));
989 /* On GNU/Linux, we ignore the arguments. It means that we only
990 enable the syscall catchpoints, but do not disable them.
991
992 Also, we do not use the `table' information because we do not
993 filter system calls here. We let GDB do the logic for us. */
994 return 0;
995 }
996
997 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
998 are processes sharing the same VM space. A multi-threaded process
999 is basically a group of such processes. However, such a grouping
1000 is almost entirely a user-space issue; the kernel doesn't enforce
1001 such a grouping at all (this might change in the future). In
1002 general, we'll rely on the threads library (i.e. the GNU/Linux
1003 Threads library) to provide such a grouping.
1004
1005 It is perfectly well possible to write a multi-threaded application
1006 without the assistance of a threads library, by using the clone
1007 system call directly. This module should be able to give some
1008 rudimentary support for debugging such applications if developers
1009 specify the CLONE_PTRACE flag in the clone system call, and are
1010 using the Linux kernel 2.4 or above.
1011
1012 Note that there are some peculiarities in GNU/Linux that affect
1013 this code:
1014
1015 - In general one should specify the __WCLONE flag to waitpid in
1016 order to make it report events for any of the cloned processes
1017 (and leave it out for the initial process). However, if a cloned
1018 process has exited the exit status is only reported if the
1019 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1020 we cannot use it since GDB must work on older systems too.
1021
1022 - When a traced, cloned process exits and is waited for by the
1023 debugger, the kernel reassigns it to the original parent and
1024 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1025 library doesn't notice this, which leads to the "zombie problem":
1026 When debugged a multi-threaded process that spawns a lot of
1027 threads will run out of processes, even if the threads exit,
1028 because the "zombies" stay around. */
1029
1030 /* List of known LWPs. */
1031 struct lwp_info *lwp_list;
1032 \f
1033
1034 /* Original signal mask. */
1035 static sigset_t normal_mask;
1036
1037 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1038 _initialize_linux_nat. */
1039 static sigset_t suspend_mask;
1040
1041 /* Signals to block to make that sigsuspend work. */
1042 static sigset_t blocked_mask;
1043
1044 /* SIGCHLD action. */
1045 struct sigaction sigchld_action;
1046
1047 /* Block child signals (SIGCHLD and linux threads signals), and store
1048 the previous mask in PREV_MASK. */
1049
1050 static void
1051 block_child_signals (sigset_t *prev_mask)
1052 {
1053 /* Make sure SIGCHLD is blocked. */
1054 if (!sigismember (&blocked_mask, SIGCHLD))
1055 sigaddset (&blocked_mask, SIGCHLD);
1056
1057 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1058 }
1059
1060 /* Restore child signals mask, previously returned by
1061 block_child_signals. */
1062
1063 static void
1064 restore_child_signals_mask (sigset_t *prev_mask)
1065 {
1066 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1067 }
1068 \f
1069
1070 /* Prototypes for local functions. */
1071 static int stop_wait_callback (struct lwp_info *lp, void *data);
1072 static int linux_thread_alive (ptid_t ptid);
1073 static char *linux_child_pid_to_exec_file (int pid);
1074 static int cancel_breakpoint (struct lwp_info *lp);
1075
1076 \f
1077 /* Convert wait status STATUS to a string. Used for printing debug
1078 messages only. */
1079
1080 static char *
1081 status_to_str (int status)
1082 {
1083 static char buf[64];
1084
1085 if (WIFSTOPPED (status))
1086 {
1087 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1088 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1089 strsignal (SIGTRAP));
1090 else
1091 snprintf (buf, sizeof (buf), "%s (stopped)",
1092 strsignal (WSTOPSIG (status)));
1093 }
1094 else if (WIFSIGNALED (status))
1095 snprintf (buf, sizeof (buf), "%s (terminated)",
1096 strsignal (WSTOPSIG (status)));
1097 else
1098 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1099
1100 return buf;
1101 }
1102
1103 /* Remove all LWPs belong to PID from the lwp list. */
1104
1105 static void
1106 purge_lwp_list (int pid)
1107 {
1108 struct lwp_info *lp, *lpprev, *lpnext;
1109
1110 lpprev = NULL;
1111
1112 for (lp = lwp_list; lp; lp = lpnext)
1113 {
1114 lpnext = lp->next;
1115
1116 if (ptid_get_pid (lp->ptid) == pid)
1117 {
1118 if (lp == lwp_list)
1119 lwp_list = lp->next;
1120 else
1121 lpprev->next = lp->next;
1122
1123 xfree (lp);
1124 }
1125 else
1126 lpprev = lp;
1127 }
1128 }
1129
1130 /* Return the number of known LWPs in the tgid given by PID. */
1131
1132 static int
1133 num_lwps (int pid)
1134 {
1135 int count = 0;
1136 struct lwp_info *lp;
1137
1138 for (lp = lwp_list; lp; lp = lp->next)
1139 if (ptid_get_pid (lp->ptid) == pid)
1140 count++;
1141
1142 return count;
1143 }
1144
1145 /* Add the LWP specified by PID to the list. Return a pointer to the
1146 structure describing the new LWP. The LWP should already be stopped
1147 (with an exception for the very first LWP). */
1148
1149 static struct lwp_info *
1150 add_lwp (ptid_t ptid)
1151 {
1152 struct lwp_info *lp;
1153
1154 gdb_assert (is_lwp (ptid));
1155
1156 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1157
1158 memset (lp, 0, sizeof (struct lwp_info));
1159
1160 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1161
1162 lp->ptid = ptid;
1163 lp->core = -1;
1164
1165 lp->next = lwp_list;
1166 lwp_list = lp;
1167
1168 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1169 linux_nat_new_thread (ptid);
1170
1171 return lp;
1172 }
1173
1174 /* Remove the LWP specified by PID from the list. */
1175
1176 static void
1177 delete_lwp (ptid_t ptid)
1178 {
1179 struct lwp_info *lp, *lpprev;
1180
1181 lpprev = NULL;
1182
1183 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1184 if (ptid_equal (lp->ptid, ptid))
1185 break;
1186
1187 if (!lp)
1188 return;
1189
1190 if (lpprev)
1191 lpprev->next = lp->next;
1192 else
1193 lwp_list = lp->next;
1194
1195 xfree (lp);
1196 }
1197
1198 /* Return a pointer to the structure describing the LWP corresponding
1199 to PID. If no corresponding LWP could be found, return NULL. */
1200
1201 static struct lwp_info *
1202 find_lwp_pid (ptid_t ptid)
1203 {
1204 struct lwp_info *lp;
1205 int lwp;
1206
1207 if (is_lwp (ptid))
1208 lwp = GET_LWP (ptid);
1209 else
1210 lwp = GET_PID (ptid);
1211
1212 for (lp = lwp_list; lp; lp = lp->next)
1213 if (lwp == GET_LWP (lp->ptid))
1214 return lp;
1215
1216 return NULL;
1217 }
1218
1219 /* Call CALLBACK with its second argument set to DATA for every LWP in
1220 the list. If CALLBACK returns 1 for a particular LWP, return a
1221 pointer to the structure describing that LWP immediately.
1222 Otherwise return NULL. */
1223
1224 struct lwp_info *
1225 iterate_over_lwps (ptid_t filter,
1226 int (*callback) (struct lwp_info *, void *),
1227 void *data)
1228 {
1229 struct lwp_info *lp, *lpnext;
1230
1231 for (lp = lwp_list; lp; lp = lpnext)
1232 {
1233 lpnext = lp->next;
1234
1235 if (ptid_match (lp->ptid, filter))
1236 {
1237 if ((*callback) (lp, data))
1238 return lp;
1239 }
1240 }
1241
1242 return NULL;
1243 }
1244
1245 /* Update our internal state when changing from one checkpoint to
1246 another indicated by NEW_PTID. We can only switch single-threaded
1247 applications, so we only create one new LWP, and the previous list
1248 is discarded. */
1249
1250 void
1251 linux_nat_switch_fork (ptid_t new_ptid)
1252 {
1253 struct lwp_info *lp;
1254
1255 purge_lwp_list (GET_PID (inferior_ptid));
1256
1257 lp = add_lwp (new_ptid);
1258 lp->stopped = 1;
1259
1260 /* This changes the thread's ptid while preserving the gdb thread
1261 num. Also changes the inferior pid, while preserving the
1262 inferior num. */
1263 thread_change_ptid (inferior_ptid, new_ptid);
1264
1265 /* We've just told GDB core that the thread changed target id, but,
1266 in fact, it really is a different thread, with different register
1267 contents. */
1268 registers_changed ();
1269 }
1270
1271 /* Handle the exit of a single thread LP. */
1272
1273 static void
1274 exit_lwp (struct lwp_info *lp)
1275 {
1276 struct thread_info *th = find_thread_ptid (lp->ptid);
1277
1278 if (th)
1279 {
1280 if (print_thread_events)
1281 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1282
1283 delete_thread (lp->ptid);
1284 }
1285
1286 delete_lwp (lp->ptid);
1287 }
1288
1289 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1290
1291 int
1292 linux_proc_get_tgid (int lwpid)
1293 {
1294 FILE *status_file;
1295 char buf[100];
1296 int tgid = -1;
1297
1298 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1299 status_file = fopen (buf, "r");
1300 if (status_file != NULL)
1301 {
1302 while (fgets (buf, sizeof (buf), status_file))
1303 {
1304 if (strncmp (buf, "Tgid:", 5) == 0)
1305 {
1306 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1307 break;
1308 }
1309 }
1310
1311 fclose (status_file);
1312 }
1313
1314 return tgid;
1315 }
1316
1317 /* Detect `T (stopped)' in `/proc/PID/status'.
1318 Other states including `T (tracing stop)' are reported as false. */
1319
1320 static int
1321 pid_is_stopped (pid_t pid)
1322 {
1323 FILE *status_file;
1324 char buf[100];
1325 int retval = 0;
1326
1327 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1328 status_file = fopen (buf, "r");
1329 if (status_file != NULL)
1330 {
1331 int have_state = 0;
1332
1333 while (fgets (buf, sizeof (buf), status_file))
1334 {
1335 if (strncmp (buf, "State:", 6) == 0)
1336 {
1337 have_state = 1;
1338 break;
1339 }
1340 }
1341 if (have_state && strstr (buf, "T (stopped)") != NULL)
1342 retval = 1;
1343 fclose (status_file);
1344 }
1345 return retval;
1346 }
1347
1348 /* Wait for the LWP specified by LP, which we have just attached to.
1349 Returns a wait status for that LWP, to cache. */
1350
1351 static int
1352 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1353 int *signalled)
1354 {
1355 pid_t new_pid, pid = GET_LWP (ptid);
1356 int status;
1357
1358 if (pid_is_stopped (pid))
1359 {
1360 if (debug_linux_nat)
1361 fprintf_unfiltered (gdb_stdlog,
1362 "LNPAW: Attaching to a stopped process\n");
1363
1364 /* The process is definitely stopped. It is in a job control
1365 stop, unless the kernel predates the TASK_STOPPED /
1366 TASK_TRACED distinction, in which case it might be in a
1367 ptrace stop. Make sure it is in a ptrace stop; from there we
1368 can kill it, signal it, et cetera.
1369
1370 First make sure there is a pending SIGSTOP. Since we are
1371 already attached, the process can not transition from stopped
1372 to running without a PTRACE_CONT; so we know this signal will
1373 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1374 probably already in the queue (unless this kernel is old
1375 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1376 is not an RT signal, it can only be queued once. */
1377 kill_lwp (pid, SIGSTOP);
1378
1379 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1380 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1381 ptrace (PTRACE_CONT, pid, 0, 0);
1382 }
1383
1384 /* Make sure the initial process is stopped. The user-level threads
1385 layer might want to poke around in the inferior, and that won't
1386 work if things haven't stabilized yet. */
1387 new_pid = my_waitpid (pid, &status, 0);
1388 if (new_pid == -1 && errno == ECHILD)
1389 {
1390 if (first)
1391 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1392
1393 /* Try again with __WCLONE to check cloned processes. */
1394 new_pid = my_waitpid (pid, &status, __WCLONE);
1395 *cloned = 1;
1396 }
1397
1398 gdb_assert (pid == new_pid);
1399
1400 if (!WIFSTOPPED (status))
1401 {
1402 /* The pid we tried to attach has apparently just exited. */
1403 if (debug_linux_nat)
1404 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1405 pid, status_to_str (status));
1406 return status;
1407 }
1408
1409 if (WSTOPSIG (status) != SIGSTOP)
1410 {
1411 *signalled = 1;
1412 if (debug_linux_nat)
1413 fprintf_unfiltered (gdb_stdlog,
1414 "LNPAW: Received %s after attaching\n",
1415 status_to_str (status));
1416 }
1417
1418 return status;
1419 }
1420
1421 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1422 if the new LWP could not be attached. */
1423
1424 int
1425 lin_lwp_attach_lwp (ptid_t ptid)
1426 {
1427 struct lwp_info *lp;
1428 sigset_t prev_mask;
1429
1430 gdb_assert (is_lwp (ptid));
1431
1432 block_child_signals (&prev_mask);
1433
1434 lp = find_lwp_pid (ptid);
1435
1436 /* We assume that we're already attached to any LWP that has an id
1437 equal to the overall process id, and to any LWP that is already
1438 in our list of LWPs. If we're not seeing exit events from threads
1439 and we've had PID wraparound since we last tried to stop all threads,
1440 this assumption might be wrong; fortunately, this is very unlikely
1441 to happen. */
1442 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1443 {
1444 int status, cloned = 0, signalled = 0;
1445
1446 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1447 {
1448 /* If we fail to attach to the thread, issue a warning,
1449 but continue. One way this can happen is if thread
1450 creation is interrupted; as of Linux kernel 2.6.19, a
1451 bug may place threads in the thread list and then fail
1452 to create them. */
1453 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1454 safe_strerror (errno));
1455 restore_child_signals_mask (&prev_mask);
1456 return -1;
1457 }
1458
1459 if (debug_linux_nat)
1460 fprintf_unfiltered (gdb_stdlog,
1461 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1462 target_pid_to_str (ptid));
1463
1464 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1465 if (!WIFSTOPPED (status))
1466 return -1;
1467
1468 lp = add_lwp (ptid);
1469 lp->stopped = 1;
1470 lp->cloned = cloned;
1471 lp->signalled = signalled;
1472 if (WSTOPSIG (status) != SIGSTOP)
1473 {
1474 lp->resumed = 1;
1475 lp->status = status;
1476 }
1477
1478 target_post_attach (GET_LWP (lp->ptid));
1479
1480 if (debug_linux_nat)
1481 {
1482 fprintf_unfiltered (gdb_stdlog,
1483 "LLAL: waitpid %s received %s\n",
1484 target_pid_to_str (ptid),
1485 status_to_str (status));
1486 }
1487 }
1488 else
1489 {
1490 /* We assume that the LWP representing the original process is
1491 already stopped. Mark it as stopped in the data structure
1492 that the GNU/linux ptrace layer uses to keep track of
1493 threads. Note that this won't have already been done since
1494 the main thread will have, we assume, been stopped by an
1495 attach from a different layer. */
1496 if (lp == NULL)
1497 lp = add_lwp (ptid);
1498 lp->stopped = 1;
1499 }
1500
1501 restore_child_signals_mask (&prev_mask);
1502 return 0;
1503 }
1504
1505 static void
1506 linux_nat_create_inferior (struct target_ops *ops,
1507 char *exec_file, char *allargs, char **env,
1508 int from_tty)
1509 {
1510 #ifdef HAVE_PERSONALITY
1511 int personality_orig = 0, personality_set = 0;
1512 #endif /* HAVE_PERSONALITY */
1513
1514 /* The fork_child mechanism is synchronous and calls target_wait, so
1515 we have to mask the async mode. */
1516
1517 #ifdef HAVE_PERSONALITY
1518 if (disable_randomization)
1519 {
1520 errno = 0;
1521 personality_orig = personality (0xffffffff);
1522 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1523 {
1524 personality_set = 1;
1525 personality (personality_orig | ADDR_NO_RANDOMIZE);
1526 }
1527 if (errno != 0 || (personality_set
1528 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1529 warning (_("Error disabling address space randomization: %s"),
1530 safe_strerror (errno));
1531 }
1532 #endif /* HAVE_PERSONALITY */
1533
1534 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1535
1536 #ifdef HAVE_PERSONALITY
1537 if (personality_set)
1538 {
1539 errno = 0;
1540 personality (personality_orig);
1541 if (errno != 0)
1542 warning (_("Error restoring address space randomization: %s"),
1543 safe_strerror (errno));
1544 }
1545 #endif /* HAVE_PERSONALITY */
1546 }
1547
1548 static void
1549 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1550 {
1551 struct lwp_info *lp;
1552 int status;
1553 ptid_t ptid;
1554
1555 linux_ops->to_attach (ops, args, from_tty);
1556
1557 /* The ptrace base target adds the main thread with (pid,0,0)
1558 format. Decorate it with lwp info. */
1559 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1560 thread_change_ptid (inferior_ptid, ptid);
1561
1562 /* Add the initial process as the first LWP to the list. */
1563 lp = add_lwp (ptid);
1564
1565 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1566 &lp->signalled);
1567 if (!WIFSTOPPED (status))
1568 {
1569 if (WIFEXITED (status))
1570 {
1571 int exit_code = WEXITSTATUS (status);
1572
1573 target_terminal_ours ();
1574 target_mourn_inferior ();
1575 if (exit_code == 0)
1576 error (_("Unable to attach: program exited normally."));
1577 else
1578 error (_("Unable to attach: program exited with code %d."),
1579 exit_code);
1580 }
1581 else if (WIFSIGNALED (status))
1582 {
1583 enum target_signal signo;
1584
1585 target_terminal_ours ();
1586 target_mourn_inferior ();
1587
1588 signo = target_signal_from_host (WTERMSIG (status));
1589 error (_("Unable to attach: program terminated with signal "
1590 "%s, %s."),
1591 target_signal_to_name (signo),
1592 target_signal_to_string (signo));
1593 }
1594
1595 internal_error (__FILE__, __LINE__,
1596 _("unexpected status %d for PID %ld"),
1597 status, (long) GET_LWP (ptid));
1598 }
1599
1600 lp->stopped = 1;
1601
1602 /* Save the wait status to report later. */
1603 lp->resumed = 1;
1604 if (debug_linux_nat)
1605 fprintf_unfiltered (gdb_stdlog,
1606 "LNA: waitpid %ld, saving status %s\n",
1607 (long) GET_PID (lp->ptid), status_to_str (status));
1608
1609 lp->status = status;
1610
1611 if (target_can_async_p ())
1612 target_async (inferior_event_handler, 0);
1613 }
1614
1615 /* Get pending status of LP. */
1616 static int
1617 get_pending_status (struct lwp_info *lp, int *status)
1618 {
1619 enum target_signal signo = TARGET_SIGNAL_0;
1620
1621 /* If we paused threads momentarily, we may have stored pending
1622 events in lp->status or lp->waitstatus (see stop_wait_callback),
1623 and GDB core hasn't seen any signal for those threads.
