gdb/
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371
372 new_pid->pid = pid;
373 new_pid->status = status;
374 new_pid->next = *listp;
375 *listp = new_pid;
376 }
377
378 static int
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
380 {
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
387
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
411 _exit (0);
412 }
413
414 /* Wrapper function for waitpid which handles EINTR. */
415
416 static int
417 my_waitpid (int pid, int *status, int flags)
418 {
419 int ret;
420
421 do
422 {
423 ret = waitpid (pid, status, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428 }
429
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
442
443 static void
444 linux_test_for_tracefork (int original_pid)
445 {
446 int child_pid, ret, status;
447 long second_pid;
448 sigset_t prev_mask;
449
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
452
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
462
463 child_pid = fork ();
464 if (child_pid == -1)
465 perror_with_name (("fork"));
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
470 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == -1)
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
477
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
495
496 restore_child_signals_mask (&prev_mask);
497 return;
498 }
499
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
507 warning (_("linux_test_for_tracefork: failed to resume child"));
508
509 ret = my_waitpid (child_pid, &status, 0);
510
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
526 }
527 }
528 else
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
531
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
536
537 restore_child_signals_mask (&prev_mask);
538 }
539
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546 static void
547 linux_test_for_tracesysgood (int original_pid)
548 {
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562 out:
563 restore_child_signals_mask (&prev_mask);
564 }
565
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569 static int
570 linux_supports_tracesysgood (int pid)
571 {
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575 }
576
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580 static int
581 linux_supports_tracefork (int pid)
582 {
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
586 }
587
588 static int
589 linux_supports_tracevforkdone (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
594 }
595
596 static void
597 linux_enable_tracesysgood (ptid_t ptid)
598 {
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610 }
611
612 \f
613 void
614 linux_enable_event_reporting (ptid_t ptid)
615 {
616 int pid = ptid_get_lwp (ptid);
617
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
621 if (! linux_supports_tracefork (pid))
622 return;
623
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
632
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
634 }
635
636 static void
637 linux_child_post_attach (int pid)
638 {
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
642 }
643
644 static void
645 linux_child_post_startup_inferior (ptid_t ptid)
646 {
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
650 }
651
652 static int
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
654 {
655 sigset_t prev_mask;
656 int has_vforked;
657 int parent_pid, child_pid;
658
659 block_child_signals (&prev_mask);
660
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
664 if (parent_pid == 0)
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
667
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
671 if (has_vforked
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
675 {
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while\n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
685 return 1;
686 }
687
688 if (! follow_child)
689 {
690 struct lwp_info *child_lp = NULL;
691
692 /* We're already attached to the parent, by default. */
693
694 /* Detach new forked process? */
695 if (detach_fork)
696 {
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
704 if (has_vforked)
705 {
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
708 }
709
710 if (info_verbose || debug_linux_nat)
711 {
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
715 child_pid);
716 }
717
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
719 }
720 else
721 {
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
724
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
727
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
731
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
734
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
740
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
743 if (has_vforked)
744 {
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
747
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
750 parent. */
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
755 }
756 else
757 {
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
763
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
769 required. */
770 solib_create_inferior_hook (0);
771 }
772
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
775
776 do_cleanups (old_chain);
777 }
778
779 if (has_vforked)
780 {
781 struct lwp_info *lp;
782 struct inferior *parent_inf;
783
784 parent_inf = current_inferior ();
785
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
795
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
799 {
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804
805 lp->stopped = 1;
806 lp->resumed = 1;
807
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
810 }
811 else
812 {
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
816 call:
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
821 the way in.
822
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
826
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
837
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
842 point. */
843
844 if (debug_linux_nat)
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
847
848 usleep (10000);
849
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
854 lp->status = 0;
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
856 lp->stopped = 0;
857 lp->resumed = 1;
858
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
862 async_file_mark ();
863 }
864 }
865 }
866 else
867 {
868 struct inferior *parent_inf, *child_inf;
869 struct lwp_info *lp;
870 struct program_space *parent_pspace;
871
872 if (info_verbose || debug_linux_nat)
873 {
874 target_terminal_ours ();
875 if (has_vforked)
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
879 else
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
883 }
884
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
888 child_inf = add_inferior (child_pid);
889
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
893
894 parent_pspace = parent_inf->pspace;
895
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
905
906 if (has_vforked)
907 {
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
915 }
916 else if (detach_fork)
917 target_detach (NULL, 0);
918
919 /* Note that the detach above makes PARENT_INF dangling. */
920
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
924
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
928 lp->stopped = 1;
929 lp->resumed = 1;
930
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
935 {
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
938 }
939 else
940 {
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
946
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
953 }
954
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
957 }
958
959 restore_child_signals_mask (&prev_mask);
960 return 0;
961 }
962
963 \f
964 static void
965 linux_child_insert_fork_catchpoint (int pid)
966 {
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
969 }
970
971 static void
972 linux_child_insert_vfork_catchpoint (int pid)
973 {
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
976 }
977
978 static void
979 linux_child_insert_exec_catchpoint (int pid)
980 {
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
983 }
984
985 static int
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
988 {
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
993
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
996 return 0;
997 }
998
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1006
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1013
1014 Note that there are some peculiarities in GNU/Linux that affect
1015 this code:
1016
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1023
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1031
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1034 \f
1035
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1038
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1042
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1045
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1048
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1051
1052 static void
1053 block_child_signals (sigset_t *prev_mask)
1054 {
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1058
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1060 }
1061
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1064
1065 static void
1066 restore_child_signals_mask (sigset_t *prev_mask)
1067 {
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1069 }
1070 \f
1071
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076 static int cancel_breakpoint (struct lwp_info *lp);
1077
1078 \f
1079 /* Convert wait status STATUS to a string. Used for printing debug
1080 messages only. */
1081
1082 static char *
1083 status_to_str (int status)
1084 {
1085 static char buf[64];
1086
1087 if (WIFSTOPPED (status))
1088 {
1089 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1090 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1091 strsignal (SIGTRAP));
1092 else
1093 snprintf (buf, sizeof (buf), "%s (stopped)",
1094 strsignal (WSTOPSIG (status)));
1095 }
1096 else if (WIFSIGNALED (status))
1097 snprintf (buf, sizeof (buf), "%s (terminated)",
1098 strsignal (WSTOPSIG (status)));
1099 else
1100 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1101
1102 return buf;
1103 }
1104
1105 /* Remove all LWPs belong to PID from the lwp list. */
1106
1107 static void
1108 purge_lwp_list (int pid)
1109 {
1110 struct lwp_info *lp, *lpprev, *lpnext;
1111
1112 lpprev = NULL;
1113
1114 for (lp = lwp_list; lp; lp = lpnext)
1115 {
1116 lpnext = lp->next;
1117
1118 if (ptid_get_pid (lp->ptid) == pid)
1119 {
1120 if (lp == lwp_list)
1121 lwp_list = lp->next;
1122 else
1123 lpprev->next = lp->next;
1124
1125 xfree (lp);
1126 }
1127 else
1128 lpprev = lp;
1129 }
1130 }
1131
1132 /* Return the number of known LWPs in the tgid given by PID. */
1133
1134 static int
1135 num_lwps (int pid)
1136 {
1137 int count = 0;
1138 struct lwp_info *lp;
1139
1140 for (lp = lwp_list; lp; lp = lp->next)
1141 if (ptid_get_pid (lp->ptid) == pid)
1142 count++;
1143
1144 return count;
1145 }
1146
1147 /* Add the LWP specified by PID to the list. Return a pointer to the
1148 structure describing the new LWP. The LWP should already be stopped
1149 (with an exception for the very first LWP). */
1150
1151 static struct lwp_info *
1152 add_lwp (ptid_t ptid)
1153 {
1154 struct lwp_info *lp;
1155
1156 gdb_assert (is_lwp (ptid));
1157
1158 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1159
1160 memset (lp, 0, sizeof (struct lwp_info));
1161
1162 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1163
1164 lp->ptid = ptid;
1165 lp->core = -1;
1166
1167 lp->next = lwp_list;
1168 lwp_list = lp;
1169
1170 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1171 linux_nat_new_thread (ptid);
1172
1173 return lp;
1174 }
1175
1176 /* Remove the LWP specified by PID from the list. */
1177
1178 static void
1179 delete_lwp (ptid_t ptid)
1180 {
1181 struct lwp_info *lp, *lpprev;
1182
1183 lpprev = NULL;
1184
1185 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1186 if (ptid_equal (lp->ptid, ptid))
1187 break;
1188
1189 if (!lp)
1190 return;
1191
1192 if (lpprev)
1193 lpprev->next = lp->next;
1194 else
1195 lwp_list = lp->next;
1196
1197 xfree (lp);
1198 }
1199
1200 /* Return a pointer to the structure describing the LWP corresponding
1201 to PID. If no corresponding LWP could be found, return NULL. */
1202
1203 static struct lwp_info *
1204 find_lwp_pid (ptid_t ptid)
1205 {
1206 struct lwp_info *lp;
1207 int lwp;
1208
1209 if (is_lwp (ptid))
1210 lwp = GET_LWP (ptid);
1211 else
1212 lwp = GET_PID (ptid);
1213
1214 for (lp = lwp_list; lp; lp = lp->next)
1215 if (lwp == GET_LWP (lp->ptid))
1216 return lp;
1217
1218 return NULL;
1219 }
1220
1221 /* Call CALLBACK with its second argument set to DATA for every LWP in
1222 the list. If CALLBACK returns 1 for a particular LWP, return a
1223 pointer to the structure describing that LWP immediately.