1624 Otherwise, the last signal reported to the core is found in the
1625 thread object's stop_signal.
1626
1627 There's a corner case that isn't handled here at present. Only
1628 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1629 stop_signal make sense as a real signal to pass to the inferior.
1630 Some catchpoint related events, like
1631 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1632 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1633 those traps are debug API (ptrace in our case) related and
1634 induced; the inferior wouldn't see them if it wasn't being
1635 traced. Hence, we should never pass them to the inferior, even
1636 when set to pass state. Since this corner case isn't handled by
1637 infrun.c when proceeding with a signal, for consistency, neither
1638 do we handle it here (or elsewhere in the file we check for
1639 signal pass state). Normally SIGTRAP isn't set to pass state, so
1640 this is really a corner case. */
1641
1642 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1643 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1644 else if (lp->status)
1645 signo = target_signal_from_host (WSTOPSIG (lp->status));
1646 else if (non_stop && !is_executing (lp->ptid))
1647 {
1648 struct thread_info *tp = find_thread_ptid (lp->ptid);
1649 signo = tp->stop_signal;
1650 }
1651 else if (!non_stop)
1652 {
1653 struct target_waitstatus last;
1654 ptid_t last_ptid;
1655
1656 get_last_target_status (&last_ptid, &last);
1657
1658 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1659 {
1660 struct thread_info *tp = find_thread_ptid (lp->ptid);
1661 signo = tp->stop_signal;
1662 }
1663 }
1664
1665 *status = 0;
1666
1667 if (signo == TARGET_SIGNAL_0)
1668 {
1669 if (debug_linux_nat)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "GPT: lwp %s has no pending signal\n",
1672 target_pid_to_str (lp->ptid));
1673 }
1674 else if (!signal_pass_state (signo))
1675 {
1676 if (debug_linux_nat)
1677 fprintf_unfiltered (gdb_stdlog, "\
1678 GPT: lwp %s had signal %s, but it is in no pass state\n",
1679 target_pid_to_str (lp->ptid),
1680 target_signal_to_string (signo));
1681 }
1682 else
1683 {
1684 *status = W_STOPCODE (target_signal_to_host (signo));
1685
1686 if (debug_linux_nat)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "GPT: lwp %s has pending signal %s\n",
1689 target_pid_to_str (lp->ptid),
1690 target_signal_to_string (signo));
1691 }
1692
1693 return 0;
1694 }
1695
1696 static int
1697 detach_callback (struct lwp_info *lp, void *data)
1698 {
1699 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1700
1701 if (debug_linux_nat && lp->status)
1702 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1703 strsignal (WSTOPSIG (lp->status)),
1704 target_pid_to_str (lp->ptid));
1705
1706 /* If there is a pending SIGSTOP, get rid of it. */
1707 if (lp->signalled)
1708 {
1709 if (debug_linux_nat)
1710 fprintf_unfiltered (gdb_stdlog,
1711 "DC: Sending SIGCONT to %s\n",
1712 target_pid_to_str (lp->ptid));
1713
1714 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1715 lp->signalled = 0;
1716 }
1717
1718 /* We don't actually detach from the LWP that has an id equal to the
1719 overall process id just yet. */
1720 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1721 {
1722 int status = 0;
1723
1724 /* Pass on any pending signal for this LWP. */
1725 get_pending_status (lp, &status);
1726
1727 errno = 0;
1728 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1729 WSTOPSIG (status)) < 0)
1730 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1731 safe_strerror (errno));
1732
1733 if (debug_linux_nat)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1736 target_pid_to_str (lp->ptid),
1737 strsignal (WSTOPSIG (status)));
1738
1739 delete_lwp (lp->ptid);
1740 }
1741
1742 return 0;
1743 }
1744
1745 static void
1746 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1747 {
1748 int pid;
1749 int status;
1750 struct lwp_info *main_lwp;
1751
1752 pid = GET_PID (inferior_ptid);
1753
1754 if (target_can_async_p ())
1755 linux_nat_async (NULL, 0);
1756
1757 /* Stop all threads before detaching. ptrace requires that the
1758 thread is stopped to sucessfully detach. */
1759 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1760 /* ... and wait until all of them have reported back that
1761 they're no longer running. */
1762 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1763
1764 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1765
1766 /* Only the initial process should be left right now. */
1767 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1768
1769 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1770
1771 /* Pass on any pending signal for the last LWP. */
1772 if ((args == NULL || *args == '\0')
1773 && get_pending_status (main_lwp, &status) != -1
1774 && WIFSTOPPED (status))
1775 {
1776 /* Put the signal number in ARGS so that inf_ptrace_detach will
1777 pass it along with PTRACE_DETACH. */
1778 args = alloca (8);
1779 sprintf (args, "%d", (int) WSTOPSIG (status));
1780 if (debug_linux_nat)
1781 fprintf_unfiltered (gdb_stdlog,
1782 "LND: Sending signal %s to %s\n",
1783 args,
1784 target_pid_to_str (main_lwp->ptid));
1785 }
1786
1787 delete_lwp (main_lwp->ptid);
1788
1789 if (forks_exist_p ())
1790 {
1791 /* Multi-fork case. The current inferior_ptid is being detached
1792 from, but there are other viable forks to debug. Detach from
1793 the current fork, and context-switch to the first
1794 available. */
1795 linux_fork_detach (args, from_tty);
1796
1797 if (non_stop && target_can_async_p ())
1798 target_async (inferior_event_handler, 0);
1799 }
1800 else
1801 linux_ops->to_detach (ops, args, from_tty);
1802 }
1803
1804 /* Resume LP. */
1805
1806 static int
1807 resume_callback (struct lwp_info *lp, void *data)
1808 {
1809 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1810
1811 if (lp->stopped && inf->vfork_child != NULL)
1812 {
1813 if (debug_linux_nat)
1814 fprintf_unfiltered (gdb_stdlog,
1815 "RC: Not resuming %s (vfork parent)\n",
1816 target_pid_to_str (lp->ptid));
1817 }
1818 else if (lp->stopped && lp->status == 0)
1819 {
1820 if (debug_linux_nat)
1821 fprintf_unfiltered (gdb_stdlog,
1822 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1823 target_pid_to_str (lp->ptid));
1824
1825 linux_ops->to_resume (linux_ops,
1826 pid_to_ptid (GET_LWP (lp->ptid)),
1827 0, TARGET_SIGNAL_0);
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1831 target_pid_to_str (lp->ptid));
1832 lp->stopped = 0;
1833 lp->step = 0;
1834 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1835 lp->stopped_by_watchpoint = 0;
1836 }
1837 else if (lp->stopped && debug_linux_nat)
1838 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1839 target_pid_to_str (lp->ptid));
1840 else if (debug_linux_nat)
1841 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1842 target_pid_to_str (lp->ptid));
1843
1844 return 0;
1845 }
1846
1847 static int
1848 resume_clear_callback (struct lwp_info *lp, void *data)
1849 {
1850 lp->resumed = 0;
1851 return 0;
1852 }
1853
1854 static int
1855 resume_set_callback (struct lwp_info *lp, void *data)
1856 {
1857 lp->resumed = 1;
1858 return 0;
1859 }
1860
1861 static void
1862 linux_nat_resume (struct target_ops *ops,
1863 ptid_t ptid, int step, enum target_signal signo)
1864 {
1865 sigset_t prev_mask;
1866 struct lwp_info *lp;
1867 int resume_many;
1868
1869 if (debug_linux_nat)
1870 fprintf_unfiltered (gdb_stdlog,
1871 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1872 step ? "step" : "resume",
1873 target_pid_to_str (ptid),
1874 signo ? strsignal (signo) : "0",
1875 target_pid_to_str (inferior_ptid));
1876
1877 block_child_signals (&prev_mask);
1878
1879 /* A specific PTID means `step only this process id'. */
1880 resume_many = (ptid_equal (minus_one_ptid, ptid)
1881 || ptid_is_pid (ptid));
1882
1883 /* Mark the lwps we're resuming as resumed. */
1884 iterate_over_lwps (ptid, resume_set_callback, NULL);
1885
1886 /* See if it's the current inferior that should be handled
1887 specially. */
1888 if (resume_many)
1889 lp = find_lwp_pid (inferior_ptid);
1890 else
1891 lp = find_lwp_pid (ptid);
1892 gdb_assert (lp != NULL);
1893
1894 /* Remember if we're stepping. */
1895 lp->step = step;
1896
1897 /* If we have a pending wait status for this thread, there is no
1898 point in resuming the process. But first make sure that
1899 linux_nat_wait won't preemptively handle the event - we
1900 should never take this short-circuit if we are going to
1901 leave LP running, since we have skipped resuming all the
1902 other threads. This bit of code needs to be synchronized
1903 with linux_nat_wait. */
1904
1905 if (lp->status && WIFSTOPPED (lp->status))
1906 {
1907 int saved_signo;
1908 struct inferior *inf;
1909
1910 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1911 gdb_assert (inf);
1912 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1913
1914 /* Defer to common code if we're gaining control of the
1915 inferior. */
1916 if (inf->stop_soon == NO_STOP_QUIETLY
1917 && signal_stop_state (saved_signo) == 0
1918 && signal_print_state (saved_signo) == 0
1919 && signal_pass_state (saved_signo) == 1)
1920 {
1921 if (debug_linux_nat)
1922 fprintf_unfiltered (gdb_stdlog,
1923 "LLR: Not short circuiting for ignored "
1924 "status 0x%x\n", lp->status);
1925
1926 /* FIXME: What should we do if we are supposed to continue
1927 this thread with a signal? */
1928 gdb_assert (signo == TARGET_SIGNAL_0);
1929 signo = saved_signo;
1930 lp->status = 0;
1931 }
1932 }
1933
1934 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1935 {
1936 /* FIXME: What should we do if we are supposed to continue
1937 this thread with a signal? */
1938 gdb_assert (signo == TARGET_SIGNAL_0);
1939
1940 if (debug_linux_nat)
1941 fprintf_unfiltered (gdb_stdlog,
1942 "LLR: Short circuiting for status 0x%x\n",
1943 lp->status);
1944
1945 restore_child_signals_mask (&prev_mask);
1946 if (target_can_async_p ())
1947 {
1948 target_async (inferior_event_handler, 0);
1949 /* Tell the event loop we have something to process. */
1950 async_file_mark ();
1951 }
1952 return;
1953 }
1954
1955 /* Mark LWP as not stopped to prevent it from being continued by
1956 resume_callback. */
1957 lp->stopped = 0;
1958
1959 if (resume_many)
1960 iterate_over_lwps (ptid, resume_callback, NULL);
1961
1962 /* Convert to something the lower layer understands. */
1963 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1964
1965 linux_ops->to_resume (linux_ops, ptid, step, signo);
1966 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1967 lp->stopped_by_watchpoint = 0;
1968
1969 if (debug_linux_nat)
1970 fprintf_unfiltered (gdb_stdlog,
1971 "LLR: %s %s, %s (resume event thread)\n",
1972 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1973 target_pid_to_str (ptid),
1974 signo ? strsignal (signo) : "0");
1975
1976 restore_child_signals_mask (&prev_mask);
1977 if (target_can_async_p ())
1978 target_async (inferior_event_handler, 0);
1979 }
1980
1981 /* Send a signal to an LWP. */
1982
1983 static int
1984 kill_lwp (int lwpid, int signo)
1985 {
1986 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1987 fails, then we are not using nptl threads and we should be using kill. */
1988
1989 #ifdef HAVE_TKILL_SYSCALL
1990 {
1991 static int tkill_failed;
1992
1993 if (!tkill_failed)
1994 {
1995 int ret;
1996
1997 errno = 0;
1998 ret = syscall (__NR_tkill, lwpid, signo);
1999 if (errno != ENOSYS)
2000 return ret;
2001 tkill_failed = 1;
2002 }
2003 }
2004 #endif
2005
2006 return kill (lwpid, signo);
2007 }
2008
2009 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2010 event, check if the core is interested in it: if not, ignore the
2011 event, and keep waiting; otherwise, we need to toggle the LWP's
2012 syscall entry/exit status, since the ptrace event itself doesn't
2013 indicate it, and report the trap to higher layers. */
2014
2015 static int
2016 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2017 {
2018 struct target_waitstatus *ourstatus = &lp->waitstatus;
2019 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2020 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2021
2022 if (stopping)
2023 {
2024 /* If we're stopping threads, there's a SIGSTOP pending, which
2025 makes it so that the LWP reports an immediate syscall return,
2026 followed by the SIGSTOP. Skip seeing that "return" using
2027 PTRACE_CONT directly, and let stop_wait_callback collect the
2028 SIGSTOP. Later when the thread is resumed, a new syscall
2029 entry event. If we didn't do this (and returned 0), we'd
2030 leave a syscall entry pending, and our caller, by using
2031 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2032 itself. Later, when the user re-resumes this LWP, we'd see
2033 another syscall entry event and we'd mistake it for a return.
2034
2035 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2036 (leaving immediately with LWP->signalled set, without issuing
2037 a PTRACE_CONT), it would still be problematic to leave this
2038 syscall enter pending, as later when the thread is resumed,
2039 it would then see the same syscall exit mentioned above,
2040 followed by the delayed SIGSTOP, while the syscall didn't
2041 actually get to execute. It seems it would be even more
2042 confusing to the user. */
2043
2044 if (debug_linux_nat)
2045 fprintf_unfiltered (gdb_stdlog,
2046 "LHST: ignoring syscall %d "
2047 "for LWP %ld (stopping threads), "
2048 "resuming with PTRACE_CONT for SIGSTOP\n",
2049 syscall_number,
2050 GET_LWP (lp->ptid));
2051
2052 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2053 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2054 return 1;
2055 }
2056
2057 if (catch_syscall_enabled ())
2058 {
2059 /* Always update the entry/return state, even if this particular
2060 syscall isn't interesting to the core now. In async mode,
2061 the user could install a new catchpoint for this syscall
2062 between syscall enter/return, and we'll need to know to
2063 report a syscall return if that happens. */
2064 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2065 ? TARGET_WAITKIND_SYSCALL_RETURN
2066 : TARGET_WAITKIND_SYSCALL_ENTRY);
2067
2068 if (catching_syscall_number (syscall_number))
2069 {
2070 /* Alright, an event to report. */
2071 ourstatus->kind = lp->syscall_state;
2072 ourstatus->value.syscall_number = syscall_number;
2073
2074 if (debug_linux_nat)
2075 fprintf_unfiltered (gdb_stdlog,
2076 "LHST: stopping for %s of syscall %d"
2077 " for LWP %ld\n",
2078 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2079 ? "entry" : "return",
2080 syscall_number,
2081 GET_LWP (lp->ptid));
2082 return 0;
2083 }
2084
2085 if (debug_linux_nat)
2086 fprintf_unfiltered (gdb_stdlog,
2087 "LHST: ignoring %s of syscall %d "
2088 "for LWP %ld\n",
2089 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2090 ? "entry" : "return",
2091 syscall_number,
2092 GET_LWP (lp->ptid));
2093 }
2094 else
2095 {
2096 /* If we had been syscall tracing, and hence used PT_SYSCALL
2097 before on this LWP, it could happen that the user removes all
2098 syscall catchpoints before we get to process this event.
2099 There are two noteworthy issues here:
2100
2101 - When stopped at a syscall entry event, resuming with
2102 PT_STEP still resumes executing the syscall and reports a
2103 syscall return.
2104
2105 - Only PT_SYSCALL catches syscall enters. If we last
2106 single-stepped this thread, then this event can't be a
2107 syscall enter. If we last single-stepped this thread, this
2108 has to be a syscall exit.
2109
2110 The points above mean that the next resume, be it PT_STEP or
2111 PT_CONTINUE, can not trigger a syscall trace event. */
2112 if (debug_linux_nat)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "LHST: caught syscall event with no syscall catchpoints."
2115 " %d for LWP %ld, ignoring\n",
2116 syscall_number,
2117 GET_LWP (lp->ptid));
2118 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2119 }
2120
2121 /* The core isn't interested in this event. For efficiency, avoid
2122 stopping all threads only to have the core resume them all again.
2123 Since we're not stopping threads, if we're still syscall tracing
2124 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2125 subsequent syscall. Simply resume using the inf-ptrace layer,
2126 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2127
2128 /* Note that gdbarch_get_syscall_number may access registers, hence
2129 fill a regcache. */
2130 registers_changed ();
2131 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2132 lp->step, TARGET_SIGNAL_0);
2133 return 1;
2134 }
2135
2136 /* Handle a GNU/Linux extended wait response. If we see a clone
2137 event, we need to add the new LWP to our list (and not report the
2138 trap to higher layers). This function returns non-zero if the
2139 event should be ignored and we should wait again. If STOPPING is
2140 true, the new LWP remains stopped, otherwise it is continued. */
2141
2142 static int
2143 linux_handle_extended_wait (struct lwp_info *lp, int status,
2144 int stopping)
2145 {
2146 int pid = GET_LWP (lp->ptid);
2147 struct target_waitstatus *ourstatus = &lp->waitstatus;
2148 struct lwp_info *new_lp = NULL;
2149 int event = status >> 16;
2150
2151 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2152 || event == PTRACE_EVENT_CLONE)
2153 {
2154 unsigned long new_pid;
2155 int ret;
2156
2157 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2158
2159 /* If we haven't already seen the new PID stop, wait for it now. */
2160 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2161 {
2162 /* The new child has a pending SIGSTOP. We can't affect it until it
2163 hits the SIGSTOP, but we're already attached. */
2164 ret = my_waitpid (new_pid, &status,
2165 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2166 if (ret == -1)
2167 perror_with_name (_("waiting for new child"));
2168 else if (ret != new_pid)
2169 internal_error (__FILE__, __LINE__,
2170 _("wait returned unexpected PID %d"), ret);
2171 else if (!WIFSTOPPED (status))
2172 internal_error (__FILE__, __LINE__,
2173 _("wait returned unexpected status 0x%x"), status);
2174 }
2175
2176 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2177
2178 if (event == PTRACE_EVENT_FORK
2179 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2180 {
2181 struct fork_info *fp;
2182
2183 /* Handle checkpointing by linux-fork.c here as a special
2184 case. We don't want the follow-fork-mode or 'catch fork'
2185 to interfere with this. */
2186
2187 /* This won't actually modify the breakpoint list, but will
2188 physically remove the breakpoints from the child. */
2189 detach_breakpoints (new_pid);
2190
2191 /* Retain child fork in ptrace (stopped) state. */
2192 fp = find_fork_pid (new_pid);
2193 if (!fp)
2194 fp = add_fork (new_pid);
2195
2196 /* Report as spurious, so that infrun doesn't want to follow
2197 this fork. We're actually doing an infcall in
2198 linux-fork.c. */
2199 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2200 linux_enable_event_reporting (pid_to_ptid (new_pid));
2201
2202 /* Report the stop to the core. */
2203 return 0;
2204 }
2205
2206 if (event == PTRACE_EVENT_FORK)
2207 ourstatus->kind = TARGET_WAITKIND_FORKED;
2208 else if (event == PTRACE_EVENT_VFORK)
2209 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2210 else
2211 {
2212 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2213 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2214 new_lp->cloned = 1;
2215 new_lp->stopped = 1;
2216
2217 if (WSTOPSIG (status) != SIGSTOP)
2218 {
2219 /* This can happen if someone starts sending signals to
2220 the new thread before it gets a chance to run, which
2221 have a lower number than SIGSTOP (e.g. SIGUSR1).
2222 This is an unlikely case, and harder to handle for
2223 fork / vfork than for clone, so we do not try - but
2224 we handle it for clone events here. We'll send
2225 the other signal on to the thread below. */
2226
2227 new_lp->signalled = 1;
2228 }
2229 else
2230 status = 0;
2231
2232 if (non_stop)
2233 {
2234 /* Add the new thread to GDB's lists as soon as possible
2235 so that:
2236
2237 1) the frontend doesn't have to wait for a stop to
2238 display them, and,
2239
2240 2) we tag it with the correct running state. */
2241
2242 /* If the thread_db layer is active, let it know about
2243 this new thread, and add it to GDB's list. */
2244 if (!thread_db_attach_lwp (new_lp->ptid))
2245 {
2246 /* We're not using thread_db. Add it to GDB's
2247 list. */
2248 target_post_attach (GET_LWP (new_lp->ptid));
2249 add_thread (new_lp->ptid);
2250 }
2251
2252 if (!stopping)
2253 {
2254 set_running (new_lp->ptid, 1);
2255 set_executing (new_lp->ptid, 1);
2256 }
2257 }
2258
2259 /* Note the need to use the low target ops to resume, to
2260 handle resuming with PT_SYSCALL if we have syscall
2261 catchpoints. */
2262 if (!stopping)
2263 {
2264 int signo;
2265
2266 new_lp->stopped = 0;
2267 new_lp->resumed = 1;
2268
2269 signo = (status
2270 ? target_signal_from_host (WSTOPSIG (status))
2271 : TARGET_SIGNAL_0);
2272
2273 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2274 0, signo);
2275 }
2276
2277 if (debug_linux_nat)
2278 fprintf_unfiltered (gdb_stdlog,
2279 "LHEW: Got clone event from LWP %ld, resuming\n",
2280 GET_LWP (lp->ptid));
2281 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2282 0, TARGET_SIGNAL_0);
2283
2284 return 1;
2285 }
2286
2287 return 0;
2288 }
2289
2290 if (event == PTRACE_EVENT_EXEC)
2291 {
2292 if (debug_linux_nat)
2293 fprintf_unfiltered (gdb_stdlog,
2294 "LHEW: Got exec event from LWP %ld\n",
2295 GET_LWP (lp->ptid));
2296
2297 ourstatus->kind = TARGET_WAITKIND_EXECD;
2298 ourstatus->value.execd_pathname
2299 = xstrdup (linux_child_pid_to_exec_file (pid));
2300
2301 return 0;
2302 }
2303
2304 if (event == PTRACE_EVENT_VFORK_DONE)
2305 {
2306 if (current_inferior ()->waiting_for_vfork_done)
2307 {
2308 if (debug_linux_nat)
2309 fprintf_unfiltered (gdb_stdlog, "\
2310 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2311 GET_LWP (lp->ptid));
2312
2313 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2314 return 0;
2315 }
2316
2317 if (debug_linux_nat)
2318 fprintf_unfiltered (gdb_stdlog, "\
2319 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2320 GET_LWP (lp->ptid));
2321 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2322 return 1;
2323 }
2324
2325 internal_error (__FILE__, __LINE__,
2326 _("unknown ptrace event %d"), event);
2327 }
2328
2329 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2330 exited. */
2331
2332 static int
2333 wait_lwp (struct lwp_info *lp)
2334 {
2335 pid_t pid;
2336 int status;
2337 int thread_dead = 0;
2338
2339 gdb_assert (!lp->stopped);
2340 gdb_assert (lp->status == 0);
2341
2342 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2343 if (pid == -1 && errno == ECHILD)
2344 {
2345 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2346 if (pid == -1 && errno == ECHILD)
2347 {
2348 /* The thread has previously exited. We need to delete it
2349 now because, for some vendor 2.4 kernels with NPTL
2350 support backported, there won't be an exit event unless
2351 it is the main thread. 2.6 kernels will report an exit
2352 event for each thread that exits, as expected. */
2353 thread_dead = 1;
2354 if (debug_linux_nat)
2355 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2356 target_pid_to_str (lp->ptid));
2357 }
2358 }
2359
2360 if (!thread_dead)
2361 {
2362 gdb_assert (pid == GET_LWP (lp->ptid));
2363
2364 if (debug_linux_nat)
2365 {
2366 fprintf_unfiltered (gdb_stdlog,
2367 "WL: waitpid %s received %s\n",
2368 target_pid_to_str (lp->ptid),
2369 status_to_str (status));
2370 }
2371 }
2372
2373 /* Check if the thread has exited. */
2374 if (WIFEXITED (status) || WIFSIGNALED (status))
2375 {
2376 thread_dead = 1;
2377 if (debug_linux_nat)
2378 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2379 target_pid_to_str (lp->ptid));
2380 }
2381
2382 if (thread_dead)
2383 {
2384 exit_lwp (lp);
2385 return 0;
2386 }
2387
2388 gdb_assert (WIFSTOPPED (status));
2389
2390 /* Handle GNU/Linux's syscall SIGTRAPs. */
2391 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2392 {
2393 /* No longer need the sysgood bit. The ptrace event ends up
2394 recorded in lp->waitstatus if we care for it. We can carry
2395 on handling the event like a regular SIGTRAP from here
2396 on. */
2397 status = W_STOPCODE (SIGTRAP);
2398 if (linux_handle_syscall_trap (lp, 1))
2399 return wait_lwp (lp);
2400 }
2401
2402 /* Handle GNU/Linux's extended waitstatus for trace events. */
2403 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2404 {
2405 if (debug_linux_nat)
2406 fprintf_unfiltered (gdb_stdlog,
2407 "WL: Handling extended status 0x%06x\n",
2408 status);
2409 if (linux_handle_extended_wait (lp, status, 1))
2410 return wait_lwp (lp);
2411 }
2412
2413 return status;
2414 }
2415
2416 /* Save the most recent siginfo for LP. This is currently only called
2417 for SIGTRAP; some ports use the si_addr field for
2418 target_stopped_data_address. In the future, it may also be used to
2419 restore the siginfo of requeued signals. */
2420
2421 static void
2422 save_siginfo (struct lwp_info *lp)
2423 {
2424 errno = 0;
2425 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2426 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2427
2428 if (errno != 0)
2429 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2430 }
2431
2432 /* Send a SIGSTOP to LP. */
2433
2434 static int
2435 stop_callback (struct lwp_info *lp, void *data)
2436 {
2437 if (!lp->stopped && !lp->signalled)
2438 {
2439 int ret;
2440
2441 if (debug_linux_nat)
2442 {
2443 fprintf_unfiltered (gdb_stdlog,
2444 "SC: kill %s **<SIGSTOP>**\n",
2445 target_pid_to_str (lp->ptid));
2446 }
2447 errno = 0;
2448 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2449 if (debug_linux_nat)
2450 {
2451 fprintf_unfiltered (gdb_stdlog,
2452 "SC: lwp kill %d %s\n",
2453 ret,
2454 errno ? safe_strerror (errno) : "ERRNO-OK");
2455 }
2456
2457 lp->signalled = 1;
2458 gdb_assert (lp->status == 0);
2459 }
2460
2461 return 0;
2462 }
2463
2464 /* Return non-zero if LWP PID has a pending SIGINT. */
2465
2466 static int
2467 linux_nat_has_pending_sigint (int pid)
2468 {
2469 sigset_t pending, blocked, ignored;
2470
2471 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2472
2473 if (sigismember (&pending, SIGINT)
2474 && !sigismember (&ignored, SIGINT))
2475 return 1;
2476
2477 return 0;
2478 }
2479
2480 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2481
2482 static int
2483 set_ignore_sigint (struct lwp_info *lp, void *data)
2484 {
2485 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2486 flag to consume the next one. */
2487 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2488 && WSTOPSIG (lp->status) == SIGINT)
2489 lp->status = 0;
2490 else
2491 lp->ignore_sigint = 1;
2492
2493 return 0;
2494 }
2495
2496 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2497 This function is called after we know the LWP has stopped; if the LWP
2498 stopped before the expected SIGINT was delivered, then it will never have
2499 arrived. Also, if the signal was delivered to a shared queue and consumed
2500 by a different thread, it will never be delivered to this LWP. */
2501
2502 static void
2503 maybe_clear_ignore_sigint (struct lwp_info *lp)
2504 {
2505 if (!lp->ignore_sigint)
2506 return;
2507
2508 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2509 {
2510 if (debug_linux_nat)
2511 fprintf_unfiltered (gdb_stdlog,
2512 "MCIS: Clearing bogus flag for %s\n",
2513 target_pid_to_str (lp->ptid));
2514 lp->ignore_sigint = 0;
2515 }
2516 }
2517
2518 /* Fetch the possible triggered data watchpoint info and store it in
2519 LP.
2520
2521 On some archs, like x86, that use debug registers to set
2522 watchpoints, it's possible that the way to know which watched
2523 address trapped, is to check the register that is used to select
2524 which address to watch. Problem is, between setting the watchpoint
2525 and reading back which data address trapped, the user may change
2526 the set of watchpoints, and, as a consequence, GDB changes the
2527 debug registers in the inferior. To avoid reading back a stale
2528 stopped-data-address when that happens, we cache in LP the fact
2529 that a watchpoint trapped, and the corresponding data address, as
2530 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2531 registers meanwhile, we have the cached data we can rely on. */
2532
2533 static void
2534 save_sigtrap (struct lwp_info *lp)
2535 {
2536 struct cleanup *old_chain;
2537
2538 if (linux_ops->to_stopped_by_watchpoint == NULL)
2539 {
2540 lp->stopped_by_watchpoint = 0;
2541 return;
2542 }
2543
2544 old_chain = save_inferior_ptid ();
2545 inferior_ptid = lp->ptid;
2546
2547 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2548
2549 if (lp->stopped_by_watchpoint)
2550 {
2551 if (linux_ops->to_stopped_data_address != NULL)
2552 lp->stopped_data_address_p =
2553 linux_ops->to_stopped_data_address (&current_target,
2554 &lp->stopped_data_address);
2555 else
2556 lp->stopped_data_address_p = 0;
2557 }
2558
2559 do_cleanups (old_chain);
2560 }
2561
2562 /* See save_sigtrap. */
2563
2564 static int
2565 linux_nat_stopped_by_watchpoint (void)
2566 {
2567 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2568
2569 gdb_assert (lp != NULL);
2570
2571 return lp->stopped_by_watchpoint;
2572 }
2573
2574 static int
2575 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2576 {
2577 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2578
2579 gdb_assert (lp != NULL);
2580
2581 *addr_p = lp->stopped_data_address;
2582
2583 return lp->stopped_data_address_p;
2584 }
2585
2586 /* Wait until LP is stopped. */
2587
2588 static int
2589 stop_wait_callback (struct lwp_info *lp, void *data)
2590 {
2591 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2592
2593 /* If this is a vfork parent, bail out, it is not going to report
2594 any SIGSTOP until the vfork is done with. */
2595 if (inf->vfork_child != NULL)
2596 return 0;
2597
2598 if (!lp->stopped)
2599 {
2600 int status;
2601
2602 status = wait_lwp (lp);
2603 if (status == 0)
2604 return 0;
2605
2606 if (lp->ignore_sigint && WIFSTOPPED (status)
2607 && WSTOPSIG (status) == SIGINT)
2608 {
2609 lp->ignore_sigint = 0;
2610
2611 errno = 0;
2612 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2613 if (debug_linux_nat)
2614 fprintf_unfiltered (gdb_stdlog,
2615 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2616 target_pid_to_str (lp->ptid),
2617 errno ? safe_strerror (errno) : "OK");
2618
2619 return stop_wait_callback (lp, NULL);
2620 }
2621
2622 maybe_clear_ignore_sigint (lp);
2623
2624 if (WSTOPSIG (status) != SIGSTOP)
2625 {
2626 if (WSTOPSIG (status) == SIGTRAP)
2627 {
2628 /* If a LWP other than the LWP that we're reporting an
2629 event for has hit a GDB breakpoint (as opposed to
2630 some random trap signal), then just arrange for it to
2631 hit it again later. We don't keep the SIGTRAP status
2632 and don't forward the SIGTRAP signal to the LWP. We
2633 will handle the current event, eventually we will
2634 resume all LWPs, and this one will get its breakpoint
2635 trap again.
2636
2637 If we do not do this, then we run the risk that the
2638 user will delete or disable the breakpoint, but the
2639 thread will have already tripped on it. */
2640
2641 /* Save the trap's siginfo in case we need it later. */
2642 save_siginfo (lp);
2643
2644 save_sigtrap (lp);
2645
2646 /* Now resume this LWP and get the SIGSTOP event. */
2647 errno = 0;
2648 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2649 if (debug_linux_nat)
2650 {
2651 fprintf_unfiltered (gdb_stdlog,
2652 "PTRACE_CONT %s, 0, 0 (%s)\n",
2653 target_pid_to_str (lp->ptid),
2654 errno ? safe_strerror (errno) : "OK");
2655
2656 fprintf_unfiltered (gdb_stdlog,
2657 "SWC: Candidate SIGTRAP event in %s\n",
2658 target_pid_to_str (lp->ptid));
2659 }
2660 /* Hold this event/waitstatus while we check to see if
2661 there are any more (we still want to get that SIGSTOP). */
2662 stop_wait_callback (lp, NULL);
2663
2664 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2665 there's another event, throw it back into the
2666 queue. */
2667 if (lp->status)
2668 {
2669 if (debug_linux_nat)
2670 fprintf_unfiltered (gdb_stdlog,
2671 "SWC: kill %s, %s\n",
2672 target_pid_to_str (lp->ptid),
2673 status_to_str ((int) status));
2674 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2675 }
2676
2677 /* Save the sigtrap event. */
2678 lp->status = status;
2679 return 0;
2680 }
2681 else
2682 {
2683 /* The thread was stopped with a signal other than
2684 SIGSTOP, and didn't accidentally trip a breakpoint. */
2685
2686 if (debug_linux_nat)
2687 {
2688 fprintf_unfiltered (gdb_stdlog,
2689 "SWC: Pending event %s in %s\n",
2690 status_to_str ((int) status),
2691 target_pid_to_str (lp->ptid));
2692 }
2693 /* Now resume this LWP and get the SIGSTOP event. */
2694 errno = 0;
2695 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2696 if (debug_linux_nat)
2697 fprintf_unfiltered (gdb_stdlog,
2698 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2699 target_pid_to_str (lp->ptid),
2700 errno ? safe_strerror (errno) : "OK");
2701
2702 /* Hold this event/waitstatus while we check to see if
2703 there are any more (we still want to get that SIGSTOP). */
2704 stop_wait_callback (lp, NULL);
2705
2706 /* If the lp->status field is still empty, use it to
2707 hold this event. If not, then this event must be
2708 returned to the event queue of the LWP. */
2709 if (lp->status)
2710 {
2711 if (debug_linux_nat)
2712 {
2713 fprintf_unfiltered (gdb_stdlog,
2714 "SWC: kill %s, %s\n",
2715 target_pid_to_str (lp->ptid),
2716 status_to_str ((int) status));
2717 }
2718 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2719 }
2720 else
2721 lp->status = status;
2722 return 0;
2723 }
2724 }
2725 else
2726 {
2727 /* We caught the SIGSTOP that we intended to catch, so
2728 there's no SIGSTOP pending. */
2729 lp->stopped = 1;
2730 lp->signalled = 0;
2731 }
2732 }
2733
2734 return 0;
2735 }
2736
2737 /* Return non-zero if LP has a wait status pending. */
2738
2739 static int
2740 status_callback (struct lwp_info *lp, void *data)
2741 {
2742 /* Only report a pending wait status if we pretend that this has
2743 indeed been resumed. */
2744 if (!lp->resumed)
2745 return 0;
2746
2747 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2748 {
2749 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2750 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2751 0', so a clean process exit can not be stored pending in
2752 lp->status, it is indistinguishable from
2753 no-pending-status. */
2754 return 1;
2755 }
2756
2757 if (lp->status != 0)
2758 return 1;
2759
2760 return 0;
2761 }
2762
2763 /* Return non-zero if LP isn't stopped. */
2764
2765 static int
2766 running_callback (struct lwp_info *lp, void *data)
2767 {
2768 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2769 }
2770
2771 /* Count the LWP's that have had events. */
2772
2773 static int
2774 count_events_callback (struct lwp_info *lp, void *data)
2775 {
2776 int *count = data;
2777
2778 gdb_assert (count != NULL);
2779
2780 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2781 if (lp->status != 0 && lp->resumed
2782 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2783 (*count)++;
2784
2785 return 0;
2786 }
2787
2788 /* Select the LWP (if any) that is currently being single-stepped. */
2789
2790 static int
2791 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2792 {
2793 if (lp->step && lp->status != 0)
2794 return 1;
2795 else
2796 return 0;
2797 }
2798
2799 /* Select the Nth LWP that has had a SIGTRAP event. */
2800
2801 static int
2802 select_event_lwp_callback (struct lwp_info *lp, void *data)
2803 {
2804 int *selector = data;
2805
2806 gdb_assert (selector != NULL);
2807
2808 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2809 if (lp->status != 0 && lp->resumed
2810 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2811 if ((*selector)-- == 0)
2812 return 1;
2813
2814 return 0;
2815 }
2816
2817 static int
2818 cancel_breakpoint (struct lwp_info *lp)
2819 {
2820 /* Arrange for a breakpoint to be hit again later. We don't keep
2821 the SIGTRAP status and don't forward the SIGTRAP signal to the
2822 LWP. We will handle the current event, eventually we will resume
2823 this LWP, and this breakpoint will trap again.