1224 Otherwise return NULL. */
1225
1226 struct lwp_info *
1227 iterate_over_lwps (ptid_t filter,
1228 int (*callback) (struct lwp_info *, void *),
1229 void *data)
1230 {
1231 struct lwp_info *lp, *lpnext;
1232
1233 for (lp = lwp_list; lp; lp = lpnext)
1234 {
1235 lpnext = lp->next;
1236
1237 if (ptid_match (lp->ptid, filter))
1238 {
1239 if ((*callback) (lp, data))
1240 return lp;
1241 }
1242 }
1243
1244 return NULL;
1245 }
1246
1247 /* Update our internal state when changing from one checkpoint to
1248 another indicated by NEW_PTID. We can only switch single-threaded
1249 applications, so we only create one new LWP, and the previous list
1250 is discarded. */
1251
1252 void
1253 linux_nat_switch_fork (ptid_t new_ptid)
1254 {
1255 struct lwp_info *lp;
1256
1257 purge_lwp_list (GET_PID (inferior_ptid));
1258
1259 lp = add_lwp (new_ptid);
1260 lp->stopped = 1;
1261
1262 /* This changes the thread's ptid while preserving the gdb thread
1263 num. Also changes the inferior pid, while preserving the
1264 inferior num. */
1265 thread_change_ptid (inferior_ptid, new_ptid);
1266
1267 /* We've just told GDB core that the thread changed target id, but,
1268 in fact, it really is a different thread, with different register
1269 contents. */
1270 registers_changed ();
1271 }
1272
1273 /* Handle the exit of a single thread LP. */
1274
1275 static void
1276 exit_lwp (struct lwp_info *lp)
1277 {
1278 struct thread_info *th = find_thread_ptid (lp->ptid);
1279
1280 if (th)
1281 {
1282 if (print_thread_events)
1283 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1284
1285 delete_thread (lp->ptid);
1286 }
1287
1288 delete_lwp (lp->ptid);
1289 }
1290
1291 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1292
1293 int
1294 linux_proc_get_tgid (int lwpid)
1295 {
1296 FILE *status_file;
1297 char buf[100];
1298 int tgid = -1;
1299
1300 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1301 status_file = fopen (buf, "r");
1302 if (status_file != NULL)
1303 {
1304 while (fgets (buf, sizeof (buf), status_file))
1305 {
1306 if (strncmp (buf, "Tgid:", 5) == 0)
1307 {
1308 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1309 break;
1310 }
1311 }
1312
1313 fclose (status_file);
1314 }
1315
1316 return tgid;
1317 }
1318
1319 /* Detect `T (stopped)' in `/proc/PID/status'.
1320 Other states including `T (tracing stop)' are reported as false. */
1321
1322 static int
1323 pid_is_stopped (pid_t pid)
1324 {
1325 FILE *status_file;
1326 char buf[100];
1327 int retval = 0;
1328
1329 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1330 status_file = fopen (buf, "r");
1331 if (status_file != NULL)
1332 {
1333 int have_state = 0;
1334
1335 while (fgets (buf, sizeof (buf), status_file))
1336 {
1337 if (strncmp (buf, "State:", 6) == 0)
1338 {
1339 have_state = 1;
1340 break;
1341 }
1342 }
1343 if (have_state && strstr (buf, "T (stopped)") != NULL)
1344 retval = 1;
1345 fclose (status_file);
1346 }
1347 return retval;
1348 }
1349
1350 /* Wait for the LWP specified by LP, which we have just attached to.
1351 Returns a wait status for that LWP, to cache. */
1352
1353 static int
1354 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1355 int *signalled)
1356 {
1357 pid_t new_pid, pid = GET_LWP (ptid);
1358 int status;
1359
1360 if (pid_is_stopped (pid))
1361 {
1362 if (debug_linux_nat)
1363 fprintf_unfiltered (gdb_stdlog,
1364 "LNPAW: Attaching to a stopped process\n");
1365
1366 /* The process is definitely stopped. It is in a job control
1367 stop, unless the kernel predates the TASK_STOPPED /
1368 TASK_TRACED distinction, in which case it might be in a
1369 ptrace stop. Make sure it is in a ptrace stop; from there we
1370 can kill it, signal it, et cetera.
1371
1372 First make sure there is a pending SIGSTOP. Since we are
1373 already attached, the process can not transition from stopped
1374 to running without a PTRACE_CONT; so we know this signal will
1375 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1376 probably already in the queue (unless this kernel is old
1377 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1378 is not an RT signal, it can only be queued once. */
1379 kill_lwp (pid, SIGSTOP);
1380
1381 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1382 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1383 ptrace (PTRACE_CONT, pid, 0, 0);
1384 }
1385
1386 /* Make sure the initial process is stopped. The user-level threads
1387 layer might want to poke around in the inferior, and that won't
1388 work if things haven't stabilized yet. */
1389 new_pid = my_waitpid (pid, &status, 0);
1390 if (new_pid == -1 && errno == ECHILD)
1391 {
1392 if (first)
1393 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1394
1395 /* Try again with __WCLONE to check cloned processes. */
1396 new_pid = my_waitpid (pid, &status, __WCLONE);
1397 *cloned = 1;
1398 }
1399
1400 gdb_assert (pid == new_pid);
1401
1402 if (!WIFSTOPPED (status))
1403 {
1404 /* The pid we tried to attach has apparently just exited. */
1405 if (debug_linux_nat)
1406 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1407 pid, status_to_str (status));
1408 return status;
1409 }
1410
1411 if (WSTOPSIG (status) != SIGSTOP)
1412 {
1413 *signalled = 1;
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "LNPAW: Received %s after attaching\n",
1417 status_to_str (status));
1418 }
1419
1420 return status;
1421 }
1422
1423 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1424 if the new LWP could not be attached. */
1425
1426 int
1427 lin_lwp_attach_lwp (ptid_t ptid)
1428 {
1429 struct lwp_info *lp;
1430 sigset_t prev_mask;
1431
1432 gdb_assert (is_lwp (ptid));
1433
1434 block_child_signals (&prev_mask);
1435
1436 lp = find_lwp_pid (ptid);
1437
1438 /* We assume that we're already attached to any LWP that has an id
1439 equal to the overall process id, and to any LWP that is already
1440 in our list of LWPs. If we're not seeing exit events from threads
1441 and we've had PID wraparound since we last tried to stop all threads,
1442 this assumption might be wrong; fortunately, this is very unlikely
1443 to happen. */
1444 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1445 {
1446 int status, cloned = 0, signalled = 0;
1447
1448 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1449 {
1450 /* If we fail to attach to the thread, issue a warning,
1451 but continue. One way this can happen is if thread
1452 creation is interrupted; as of Linux kernel 2.6.19, a
1453 bug may place threads in the thread list and then fail
1454 to create them. */
1455 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1456 safe_strerror (errno));
1457 restore_child_signals_mask (&prev_mask);
1458 return -1;
1459 }
1460
1461 if (debug_linux_nat)
1462 fprintf_unfiltered (gdb_stdlog,
1463 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1464 target_pid_to_str (ptid));
1465
1466 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1467 if (!WIFSTOPPED (status))
1468 return -1;
1469
1470 lp = add_lwp (ptid);
1471 lp->stopped = 1;
1472 lp->cloned = cloned;
1473 lp->signalled = signalled;
1474 if (WSTOPSIG (status) != SIGSTOP)
1475 {
1476 lp->resumed = 1;
1477 lp->status = status;
1478 }
1479
1480 target_post_attach (GET_LWP (lp->ptid));
1481
1482 if (debug_linux_nat)
1483 {
1484 fprintf_unfiltered (gdb_stdlog,
1485 "LLAL: waitpid %s received %s\n",
1486 target_pid_to_str (ptid),
1487 status_to_str (status));
1488 }
1489 }
1490 else
1491 {
1492 /* We assume that the LWP representing the original process is
1493 already stopped. Mark it as stopped in the data structure
1494 that the GNU/linux ptrace layer uses to keep track of
1495 threads. Note that this won't have already been done since
1496 the main thread will have, we assume, been stopped by an
1497 attach from a different layer. */
1498 if (lp == NULL)
1499 lp = add_lwp (ptid);
1500 lp->stopped = 1;
1501 }
1502
1503 restore_child_signals_mask (&prev_mask);
1504 return 0;
1505 }
1506
1507 static void
1508 linux_nat_create_inferior (struct target_ops *ops,
1509 char *exec_file, char *allargs, char **env,
1510 int from_tty)
1511 {
1512 #ifdef HAVE_PERSONALITY
1513 int personality_orig = 0, personality_set = 0;
1514 #endif /* HAVE_PERSONALITY */
1515
1516 /* The fork_child mechanism is synchronous and calls target_wait, so
1517 we have to mask the async mode. */
1518
1519 #ifdef HAVE_PERSONALITY
1520 if (disable_randomization)
1521 {
1522 errno = 0;
1523 personality_orig = personality (0xffffffff);
1524 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1525 {
1526 personality_set = 1;
1527 personality (personality_orig | ADDR_NO_RANDOMIZE);
1528 }
1529 if (errno != 0 || (personality_set
1530 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1531 warning (_("Error disabling address space randomization: %s"),
1532 safe_strerror (errno));
1533 }
1534 #endif /* HAVE_PERSONALITY */
1535
1536 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1537
1538 #ifdef HAVE_PERSONALITY
1539 if (personality_set)
1540 {
1541 errno = 0;
1542 personality (personality_orig);
1543 if (errno != 0)
1544 warning (_("Error restoring address space randomization: %s"),
1545 safe_strerror (errno));
1546 }
1547 #endif /* HAVE_PERSONALITY */
1548 }
1549
1550 static void
1551 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1552 {
1553 struct lwp_info *lp;
1554 int status;
1555 ptid_t ptid;
1556
1557 linux_ops->to_attach (ops, args, from_tty);
1558
1559 /* The ptrace base target adds the main thread with (pid,0,0)
1560 format. Decorate it with lwp info. */
1561 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1562 thread_change_ptid (inferior_ptid, ptid);
1563
1564 /* Add the initial process as the first LWP to the list. */
1565 lp = add_lwp (ptid);
1566
1567 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1568 &lp->signalled);
1569 if (!WIFSTOPPED (status))
1570 {
1571 if (WIFEXITED (status))
1572 {
1573 int exit_code = WEXITSTATUS (status);
1574
1575 target_terminal_ours ();
1576 target_mourn_inferior ();
1577 if (exit_code == 0)
1578 error (_("Unable to attach: program exited normally."));
1579 else
1580 error (_("Unable to attach: program exited with code %d."),
1581 exit_code);
1582 }
1583 else if (WIFSIGNALED (status))
1584 {
1585 enum target_signal signo;
1586
1587 target_terminal_ours ();
1588 target_mourn_inferior ();
1589
1590 signo = target_signal_from_host (WTERMSIG (status));
1591 error (_("Unable to attach: program terminated with signal "
1592 "%s, %s."),
1593 target_signal_to_name (signo),
1594 target_signal_to_string (signo));
1595 }
1596
1597 internal_error (__FILE__, __LINE__,
1598 _("unexpected status %d for PID %ld"),
1599 status, (long) GET_LWP (ptid));
1600 }
1601
1602 lp->stopped = 1;
1603
1604 /* Save the wait status to report later. */
1605 lp->resumed = 1;
1606 if (debug_linux_nat)
1607 fprintf_unfiltered (gdb_stdlog,
1608 "LNA: waitpid %ld, saving status %s\n",
1609 (long) GET_PID (lp->ptid), status_to_str (status));
1610
1611 lp->status = status;
1612
1613 if (target_can_async_p ())
1614 target_async (inferior_event_handler, 0);
1615 }
1616
1617 /* Get pending status of LP. */
1618 static int
1619 get_pending_status (struct lwp_info *lp, int *status)
1620 {
1621 enum target_signal signo = TARGET_SIGNAL_0;
1622
1623 /* If we paused threads momentarily, we may have stored pending
1624 events in lp->status or lp->waitstatus (see stop_wait_callback),
1625 and GDB core hasn't seen any signal for those threads.
1626 Otherwise, the last signal reported to the core is found in the
1627 thread object's stop_signal.
1628
1629 There's a corner case that isn't handled here at present. Only
1630 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1631 stop_signal make sense as a real signal to pass to the inferior.
1632 Some catchpoint related events, like
1633 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1634 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1635 those traps are debug API (ptrace in our case) related and
1636 induced; the inferior wouldn't see them if it wasn't being
1637 traced. Hence, we should never pass them to the inferior, even
1638 when set to pass state. Since this corner case isn't handled by
1639 infrun.c when proceeding with a signal, for consistency, neither
1640 do we handle it here (or elsewhere in the file we check for
1641 signal pass state). Normally SIGTRAP isn't set to pass state, so
1642 this is really a corner case. */
1643
1644 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1645 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1646 else if (lp->status)
1647 signo = target_signal_from_host (WSTOPSIG (lp->status));
1648 else if (non_stop && !is_executing (lp->ptid))
1649 {
1650 struct thread_info *tp = find_thread_ptid (lp->ptid);
1651
1652 signo = tp->stop_signal;
1653 }
1654 else if (!non_stop)
1655 {
1656 struct target_waitstatus last;
1657 ptid_t last_ptid;
1658
1659 get_last_target_status (&last_ptid, &last);
1660
1661 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1662 {
1663 struct thread_info *tp = find_thread_ptid (lp->ptid);
1664
1665 signo = tp->stop_signal;
1666 }
1667 }
1668
1669 *status = 0;
1670
1671 if (signo == TARGET_SIGNAL_0)
1672 {
1673 if (debug_linux_nat)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "GPT: lwp %s has no pending signal\n",
1676 target_pid_to_str (lp->ptid));
1677 }
1678 else if (!signal_pass_state (signo))
1679 {
1680 if (debug_linux_nat)
1681 fprintf_unfiltered (gdb_stdlog, "\
1682 GPT: lwp %s had signal %s, but it is in no pass state\n",
1683 target_pid_to_str (lp->ptid),
1684 target_signal_to_string (signo));
1685 }
1686 else
1687 {
1688 *status = W_STOPCODE (target_signal_to_host (signo));
1689
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s has pending signal %s\n",
1693 target_pid_to_str (lp->ptid),
1694 target_signal_to_string (signo));
1695 }
1696
1697 return 0;
1698 }
1699
1700 static int
1701 detach_callback (struct lwp_info *lp, void *data)
1702 {
1703 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1704
1705 if (debug_linux_nat && lp->status)
1706 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1707 strsignal (WSTOPSIG (lp->status)),
1708 target_pid_to_str (lp->ptid));
1709
1710 /* If there is a pending SIGSTOP, get rid of it. */
1711 if (lp->signalled)
1712 {
1713 if (debug_linux_nat)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "DC: Sending SIGCONT to %s\n",
1716 target_pid_to_str (lp->ptid));
1717
1718 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1719 lp->signalled = 0;
1720 }
1721
1722 /* We don't actually detach from the LWP that has an id equal to the
1723 overall process id just yet. */
1724 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1725 {
1726 int status = 0;
1727
1728 /* Pass on any pending signal for this LWP. */
1729 get_pending_status (lp, &status);
1730
1731 errno = 0;
1732 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1733 WSTOPSIG (status)) < 0)
1734 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1735 safe_strerror (errno));
1736
1737 if (debug_linux_nat)
1738 fprintf_unfiltered (gdb_stdlog,
1739 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1740 target_pid_to_str (lp->ptid),
1741 strsignal (WSTOPSIG (status)));
1742
1743 delete_lwp (lp->ptid);
1744 }
1745
1746 return 0;
1747 }
1748
1749 static void
1750 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1751 {
1752 int pid;
1753 int status;
1754 struct lwp_info *main_lwp;
1755
1756 pid = GET_PID (inferior_ptid);
1757
1758 if (target_can_async_p ())
1759 linux_nat_async (NULL, 0);
1760
1761 /* Stop all threads before detaching. ptrace requires that the
1762 thread is stopped to sucessfully detach. */
1763 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1764 /* ... and wait until all of them have reported back that
1765 they're no longer running. */
1766 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1767
1768 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1769
1770 /* Only the initial process should be left right now. */
1771 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1772
1773 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1774
1775 /* Pass on any pending signal for the last LWP. */
1776 if ((args == NULL || *args == '\0')
1777 && get_pending_status (main_lwp, &status) != -1
1778 && WIFSTOPPED (status))
1779 {
1780 /* Put the signal number in ARGS so that inf_ptrace_detach will
1781 pass it along with PTRACE_DETACH. */
1782 args = alloca (8);
1783 sprintf (args, "%d", (int) WSTOPSIG (status));
1784 if (debug_linux_nat)
1785 fprintf_unfiltered (gdb_stdlog,
1786 "LND: Sending signal %s to %s\n",
1787 args,
1788 target_pid_to_str (main_lwp->ptid));
1789 }
1790
1791 delete_lwp (main_lwp->ptid);
1792
1793 if (forks_exist_p ())
1794 {
1795 /* Multi-fork case. The current inferior_ptid is being detached
1796 from, but there are other viable forks to debug. Detach from
1797 the current fork, and context-switch to the first
1798 available. */
1799 linux_fork_detach (args, from_tty);
1800
1801 if (non_stop && target_can_async_p ())
1802 target_async (inferior_event_handler, 0);
1803 }
1804 else
1805 linux_ops->to_detach (ops, args, from_tty);
1806 }
1807
1808 /* Resume LP. */
1809
1810 static int
1811 resume_callback (struct lwp_info *lp, void *data)
1812 {
1813 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1814
1815 if (lp->stopped && inf->vfork_child != NULL)
1816 {
1817 if (debug_linux_nat)
1818 fprintf_unfiltered (gdb_stdlog,
1819 "RC: Not resuming %s (vfork parent)\n",
1820 target_pid_to_str (lp->ptid));
1821 }
1822 else if (lp->stopped && lp->status == 0)
1823 {
1824 if (debug_linux_nat)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1827 target_pid_to_str (lp->ptid));
1828
1829 linux_ops->to_resume (linux_ops,
1830 pid_to_ptid (GET_LWP (lp->ptid)),
1831 0, TARGET_SIGNAL_0);
1832 if (debug_linux_nat)
1833 fprintf_unfiltered (gdb_stdlog,
1834 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1835 target_pid_to_str (lp->ptid));
1836 lp->stopped = 0;
1837 lp->step = 0;
1838 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1839 lp->stopped_by_watchpoint = 0;
1840 }
1841 else if (lp->stopped && debug_linux_nat)
1842 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1843 target_pid_to_str (lp->ptid));
1844 else if (debug_linux_nat)
1845 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1846 target_pid_to_str (lp->ptid));
1847
1848 return 0;
1849 }
1850
1851 static int
1852 resume_clear_callback (struct lwp_info *lp, void *data)
1853 {
1854 lp->resumed = 0;
1855 return 0;
1856 }
1857
1858 static int
1859 resume_set_callback (struct lwp_info *lp, void *data)
1860 {
1861 lp->resumed = 1;
1862 return 0;
1863 }
1864
1865 static void
1866 linux_nat_resume (struct target_ops *ops,
1867 ptid_t ptid, int step, enum target_signal signo)
1868 {
1869 sigset_t prev_mask;
1870 struct lwp_info *lp;
1871 int resume_many;
1872
1873 if (debug_linux_nat)
1874 fprintf_unfiltered (gdb_stdlog,
1875 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1876 step ? "step" : "resume",
1877 target_pid_to_str (ptid),
1878 signo ? strsignal (signo) : "0",
1879 target_pid_to_str (inferior_ptid));
1880
1881 block_child_signals (&prev_mask);
1882
1883 /* A specific PTID means `step only this process id'. */
1884 resume_many = (ptid_equal (minus_one_ptid, ptid)
1885 || ptid_is_pid (ptid));
1886
1887 /* Mark the lwps we're resuming as resumed. */
1888 iterate_over_lwps (ptid, resume_set_callback, NULL);
1889
1890 /* See if it's the current inferior that should be handled
1891 specially. */
1892 if (resume_many)
1893 lp = find_lwp_pid (inferior_ptid);
1894 else
1895 lp = find_lwp_pid (ptid);
1896 gdb_assert (lp != NULL);
1897
1898 /* Remember if we're stepping. */
1899 lp->step = step;
1900
1901 /* If we have a pending wait status for this thread, there is no
1902 point in resuming the process. But first make sure that
1903 linux_nat_wait won't preemptively handle the event - we
1904 should never take this short-circuit if we are going to
1905 leave LP running, since we have skipped resuming all the
1906 other threads. This bit of code needs to be synchronized
1907 with linux_nat_wait. */
1908
1909 if (lp->status && WIFSTOPPED (lp->status))
1910 {
1911 int saved_signo;
1912 struct inferior *inf;
1913
1914 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1915 gdb_assert (inf);
1916 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1917
1918 /* Defer to common code if we're gaining control of the
1919 inferior. */
1920 if (inf->stop_soon == NO_STOP_QUIETLY
1921 && signal_stop_state (saved_signo) == 0
1922 && signal_print_state (saved_signo) == 0
1923 && signal_pass_state (saved_signo) == 1)
1924 {
1925 if (debug_linux_nat)
1926 fprintf_unfiltered (gdb_stdlog,
1927 "LLR: Not short circuiting for ignored "
1928 "status 0x%x\n", lp->status);
1929
1930 /* FIXME: What should we do if we are supposed to continue
1931 this thread with a signal? */
1932 gdb_assert (signo == TARGET_SIGNAL_0);
1933 signo = saved_signo;
1934 lp->status = 0;
1935 }
1936 }
1937
1938 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1939 {
1940 /* FIXME: What should we do if we are supposed to continue
1941 this thread with a signal? */
1942 gdb_assert (signo == TARGET_SIGNAL_0);
1943
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog,
1946 "LLR: Short circuiting for status 0x%x\n",