2824
2825 If we do not do this, then we run the risk that the user will
2826 delete or disable the breakpoint, but the LWP will have already
2827 tripped on it. */
2828
2829 struct regcache *regcache = get_thread_regcache (lp->ptid);
2830 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2831 CORE_ADDR pc;
2832
2833 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2834 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2835 {
2836 if (debug_linux_nat)
2837 fprintf_unfiltered (gdb_stdlog,
2838 "CB: Push back breakpoint for %s\n",
2839 target_pid_to_str (lp->ptid));
2840
2841 /* Back up the PC if necessary. */
2842 if (gdbarch_decr_pc_after_break (gdbarch))
2843 regcache_write_pc (regcache, pc);
2844
2845 return 1;
2846 }
2847 return 0;
2848 }
2849
2850 static int
2851 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2852 {
2853 struct lwp_info *event_lp = data;
2854
2855 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2856 if (lp == event_lp)
2857 return 0;
2858
2859 /* If a LWP other than the LWP that we're reporting an event for has
2860 hit a GDB breakpoint (as opposed to some random trap signal),
2861 then just arrange for it to hit it again later. We don't keep
2862 the SIGTRAP status and don't forward the SIGTRAP signal to the
2863 LWP. We will handle the current event, eventually we will resume
2864 all LWPs, and this one will get its breakpoint trap again.
2865
2866 If we do not do this, then we run the risk that the user will
2867 delete or disable the breakpoint, but the LWP will have already
2868 tripped on it. */
2869
2870 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2871 && lp->status != 0
2872 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2873 && cancel_breakpoint (lp))
2874 /* Throw away the SIGTRAP. */
2875 lp->status = 0;
2876
2877 return 0;
2878 }
2879
2880 /* Select one LWP out of those that have events pending. */
2881
2882 static void
2883 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2884 {
2885 int num_events = 0;
2886 int random_selector;
2887 struct lwp_info *event_lp;
2888
2889 /* Record the wait status for the original LWP. */
2890 (*orig_lp)->status = *status;
2891
2892 /* Give preference to any LWP that is being single-stepped. */
2893 event_lp = iterate_over_lwps (filter,
2894 select_singlestep_lwp_callback, NULL);
2895 if (event_lp != NULL)
2896 {
2897 if (debug_linux_nat)
2898 fprintf_unfiltered (gdb_stdlog,
2899 "SEL: Select single-step %s\n",
2900 target_pid_to_str (event_lp->ptid));
2901 }
2902 else
2903 {
2904 /* No single-stepping LWP. Select one at random, out of those
2905 which have had SIGTRAP events. */
2906
2907 /* First see how many SIGTRAP events we have. */
2908 iterate_over_lwps (filter, count_events_callback, &num_events);
2909
2910 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2911 random_selector = (int)
2912 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2913
2914 if (debug_linux_nat && num_events > 1)
2915 fprintf_unfiltered (gdb_stdlog,
2916 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2917 num_events, random_selector);
2918
2919 event_lp = iterate_over_lwps (filter,
2920 select_event_lwp_callback,
2921 &random_selector);
2922 }
2923
2924 if (event_lp != NULL)
2925 {
2926 /* Switch the event LWP. */
2927 *orig_lp = event_lp;
2928 *status = event_lp->status;
2929 }
2930
2931 /* Flush the wait status for the event LWP. */
2932 (*orig_lp)->status = 0;
2933 }
2934
2935 /* Return non-zero if LP has been resumed. */
2936
2937 static int
2938 resumed_callback (struct lwp_info *lp, void *data)
2939 {
2940 return lp->resumed;
2941 }
2942
2943 /* Stop an active thread, verify it still exists, then resume it. */
2944
2945 static int
2946 stop_and_resume_callback (struct lwp_info *lp, void *data)
2947 {
2948 struct lwp_info *ptr;
2949
2950 if (!lp->stopped && !lp->signalled)
2951 {
2952 stop_callback (lp, NULL);
2953 stop_wait_callback (lp, NULL);
2954 /* Resume if the lwp still exists. */
2955 for (ptr = lwp_list; ptr; ptr = ptr->next)
2956 if (lp == ptr)
2957 {
2958 resume_callback (lp, NULL);
2959 resume_set_callback (lp, NULL);
2960 }
2961 }
2962 return 0;
2963 }
2964
2965 /* Check if we should go on and pass this event to common code.
2966 Return the affected lwp if we are, or NULL otherwise. */
2967 static struct lwp_info *
2968 linux_nat_filter_event (int lwpid, int status, int options)
2969 {
2970 struct lwp_info *lp;
2971
2972 lp = find_lwp_pid (pid_to_ptid (lwpid));
2973
2974 /* Check for stop events reported by a process we didn't already
2975 know about - anything not already in our LWP list.
2976
2977 If we're expecting to receive stopped processes after
2978 fork, vfork, and clone events, then we'll just add the
2979 new one to our list and go back to waiting for the event
2980 to be reported - the stopped process might be returned
2981 from waitpid before or after the event is. */
2982 if (WIFSTOPPED (status) && !lp)
2983 {
2984 linux_record_stopped_pid (lwpid, status);
2985 return NULL;
2986 }
2987
2988 /* Make sure we don't report an event for the exit of an LWP not in
2989 our list, i.e. not part of the current process. This can happen
2990 if we detach from a program we original forked and then it
2991 exits. */
2992 if (!WIFSTOPPED (status) && !lp)
2993 return NULL;
2994
2995 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2996 CLONE_PTRACE processes which do not use the thread library -
2997 otherwise we wouldn't find the new LWP this way. That doesn't
2998 currently work, and the following code is currently unreachable
2999 due to the two blocks above. If it's fixed some day, this code
3000 should be broken out into a function so that we can also pick up
3001 LWPs from the new interface. */
3002 if (!lp)
3003 {
3004 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3005 if (options & __WCLONE)
3006 lp->cloned = 1;
3007
3008 gdb_assert (WIFSTOPPED (status)
3009 && WSTOPSIG (status) == SIGSTOP);
3010 lp->signalled = 1;
3011
3012 if (!in_thread_list (inferior_ptid))
3013 {
3014 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3015 GET_PID (inferior_ptid));
3016 add_thread (inferior_ptid);
3017 }
3018
3019 add_thread (lp->ptid);
3020 }
3021
3022 /* Handle GNU/Linux's syscall SIGTRAPs. */
3023 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3024 {
3025 /* No longer need the sysgood bit. The ptrace event ends up
3026 recorded in lp->waitstatus if we care for it. We can carry
3027 on handling the event like a regular SIGTRAP from here
3028 on. */
3029 status = W_STOPCODE (SIGTRAP);
3030 if (linux_handle_syscall_trap (lp, 0))
3031 return NULL;
3032 }
3033
3034 /* Handle GNU/Linux's extended waitstatus for trace events. */
3035 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3036 {
3037 if (debug_linux_nat)
3038 fprintf_unfiltered (gdb_stdlog,
3039 "LLW: Handling extended status 0x%06x\n",
3040 status);
3041 if (linux_handle_extended_wait (lp, status, 0))
3042 return NULL;
3043 }
3044
3045 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3046 {
3047 /* Save the trap's siginfo in case we need it later. */
3048 save_siginfo (lp);
3049
3050 save_sigtrap (lp);
3051 }
3052
3053 /* Check if the thread has exited. */
3054 if ((WIFEXITED (status) || WIFSIGNALED (status))
3055 && num_lwps (GET_PID (lp->ptid)) > 1)
3056 {
3057 /* If this is the main thread, we must stop all threads and verify
3058 if they are still alive. This is because in the nptl thread model
3059 on Linux 2.4, there is no signal issued for exiting LWPs
3060 other than the main thread. We only get the main thread exit
3061 signal once all child threads have already exited. If we
3062 stop all the threads and use the stop_wait_callback to check
3063 if they have exited we can determine whether this signal
3064 should be ignored or whether it means the end of the debugged
3065 application, regardless of which threading model is being
3066 used. */
3067 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3068 {
3069 lp->stopped = 1;
3070 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3071 stop_and_resume_callback, NULL);
3072 }
3073
3074 if (debug_linux_nat)
3075 fprintf_unfiltered (gdb_stdlog,
3076 "LLW: %s exited.\n",
3077 target_pid_to_str (lp->ptid));
3078
3079 if (num_lwps (GET_PID (lp->ptid)) > 1)
3080 {
3081 /* If there is at least one more LWP, then the exit signal
3082 was not the end of the debugged application and should be
3083 ignored. */
3084 exit_lwp (lp);
3085 return NULL;
3086 }
3087 }
3088
3089 /* Check if the current LWP has previously exited. In the nptl
3090 thread model, LWPs other than the main thread do not issue
3091 signals when they exit so we must check whenever the thread has
3092 stopped. A similar check is made in stop_wait_callback(). */
3093 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3094 {
3095 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3096
3097 if (debug_linux_nat)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "LLW: %s exited.\n",
3100 target_pid_to_str (lp->ptid));
3101
3102 exit_lwp (lp);
3103
3104 /* Make sure there is at least one thread running. */
3105 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3106
3107 /* Discard the event. */
3108 return NULL;
3109 }
3110
3111 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3112 an attempt to stop an LWP. */
3113 if (lp->signalled
3114 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3115 {
3116 if (debug_linux_nat)
3117 fprintf_unfiltered (gdb_stdlog,
3118 "LLW: Delayed SIGSTOP caught for %s.\n",
3119 target_pid_to_str (lp->ptid));
3120
3121 /* This is a delayed SIGSTOP. */
3122 lp->signalled = 0;
3123
3124 registers_changed ();
3125
3126 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3127 lp->step, TARGET_SIGNAL_0);
3128 if (debug_linux_nat)
3129 fprintf_unfiltered (gdb_stdlog,
3130 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3131 lp->step ?
3132 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3133 target_pid_to_str (lp->ptid));
3134
3135 lp->stopped = 0;
3136 gdb_assert (lp->resumed);
3137
3138 /* Discard the event. */
3139 return NULL;
3140 }
3141
3142 /* Make sure we don't report a SIGINT that we have already displayed
3143 for another thread. */
3144 if (lp->ignore_sigint
3145 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3146 {
3147 if (debug_linux_nat)
3148 fprintf_unfiltered (gdb_stdlog,
3149 "LLW: Delayed SIGINT caught for %s.\n",
3150 target_pid_to_str (lp->ptid));
3151
3152 /* This is a delayed SIGINT. */
3153 lp->ignore_sigint = 0;
3154
3155 registers_changed ();
3156 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3157 lp->step, TARGET_SIGNAL_0);
3158 if (debug_linux_nat)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3161 lp->step ?