1947 lp->status);
1948
1949 restore_child_signals_mask (&prev_mask);
1950 if (target_can_async_p ())
1951 {
1952 target_async (inferior_event_handler, 0);
1953 /* Tell the event loop we have something to process. */
1954 async_file_mark ();
1955 }
1956 return;
1957 }
1958
1959 /* Mark LWP as not stopped to prevent it from being continued by
1960 resume_callback. */
1961 lp->stopped = 0;
1962
1963 if (resume_many)
1964 iterate_over_lwps (ptid, resume_callback, NULL);
1965
1966 /* Convert to something the lower layer understands. */
1967 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1968
1969 linux_ops->to_resume (linux_ops, ptid, step, signo);
1970 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1971 lp->stopped_by_watchpoint = 0;
1972
1973 if (debug_linux_nat)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "LLR: %s %s, %s (resume event thread)\n",
1976 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1977 target_pid_to_str (ptid),
1978 signo ? strsignal (signo) : "0");
1979
1980 restore_child_signals_mask (&prev_mask);
1981 if (target_can_async_p ())
1982 target_async (inferior_event_handler, 0);
1983 }
1984
1985 /* Send a signal to an LWP. */
1986
1987 static int
1988 kill_lwp (int lwpid, int signo)
1989 {
1990 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1991 fails, then we are not using nptl threads and we should be using kill. */
1992
1993 #ifdef HAVE_TKILL_SYSCALL
1994 {
1995 static int tkill_failed;
1996
1997 if (!tkill_failed)
1998 {
1999 int ret;
2000
2001 errno = 0;
2002 ret = syscall (__NR_tkill, lwpid, signo);
2003 if (errno != ENOSYS)
2004 return ret;
2005 tkill_failed = 1;
2006 }
2007 }
2008 #endif
2009
2010 return kill (lwpid, signo);
2011 }
2012
2013 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2014 event, check if the core is interested in it: if not, ignore the
2015 event, and keep waiting; otherwise, we need to toggle the LWP's
2016 syscall entry/exit status, since the ptrace event itself doesn't
2017 indicate it, and report the trap to higher layers. */
2018
2019 static int
2020 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2021 {
2022 struct target_waitstatus *ourstatus = &lp->waitstatus;
2023 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2024 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2025
2026 if (stopping)
2027 {
2028 /* If we're stopping threads, there's a SIGSTOP pending, which
2029 makes it so that the LWP reports an immediate syscall return,
2030 followed by the SIGSTOP. Skip seeing that "return" using
2031 PTRACE_CONT directly, and let stop_wait_callback collect the
2032 SIGSTOP. Later when the thread is resumed, a new syscall
2033 entry event. If we didn't do this (and returned 0), we'd
2034 leave a syscall entry pending, and our caller, by using
2035 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2036 itself. Later, when the user re-resumes this LWP, we'd see
2037 another syscall entry event and we'd mistake it for a return.
2038
2039 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2040 (leaving immediately with LWP->signalled set, without issuing
2041 a PTRACE_CONT), it would still be problematic to leave this
2042 syscall enter pending, as later when the thread is resumed,
2043 it would then see the same syscall exit mentioned above,
2044 followed by the delayed SIGSTOP, while the syscall didn't
2045 actually get to execute. It seems it would be even more
2046 confusing to the user. */
2047
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHST: ignoring syscall %d "
2051 "for LWP %ld (stopping threads), "
2052 "resuming with PTRACE_CONT for SIGSTOP\n",
2053 syscall_number,
2054 GET_LWP (lp->ptid));
2055
2056 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2057 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2058 return 1;
2059 }
2060
2061 if (catch_syscall_enabled ())
2062 {
2063 /* Always update the entry/return state, even if this particular
2064 syscall isn't interesting to the core now. In async mode,
2065 the user could install a new catchpoint for this syscall
2066 between syscall enter/return, and we'll need to know to
2067 report a syscall return if that happens. */
2068 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2069 ? TARGET_WAITKIND_SYSCALL_RETURN
2070 : TARGET_WAITKIND_SYSCALL_ENTRY);
2071
2072 if (catching_syscall_number (syscall_number))
2073 {
2074 /* Alright, an event to report. */
2075 ourstatus->kind = lp->syscall_state;
2076 ourstatus->value.syscall_number = syscall_number;
2077
2078 if (debug_linux_nat)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "LHST: stopping for %s of syscall %d"
2081 " for LWP %ld\n",
2082 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2083 ? "entry" : "return",
2084 syscall_number,
2085 GET_LWP (lp->ptid));
2086 return 0;
2087 }
2088
2089 if (debug_linux_nat)
2090 fprintf_unfiltered (gdb_stdlog,
2091 "LHST: ignoring %s of syscall %d "
2092 "for LWP %ld\n",
2093 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2094 ? "entry" : "return",
2095 syscall_number,
2096 GET_LWP (lp->ptid));
2097 }
2098 else
2099 {
2100 /* If we had been syscall tracing, and hence used PT_SYSCALL
2101 before on this LWP, it could happen that the user removes all
2102 syscall catchpoints before we get to process this event.
2103 There are two noteworthy issues here:
2104
2105 - When stopped at a syscall entry event, resuming with
2106 PT_STEP still resumes executing the syscall and reports a
2107 syscall return.
2108
2109 - Only PT_SYSCALL catches syscall enters. If we last
2110 single-stepped this thread, then this event can't be a
2111 syscall enter. If we last single-stepped this thread, this
2112 has to be a syscall exit.
2113
2114 The points above mean that the next resume, be it PT_STEP or
2115 PT_CONTINUE, can not trigger a syscall trace event. */
2116 if (debug_linux_nat)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "LHST: caught syscall event with no syscall catchpoints."
2119 " %d for LWP %ld, ignoring\n",
2120 syscall_number,
2121 GET_LWP (lp->ptid));
2122 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2123 }
2124
2125 /* The core isn't interested in this event. For efficiency, avoid
2126 stopping all threads only to have the core resume them all again.
2127 Since we're not stopping threads, if we're still syscall tracing
2128 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2129 subsequent syscall. Simply resume using the inf-ptrace layer,
2130 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2131
2132 /* Note that gdbarch_get_syscall_number may access registers, hence
2133 fill a regcache. */
2134 registers_changed ();
2135 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2136 lp->step, TARGET_SIGNAL_0);
2137 return 1;
2138 }
2139
2140 /* Handle a GNU/Linux extended wait response. If we see a clone
2141 event, we need to add the new LWP to our list (and not report the
2142 trap to higher layers). This function returns non-zero if the
2143 event should be ignored and we should wait again. If STOPPING is
2144 true, the new LWP remains stopped, otherwise it is continued. */
2145
2146 static int
2147 linux_handle_extended_wait (struct lwp_info *lp, int status,
2148 int stopping)
2149 {
2150 int pid = GET_LWP (lp->ptid);
2151 struct target_waitstatus *ourstatus = &lp->waitstatus;
2152 int event = status >> 16;
2153
2154 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2155 || event == PTRACE_EVENT_CLONE)
2156 {
2157 unsigned long new_pid;
2158 int ret;
2159
2160 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2161
2162 /* If we haven't already seen the new PID stop, wait for it now. */
2163 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2164 {
2165 /* The new child has a pending SIGSTOP. We can't affect it until it
2166 hits the SIGSTOP, but we're already attached. */
2167 ret = my_waitpid (new_pid, &status,
2168 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2169 if (ret == -1)
2170 perror_with_name (_("waiting for new child"));
2171 else if (ret != new_pid)
2172 internal_error (__FILE__, __LINE__,
2173 _("wait returned unexpected PID %d"), ret);
2174 else if (!WIFSTOPPED (status))
2175 internal_error (__FILE__, __LINE__,
2176 _("wait returned unexpected status 0x%x"), status);
2177 }
2178
2179 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2180
2181 if (event == PTRACE_EVENT_FORK
2182 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2183 {
2184 struct fork_info *fp;
2185
2186 /* Handle checkpointing by linux-fork.c here as a special
2187 case. We don't want the follow-fork-mode or 'catch fork'
2188 to interfere with this. */
2189
2190 /* This won't actually modify the breakpoint list, but will
2191 physically remove the breakpoints from the child. */
2192 detach_breakpoints (new_pid);
2193
2194 /* Retain child fork in ptrace (stopped) state. */
2195 fp = find_fork_pid (new_pid);
2196 if (!fp)
2197 fp = add_fork (new_pid);
2198
2199 /* Report as spurious, so that infrun doesn't want to follow
2200 this fork. We're actually doing an infcall in
2201 linux-fork.c. */
2202 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2203 linux_enable_event_reporting (pid_to_ptid (new_pid));
2204
2205 /* Report the stop to the core. */
2206 return 0;
2207 }
2208
2209 if (event == PTRACE_EVENT_FORK)
2210 ourstatus->kind = TARGET_WAITKIND_FORKED;
2211 else if (event == PTRACE_EVENT_VFORK)
2212 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2213 else
2214 {
2215 struct lwp_info *new_lp;
2216
2217 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2218
2219 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2220 new_lp->cloned = 1;
2221 new_lp->stopped = 1;
2222
2223 if (WSTOPSIG (status) != SIGSTOP)
2224 {
2225 /* This can happen if someone starts sending signals to
2226 the new thread before it gets a chance to run, which
2227 have a lower number than SIGSTOP (e.g. SIGUSR1).