3162 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3163 target_pid_to_str (lp->ptid));
3164
3165 lp->stopped = 0;
3166 gdb_assert (lp->resumed);
3167
3168 /* Discard the event. */
3169 return NULL;
3170 }
3171
3172 /* An interesting event. */
3173 gdb_assert (lp);
3174 lp->status = status;
3175 return lp;
3176 }
3177
3178 static ptid_t
3179 linux_nat_wait_1 (struct target_ops *ops,
3180 ptid_t ptid, struct target_waitstatus *ourstatus,
3181 int target_options)
3182 {
3183 static sigset_t prev_mask;
3184 struct lwp_info *lp = NULL;
3185 int options = 0;
3186 int status = 0;
3187 pid_t pid;
3188
3189 if (debug_linux_nat_async)
3190 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3191
3192 /* The first time we get here after starting a new inferior, we may
3193 not have added it to the LWP list yet - this is the earliest
3194 moment at which we know its PID. */
3195 if (ptid_is_pid (inferior_ptid))
3196 {
3197 /* Upgrade the main thread's ptid. */
3198 thread_change_ptid (inferior_ptid,
3199 BUILD_LWP (GET_PID (inferior_ptid),
3200 GET_PID (inferior_ptid)));
3201
3202 lp = add_lwp (inferior_ptid);
3203 lp->resumed = 1;
3204 }
3205
3206 /* Make sure SIGCHLD is blocked. */
3207 block_child_signals (&prev_mask);
3208
3209 if (ptid_equal (ptid, minus_one_ptid))
3210 pid = -1;
3211 else if (ptid_is_pid (ptid))
3212 /* A request to wait for a specific tgid. This is not possible
3213 with waitpid, so instead, we wait for any child, and leave
3214 children we're not interested in right now with a pending
3215 status to report later. */
3216 pid = -1;
3217 else
3218 pid = GET_LWP (ptid);
3219
3220 retry:
3221 lp = NULL;
3222 status = 0;
3223
3224 /* Make sure that of those LWPs we want to get an event from, there
3225 is at least one LWP that has been resumed. If there's none, just
3226 bail out. The core may just be flushing asynchronously all
3227 events. */
3228 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3229 {
3230 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3231
3232 if (debug_linux_nat_async)
3233 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3234
3235 restore_child_signals_mask (&prev_mask);
3236 return minus_one_ptid;
3237 }
3238
3239 /* First check if there is a LWP with a wait status pending. */
3240 if (pid == -1)
3241 {
3242 /* Any LWP that's been resumed will do. */
3243 lp = iterate_over_lwps (ptid, status_callback, NULL);
3244 if (lp)
3245 {
3246 if (debug_linux_nat && lp->status)
3247 fprintf_unfiltered (gdb_stdlog,
3248 "LLW: Using pending wait status %s for %s.\n",
3249 status_to_str (lp->status),
3250 target_pid_to_str (lp->ptid));
3251 }
3252
3253 /* But if we don't find one, we'll have to wait, and check both
3254 cloned and uncloned processes. We start with the cloned
3255 processes. */
3256 options = __WCLONE | WNOHANG;
3257 }
3258 else if (is_lwp (ptid))
3259 {
3260 if (debug_linux_nat)
3261 fprintf_unfiltered (gdb_stdlog,
3262 "LLW: Waiting for specific LWP %s.\n",
3263 target_pid_to_str (ptid));
3264
3265 /* We have a specific LWP to check. */
3266 lp = find_lwp_pid (ptid);
3267 gdb_assert (lp);
3268
3269 if (debug_linux_nat && lp->status)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "LLW: Using pending wait status %s for %s.\n",
3272 status_to_str (lp->status),
3273 target_pid_to_str (lp->ptid));
3274
3275 /* If we have to wait, take into account whether PID is a cloned
3276 process or not. And we have to convert it to something that
3277 the layer beneath us can understand. */
3278 options = lp->cloned ? __WCLONE : 0;
3279 pid = GET_LWP (ptid);
3280
3281 /* We check for lp->waitstatus in addition to lp->status,
3282 because we can have pending process exits recorded in
3283 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3284 an additional lp->status_p flag. */
3285 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3286 lp = NULL;
3287 }
3288
3289 if (lp && lp->signalled)
3290 {
3291 /* A pending SIGSTOP may interfere with the normal stream of
3292 events. In a typical case where interference is a problem,
3293 we have a SIGSTOP signal pending for LWP A while
3294 single-stepping it, encounter an event in LWP B, and take the
3295 pending SIGSTOP while trying to stop LWP A. After processing
3296 the event in LWP B, LWP A is continued, and we'll never see
3297 the SIGTRAP associated with the last time we were
3298 single-stepping LWP A. */
3299
3300 /* Resume the thread. It should halt immediately returning the
3301 pending SIGSTOP. */
3302 registers_changed ();
3303 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3304 lp->step, TARGET_SIGNAL_0);
3305 if (debug_linux_nat)
3306 fprintf_unfiltered (gdb_stdlog,
3307 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3308 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3309 target_pid_to_str (lp->ptid));
3310 lp->stopped = 0;
3311 gdb_assert (lp->resumed);
3312
3313 /* Catch the pending SIGSTOP. */
3314 status = lp->status;
3315 lp->status = 0;
3316
3317 stop_wait_callback (lp, NULL);
3318
3319 /* If the lp->status field isn't empty, we caught another signal
3320 while flushing the SIGSTOP. Return it back to the event
3321 queue of the LWP, as we already have an event to handle. */
3322 if (lp->status)
3323 {
3324 if (debug_linux_nat)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "LLW: kill %s, %s\n",
3327 target_pid_to_str (lp->ptid),
3328 status_to_str (lp->status));
3329 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3330 }
3331
3332 lp->status = status;
3333 }
3334
3335 if (!target_can_async_p ())
3336 {
3337 /* Causes SIGINT to be passed on to the attached process. */
3338 set_sigint_trap ();
3339 }
3340
3341 /* Translate generic target_wait options into waitpid options. */
3342 if (target_options & TARGET_WNOHANG)
3343 options |= WNOHANG;
3344
3345 while (lp == NULL)
3346 {
3347 pid_t lwpid;
3348
3349 lwpid = my_waitpid (pid, &status, options);
3350
3351 if (lwpid > 0)
3352 {
3353 gdb_assert (pid == -1 || lwpid == pid);
3354
3355 if (debug_linux_nat)
3356 {
3357 fprintf_unfiltered (gdb_stdlog,
3358 "LLW: waitpid %ld received %s\n",
3359 (long) lwpid, status_to_str (status));
3360 }
3361
3362 lp = linux_nat_filter_event (lwpid, status, options);
3363
3364 if (lp
3365 && ptid_is_pid (ptid)
3366 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3367 {
3368 gdb_assert (lp->resumed);
3369
3370 if (debug_linux_nat)
3371 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3372 ptid_get_lwp (lp->ptid), status);
3373
3374 if (WIFSTOPPED (lp->status))
3375 {
3376 if (WSTOPSIG (lp->status) != SIGSTOP)
3377 {
3378 /* Cancel breakpoint hits. The breakpoint may
3379 be removed before we fetch events from this
3380 process to report to the core. It is best
3381 not to assume the moribund breakpoints
3382 heuristic always handles these cases --- it
3383 could be too many events go through to the
3384 core before this one is handled. All-stop
3385 always cancels breakpoint hits in all
3386 threads. */
3387 if (non_stop
3388 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3389 && WSTOPSIG (lp->status) == SIGTRAP
3390 && cancel_breakpoint (lp))
3391 {
3392 /* Throw away the SIGTRAP. */
3393 lp->status = 0;
3394
3395 if (debug_linux_nat)
3396 fprintf (stderr,
3397 "LLW: LWP %ld hit a breakpoint while waiting "
3398 "for another process; cancelled it\n",
3399 ptid_get_lwp (lp->ptid));
3400 }
3401 lp->stopped = 1;
3402 }
3403 else
3404 {
3405 lp->stopped = 1;
3406 lp->signalled = 0;
3407 }
3408 }
3409 else if (WIFEXITED (status) || WIFSIGNALED (status))
3410 {
3411 if (debug_linux_nat)
3412 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3413 ptid_get_lwp (lp->ptid));
3414
3415 /* This was the last lwp in the process. Since
3416 events are serialized to GDB core, and we can't
3417 report this one right now, but GDB core and the
3418 other target layers will want to be notified
3419 about the exit code/signal, leave the status
3420 pending for the next time we're able to report
3421 it. */
3422
3423 /* Prevent trying to stop this thread again. We'll
3424 never try to resume it because it has a pending
3425 status. */
3426 lp->stopped = 1;
3427
3428 /* Dead LWP's aren't expected to reported a pending
3429 sigstop. */
3430 lp->signalled = 0;
3431
3432 /* Store the pending event in the waitstatus as
3433 well, because W_EXITCODE(0,0) == 0. */
3434 store_waitstatus (&lp->waitstatus, lp->status);
3435 }
3436
3437 /* Keep looking. */
3438 lp = NULL;
3439 continue;
3440 }
3441
3442 if (lp)
3443 break;
3444 else
3445 {
3446 if (pid == -1)
3447 {
3448 /* waitpid did return something. Restart over. */
3449 options |= __WCLONE;
3450 }
3451 continue;
3452 }
3453 }
3454
3455 if (pid == -1)
3456 {
3457 /* Alternate between checking cloned and uncloned processes. */
3458 options ^= __WCLONE;
3459
3460 /* And every time we have checked both:
3461 In async mode, return to event loop;
3462 In sync mode, suspend waiting for a SIGCHLD signal. */
3463 if (options & __WCLONE)
3464 {
3465 if (target_options & TARGET_WNOHANG)
3466 {
3467 /* No interesting event. */
3468 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3469
3470 if (debug_linux_nat_async)
3471 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3472
3473 restore_child_signals_mask (&prev_mask);
3474 return minus_one_ptid;
3475 }
3476
3477 sigsuspend (&suspend_mask);
3478 }
3479 }
3480 else if (target_options & TARGET_WNOHANG)
3481 {
3482 /* No interesting event for PID yet. */
3483 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3484
3485 if (debug_linux_nat_async)
3486 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3487
3488 restore_child_signals_mask (&prev_mask);
3489 return minus_one_ptid;
3490 }
3491
3492 /* We shouldn't end up here unless we want to try again. */
3493 gdb_assert (lp == NULL);
3494 }
3495
3496 if (!target_can_async_p ())
3497 clear_sigint_trap ();
3498
3499 gdb_assert (lp);
3500
3501 status = lp->status;
3502 lp->status = 0;
3503
3504 /* Don't report signals that GDB isn't interested in, such as
3505 signals that are neither printed nor stopped upon. Stopping all
3506 threads can be a bit time-consuming so if we want decent
3507 performance with heavily multi-threaded programs, especially when
3508 they're using a high frequency timer, we'd better avoid it if we
3509 can. */
3510
3511 if (WIFSTOPPED (status))
3512 {
3513 int signo = target_signal_from_host (WSTOPSIG (status));
3514 struct inferior *inf;
3515
3516 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3517 gdb_assert (inf);
3518
3519 /* Defer to common code if we get a signal while
3520 single-stepping, since that may need special care, e.g. to
3521 skip the signal handler, or, if we're gaining control of the
3522 inferior. */
3523 if (!lp->step
3524 && inf->stop_soon == NO_STOP_QUIETLY
3525 && signal_stop_state (signo) == 0
3526 && signal_print_state (signo) == 0
3527 && signal_pass_state (signo) == 1)
3528 {
3529 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3530 here? It is not clear we should. GDB may not expect
3531 other threads to run. On the other hand, not resuming
3532 newly attached threads may cause an unwanted delay in
3533 getting them running. */
3534 registers_changed ();
3535 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3536 lp->step, signo);
3537 if (debug_linux_nat)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "LLW: %s %s, %s (preempt 'handle')\n",
3540 lp->step ?
3541 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3542 target_pid_to_str (lp->ptid),
3543 signo ? strsignal (signo) : "0");
3544 lp->stopped = 0;
3545 goto retry;
3546 }
3547
3548 if (!non_stop)
3549 {
3550 /* Only do the below in all-stop, as we currently use SIGINT
3551 to implement target_stop (see linux_nat_stop) in
3552 non-stop. */
3553 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3554 {
3555 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3556 forwarded to the entire process group, that is, all LWPs
3557 will receive it - unless they're using CLONE_THREAD to
3558 share signals. Since we only want to report it once, we
3559 mark it as ignored for all LWPs except this one. */
3560 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3561 set_ignore_sigint, NULL);
3562 lp->ignore_sigint = 0;
3563 }
3564 else
3565 maybe_clear_ignore_sigint (lp);
3566 }
3567 }
3568
3569 /* This LWP is stopped now. */
3570 lp->stopped = 1;
3571
3572 if (debug_linux_nat)
3573 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3574 status_to_str (status), target_pid_to_str (lp->ptid));
3575
3576 if (!non_stop)
3577 {
3578 /* Now stop all other LWP's ... */
3579 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3580
3581 /* ... and wait until all of them have reported back that
3582 they're no longer running. */
3583 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3584
3585 /* If we're not waiting for a specific LWP, choose an event LWP
3586 from among those that have had events. Giving equal priority
3587 to all LWPs that have had events helps prevent
3588 starvation. */
3589 if (pid == -1)
3590 select_event_lwp (ptid, &lp, &status);
3591
3592 /* Now that we've selected our final event LWP, cancel any
3593 breakpoints in other LWPs that have hit a GDB breakpoint.
3594 See the comment in cancel_breakpoints_callback to find out
3595 why. */
3596 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3597
3598 /* In all-stop, from the core's perspective, all LWPs are now
3599 stopped until a new resume action is sent over. */
3600 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3601 }
3602 else
3603 lp->resumed = 0;
3604
3605 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3606 {
3607 if (debug_linux_nat)
3608 fprintf_unfiltered (gdb_stdlog,
3609 "LLW: trap ptid is %s.\n",
3610 target_pid_to_str (lp->ptid));
3611 }
3612
3613 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3614 {
3615 *ourstatus = lp->waitstatus;
3616 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3617 }
3618 else
3619 store_waitstatus (ourstatus, status);
3620
3621 if (debug_linux_nat_async)
3622 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3623
3624 restore_child_signals_mask (&prev_mask);
3625 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3626 return lp->ptid;
3627 }
3628
3629 /* Resume LWPs that are currently stopped without any pending status
3630 to report, but are resumed from the core's perspective. */
3631
3632 static int
3633 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3634 {
3635 ptid_t *wait_ptid_p = data;
3636
3637 if (lp->stopped
3638 && lp->resumed
3639 && lp->status == 0
3640 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3641 {
3642 gdb_assert (is_executing (lp->ptid));
3643
3644 /* Don't bother if there's a breakpoint at PC that we'd hit
3645 immediately, and we're not waiting for this LWP. */
3646 if (!ptid_match (lp->ptid, *wait_ptid_p))
3647 {
3648 struct regcache *regcache = get_thread_regcache (lp->ptid);
3649 CORE_ADDR pc = regcache_read_pc (regcache);
3650
3651 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3652 return 0;
3653 }
3654
3655 if (debug_linux_nat)
3656 fprintf_unfiltered (gdb_stdlog,
3657 "RSRL: resuming stopped-resumed LWP %s\n",
3658 target_pid_to_str (lp->ptid));
3659
3660 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3661 lp->step, TARGET_SIGNAL_0);
3662 lp->stopped = 0;
3663 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3664 lp->stopped_by_watchpoint = 0;
3665 }
3666
3667 return 0;
3668 }
3669
3670 static ptid_t
3671 linux_nat_wait (struct target_ops *ops,
3672 ptid_t ptid, struct target_waitstatus *ourstatus,
3673 int target_options)
3674 {
3675 ptid_t event_ptid;
3676
3677 if (debug_linux_nat)
3678 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3679
3680 /* Flush the async file first. */
3681 if (target_can_async_p ())
3682 async_file_flush ();
3683
3684 /* Resume LWPs that are currently stopped without any pending status
3685 to report, but are resumed from the core's perspective. LWPs get
3686 in this state if we find them stopping at a time we're not
3687 interested in reporting the event (target_wait on a
3688 specific_process, for example, see linux_nat_wait_1), and
3689 meanwhile the event became uninteresting. Don't bother resuming
3690 LWPs we're not going to wait for if they'd stop immediately. */
3691 if (non_stop)
3692 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3693
3694 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3695
3696 /* If we requested any event, and something came out, assume there
3697 may be more. If we requested a specific lwp or process, also
3698 assume there may be more. */
3699 if (target_can_async_p ()
3700 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3701 || !ptid_equal (ptid, minus_one_ptid)))
3702 async_file_mark ();
3703
3704 /* Get ready for the next event. */
3705 if (target_can_async_p ())
3706 target_async (inferior_event_handler, 0);
3707
3708 return event_ptid;
3709 }
3710
3711 static int
3712 kill_callback (struct lwp_info *lp, void *data)
3713 {
3714 errno = 0;
3715 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3716 if (debug_linux_nat)
3717 fprintf_unfiltered (gdb_stdlog,
3718 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3719 target_pid_to_str (lp->ptid),
3720 errno ? safe_strerror (errno) : "OK");
3721
3722 return 0;
3723 }
3724
3725 static int
3726 kill_wait_callback (struct lwp_info *lp, void *data)
3727 {
3728 pid_t pid;
3729
3730 /* We must make sure that there are no pending events (delayed
3731 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3732 program doesn't interfere with any following debugging session. */
3733
3734 /* For cloned processes we must check both with __WCLONE and
3735 without, since the exit status of a cloned process isn't reported
3736 with __WCLONE. */
3737 if (lp->cloned)
3738 {
3739 do
3740 {
3741 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3742 if (pid != (pid_t) -1)
3743 {
3744 if (debug_linux_nat)
3745 fprintf_unfiltered (gdb_stdlog,
3746 "KWC: wait %s received unknown.\n",
3747 target_pid_to_str (lp->ptid));
3748 /* The Linux kernel sometimes fails to kill a thread
3749 completely after PTRACE_KILL; that goes from the stop
3750 point in do_fork out to the one in
3751 get_signal_to_deliever and waits again. So kill it
3752 again. */
3753 kill_callback (lp, NULL);
3754 }
3755 }
3756 while (pid == GET_LWP (lp->ptid));
3757
3758 gdb_assert (pid == -1 && errno == ECHILD);
3759 }
3760
3761 do
3762 {
3763 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3764 if (pid != (pid_t) -1)
3765 {
3766 if (debug_linux_nat)
3767 fprintf_unfiltered (gdb_stdlog,
3768 "KWC: wait %s received unk.\n",
3769 target_pid_to_str (lp->ptid));
3770 /* See the call to kill_callback above. */
3771 kill_callback (lp, NULL);
3772 }
3773 }
3774 while (pid == GET_LWP (lp->ptid));
3775
3776 gdb_assert (pid == -1 && errno == ECHILD);
3777 return 0;
3778 }
3779
3780 static void
3781 linux_nat_kill (struct target_ops *ops)
3782 {
3783 struct target_waitstatus last;
3784 ptid_t last_ptid;
3785 int status;
3786
3787 /* If we're stopped while forking and we haven't followed yet,
3788 kill the other task. We need to do this first because the
3789 parent will be sleeping if this is a vfork. */
3790
3791 get_last_target_status (&last_ptid, &last);
3792
3793 if (last.kind == TARGET_WAITKIND_FORKED
3794 || last.kind == TARGET_WAITKIND_VFORKED)
3795 {
3796 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3797 wait (&status);
3798 }
3799
3800 if (forks_exist_p ())
3801 linux_fork_killall ();
3802 else
3803 {
3804 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3805 /* Stop all threads before killing them, since ptrace requires
3806 that the thread is stopped to sucessfully PTRACE_KILL. */
3807 iterate_over_lwps (ptid, stop_callback, NULL);
3808 /* ... and wait until all of them have reported back that
3809 they're no longer running. */
3810 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3811
3812 /* Kill all LWP's ... */
3813 iterate_over_lwps (ptid, kill_callback, NULL);
3814
3815 /* ... and wait until we've flushed all events. */
3816 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3817 }
3818
3819 target_mourn_inferior ();
3820 }
3821
3822 static void
3823 linux_nat_mourn_inferior (struct target_ops *ops)
3824 {
3825 purge_lwp_list (ptid_get_pid (inferior_ptid));
3826
3827 if (! forks_exist_p ())
3828 /* Normal case, no other forks available. */
3829 linux_ops->to_mourn_inferior (ops);
3830 else
3831 /* Multi-fork case. The current inferior_ptid has exited, but
3832 there are other viable forks to debug. Delete the exiting
3833 one and context-switch to the first available. */
3834 linux_fork_mourn_inferior ();
3835 }
3836
3837 /* Convert a native/host siginfo object, into/from the siginfo in the
3838 layout of the inferiors' architecture. */
3839
3840 static void
3841 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3842 {
3843 int done = 0;
3844
3845 if (linux_nat_siginfo_fixup != NULL)
3846 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3847
3848 /* If there was no callback, or the callback didn't do anything,
3849 then just do a straight memcpy. */
3850 if (!done)
3851 {
3852 if (direction == 1)
3853 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3854 else
3855 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3856 }
3857 }
3858
3859 static LONGEST
3860 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3861 const char *annex, gdb_byte *readbuf,
3862 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3863 {
3864 int pid;
3865 struct siginfo siginfo;
3866 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3867
3868 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3869 gdb_assert (readbuf || writebuf);
3870
3871 pid = GET_LWP (inferior_ptid);
3872 if (pid == 0)
3873 pid = GET_PID (inferior_ptid);
3874
3875 if (offset > sizeof (siginfo))
3876 return -1;
3877
3878 errno = 0;
3879 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3880 if (errno != 0)
3881 return -1;
3882
3883 /* When GDB is built as a 64-bit application, ptrace writes into
3884 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3885 inferior with a 64-bit GDB should look the same as debugging it
3886 with a 32-bit GDB, we need to convert it. GDB core always sees
3887 the converted layout, so any read/write will have to be done
3888 post-conversion. */
3889 siginfo_fixup (&siginfo, inf_siginfo, 0);
3890
3891 if (offset + len > sizeof (siginfo))
3892 len = sizeof (siginfo) - offset;
3893
3894 if (readbuf != NULL)
3895 memcpy (readbuf, inf_siginfo + offset, len);
3896 else
3897 {
3898 memcpy (inf_siginfo + offset, writebuf, len);
3899
3900 /* Convert back to ptrace layout before flushing it out. */
3901 siginfo_fixup (&siginfo, inf_siginfo, 1);
3902
3903 errno = 0;
3904 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3905 if (errno != 0)
3906 return -1;
3907 }
3908
3909 return len;
3910 }
3911
3912 static LONGEST
3913 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3914 const char *annex, gdb_byte *readbuf,
3915 const gdb_byte *writebuf,
3916 ULONGEST offset, LONGEST len)
3917 {
3918 struct cleanup *old_chain;
3919 LONGEST xfer;
3920
3921 if (object == TARGET_OBJECT_SIGNAL_INFO)
3922 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3923 offset, len);
3924
3925 /* The target is connected but no live inferior is selected. Pass
3926 this request down to a lower stratum (e.g., the executable
3927 file). */
3928 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3929 return 0;
3930
3931 old_chain = save_inferior_ptid ();
3932
3933 if (is_lwp (inferior_ptid))
3934 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3935
3936 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3937 offset, len);
3938
3939 do_cleanups (old_chain);
3940 return xfer;
3941 }
3942
3943 static int
3944 linux_thread_alive (ptid_t ptid)
3945 {
3946 int err;
3947
3948 gdb_assert (is_lwp (ptid));
3949
3950 /* Send signal 0 instead of anything ptrace, because ptracing a
3951 running thread errors out claiming that the thread doesn't
3952 exist. */
3953 err = kill_lwp (GET_LWP (ptid), 0);
3954
3955 if (debug_linux_nat)
3956 fprintf_unfiltered (gdb_stdlog,
3957 "LLTA: KILL(SIG0) %s (%s)\n",
3958 target_pid_to_str (ptid),
3959 err ? safe_strerror (err) : "OK");
3960
3961 if (err != 0)
3962 return 0;
3963
3964 return 1;
3965 }
3966
3967 static int
3968 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3969 {
3970 return linux_thread_alive (ptid);
3971 }
3972
3973 static char *
3974 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3975 {
3976 static char buf[64];
3977
3978 if (is_lwp (ptid)
3979 && (GET_PID (ptid) != GET_LWP (ptid)
3980 || num_lwps (GET_PID (ptid)) > 1))
3981 {
3982 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3983 return buf;
3984 }
3985
3986 return normal_pid_to_str (ptid);
3987 }
3988
3989 /* Accepts an integer PID; Returns a string representing a file that
3990 can be opened to get the symbols for the child process. */
3991
3992 static char *
3993 linux_child_pid_to_exec_file (int pid)
3994 {
3995 char *name1, *name2;
3996
3997 name1 = xmalloc (MAXPATHLEN);
3998 name2 = xmalloc (MAXPATHLEN);
3999 make_cleanup (xfree, name1);
4000 make_cleanup (xfree, name2);
4001 memset (name2, 0, MAXPATHLEN);
4002
4003 sprintf (name1, "/proc/%d/exe", pid);
4004 if (readlink (name1, name2, MAXPATHLEN) > 0)
4005 return name2;
4006 else
4007 return name1;
4008 }
4009
4010 /* Service function for corefiles and info proc. */
4011
4012 static int
4013 read_mapping (FILE *mapfile,
4014 long long *addr,
4015 long long *endaddr,
4016 char *permissions,
4017 long long *offset,
4018 char *device, long long *inode, char *filename)
4019 {
4020 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4021 addr, endaddr, permissions, offset, device, inode);
4022
4023 filename[0] = '\0';
4024 if (ret > 0 && ret != EOF)
4025 {
4026 /* Eat everything up to EOL for the filename. This will prevent
4027 weird filenames (such as one with embedded whitespace) from
4028 confusing this code. It also makes this code more robust in
4029 respect to annotations the kernel may add after the filename.