2228 This is an unlikely case, and harder to handle for
2229 fork / vfork than for clone, so we do not try - but
2230 we handle it for clone events here. We'll send
2231 the other signal on to the thread below. */
2232
2233 new_lp->signalled = 1;
2234 }
2235 else
2236 status = 0;
2237
2238 if (non_stop)
2239 {
2240 /* Add the new thread to GDB's lists as soon as possible
2241 so that:
2242
2243 1) the frontend doesn't have to wait for a stop to
2244 display them, and,
2245
2246 2) we tag it with the correct running state. */
2247
2248 /* If the thread_db layer is active, let it know about
2249 this new thread, and add it to GDB's list. */
2250 if (!thread_db_attach_lwp (new_lp->ptid))
2251 {
2252 /* We're not using thread_db. Add it to GDB's
2253 list. */
2254 target_post_attach (GET_LWP (new_lp->ptid));
2255 add_thread (new_lp->ptid);
2256 }
2257
2258 if (!stopping)
2259 {
2260 set_running (new_lp->ptid, 1);
2261 set_executing (new_lp->ptid, 1);
2262 }
2263 }
2264
2265 /* Note the need to use the low target ops to resume, to
2266 handle resuming with PT_SYSCALL if we have syscall
2267 catchpoints. */
2268 if (!stopping)
2269 {
2270 int signo;
2271
2272 new_lp->stopped = 0;
2273 new_lp->resumed = 1;
2274
2275 signo = (status
2276 ? target_signal_from_host (WSTOPSIG (status))
2277 : TARGET_SIGNAL_0);
2278
2279 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2280 0, signo);
2281 }
2282
2283 if (debug_linux_nat)
2284 fprintf_unfiltered (gdb_stdlog,
2285 "LHEW: Got clone event from LWP %ld, resuming\n",
2286 GET_LWP (lp->ptid));
2287 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2288 0, TARGET_SIGNAL_0);
2289
2290 return 1;
2291 }
2292
2293 return 0;
2294 }
2295
2296 if (event == PTRACE_EVENT_EXEC)
2297 {
2298 if (debug_linux_nat)
2299 fprintf_unfiltered (gdb_stdlog,
2300 "LHEW: Got exec event from LWP %ld\n",
2301 GET_LWP (lp->ptid));
2302
2303 ourstatus->kind = TARGET_WAITKIND_EXECD;
2304 ourstatus->value.execd_pathname
2305 = xstrdup (linux_child_pid_to_exec_file (pid));
2306
2307 return 0;
2308 }
2309
2310 if (event == PTRACE_EVENT_VFORK_DONE)
2311 {
2312 if (current_inferior ()->waiting_for_vfork_done)
2313 {
2314 if (debug_linux_nat)
2315 fprintf_unfiltered (gdb_stdlog, "\
2316 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2317 GET_LWP (lp->ptid));
2318
2319 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2320 return 0;
2321 }
2322
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog, "\
2325 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2326 GET_LWP (lp->ptid));
2327 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2328 return 1;
2329 }
2330
2331 internal_error (__FILE__, __LINE__,
2332 _("unknown ptrace event %d"), event);
2333 }
2334
2335 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2336 exited. */
2337
2338 static int
2339 wait_lwp (struct lwp_info *lp)
2340 {
2341 pid_t pid;
2342 int status;
2343 int thread_dead = 0;
2344
2345 gdb_assert (!lp->stopped);
2346 gdb_assert (lp->status == 0);
2347
2348 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2349 if (pid == -1 && errno == ECHILD)
2350 {
2351 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2352 if (pid == -1 && errno == ECHILD)
2353 {
2354 /* The thread has previously exited. We need to delete it
2355 now because, for some vendor 2.4 kernels with NPTL
2356 support backported, there won't be an exit event unless
2357 it is the main thread. 2.6 kernels will report an exit
2358 event for each thread that exits, as expected. */
2359 thread_dead = 1;
2360 if (debug_linux_nat)
2361 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2362 target_pid_to_str (lp->ptid));
2363 }
2364 }
2365
2366 if (!thread_dead)
2367 {
2368 gdb_assert (pid == GET_LWP (lp->ptid));
2369
2370 if (debug_linux_nat)
2371 {
2372 fprintf_unfiltered (gdb_stdlog,
2373 "WL: waitpid %s received %s\n",
2374 target_pid_to_str (lp->ptid),
2375 status_to_str (status));
2376 }
2377 }
2378
2379 /* Check if the thread has exited. */
2380 if (WIFEXITED (status) || WIFSIGNALED (status))
2381 {
2382 thread_dead = 1;
2383 if (debug_linux_nat)
2384 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2385 target_pid_to_str (lp->ptid));
2386 }
2387
2388 if (thread_dead)
2389 {
2390 exit_lwp (lp);
2391 return 0;
2392 }
2393
2394 gdb_assert (WIFSTOPPED (status));
2395
2396 /* Handle GNU/Linux's syscall SIGTRAPs. */
2397 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2398 {
2399 /* No longer need the sysgood bit. The ptrace event ends up
2400 recorded in lp->waitstatus if we care for it. We can carry
2401 on handling the event like a regular SIGTRAP from here
2402 on. */
2403 status = W_STOPCODE (SIGTRAP);
2404 if (linux_handle_syscall_trap (lp, 1))
2405 return wait_lwp (lp);
2406 }
2407
2408 /* Handle GNU/Linux's extended waitstatus for trace events. */
2409 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2410 {
2411 if (debug_linux_nat)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "WL: Handling extended status 0x%06x\n",
2414 status);
2415 if (linux_handle_extended_wait (lp, status, 1))
2416 return wait_lwp (lp);
2417 }
2418
2419 return status;
2420 }
2421
2422 /* Save the most recent siginfo for LP. This is currently only called
2423 for SIGTRAP; some ports use the si_addr field for
2424 target_stopped_data_address. In the future, it may also be used to
2425 restore the siginfo of requeued signals. */
2426
2427 static void
2428 save_siginfo (struct lwp_info *lp)
2429 {
2430 errno = 0;
2431 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2432 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2433
2434 if (errno != 0)
2435 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2436 }
2437
2438 /* Send a SIGSTOP to LP. */
2439
2440 static int
2441 stop_callback (struct lwp_info *lp, void *data)
2442 {
2443 if (!lp->stopped && !lp->signalled)
2444 {
2445 int ret;
2446
2447 if (debug_linux_nat)
2448 {
2449 fprintf_unfiltered (gdb_stdlog,
2450 "SC: kill %s **<SIGSTOP>**\n",
2451 target_pid_to_str (lp->ptid));
2452 }
2453 errno = 0;
2454 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2455 if (debug_linux_nat)
2456 {
2457 fprintf_unfiltered (gdb_stdlog,
2458 "SC: lwp kill %d %s\n",
2459 ret,
2460 errno ? safe_strerror (errno) : "ERRNO-OK");
2461 }
2462
2463 lp->signalled = 1;
2464 gdb_assert (lp->status == 0);
2465 }
2466
2467 return 0;
2468 }
2469
2470 /* Return non-zero if LWP PID has a pending SIGINT. */
2471
2472 static int
2473 linux_nat_has_pending_sigint (int pid)
2474 {
2475 sigset_t pending, blocked, ignored;
2476
2477 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2478
2479 if (sigismember (&pending, SIGINT)
2480 && !sigismember (&ignored, SIGINT))
2481 return 1;
2482
2483 return 0;
2484 }
2485
2486 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2487
2488 static int
2489 set_ignore_sigint (struct lwp_info *lp, void *data)
2490 {
2491 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2492 flag to consume the next one. */
2493 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2494 && WSTOPSIG (lp->status) == SIGINT)
2495 lp->status = 0;
2496 else
2497 lp->ignore_sigint = 1;
2498
2499 return 0;
2500 }
2501
2502 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2503 This function is called after we know the LWP has stopped; if the LWP
2504 stopped before the expected SIGINT was delivered, then it will never have
2505 arrived. Also, if the signal was delivered to a shared queue and consumed
2506 by a different thread, it will never be delivered to this LWP. */
2507
2508 static void
2509 maybe_clear_ignore_sigint (struct lwp_info *lp)
2510 {
2511 if (!lp->ignore_sigint)
2512 return;
2513
2514 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2515 {
2516 if (debug_linux_nat)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "MCIS: Clearing bogus flag for %s\n",
2519 target_pid_to_str (lp->ptid));
2520 lp->ignore_sigint = 0;
2521 }
2522 }
2523
2524 /* Fetch the possible triggered data watchpoint info and store it in
2525 LP.
2526
2527 On some archs, like x86, that use debug registers to set
2528 watchpoints, it's possible that the way to know which watched
2529 address trapped, is to check the register that is used to select
2530 which address to watch. Problem is, between setting the watchpoint
2531 and reading back which data address trapped, the user may change
2532 the set of watchpoints, and, as a consequence, GDB changes the
2533 debug registers in the inferior. To avoid reading back a stale
2534 stopped-data-address when that happens, we cache in LP the fact
2535 that a watchpoint trapped, and the corresponding data address, as
2536 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2537 registers meanwhile, we have the cached data we can rely on. */
2538
2539 static void
2540 save_sigtrap (struct lwp_info *lp)
2541 {
2542 struct cleanup *old_chain;
2543
2544 if (linux_ops->to_stopped_by_watchpoint == NULL)
2545 {
2546 lp->stopped_by_watchpoint = 0;
2547 return;
2548 }
2549
2550 old_chain = save_inferior_ptid ();
2551 inferior_ptid = lp->ptid;
2552
2553 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2554
2555 if (lp->stopped_by_watchpoint)
2556 {
2557 if (linux_ops->to_stopped_data_address != NULL)
2558 lp->stopped_data_address_p =
2559 linux_ops->to_stopped_data_address (&current_target,
2560 &lp->stopped_data_address);
2561 else
2562 lp->stopped_data_address_p = 0;
2563 }
2564
2565 do_cleanups (old_chain);
2566 }
2567
2568 /* See save_sigtrap. */
2569
2570 static int
2571 linux_nat_stopped_by_watchpoint (void)
2572 {
2573 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2574
2575 gdb_assert (lp != NULL);
2576
2577 return lp->stopped_by_watchpoint;
2578 }
2579
2580 static int
2581 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2582 {
2583 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2584
2585 gdb_assert (lp != NULL);
2586
2587 *addr_p = lp->stopped_data_address;
2588
2589 return lp->stopped_data_address_p;
2590 }
2591
2592 /* Wait until LP is stopped. */
2593
2594 static int
2595 stop_wait_callback (struct lwp_info *lp, void *data)
2596 {
2597 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2598
2599 /* If this is a vfork parent, bail out, it is not going to report
2600 any SIGSTOP until the vfork is done with. */
2601 if (inf->vfork_child != NULL)
2602 return 0;
2603
2604 if (!lp->stopped)
2605 {
2606 int status;
2607
2608 status = wait_lwp (lp);
2609 if (status == 0)
2610 return 0;
2611
2612 if (lp->ignore_sigint && WIFSTOPPED (status)
2613 && WSTOPSIG (status) == SIGINT)
2614 {
2615 lp->ignore_sigint = 0;
2616
2617 errno = 0;
2618 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2619 if (debug_linux_nat)
2620 fprintf_unfiltered (gdb_stdlog,
2621 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2622 target_pid_to_str (lp->ptid),
2623 errno ? safe_strerror (errno) : "OK");
2624
2625 return stop_wait_callback (lp, NULL);
2626 }
2627
2628 maybe_clear_ignore_sigint (lp);
2629
2630 if (WSTOPSIG (status) != SIGSTOP)
2631 {
2632 if (WSTOPSIG (status) == SIGTRAP)
2633 {
2634 /* If a LWP other than the LWP that we're reporting an
2635 event for has hit a GDB breakpoint (as opposed to
2636 some random trap signal), then just arrange for it to
2637 hit it again later. We don't keep the SIGTRAP status
2638 and don't forward the SIGTRAP signal to the LWP. We
2639 will handle the current event, eventually we will
2640 resume all LWPs, and this one will get its breakpoint
2641 trap again.
2642
2643 If we do not do this, then we run the risk that the
2644 user will delete or disable the breakpoint, but the
2645 thread will have already tripped on it. */
2646
2647 /* Save the trap's siginfo in case we need it later. */
2648 save_siginfo (lp);
2649
2650 save_sigtrap (lp);
2651
2652 /* Now resume this LWP and get the SIGSTOP event. */
2653 errno = 0;
2654 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2655 if (debug_linux_nat)
2656 {
2657 fprintf_unfiltered (gdb_stdlog,
2658 "PTRACE_CONT %s, 0, 0 (%s)\n",
2659 target_pid_to_str (lp->ptid),
2660 errno ? safe_strerror (errno) : "OK");
2661
2662 fprintf_unfiltered (gdb_stdlog,
2663 "SWC: Candidate SIGTRAP event in %s\n",
2664 target_pid_to_str (lp->ptid));
2665 }
2666 /* Hold this event/waitstatus while we check to see if
2667 there are any more (we still want to get that SIGSTOP). */
2668 stop_wait_callback (lp, NULL);
2669
2670 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2671 there's another event, throw it back into the
2672 queue. */
2673 if (lp->status)
2674 {
2675 if (debug_linux_nat)
2676 fprintf_unfiltered (gdb_stdlog,
2677 "SWC: kill %s, %s\n",
2678 target_pid_to_str (lp->ptid),
2679 status_to_str ((int) status));
2680 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2681 }
2682
2683 /* Save the sigtrap event. */
2684 lp->status = status;
2685 return 0;
2686 }
2687 else
2688 {
2689 /* The thread was stopped with a signal other than
2690 SIGSTOP, and didn't accidentally trip a breakpoint. */
2691
2692 if (debug_linux_nat)
2693 {
2694 fprintf_unfiltered (gdb_stdlog,
2695 "SWC: Pending event %s in %s\n",
2696 status_to_str ((int) status),
2697 target_pid_to_str (lp->ptid));
2698 }
2699 /* Now resume this LWP and get the SIGSTOP event. */
2700 errno = 0;
2701 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2702 if (debug_linux_nat)
2703 fprintf_unfiltered (gdb_stdlog,
2704 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2705 target_pid_to_str (lp->ptid),
2706 errno ? safe_strerror (errno) : "OK");
2707
2708 /* Hold this event/waitstatus while we check to see if
2709 there are any more (we still want to get that SIGSTOP). */
2710 stop_wait_callback (lp, NULL);
2711
2712 /* If the lp->status field is still empty, use it to
2713 hold this event. If not, then this event must be
2714 returned to the event queue of the LWP. */
2715 if (lp->status)
2716 {
2717 if (debug_linux_nat)
2718 {
2719 fprintf_unfiltered (gdb_stdlog,
2720 "SWC: kill %s, %s\n",
2721 target_pid_to_str (lp->ptid),
2722 status_to_str ((int) status));
2723 }
2724 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2725 }
2726 else
2727 lp->status = status;
2728 return 0;
2729 }
2730 }
2731 else
2732 {
2733 /* We caught the SIGSTOP that we intended to catch, so
2734 there's no SIGSTOP pending. */
2735 lp->stopped = 1;
2736 lp->signalled = 0;
2737 }
2738 }
2739
2740 return 0;
2741 }
2742
2743 /* Return non-zero if LP has a wait status pending. */
2744
2745 static int
2746 status_callback (struct lwp_info *lp, void *data)
2747 {
2748 /* Only report a pending wait status if we pretend that this has
2749 indeed been resumed. */
2750 if (!lp->resumed)
2751 return 0;
2752
2753 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2754 {
2755 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2756 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2757 0', so a clean process exit can not be stored pending in
2758 lp->status, it is indistinguishable from
2759 no-pending-status. */
2760 return 1;
2761 }
2762
2763 if (lp->status != 0)
2764 return 1;
2765
2766 return 0;
2767 }
2768
2769 /* Return non-zero if LP isn't stopped. */
2770
2771 static int
2772 running_callback (struct lwp_info *lp, void *data)
2773 {
2774 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2775 }
2776
2777 /* Count the LWP's that have had events. */
2778
2779 static int
2780 count_events_callback (struct lwp_info *lp, void *data)
2781 {
2782 int *count = data;
2783
2784 gdb_assert (count != NULL);
2785
2786 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2787 if (lp->status != 0 && lp->resumed
2788 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2789 (*count)++;
2790
2791 return 0;
2792 }
2793
2794 /* Select the LWP (if any) that is currently being single-stepped. */
2795
2796 static int
2797 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2798 {
2799 if (lp->step && lp->status != 0)
2800 return 1;
2801 else
2802 return 0;
2803 }
2804
2805 /* Select the Nth LWP that has had a SIGTRAP event. */
2806
2807 static int
2808 select_event_lwp_callback (struct lwp_info *lp, void *data)
2809 {
2810 int *selector = data;
2811
2812 gdb_assert (selector != NULL);
2813
2814 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2815 if (lp->status != 0 && lp->resumed
2816 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2817 if ((*selector)-- == 0)
2818 return 1;
2819
2820 return 0;
2821 }
2822
2823 static int
2824 cancel_breakpoint (struct lwp_info *lp)
2825 {
2826 /* Arrange for a breakpoint to be hit again later. We don't keep
2827 the SIGTRAP status and don't forward the SIGTRAP signal to the
2828 LWP. We will handle the current event, eventually we will resume
2829 this LWP, and this breakpoint will trap again.
2830
2831 If we do not do this, then we run the risk that the user will
2832 delete or disable the breakpoint, but the LWP will have already
2833 tripped on it. */
2834
2835 struct regcache *regcache = get_thread_regcache (lp->ptid);
2836 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2837 CORE_ADDR pc;
2838
2839 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2840 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2841 {
2842 if (debug_linux_nat)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "CB: Push back breakpoint for %s\n",
2845 target_pid_to_str (lp->ptid));
2846
2847 /* Back up the PC if necessary. */
2848 if (gdbarch_decr_pc_after_break (gdbarch))
2849 regcache_write_pc (regcache, pc);
2850
2851 return 1;
2852 }
2853 return 0;
2854 }
2855
2856 static int
2857 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2858 {
2859 struct lwp_info *event_lp = data;
2860
2861 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2862 if (lp == event_lp)
2863 return 0;
2864
2865 /* If a LWP other than the LWP that we're reporting an event for has
2866 hit a GDB breakpoint (as opposed to some random trap signal),
2867 then just arrange for it to hit it again later. We don't keep
2868 the SIGTRAP status and don't forward the SIGTRAP signal to the
2869 LWP. We will handle the current event, eventually we will resume
2870 all LWPs, and this one will get its breakpoint trap again.