4030
4031 Note the filename is used for informational purposes
4032 only. */
4033 ret += fscanf (mapfile, "%[^\n]\n", filename);
4034 }
4035
4036 return (ret != 0 && ret != EOF);
4037 }
4038
4039 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4040 regions in the inferior for a corefile. */
4041
4042 static int
4043 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4044 unsigned long,
4045 int, int, int, void *), void *obfd)
4046 {
4047 int pid = PIDGET (inferior_ptid);
4048 char mapsfilename[MAXPATHLEN];
4049 FILE *mapsfile;
4050 long long addr, endaddr, size, offset, inode;
4051 char permissions[8], device[8], filename[MAXPATHLEN];
4052 int read, write, exec;
4053 struct cleanup *cleanup;
4054
4055 /* Compose the filename for the /proc memory map, and open it. */
4056 sprintf (mapsfilename, "/proc/%d/maps", pid);
4057 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4058 error (_("Could not open %s."), mapsfilename);
4059 cleanup = make_cleanup_fclose (mapsfile);
4060
4061 if (info_verbose)
4062 fprintf_filtered (gdb_stdout,
4063 "Reading memory regions from %s\n", mapsfilename);
4064
4065 /* Now iterate until end-of-file. */
4066 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4067 &offset, &device[0], &inode, &filename[0]))
4068 {
4069 size = endaddr - addr;
4070
4071 /* Get the segment's permissions. */
4072 read = (strchr (permissions, 'r') != 0);
4073 write = (strchr (permissions, 'w') != 0);
4074 exec = (strchr (permissions, 'x') != 0);
4075
4076 if (info_verbose)
4077 {
4078 fprintf_filtered (gdb_stdout,
4079 "Save segment, %s bytes at %s (%c%c%c)",
4080 plongest (size), paddress (target_gdbarch, addr),
4081 read ? 'r' : ' ',
4082 write ? 'w' : ' ', exec ? 'x' : ' ');
4083 if (filename[0])
4084 fprintf_filtered (gdb_stdout, " for %s", filename);
4085 fprintf_filtered (gdb_stdout, "\n");
4086 }
4087
4088 /* Invoke the callback function to create the corefile
4089 segment. */
4090 func (addr, size, read, write, exec, obfd);
4091 }
4092 do_cleanups (cleanup);
4093 return 0;
4094 }
4095
4096 static int
4097 find_signalled_thread (struct thread_info *info, void *data)
4098 {
4099 if (info->stop_signal != TARGET_SIGNAL_0
4100 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4101 return 1;
4102
4103 return 0;
4104 }
4105
4106 static enum target_signal
4107 find_stop_signal (void)
4108 {
4109 struct thread_info *info =
4110 iterate_over_threads (find_signalled_thread, NULL);
4111
4112 if (info)
4113 return info->stop_signal;
4114 else
4115 return TARGET_SIGNAL_0;
4116 }
4117
4118 /* Records the thread's register state for the corefile note
4119 section. */
4120
4121 static char *
4122 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4123 char *note_data, int *note_size,
4124 enum target_signal stop_signal)
4125 {
4126 gdb_gregset_t gregs;
4127 gdb_fpregset_t fpregs;
4128 unsigned long lwp = ptid_get_lwp (ptid);
4129 struct gdbarch *gdbarch = target_gdbarch;
4130 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4131 const struct regset *regset;
4132 int core_regset_p;
4133 struct cleanup *old_chain;
4134 struct core_regset_section *sect_list;
4135 char *gdb_regset;
4136
4137 old_chain = save_inferior_ptid ();
4138 inferior_ptid = ptid;
4139 target_fetch_registers (regcache, -1);
4140 do_cleanups (old_chain);
4141
4142 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4143 sect_list = gdbarch_core_regset_sections (gdbarch);
4144
4145 if (core_regset_p
4146 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4147 sizeof (gregs))) != NULL
4148 && regset->collect_regset != NULL)
4149 regset->collect_regset (regset, regcache, -1,
4150 &gregs, sizeof (gregs));
4151 else
4152 fill_gregset (regcache, &gregs, -1);
4153
4154 note_data = (char *) elfcore_write_prstatus (obfd,
4155 note_data,
4156 note_size,
4157 lwp,
4158 stop_signal, &gregs);
4159
4160 /* The loop below uses the new struct core_regset_section, which stores
4161 the supported section names and sizes for the core file. Note that
4162 note PRSTATUS needs to be treated specially. But the other notes are
4163 structurally the same, so they can benefit from the new struct. */
4164 if (core_regset_p && sect_list != NULL)
4165 while (sect_list->sect_name != NULL)
4166 {
4167 /* .reg was already handled above. */
4168 if (strcmp (sect_list->sect_name, ".reg") == 0)
4169 {
4170 sect_list++;
4171 continue;
4172 }
4173 regset = gdbarch_regset_from_core_section (gdbarch,
4174 sect_list->sect_name,
4175 sect_list->size);
4176 gdb_assert (regset && regset->collect_regset);
4177 gdb_regset = xmalloc (sect_list->size);
4178 regset->collect_regset (regset, regcache, -1,
4179 gdb_regset, sect_list->size);
4180 note_data = (char *) elfcore_write_register_note (obfd,
4181 note_data,
4182 note_size,
4183 sect_list->sect_name,
4184 gdb_regset,
4185 sect_list->size);
4186 xfree (gdb_regset);
4187 sect_list++;
4188 }
4189
4190 /* For architectures that does not have the struct core_regset_section
4191 implemented, we use the old method. When all the architectures have
4192 the new support, the code below should be deleted. */
4193 else
4194 {
4195 if (core_regset_p
4196 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4197 sizeof (fpregs))) != NULL
4198 && regset->collect_regset != NULL)
4199 regset->collect_regset (regset, regcache, -1,
4200 &fpregs, sizeof (fpregs));
4201 else
4202 fill_fpregset (regcache, &fpregs, -1);
4203
4204 note_data = (char *) elfcore_write_prfpreg (obfd,
4205 note_data,
4206 note_size,
4207 &fpregs, sizeof (fpregs));
4208 }
4209
4210 return note_data;
4211 }
4212
4213 struct linux_nat_corefile_thread_data
4214 {
4215 bfd *obfd;
4216 char *note_data;
4217 int *note_size;
4218 int num_notes;
4219 enum target_signal stop_signal;
4220 };
4221
4222 /* Called by gdbthread.c once per thread. Records the thread's
4223 register state for the corefile note section. */
4224
4225 static int
4226 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4227 {
4228 struct linux_nat_corefile_thread_data *args = data;
4229
4230 args->note_data = linux_nat_do_thread_registers (args->obfd,
4231 ti->ptid,
4232 args->note_data,
4233 args->note_size,
4234 args->stop_signal);
4235 args->num_notes++;
4236
4237 return 0;
4238 }
4239
4240 /* Enumerate spufs IDs for process PID. */
4241
4242 static void
4243 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4244 {
4245 char path[128];
4246 DIR *dir;
4247 struct dirent *entry;
4248
4249 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4250 dir = opendir (path);
4251 if (!dir)
4252 return;
4253
4254 rewinddir (dir);
4255 while ((entry = readdir (dir)) != NULL)
4256 {
4257 struct stat st;
4258 struct statfs stfs;
4259 int fd;
4260
4261 fd = atoi (entry->d_name);
4262 if (!fd)
4263 continue;
4264
4265 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4266 if (stat (path, &st) != 0)
4267 continue;
4268 if (!S_ISDIR (st.st_mode))
4269 continue;
4270
4271 if (statfs (path, &stfs) != 0)
4272 continue;
4273 if (stfs.f_type != SPUFS_MAGIC)
4274 continue;
4275
4276 callback (data, fd);
4277 }
4278
4279 closedir (dir);
4280 }
4281
4282 /* Generate corefile notes for SPU contexts. */
4283
4284 struct linux_spu_corefile_data
4285 {
4286 bfd *obfd;
4287 char *note_data;
4288 int *note_size;
4289 };
4290
4291 static void
4292 linux_spu_corefile_callback (void *data, int fd)
4293 {
4294 struct linux_spu_corefile_data *args = data;
4295 int i;
4296
4297 static const char *spu_files[] =
4298 {
4299 "object-id",
4300 "mem",
4301 "regs",
4302 "fpcr",
4303 "lslr",
4304 "decr",
4305 "decr_status",
4306 "signal1",
4307 "signal1_type",
4308 "signal2",
4309 "signal2_type",
4310 "event_mask",
4311 "event_status",
4312 "mbox_info",
4313 "ibox_info",
4314 "wbox_info",
4315 "dma_info",
4316 "proxydma_info",
4317 };
4318
4319 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4320 {
4321 char annex[32], note_name[32];
4322 gdb_byte *spu_data;
4323 LONGEST spu_len;
4324
4325 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4326 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4327 annex, &spu_data);
4328 if (spu_len > 0)
4329 {
4330 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4331 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4332 args->note_size, note_name,
4333 NT_SPU, spu_data, spu_len);
4334 xfree (spu_data);
4335 }
4336 }
4337 }
4338
4339 static char *
4340 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4341 {
4342 struct linux_spu_corefile_data args;
4343 args.obfd = obfd;
4344 args.note_data = note_data;
4345 args.note_size = note_size;
4346
4347 iterate_over_spus (PIDGET (inferior_ptid),
4348 linux_spu_corefile_callback, &args);
4349
4350 return args.note_data;
4351 }
4352
4353 /* Fills the "to_make_corefile_note" target vector. Builds the note
4354 section for a corefile, and returns it in a malloc buffer. */
4355
4356 static char *
4357 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4358 {
4359 struct linux_nat_corefile_thread_data thread_args;
4360 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4361 char fname[16] = { '\0' };
4362 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4363 char psargs[80] = { '\0' };
4364 char *note_data = NULL;
4365 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4366 gdb_byte *auxv;
4367 int auxv_len;
4368
4369 if (get_exec_file (0))
4370 {
4371 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4372 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4373 if (get_inferior_args ())
4374 {
4375 char *string_end;
4376 char *psargs_end = psargs + sizeof (psargs);
4377
4378 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4379 strings fine. */
4380 string_end = memchr (psargs, 0, sizeof (psargs));
4381 if (string_end != NULL)
4382 {
4383 *string_end++ = ' ';
4384 strncpy (string_end, get_inferior_args (),
4385 psargs_end - string_end);
4386 }
4387 }
4388 note_data = (char *) elfcore_write_prpsinfo (obfd,
4389 note_data,
4390 note_size, fname, psargs);
4391 }
4392
4393 /* Dump information for threads. */
4394 thread_args.obfd = obfd;
4395 thread_args.note_data = note_data;
4396 thread_args.note_size = note_size;
4397 thread_args.num_notes = 0;
4398 thread_args.stop_signal = find_stop_signal ();
4399 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4400 gdb_assert (thread_args.num_notes != 0);
4401 note_data = thread_args.note_data;
4402
4403 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4404 NULL, &auxv);
4405 if (auxv_len > 0)
4406 {
4407 note_data = elfcore_write_note (obfd, note_data, note_size,
4408 "CORE", NT_AUXV, auxv, auxv_len);
4409 xfree (auxv);
4410 }
4411
4412 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4413
4414 make_cleanup (xfree, note_data);
4415 return note_data;
4416 }
4417
4418 /* Implement the "info proc" command. */
4419
4420 static void
4421 linux_nat_info_proc_cmd (char *args, int from_tty)
4422 {
4423 /* A long is used for pid instead of an int to avoid a loss of precision
4424 compiler warning from the output of strtoul. */
4425 long pid = PIDGET (inferior_ptid);
4426 FILE *procfile;
4427 char **argv = NULL;
4428 char buffer[MAXPATHLEN];
4429 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4430 int cmdline_f = 1;
4431 int cwd_f = 1;
4432 int exe_f = 1;
4433 int mappings_f = 0;
4434 int status_f = 0;
4435 int stat_f = 0;
4436 int all = 0;
4437 struct stat dummy;
4438
4439 if (args)
4440 {
4441 /* Break up 'args' into an argv array. */
4442 argv = gdb_buildargv (args);
4443 make_cleanup_freeargv (argv);
4444 }
4445 while (argv != NULL && *argv != NULL)
4446 {
4447 if (isdigit (argv[0][0]))
4448 {
4449 pid = strtoul (argv[0], NULL, 10);
4450 }
4451 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4452 {
4453 mappings_f = 1;
4454 }
4455 else if (strcmp (argv[0], "status") == 0)
4456 {
4457 status_f = 1;
4458 }
4459 else if (strcmp (argv[0], "stat") == 0)
4460 {
4461 stat_f = 1;
4462 }
4463 else if (strcmp (argv[0], "cmd") == 0)
4464 {
4465 cmdline_f = 1;
4466 }
4467 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4468 {
4469 exe_f = 1;
4470 }
4471 else if (strcmp (argv[0], "cwd") == 0)
4472 {
4473 cwd_f = 1;
4474 }
4475 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4476 {
4477 all = 1;
4478 }
4479 else
4480 {
4481 /* [...] (future options here) */
4482 }
4483 argv++;
4484 }
4485 if (pid == 0)
4486 error (_("No current process: you must name one."));
4487
4488 sprintf (fname1, "/proc/%ld", pid);
4489 if (stat (fname1, &dummy) != 0)
4490 error (_("No /proc directory: '%s'"), fname1);
4491
4492 printf_filtered (_("process %ld\n"), pid);
4493 if (cmdline_f || all)
4494 {
4495 sprintf (fname1, "/proc/%ld/cmdline", pid);
4496 if ((procfile = fopen (fname1, "r")) != NULL)
4497 {
4498 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4499 if (fgets (buffer, sizeof (buffer), procfile))
4500 printf_filtered ("cmdline = '%s'\n", buffer);
4501 else
4502 warning (_("unable to read '%s'"), fname1);
4503 do_cleanups (cleanup);
4504 }
4505 else
4506 warning (_("unable to open /proc file '%s'"), fname1);
4507 }
4508 if (cwd_f || all)
4509 {
4510 sprintf (fname1, "/proc/%ld/cwd", pid);
4511 memset (fname2, 0, sizeof (fname2));
4512 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4513 printf_filtered ("cwd = '%s'\n", fname2);
4514 else
4515 warning (_("unable to read link '%s'"), fname1);
4516 }
4517 if (exe_f || all)
4518 {
4519 sprintf (fname1, "/proc/%ld/exe", pid);
4520 memset (fname2, 0, sizeof (fname2));
4521 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4522 printf_filtered ("exe = '%s'\n", fname2);
4523 else
4524 warning (_("unable to read link '%s'"), fname1);
4525 }
4526 if (mappings_f || all)
4527 {
4528 sprintf (fname1, "/proc/%ld/maps", pid);
4529 if ((procfile = fopen (fname1, "r")) != NULL)
4530 {
4531 long long addr, endaddr, size, offset, inode;
4532 char permissions[8], device[8], filename[MAXPATHLEN];
4533 struct cleanup *cleanup;
4534
4535 cleanup = make_cleanup_fclose (procfile);
4536 printf_filtered (_("Mapped address spaces:\n\n"));
4537 if (gdbarch_addr_bit (target_gdbarch) == 32)
4538 {
4539 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4540 "Start Addr",
4541 " End Addr",
4542 " Size", " Offset", "objfile");
4543 }
4544 else
4545 {
4546 printf_filtered (" %18s %18s %10s %10s %7s\n",
4547 "Start Addr",
4548 " End Addr",
4549 " Size", " Offset", "objfile");
4550 }
4551
4552 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4553 &offset, &device[0], &inode, &filename[0]))
4554 {
4555 size = endaddr - addr;
4556
4557 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4558 calls here (and possibly above) should be abstracted
4559 out into their own functions? Andrew suggests using
4560 a generic local_address_string instead to print out
4561 the addresses; that makes sense to me, too. */
4562
4563 if (gdbarch_addr_bit (target_gdbarch) == 32)
4564 {
4565 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4566 (unsigned long) addr, /* FIXME: pr_addr */
4567 (unsigned long) endaddr,
4568 (int) size,
4569 (unsigned int) offset,
4570 filename[0] ? filename : "");
4571 }
4572 else
4573 {
4574 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4575 (unsigned long) addr, /* FIXME: pr_addr */
4576 (unsigned long) endaddr,
4577 (int) size,
4578 (unsigned int) offset,
4579 filename[0] ? filename : "");
4580 }
4581 }
4582
4583 do_cleanups (cleanup);
4584 }
4585 else
4586 warning (_("unable to open /proc file '%s'"), fname1);
4587 }
4588 if (status_f || all)
4589 {
4590 sprintf (fname1, "/proc/%ld/status", pid);
4591 if ((procfile = fopen (fname1, "r")) != NULL)
4592 {
4593 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4594 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4595 puts_filtered (buffer);
4596 do_cleanups (cleanup);
4597 }
4598 else
4599 warning (_("unable to open /proc file '%s'"), fname1);
4600 }
4601 if (stat_f || all)
4602 {
4603 sprintf (fname1, "/proc/%ld/stat", pid);
4604 if ((procfile = fopen (fname1, "r")) != NULL)
4605 {
4606 int itmp;
4607 char ctmp;
4608 long ltmp;
4609 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4610
4611 if (fscanf (procfile, "%d ", &itmp) > 0)
4612 printf_filtered (_("Process: %d\n"), itmp);
4613 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4614 printf_filtered (_("Exec file: %s\n"), buffer);
4615 if (fscanf (procfile, "%c ", &ctmp) > 0)
4616 printf_filtered (_("State: %c\n"), ctmp);
4617 if (fscanf (procfile, "%d ", &itmp) > 0)
4618 printf_filtered (_("Parent process: %d\n"), itmp);
4619 if (fscanf (procfile, "%d ", &itmp) > 0)
4620 printf_filtered (_("Process group: %d\n"), itmp);
4621 if (fscanf (procfile, "%d ", &itmp) > 0)
4622 printf_filtered (_("Session id: %d\n"), itmp);
4623 if (fscanf (procfile, "%d ", &itmp) > 0)
4624 printf_filtered (_("TTY: %d\n"), itmp);
4625 if (fscanf (procfile, "%d ", &itmp) > 0)
4626 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4627 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4628 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4629 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4630 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4631 (unsigned long) ltmp);
4632 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4633 printf_filtered (_("Minor faults, children: %lu\n"),
4634 (unsigned long) ltmp);
4635 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4636 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4637 (unsigned long) ltmp);
4638 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4639 printf_filtered (_("Major faults, children: %lu\n"),
4640 (unsigned long) ltmp);
4641 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4642 printf_filtered (_("utime: %ld\n"), ltmp);
4643 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4644 printf_filtered (_("stime: %ld\n"), ltmp);
4645 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4646 printf_filtered (_("utime, children: %ld\n"), ltmp);
4647 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4648 printf_filtered (_("stime, children: %ld\n"), ltmp);
4649 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4650 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4651 ltmp);
4652 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4653 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4654 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4655 printf_filtered (_("jiffies until next timeout: %lu\n"),
4656 (unsigned long) ltmp);
4657 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4658 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4659 (unsigned long) ltmp);
4660 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4661 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4662 ltmp);
4663 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4664 printf_filtered (_("Virtual memory size: %lu\n"),
4665 (unsigned long) ltmp);
4666 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4667 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4668 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4669 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4670 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4671 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4672 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4673 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4674 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4675 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4676 #if 0 /* Don't know how architecture-dependent the rest is...