2871
2872 If we do not do this, then we run the risk that the user will
2873 delete or disable the breakpoint, but the LWP will have already
2874 tripped on it. */
2875
2876 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2877 && lp->status != 0
2878 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2879 && cancel_breakpoint (lp))
2880 /* Throw away the SIGTRAP. */
2881 lp->status = 0;
2882
2883 return 0;
2884 }
2885
2886 /* Select one LWP out of those that have events pending. */
2887
2888 static void
2889 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2890 {
2891 int num_events = 0;
2892 int random_selector;
2893 struct lwp_info *event_lp;
2894
2895 /* Record the wait status for the original LWP. */
2896 (*orig_lp)->status = *status;
2897
2898 /* Give preference to any LWP that is being single-stepped. */
2899 event_lp = iterate_over_lwps (filter,
2900 select_singlestep_lwp_callback, NULL);
2901 if (event_lp != NULL)
2902 {
2903 if (debug_linux_nat)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "SEL: Select single-step %s\n",
2906 target_pid_to_str (event_lp->ptid));
2907 }
2908 else
2909 {
2910 /* No single-stepping LWP. Select one at random, out of those
2911 which have had SIGTRAP events. */
2912
2913 /* First see how many SIGTRAP events we have. */
2914 iterate_over_lwps (filter, count_events_callback, &num_events);
2915
2916 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2917 random_selector = (int)
2918 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2919
2920 if (debug_linux_nat && num_events > 1)
2921 fprintf_unfiltered (gdb_stdlog,
2922 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2923 num_events, random_selector);
2924
2925 event_lp = iterate_over_lwps (filter,
2926 select_event_lwp_callback,
2927 &random_selector);
2928 }
2929
2930 if (event_lp != NULL)
2931 {
2932 /* Switch the event LWP. */
2933 *orig_lp = event_lp;
2934 *status = event_lp->status;
2935 }
2936
2937 /* Flush the wait status for the event LWP. */
2938 (*orig_lp)->status = 0;
2939 }
2940
2941 /* Return non-zero if LP has been resumed. */
2942
2943 static int
2944 resumed_callback (struct lwp_info *lp, void *data)
2945 {
2946 return lp->resumed;
2947 }
2948
2949 /* Stop an active thread, verify it still exists, then resume it. */
2950
2951 static int
2952 stop_and_resume_callback (struct lwp_info *lp, void *data)
2953 {
2954 struct lwp_info *ptr;
2955
2956 if (!lp->stopped && !lp->signalled)
2957 {
2958 stop_callback (lp, NULL);
2959 stop_wait_callback (lp, NULL);
2960 /* Resume if the lwp still exists. */
2961 for (ptr = lwp_list; ptr; ptr = ptr->next)
2962 if (lp == ptr)
2963 {
2964 resume_callback (lp, NULL);
2965 resume_set_callback (lp, NULL);
2966 }
2967 }
2968 return 0;
2969 }
2970
2971 /* Check if we should go on and pass this event to common code.
2972 Return the affected lwp if we are, or NULL otherwise. */
2973 static struct lwp_info *
2974 linux_nat_filter_event (int lwpid, int status, int options)
2975 {
2976 struct lwp_info *lp;
2977
2978 lp = find_lwp_pid (pid_to_ptid (lwpid));
2979
2980 /* Check for stop events reported by a process we didn't already
2981 know about - anything not already in our LWP list.
2982
2983 If we're expecting to receive stopped processes after
2984 fork, vfork, and clone events, then we'll just add the
2985 new one to our list and go back to waiting for the event
2986 to be reported - the stopped process might be returned
2987 from waitpid before or after the event is. */
2988 if (WIFSTOPPED (status) && !lp)
2989 {
2990 linux_record_stopped_pid (lwpid, status);
2991 return NULL;
2992 }
2993
2994 /* Make sure we don't report an event for the exit of an LWP not in
2995 our list, i.e. not part of the current process. This can happen
2996 if we detach from a program we original forked and then it
2997 exits. */
2998 if (!WIFSTOPPED (status) && !lp)
2999 return NULL;
3000
3001 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3002 CLONE_PTRACE processes which do not use the thread library -
3003 otherwise we wouldn't find the new LWP this way. That doesn't
3004 currently work, and the following code is currently unreachable
3005 due to the two blocks above. If it's fixed some day, this code
3006 should be broken out into a function so that we can also pick up
3007 LWPs from the new interface. */
3008 if (!lp)
3009 {
3010 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3011 if (options & __WCLONE)
3012 lp->cloned = 1;
3013
3014 gdb_assert (WIFSTOPPED (status)
3015 && WSTOPSIG (status) == SIGSTOP);
3016 lp->signalled = 1;
3017
3018 if (!in_thread_list (inferior_ptid))
3019 {
3020 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3021 GET_PID (inferior_ptid));
3022 add_thread (inferior_ptid);
3023 }
3024
3025 add_thread (lp->ptid);
3026 }
3027
3028 /* Handle GNU/Linux's syscall SIGTRAPs. */
3029 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3030 {
3031 /* No longer need the sysgood bit. The ptrace event ends up
3032 recorded in lp->waitstatus if we care for it. We can carry
3033 on handling the event like a regular SIGTRAP from here
3034 on. */
3035 status = W_STOPCODE (SIGTRAP);
3036 if (linux_handle_syscall_trap (lp, 0))
3037 return NULL;
3038 }
3039
3040 /* Handle GNU/Linux's extended waitstatus for trace events. */
3041 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3042 {
3043 if (debug_linux_nat)
3044 fprintf_unfiltered (gdb_stdlog,
3045 "LLW: Handling extended status 0x%06x\n",
3046 status);
3047 if (linux_handle_extended_wait (lp, status, 0))
3048 return NULL;
3049 }
3050
3051 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3052 {
3053 /* Save the trap's siginfo in case we need it later. */
3054 save_siginfo (lp);
3055
3056 save_sigtrap (lp);
3057 }
3058
3059 /* Check if the thread has exited. */
3060 if ((WIFEXITED (status) || WIFSIGNALED (status))
3061 && num_lwps (GET_PID (lp->ptid)) > 1)
3062 {
3063 /* If this is the main thread, we must stop all threads and verify
3064 if they are still alive. This is because in the nptl thread model
3065 on Linux 2.4, there is no signal issued for exiting LWPs
3066 other than the main thread. We only get the main thread exit
3067 signal once all child threads have already exited. If we
3068 stop all the threads and use the stop_wait_callback to check
3069 if they have exited we can determine whether this signal
3070 should be ignored or whether it means the end of the debugged
3071 application, regardless of which threading model is being
3072 used. */
3073 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3074 {
3075 lp->stopped = 1;
3076 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3077 stop_and_resume_callback, NULL);
3078 }
3079
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LLW: %s exited.\n",
3083 target_pid_to_str (lp->ptid));
3084
3085 if (num_lwps (GET_PID (lp->ptid)) > 1)
3086 {
3087 /* If there is at least one more LWP, then the exit signal
3088 was not the end of the debugged application and should be
3089 ignored. */
3090 exit_lwp (lp);
3091 return NULL;
3092 }
3093 }
3094
3095 /* Check if the current LWP has previously exited. In the nptl
3096 thread model, LWPs other than the main thread do not issue
3097 signals when they exit so we must check whenever the thread has
3098 stopped. A similar check is made in stop_wait_callback(). */
3099 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3100 {
3101 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3102
3103 if (debug_linux_nat)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "LLW: %s exited.\n",
3106 target_pid_to_str (lp->ptid));
3107
3108 exit_lwp (lp);
3109
3110 /* Make sure there is at least one thread running. */
3111 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3112
3113 /* Discard the event. */
3114 return NULL;
3115 }
3116
3117 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3118 an attempt to stop an LWP. */
3119 if (lp->signalled
3120 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3121 {
3122 if (debug_linux_nat)
3123 fprintf_unfiltered (gdb_stdlog,
3124 "LLW: Delayed SIGSTOP caught for %s.\n",
3125 target_pid_to_str (lp->ptid));
3126
3127 /* This is a delayed SIGSTOP. */
3128 lp->signalled = 0;
3129
3130 registers_changed ();
3131
3132 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3133 lp->step, TARGET_SIGNAL_0);
3134 if (debug_linux_nat)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3137 lp->step ?
3138 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3139 target_pid_to_str (lp->ptid));
3140
3141 lp->stopped = 0;
3142 gdb_assert (lp->resumed);
3143
3144 /* Discard the event. */
3145 return NULL;
3146 }
3147
3148 /* Make sure we don't report a SIGINT that we have already displayed
3149 for another thread. */
3150 if (lp->ignore_sigint
3151 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3152 {
3153 if (debug_linux_nat)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "LLW: Delayed SIGINT caught for %s.\n",
3156 target_pid_to_str (lp->ptid));
3157
3158 /* This is a delayed SIGINT. */
3159 lp->ignore_sigint = 0;
3160
3161 registers_changed ();
3162 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3163 lp->step, TARGET_SIGNAL_0);
3164 if (debug_linux_nat)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3167 lp->step ?