4677 Anyway the signal bitmap info is available from "status". */
4678 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4679 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4680 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4681 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4682 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4683 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4684 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4685 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4686 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4687 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4688 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4689 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4690 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4691 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4692 #endif
4693 do_cleanups (cleanup);
4694 }
4695 else
4696 warning (_("unable to open /proc file '%s'"), fname1);
4697 }
4698 }
4699
4700 /* Implement the to_xfer_partial interface for memory reads using the /proc
4701 filesystem. Because we can use a single read() call for /proc, this
4702 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4703 but it doesn't support writes. */
4704
4705 static LONGEST
4706 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4707 const char *annex, gdb_byte *readbuf,
4708 const gdb_byte *writebuf,
4709 ULONGEST offset, LONGEST len)
4710 {
4711 LONGEST ret;
4712 int fd;
4713 char filename[64];
4714
4715 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4716 return 0;
4717
4718 /* Don't bother for one word. */
4719 if (len < 3 * sizeof (long))
4720 return 0;
4721
4722 /* We could keep this file open and cache it - possibly one per
4723 thread. That requires some juggling, but is even faster. */
4724 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4725 fd = open (filename, O_RDONLY | O_LARGEFILE);
4726 if (fd == -1)
4727 return 0;
4728
4729 /* If pread64 is available, use it. It's faster if the kernel
4730 supports it (only one syscall), and it's 64-bit safe even on
4731 32-bit platforms (for instance, SPARC debugging a SPARC64
4732 application). */
4733 #ifdef HAVE_PREAD64
4734 if (pread64 (fd, readbuf, len, offset) != len)
4735 #else
4736 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4737 #endif
4738 ret = 0;
4739 else
4740 ret = len;
4741
4742 close (fd);
4743 return ret;
4744 }
4745
4746
4747 /* Enumerate spufs IDs for process PID. */
4748 static LONGEST
4749 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4750 {
4751 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4752 LONGEST pos = 0;
4753 LONGEST written = 0;
4754 char path[128];
4755 DIR *dir;
4756 struct dirent *entry;
4757
4758 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4759 dir = opendir (path);
4760 if (!dir)
4761 return -1;
4762
4763 rewinddir (dir);
4764 while ((entry = readdir (dir)) != NULL)
4765 {
4766 struct stat st;
4767 struct statfs stfs;
4768 int fd;
4769
4770 fd = atoi (entry->d_name);
4771 if (!fd)
4772 continue;
4773
4774 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4775 if (stat (path, &st) != 0)
4776 continue;
4777 if (!S_ISDIR (st.st_mode))
4778 continue;
4779
4780 if (statfs (path, &stfs) != 0)
4781 continue;
4782 if (stfs.f_type != SPUFS_MAGIC)
4783 continue;
4784
4785 if (pos >= offset && pos + 4 <= offset + len)
4786 {
4787 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4788 written += 4;
4789 }
4790 pos += 4;
4791 }
4792
4793 closedir (dir);
4794 return written;
4795 }
4796
4797 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4798 object type, using the /proc file system. */
4799 static LONGEST
4800 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4801 const char *annex, gdb_byte *readbuf,
4802 const gdb_byte *writebuf,
4803 ULONGEST offset, LONGEST len)
4804 {
4805 char buf[128];
4806 int fd = 0;
4807 int ret = -1;
4808 int pid = PIDGET (inferior_ptid);
4809
4810 if (!annex)
4811 {
4812 if (!readbuf)
4813 return -1;
4814 else
4815 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4816 }
4817
4818 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4819 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4820 if (fd <= 0)
4821 return -1;
4822
4823 if (offset != 0
4824 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4825 {
4826 close (fd);
4827 return 0;
4828 }
4829
4830 if (writebuf)
4831 ret = write (fd, writebuf, (size_t) len);
4832 else if (readbuf)
4833 ret = read (fd, readbuf, (size_t) len);
4834
4835 close (fd);
4836 return ret;
4837 }
4838
4839
4840 /* Parse LINE as a signal set and add its set bits to SIGS. */
4841
4842 static void
4843 add_line_to_sigset (const char *line, sigset_t *sigs)
4844 {
4845 int len = strlen (line) - 1;
4846 const char *p;
4847 int signum;
4848
4849 if (line[len] != '\n')
4850 error (_("Could not parse signal set: %s"), line);
4851
4852 p = line;
4853 signum = len * 4;
4854 while (len-- > 0)
4855 {
4856 int digit;
4857
4858 if (*p >= '0' && *p <= '9')
4859 digit = *p - '0';
4860 else if (*p >= 'a' && *p <= 'f')
4861 digit = *p - 'a' + 10;
4862 else
4863 error (_("Could not parse signal set: %s"), line);
4864
4865 signum -= 4;
4866
4867 if (digit & 1)
4868 sigaddset (sigs, signum + 1);
4869 if (digit & 2)
4870 sigaddset (sigs, signum + 2);
4871 if (digit & 4)
4872 sigaddset (sigs, signum + 3);
4873 if (digit & 8)
4874 sigaddset (sigs, signum + 4);
4875
4876 p++;
4877 }
4878 }
4879
4880 /* Find process PID's pending signals from /proc/pid/status and set
4881 SIGS to match. */
4882
4883 void
4884 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4885 {
4886 FILE *procfile;
4887 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4888 struct cleanup *cleanup;
4889
4890 sigemptyset (pending);
4891 sigemptyset (blocked);
4892 sigemptyset (ignored);
4893 sprintf (fname, "/proc/%d/status", pid);
4894 procfile = fopen (fname, "r");
4895 if (procfile == NULL)
4896 error (_("Could not open %s"), fname);
4897 cleanup = make_cleanup_fclose (procfile);
4898
4899 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4900 {
4901 /* Normal queued signals are on the SigPnd line in the status
4902 file. However, 2.6 kernels also have a "shared" pending
4903 queue for delivering signals to a thread group, so check for
4904 a ShdPnd line also.
4905
4906 Unfortunately some Red Hat kernels include the shared pending
4907 queue but not the ShdPnd status field. */
4908
4909 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4910 add_line_to_sigset (buffer + 8, pending);
4911 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4912 add_line_to_sigset (buffer + 8, pending);
4913 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4914 add_line_to_sigset (buffer + 8, blocked);
4915 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4916 add_line_to_sigset (buffer + 8, ignored);
4917 }
4918
4919 do_cleanups (cleanup);
4920 }
4921
4922 static LONGEST
4923 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4924 const char *annex, gdb_byte *readbuf,
4925 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4926 {
4927 /* We make the process list snapshot when the object starts to be
4928 read. */
4929 static const char *buf;
4930 static LONGEST len_avail = -1;
4931 static struct obstack obstack;
4932
4933 DIR *dirp;
4934
4935 gdb_assert (object == TARGET_OBJECT_OSDATA);
4936
4937 if (strcmp (annex, "processes") != 0)
4938 return 0;
4939
4940 gdb_assert (readbuf && !writebuf);
4941
4942 if (offset == 0)
4943 {
4944 if (len_avail != -1 && len_avail != 0)
4945 obstack_free (&obstack, NULL);
4946 len_avail = 0;
4947 buf = NULL;
4948 obstack_init (&obstack);
4949 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4950
4951 dirp = opendir ("/proc");
4952 if (dirp)
4953 {
4954 struct dirent *dp;
4955 while ((dp = readdir (dirp)) != NULL)
4956 {
4957 struct stat statbuf;
4958 char procentry[sizeof ("/proc/4294967295")];
4959
4960 if (!isdigit (dp->d_name[0])
4961 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4962 continue;
4963
4964 sprintf (procentry, "/proc/%s", dp->d_name);
4965 if (stat (procentry, &statbuf) == 0
4966 && S_ISDIR (statbuf.st_mode))
4967 {
4968 char *pathname;
4969 FILE *f;
4970 char cmd[MAXPATHLEN + 1];
4971 struct passwd *entry;
4972
4973 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4974 entry = getpwuid (statbuf.st_uid);
4975
4976 if ((f = fopen (pathname, "r")) != NULL)
4977 {
4978 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4979 if (len > 0)
4980 {
4981 int i;
4982 for (i = 0; i < len; i++)
4983 if (cmd[i] == '\0')
4984 cmd[i] = ' ';
4985 cmd[len] = '\0';
4986
4987 obstack_xml_printf (
4988 &obstack,
4989 "<item>"
4990 "<column name=\"pid\">%s</column>"
4991 "<column name=\"user\">%s</column>"
4992 "<column name=\"command\">%s</column>"
4993 "</item>",
4994 dp->d_name,
4995 entry ? entry->pw_name : "?",
4996 cmd);
4997 }
4998 fclose (f);
4999 }
5000
5001 xfree (pathname);
5002 }
5003 }
5004
5005 closedir (dirp);
5006 }
5007
5008 obstack_grow_str0 (&obstack, "</osdata>\n");
5009 buf = obstack_finish (&obstack);
5010 len_avail = strlen (buf);
5011 }
5012
5013 if (offset >= len_avail)
5014 {
5015 /* Done. Get rid of the obstack. */
5016 obstack_free (&obstack, NULL);
5017 buf = NULL;
5018 len_avail = 0;
5019 return 0;
5020 }
5021
5022 if (len > len_avail - offset)
5023 len = len_avail - offset;
5024 memcpy (readbuf, buf + offset, len);
5025
5026 return len;
5027 }
5028
5029 static LONGEST
5030 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5031 const char *annex, gdb_byte *readbuf,
5032 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5033 {
5034 LONGEST xfer;
5035
5036 if (object == TARGET_OBJECT_AUXV)
5037 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5038 offset, len);
5039
5040 if (object == TARGET_OBJECT_OSDATA)
5041 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5042 offset, len);
5043
5044 if (object == TARGET_OBJECT_SPU)
5045 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5046 offset, len);
5047
5048 /* GDB calculates all the addresses in possibly larget width of the address.
5049 Address width needs to be masked before its final use - either by
5050 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5051
5052 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5053
5054 if (object == TARGET_OBJECT_MEMORY)
5055 {
5056 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5057
5058 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5059 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5060 }
5061
5062 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5063 offset, len);
5064 if (xfer != 0)
5065 return xfer;
5066
5067 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5068 offset, len);
5069 }
5070
5071 /* Create a prototype generic GNU/Linux target. The client can override
5072 it with local methods. */
5073
5074 static void
5075 linux_target_install_ops (struct target_ops *t)
5076 {
5077 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5078 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5079 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5080 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5081 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5082 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5083 t->to_post_attach = linux_child_post_attach;
5084 t->to_follow_fork = linux_child_follow_fork;
5085 t->to_find_memory_regions = linux_nat_find_memory_regions;
5086 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5087
5088 super_xfer_partial = t->to_xfer_partial;
5089 t->to_xfer_partial = linux_xfer_partial;
5090 }
5091
5092 struct target_ops *
5093 linux_target (void)
5094 {
5095 struct target_ops *t;
5096
5097 t = inf_ptrace_target ();
5098 linux_target_install_ops (t);
5099
5100 return t;
5101 }
5102
5103 struct target_ops *
5104 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5105 {
5106 struct target_ops *t;
5107
5108 t = inf_ptrace_trad_target (register_u_offset);
5109 linux_target_install_ops (t);
5110
5111 return t;
5112 }
5113
5114 /* target_is_async_p implementation. */
5115
5116 static int
5117 linux_nat_is_async_p (void)
5118 {
5119 /* NOTE: palves 2008-03-21: We're only async when the user requests
5120 it explicitly with the "set target-async" command.
5121 Someday, linux will always be async. */
5122 if (!target_async_permitted)
5123 return 0;
5124
5125 /* See target.h/target_async_mask. */
5126 return linux_nat_async_mask_value;
5127 }
5128
5129 /* target_can_async_p implementation. */
5130
5131 static int
5132 linux_nat_can_async_p (void)
5133 {
5134 /* NOTE: palves 2008-03-21: We're only async when the user requests
5135 it explicitly with the "set target-async" command.
5136 Someday, linux will always be async. */
5137 if (!target_async_permitted)
5138 return 0;
5139
5140 /* See target.h/target_async_mask. */
5141 return linux_nat_async_mask_value;
5142 }
5143
5144 static int
5145 linux_nat_supports_non_stop (void)
5146 {
5147 return 1;
5148 }
5149
5150 /* True if we want to support multi-process. To be removed when GDB
5151 supports multi-exec. */
5152
5153 int linux_multi_process = 1;
5154
5155 static int
5156 linux_nat_supports_multi_process (void)
5157 {
5158 return linux_multi_process;
5159 }
5160
5161 /* target_async_mask implementation. */
5162
5163 static int
5164 linux_nat_async_mask (int new_mask)
5165 {
5166 int curr_mask = linux_nat_async_mask_value;
5167
5168 if (curr_mask != new_mask)
5169 {
5170 if (new_mask == 0)
5171 {
5172 linux_nat_async (NULL, 0);
5173 linux_nat_async_mask_value = new_mask;
5174 }
5175 else
5176 {
5177 linux_nat_async_mask_value = new_mask;
5178
5179 /* If we're going out of async-mask in all-stop, then the
5180 inferior is stopped. The next resume will call
5181 target_async. In non-stop, the target event source
5182 should be always registered in the event loop. Do so
5183 now. */
5184 if (non_stop)
5185 linux_nat_async (inferior_event_handler, 0);
5186 }
5187 }
5188
5189 return curr_mask;
5190 }
5191
5192 static int async_terminal_is_ours = 1;
5193
5194 /* target_terminal_inferior implementation. */
5195
5196 static void
5197 linux_nat_terminal_inferior (void)
5198 {
5199 if (!target_is_async_p ())
5200 {
5201 /* Async mode is disabled. */
5202 terminal_inferior ();
5203 return;
5204 }
5205
5206 terminal_inferior ();
5207
5208 /* Calls to target_terminal_*() are meant to be idempotent. */
5209 if (!async_terminal_is_ours)
5210 return;
5211
5212 delete_file_handler (input_fd);
5213 async_terminal_is_ours = 0;
5214 set_sigint_trap ();
5215 }
5216
5217 /* target_terminal_ours implementation. */
5218
5219 static void
5220 linux_nat_terminal_ours (void)
5221 {
5222 if (!target_is_async_p ())
5223 {
5224 /* Async mode is disabled. */
5225 terminal_ours ();
5226 return;
5227 }
5228
5229 /* GDB should never give the terminal to the inferior if the
5230 inferior is running in the background (run&, continue&, etc.),
5231 but claiming it sure should. */
5232 terminal_ours ();
5233
5234 if (async_terminal_is_ours)
5235 return;
5236
5237 clear_sigint_trap ();
5238 add_file_handler (input_fd, stdin_event_handler, 0);
5239 async_terminal_is_ours = 1;
5240 }
5241
5242 static void (*async_client_callback) (enum inferior_event_type event_type,
5243 void *context);
5244 static void *async_client_context;
5245
5246 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5247 so we notice when any child changes state, and notify the
5248 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5249 above to wait for the arrival of a SIGCHLD. */
5250
5251 static void
5252 sigchld_handler (int signo)
5253 {
5254 int old_errno = errno;
5255
5256 if (debug_linux_nat_async)
5257 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5258
5259 if (signo == SIGCHLD
5260 && linux_nat_event_pipe[0] != -1)
5261 async_file_mark (); /* Let the event loop know that there are
5262 events to handle. */
5263
5264 errno = old_errno;
5265 }
5266
5267 /* Callback registered with the target events file descriptor. */
5268
5269 static void
5270 handle_target_event (int error, gdb_client_data client_data)
5271 {
5272 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5273 }
5274
5275 /* Create/destroy the target events pipe. Returns previous state. */
5276
5277 static int
5278 linux_async_pipe (int enable)
5279 {
5280 int previous = (linux_nat_event_pipe[0] != -1);
5281
5282 if (previous != enable)
5283 {
5284 sigset_t prev_mask;
5285
5286 block_child_signals (&prev_mask);
5287
5288 if (enable)
5289 {
5290 if (pipe (linux_nat_event_pipe) == -1)
5291 internal_error (__FILE__, __LINE__,
5292 "creating event pipe failed.");
5293
5294 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5295 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5296 }
5297 else
5298 {
5299 close (linux_nat_event_pipe[0]);
5300 close (linux_nat_event_pipe[1]);
5301 linux_nat_event_pipe[0] = -1;
5302 linux_nat_event_pipe[1] = -1;
5303 }
5304
5305 restore_child_signals_mask (&prev_mask);
5306 }
5307
5308 return previous;
5309 }
5310
5311 /* target_async implementation. */
5312
5313 static void
5314 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5315 void *context), void *context)
5316 {
5317 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5318 internal_error (__FILE__, __LINE__,
5319 "Calling target_async when async is masked");
5320
5321 if (callback != NULL)
5322 {
5323 async_client_callback = callback;
5324 async_client_context = context;
5325 if (!linux_async_pipe (1))
5326 {
5327 add_file_handler (linux_nat_event_pipe[0],
5328 handle_target_event, NULL);
5329 /* There may be pending events to handle. Tell the event loop
5330 to poll them. */
5331 async_file_mark ();
5332 }
5333 }
5334 else
5335 {
5336 async_client_callback = callback;
5337 async_client_context = context;
5338 delete_file_handler (linux_nat_event_pipe[0]);
5339 linux_async_pipe (0);
5340 }
5341 return;
5342 }
5343
5344 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5345 event came out. */
5346
5347 static int
5348 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5349 {
5350 if (!lwp->stopped)
5351 {
5352 ptid_t ptid = lwp->ptid;
5353
5354 if (debug_linux_nat)
5355 fprintf_unfiltered (gdb_stdlog,
5356 "LNSL: running -> suspending %s\n",
5357 target_pid_to_str (lwp->ptid));
5358
5359
5360 stop_callback (lwp, NULL);
5361 stop_wait_callback (lwp, NULL);
5362
5363 /* If the lwp exits while we try to stop it, there's nothing
5364 else to do. */
5365 lwp = find_lwp_pid (ptid);
5366 if (lwp == NULL)
5367 return 0;
5368
5369 /* If we didn't collect any signal other than SIGSTOP while
5370 stopping the LWP, push a SIGNAL_0 event. In either case, the
5371 event-loop will end up calling target_wait which will collect
5372 these. */
5373 if (lwp->status == 0)
5374 lwp->status = W_STOPCODE (0);
5375 async_file_mark ();
5376 }
5377 else
5378 {
5379 /* Already known to be stopped; do nothing. */
5380
5381 if (debug_linux_nat)
5382 {
5383 if (find_thread_ptid (lwp->ptid)->stop_requested)
5384 fprintf_unfiltered (gdb_stdlog, "\
5385 LNSL: already stopped/stop_requested %s\n",
5386 target_pid_to_str (lwp->ptid));
5387 else
5388 fprintf_unfiltered (gdb_stdlog, "\
5389 LNSL: already stopped/no stop_requested yet %s\n",
5390 target_pid_to_str (lwp->ptid));
5391 }
5392 }
5393 return 0;
5394 }
5395
5396 static void
5397 linux_nat_stop (ptid_t ptid)
5398 {
5399 if (non_stop)
5400 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5401 else
5402 linux_ops->to_stop (ptid);
5403 }
5404
5405 static void
5406 linux_nat_close (int quitting)
5407 {
5408 /* Unregister from the event loop. */
5409 if (target_is_async_p ())
5410 target_async (NULL, 0);
5411
5412 /* Reset the async_masking. */
5413 linux_nat_async_mask_value = 1;
5414
5415 if (linux_ops->to_close)
5416 linux_ops->to_close (quitting);
5417 }
5418
5419 /* When requests are passed down from the linux-nat layer to the
5420 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5421 used. The address space pointer is stored in the inferior object,
5422 but the common code that is passed such ptid can't tell whether
5423 lwpid is a "main" process id or not (it assumes so). We reverse
5424 look up the "main" process id from the lwp here. */
5425
5426 struct address_space *
5427 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5428 {
5429 struct lwp_info *lwp;
5430 struct inferior *inf;
5431 int pid;
5432
5433 pid = GET_LWP (ptid);
5434 if (GET_LWP (ptid) == 0)
5435 {
5436 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5437 tgid. */
5438 lwp = find_lwp_pid (ptid);
5439 pid = GET_PID (lwp->ptid);
5440 }
5441 else
5442 {
5443 /* A (pid,lwpid,0) ptid. */
5444 pid = GET_PID (ptid);
5445 }
5446
5447 inf = find_inferior_pid (pid);
5448 gdb_assert (inf != NULL);
5449 return inf->aspace;
5450 }
5451
5452 int
5453 linux_nat_core_of_thread_1 (ptid_t ptid)
5454 {
5455 struct cleanup *back_to;
5456 char *filename;
5457 FILE *f;
5458 char *content = NULL;
5459 char *p;
5460 char *ts = 0;
5461 int content_read = 0;
5462 int i;
5463 int core;
5464
5465 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5466 GET_PID (ptid), GET_LWP (ptid));
5467 back_to = make_cleanup (xfree, filename);
5468
5469 f = fopen (filename, "r");
5470 if (!f)
5471 {
5472 do_cleanups (back_to);
5473 return -1;
5474 }
5475
5476 make_cleanup_fclose (f);
5477
5478 for (;;)
5479 {
5480 int n;
5481 content = xrealloc (content, content_read + 1024);
5482 n = fread (content + content_read, 1, 1024, f);
5483 content_read += n;
5484 if (n < 1024)
5485 {
5486 content[content_read] = '\0';
5487 break;
5488 }
5489 }
5490
5491 make_cleanup (xfree, content);
5492
5493 p = strchr (content, '(');
5494 p = strchr (p, ')') + 2; /* skip ")" and a whitespace. */
5495
5496 /* If the first field after program name has index 0, then core number is
5497 the field with index 36. There's no constant for that anywhere. */
5498 p = strtok_r (p, " ", &ts);
5499 for (i = 0; i != 36; ++i)
5500 p = strtok_r (NULL, " ", &ts);
5501
5502 if (sscanf (p, "%d", &core) == 0)
5503 core = -1;
5504
5505 do_cleanups (back_to);
5506
5507 return core;
5508 }
5509
5510 /* Return the cached value of the processor core for thread PTID. */
5511
5512 int
5513 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5514 {
5515 struct lwp_info *info = find_lwp_pid (ptid);
5516 if (info)
5517 return info->core;
5518 return -1;
5519 }
5520
5521 void
5522 linux_nat_add_target (struct target_ops *t)
5523 {
5524 /* Save the provided single-threaded target. We save this in a separate
5525 variable because another target we've inherited from (e.g. inf-ptrace)
5526 may have saved a pointer to T; we want to use it for the final
5527 process stratum target. */
5528 linux_ops_saved = *t;
5529 linux_ops = &linux_ops_saved;
5530
5531 /* Override some methods for multithreading. */
5532 t->to_create_inferior = linux_nat_create_inferior;
5533 t->to_attach = linux_nat_attach;
5534 t->to_detach = linux_nat_detach;
5535 t->to_resume = linux_nat_resume;
5536 t->to_wait = linux_nat_wait;
5537 t->to_xfer_partial = linux_nat_xfer_partial;
5538 t->to_kill = linux_nat_kill;
5539 t->to_mourn_inferior = linux_nat_mourn_inferior;
5540 t->to_thread_alive = linux_nat_thread_alive;
5541 t->to_pid_to_str = linux_nat_pid_to_str;
5542 t->to_has_thread_control = tc_schedlock;
5543 t->to_thread_address_space = linux_nat_thread_address_space;
5544 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5545 t->to_stopped_data_address = linux_nat_stopped_data_address;
5546
5547 t->to_can_async_p = linux_nat_can_async_p;
5548 t->to_is_async_p = linux_nat_is_async_p;
5549 t->to_supports_non_stop = linux_nat_supports_non_stop;
5550 t->to_async = linux_nat_async;
5551 t->to_async_mask = linux_nat_async_mask;
5552 t->to_terminal_inferior = linux_nat_terminal_inferior;
5553 t->to_terminal_ours = linux_nat_terminal_ours;
5554 t->to_close = linux_nat_close;
5555
5556 /* Methods for non-stop support. */
5557 t->to_stop = linux_nat_stop;
5558
5559 t->to_supports_multi_process = linux_nat_supports_multi_process;
5560
5561 t->to_core_of_thread = linux_nat_core_of_thread;
5562
5563 /* We don't change the stratum; this target will sit at
5564 process_stratum and thread_db will set at thread_stratum. This
5565 is a little strange, since this is a multi-threaded-capable
5566 target, but we want to be on the stack below thread_db, and we
5567 also want to be used for single-threaded processes. */
5568
5569 add_target (t);
5570 }
5571
5572 /* Register a method to call whenever a new thread is attached. */
5573 void
5574 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5575 {
5576 /* Save the pointer. We only support a single registered instance
5577 of the GNU/Linux native target, so we do not need to map this to
5578 T. */
5579 linux_nat_new_thread = new_thread;
5580 }
5581
5582 /* Register a method that converts a siginfo object between the layout
5583 that ptrace returns, and the layout in the architecture of the
5584 inferior. */
5585 void
5586 linux_nat_set_siginfo_fixup (struct target_ops *t,
5587 int (*siginfo_fixup) (struct siginfo *,
5588 gdb_byte *,
5589 int))
5590 {
5591 /* Save the pointer. */
5592 linux_nat_siginfo_fixup = siginfo_fixup;
5593 }
5594
5595 /* Return the saved siginfo associated with PTID. */
5596 struct siginfo *
5597 linux_nat_get_siginfo (ptid_t ptid)
5598 {
5599 struct lwp_info *lp = find_lwp_pid (ptid);
5600
5601 gdb_assert (lp != NULL);
5602
5603 return &lp->siginfo;
5604 }
5605
5606 /* Provide a prototype to silence -Wmissing-prototypes. */
5607 extern initialize_file_ftype _initialize_linux_nat;
5608
5609 void
5610 _initialize_linux_nat (void)
5611 {
5612 add_info ("proc", linux_nat_info_proc_cmd, _("\
5613 Show /proc process information about any running process.\n\
5614 Specify any process id, or use the program being debugged by default.\n\
5615 Specify any of the following keywords for detailed info:\n\
5616 mappings -- list of mapped memory regions.\n\
5617 stat -- list a bunch of random process info.\n\
5618 status -- list a different bunch of random process info.\n\
5619 all -- list all available /proc info."));
5620
5621 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5622 &debug_linux_nat, _("\
5623 Set debugging of GNU/Linux lwp module."), _("\
5624 Show debugging of GNU/Linux lwp module."), _("\
5625 Enables printf debugging output."),
5626 NULL,
5627 show_debug_linux_nat,
5628 &setdebuglist, &showdebuglist);
5629
5630 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5631 &debug_linux_nat_async, _("\
5632 Set debugging of GNU/Linux async lwp module."), _("\
5633 Show debugging of GNU/Linux async lwp module."), _("\
5634 Enables printf debugging output."),
5635 NULL,
5636 show_debug_linux_nat_async,
5637 &setdebuglist, &showdebuglist);
5638
5639 /* Save this mask as the default. */
5640 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5641
5642 /* Install a SIGCHLD handler. */
5643 sigchld_action.sa_handler = sigchld_handler;
5644 sigemptyset (&sigchld_action.sa_mask);
5645 sigchld_action.sa_flags = SA_RESTART;
5646
5647 /* Make it the default. */
5648 sigaction (SIGCHLD, &sigchld_action, NULL);
5649
5650 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5651 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5652 sigdelset (&suspend_mask, SIGCHLD);
5653
5654 sigemptyset (&blocked_mask);
5655
5656 add_setshow_boolean_cmd ("disable-randomization", class_support,
5657 &disable_randomization, _("\
5658 Set disabling of debuggee's virtual address space randomization."), _("\
5659 Show disabling of debuggee's virtual address space randomization."), _("\
5660 When this mode is on (which is the default), randomization of the virtual\n\
5661 address space is disabled. Standalone programs run with the randomization\n\
5662 enabled by default on some platforms."),
5663 &set_disable_randomization,
5664 &show_disable_randomization,
5665 &setlist, &showlist);
5666 }
5667 \f
5668
5669 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5670 the GNU/Linux Threads library and therefore doesn't really belong
5671 here. */
5672
5673 /* Read variable NAME in the target and return its value if found.
5674 Otherwise return zero. It is assumed that the type of the variable
5675 is `int'. */
5676
5677 static int
5678 get_signo (const char *name)
5679 {
5680 struct minimal_symbol *ms;
5681 int signo;
5682
5683 ms = lookup_minimal_symbol (name, NULL, NULL);
5684 if (ms == NULL)
5685 return 0;
5686
5687 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5688 sizeof (signo)) != 0)
5689 return 0;
5690
5691 return signo;
5692 }
5693
5694 /* Return the set of signals used by the threads library in *SET. */
5695
5696 void
5697 lin_thread_get_thread_signals (sigset_t *set)
5698 {
5699 struct sigaction action;
5700 int restart, cancel;
5701
5702 sigemptyset (&blocked_mask);
5703 sigemptyset (set);
5704
5705 restart = get_signo ("__pthread_sig_restart");
5706 cancel = get_signo ("__pthread_sig_cancel");
5707
5708 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5709 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5710 not provide any way for the debugger to query the signal numbers -
5711 fortunately they don't change! */
5712
5713 if (restart == 0)
5714 restart = __SIGRTMIN;
5715
5716 if (cancel == 0)
5717 cancel = __SIGRTMIN + 1;
5718
5719 sigaddset (set, restart);
5720 sigaddset (set, cancel);
5721
5722 /* The GNU/Linux Threads library makes terminating threads send a
5723 special "cancel" signal instead of SIGCHLD. Make sure we catch
5724 those (to prevent them from terminating GDB itself, which is
5725 likely to be their default action) and treat them the same way as
5726 SIGCHLD. */
5727
5728 action.sa_handler = sigchld_handler;
5729 sigemptyset (&action.sa_mask);
5730 action.sa_flags = SA_RESTART;
5731 sigaction (cancel, &action, NULL);
5732
5733 /* We block the "cancel" signal throughout this code ... */
5734 sigaddset (&blocked_mask, cancel);
5735 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5736
5737 /* ... except during a sigsuspend. */
5738 sigdelset (&suspend_mask, cancel);
5739 }
This page took 0.158964 seconds and 5 git commands to generate.