3168 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3169 target_pid_to_str (lp->ptid));
3170
3171 lp->stopped = 0;
3172 gdb_assert (lp->resumed);
3173
3174 /* Discard the event. */
3175 return NULL;
3176 }
3177
3178 /* An interesting event. */
3179 gdb_assert (lp);
3180 lp->status = status;
3181 return lp;
3182 }
3183
3184 static ptid_t
3185 linux_nat_wait_1 (struct target_ops *ops,
3186 ptid_t ptid, struct target_waitstatus *ourstatus,
3187 int target_options)
3188 {
3189 static sigset_t prev_mask;
3190 struct lwp_info *lp = NULL;
3191 int options = 0;
3192 int status = 0;
3193 pid_t pid;
3194
3195 if (debug_linux_nat_async)
3196 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3197
3198 /* The first time we get here after starting a new inferior, we may
3199 not have added it to the LWP list yet - this is the earliest
3200 moment at which we know its PID. */
3201 if (ptid_is_pid (inferior_ptid))
3202 {
3203 /* Upgrade the main thread's ptid. */
3204 thread_change_ptid (inferior_ptid,
3205 BUILD_LWP (GET_PID (inferior_ptid),
3206 GET_PID (inferior_ptid)));
3207
3208 lp = add_lwp (inferior_ptid);
3209 lp->resumed = 1;
3210 }
3211
3212 /* Make sure SIGCHLD is blocked. */
3213 block_child_signals (&prev_mask);
3214
3215 if (ptid_equal (ptid, minus_one_ptid))
3216 pid = -1;
3217 else if (ptid_is_pid (ptid))
3218 /* A request to wait for a specific tgid. This is not possible
3219 with waitpid, so instead, we wait for any child, and leave
3220 children we're not interested in right now with a pending
3221 status to report later. */
3222 pid = -1;
3223 else
3224 pid = GET_LWP (ptid);
3225
3226 retry:
3227 lp = NULL;
3228 status = 0;
3229
3230 /* Make sure that of those LWPs we want to get an event from, there
3231 is at least one LWP that has been resumed. If there's none, just
3232 bail out. The core may just be flushing asynchronously all
3233 events. */
3234 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3235 {
3236 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3237
3238 if (debug_linux_nat_async)
3239 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3240
3241 restore_child_signals_mask (&prev_mask);
3242 return minus_one_ptid;
3243 }
3244
3245 /* First check if there is a LWP with a wait status pending. */
3246 if (pid == -1)
3247 {
3248 /* Any LWP that's been resumed will do. */
3249 lp = iterate_over_lwps (ptid, status_callback, NULL);
3250 if (lp)
3251 {
3252 if (debug_linux_nat && lp->status)
3253 fprintf_unfiltered (gdb_stdlog,
3254 "LLW: Using pending wait status %s for %s.\n",
3255 status_to_str (lp->status),
3256 target_pid_to_str (lp->ptid));
3257 }
3258
3259 /* But if we don't find one, we'll have to wait, and check both
3260 cloned and uncloned processes. We start with the cloned
3261 processes. */
3262 options = __WCLONE | WNOHANG;
3263 }
3264 else if (is_lwp (ptid))
3265 {
3266 if (debug_linux_nat)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "LLW: Waiting for specific LWP %s.\n",
3269 target_pid_to_str (ptid));
3270
3271 /* We have a specific LWP to check. */
3272 lp = find_lwp_pid (ptid);
3273 gdb_assert (lp);
3274
3275 if (debug_linux_nat && lp->status)
3276 fprintf_unfiltered (gdb_stdlog,
3277 "LLW: Using pending wait status %s for %s.\n",
3278 status_to_str (lp->status),
3279 target_pid_to_str (lp->ptid));
3280
3281 /* If we have to wait, take into account whether PID is a cloned
3282 process or not. And we have to convert it to something that
3283 the layer beneath us can understand. */
3284 options = lp->cloned ? __WCLONE : 0;
3285 pid = GET_LWP (ptid);
3286
3287 /* We check for lp->waitstatus in addition to lp->status,
3288 because we can have pending process exits recorded in
3289 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3290 an additional lp->status_p flag. */
3291 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3292 lp = NULL;
3293 }
3294
3295 if (lp && lp->signalled)
3296 {
3297 /* A pending SIGSTOP may interfere with the normal stream of
3298 events. In a typical case where interference is a problem,
3299 we have a SIGSTOP signal pending for LWP A while
3300 single-stepping it, encounter an event in LWP B, and take the
3301 pending SIGSTOP while trying to stop LWP A. After processing
3302 the event in LWP B, LWP A is continued, and we'll never see
3303 the SIGTRAP associated with the last time we were
3304 single-stepping LWP A. */
3305
3306 /* Resume the thread. It should halt immediately returning the
3307 pending SIGSTOP. */
3308 registers_changed ();
3309 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3310 lp->step, TARGET_SIGNAL_0);
3311 if (debug_linux_nat)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3314 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3315 target_pid_to_str (lp->ptid));
3316 lp->stopped = 0;
3317 gdb_assert (lp->resumed);
3318
3319 /* Catch the pending SIGSTOP. */
3320 status = lp->status;
3321 lp->status = 0;
3322
3323 stop_wait_callback (lp, NULL);
3324
3325 /* If the lp->status field isn't empty, we caught another signal
3326 while flushing the SIGSTOP. Return it back to the event
3327 queue of the LWP, as we already have an event to handle. */
3328 if (lp->status)
3329 {
3330 if (debug_linux_nat)
3331 fprintf_unfiltered (gdb_stdlog,
3332 "LLW: kill %s, %s\n",
3333 target_pid_to_str (lp->ptid),
3334 status_to_str (lp->status));
3335 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3336 }
3337
3338 lp->status = status;
3339 }
3340
3341 if (!target_can_async_p ())
3342 {
3343 /* Causes SIGINT to be passed on to the attached process. */
3344 set_sigint_trap ();
3345 }
3346
3347 /* Translate generic target_wait options into waitpid options. */
3348 if (target_options & TARGET_WNOHANG)
3349 options |= WNOHANG;
3350
3351 while (lp == NULL)
3352 {
3353 pid_t lwpid;
3354
3355 lwpid = my_waitpid (pid, &status, options);
3356
3357 if (lwpid > 0)
3358 {
3359 gdb_assert (pid == -1 || lwpid == pid);
3360
3361 if (debug_linux_nat)
3362 {
3363 fprintf_unfiltered (gdb_stdlog,
3364 "LLW: waitpid %ld received %s\n",
3365 (long) lwpid, status_to_str (status));
3366 }
3367
3368 lp = linux_nat_filter_event (lwpid, status, options);
3369
3370 if (lp
3371 && ptid_is_pid (ptid)
3372 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3373 {
3374 gdb_assert (lp->resumed);
3375
3376 if (debug_linux_nat)
3377 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3378 ptid_get_lwp (lp->ptid), status);
3379
3380 if (WIFSTOPPED (lp->status))
3381 {
3382 if (WSTOPSIG (lp->status) != SIGSTOP)
3383 {
3384 /* Cancel breakpoint hits. The breakpoint may
3385 be removed before we fetch events from this
3386 process to report to the core. It is best
3387 not to assume the moribund breakpoints
3388 heuristic always handles these cases --- it
3389 could be too many events go through to the
3390 core before this one is handled. All-stop
3391 always cancels breakpoint hits in all
3392 threads. */
3393 if (non_stop
3394 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3395 && WSTOPSIG (lp->status) == SIGTRAP
3396 && cancel_breakpoint (lp))
3397 {
3398 /* Throw away the SIGTRAP. */
3399 lp->status = 0;
3400
3401 if (debug_linux_nat)
3402 fprintf (stderr,
3403 "LLW: LWP %ld hit a breakpoint while waiting "
3404 "for another process; cancelled it\n",
3405 ptid_get_lwp (lp->ptid));
3406 }
3407 lp->stopped = 1;
3408 }
3409 else
3410 {
3411 lp->stopped = 1;
3412 lp->signalled = 0;
3413 }
3414 }
3415 else if (WIFEXITED (status) || WIFSIGNALED (status))
3416 {
3417 if (debug_linux_nat)
3418 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3419 ptid_get_lwp (lp->ptid));
3420
3421 /* This was the last lwp in the process. Since
3422 events are serialized to GDB core, and we can't
3423 report this one right now, but GDB core and the
3424 other target layers will want to be notified
3425 about the exit code/signal, leave the status
3426 pending for the next time we're able to report
3427 it. */
3428
3429 /* Prevent trying to stop this thread again. We'll
3430 never try to resume it because it has a pending
3431 status. */
3432 lp->stopped = 1;
3433
3434 /* Dead LWP's aren't expected to reported a pending
3435 sigstop. */
3436 lp->signalled = 0;
3437
3438 /* Store the pending event in the waitstatus as
3439 well, because W_EXITCODE(0,0) == 0. */
3440 store_waitstatus (&lp->waitstatus, lp->status);
3441 }
3442
3443 /* Keep looking. */
3444 lp = NULL;
3445 continue;
3446 }
3447
3448 if (lp)
3449 break;
3450 else
3451 {
3452 if (pid == -1)
3453 {
3454 /* waitpid did return something. Restart over. */
3455 options |= __WCLONE;
3456 }
3457 continue;
3458 }
3459 }
3460
3461 if (pid == -1)
3462 {
3463 /* Alternate between checking cloned and uncloned processes. */
3464 options ^= __WCLONE;
3465
3466 /* And every time we have checked both:
3467 In async mode, return to event loop;
3468 In sync mode, suspend waiting for a SIGCHLD signal. */
3469 if (options & __WCLONE)
3470 {
3471 if (target_options & TARGET_WNOHANG)
3472 {
3473 /* No interesting event. */
3474 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3475
3476 if (debug_linux_nat_async)
3477 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3478
3479 restore_child_signals_mask (&prev_mask);
3480 return minus_one_ptid;
3481 }
3482
3483 sigsuspend (&suspend_mask);
3484 }
3485 }
3486 else if (target_options & TARGET_WNOHANG)
3487 {
3488 /* No interesting event for PID yet. */
3489 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3490
3491 if (debug_linux_nat_async)
3492 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3493
3494 restore_child_signals_mask (&prev_mask);
3495 return minus_one_ptid;
3496 }
3497
3498 /* We shouldn't end up here unless we want to try again. */
3499 gdb_assert (lp == NULL);
3500 }
3501
3502 if (!target_can_async_p ())
3503 clear_sigint_trap ();
3504
3505 gdb_assert (lp);
3506
3507 status = lp->status;
3508 lp->status = 0;
3509
3510 /* Don't report signals that GDB isn't interested in, such as
3511 signals that are neither printed nor stopped upon. Stopping all
3512 threads can be a bit time-consuming so if we want decent
3513 performance with heavily multi-threaded programs, especially when
3514 they're using a high frequency timer, we'd better avoid it if we
3515 can. */
3516
3517 if (WIFSTOPPED (status))
3518 {
3519 int signo = target_signal_from_host (WSTOPSIG (status));
3520 struct inferior *inf;
3521
3522 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3523 gdb_assert (inf);
3524
3525 /* Defer to common code if we get a signal while
3526 single-stepping, since that may need special care, e.g. to
3527 skip the signal handler, or, if we're gaining control of the
3528 inferior. */
3529 if (!lp->step
3530 && inf->stop_soon == NO_STOP_QUIETLY
3531 && signal_stop_state (signo) == 0
3532 && signal_print_state (signo) == 0
3533 && signal_pass_state (signo) == 1)
3534 {
3535 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3536 here? It is not clear we should. GDB may not expect
3537 other threads to run. On the other hand, not resuming
3538 newly attached threads may cause an unwanted delay in
3539 getting them running. */
3540 registers_changed ();
3541 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3542 lp->step, signo);
3543 if (debug_linux_nat)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "LLW: %s %s, %s (preempt 'handle')\n",
3546 lp->step ?
3547 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3548 target_pid_to_str (lp->ptid),
3549 signo ? strsignal (signo) : "0");
3550 lp->stopped = 0;
3551 goto retry;
3552 }
3553
3554 if (!non_stop)
3555 {
3556 /* Only do the below in all-stop, as we currently use SIGINT
3557 to implement target_stop (see linux_nat_stop) in
3558 non-stop. */
3559 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3560 {
3561 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3562 forwarded to the entire process group, that is, all LWPs
3563 will receive it - unless they're using CLONE_THREAD to
3564 share signals. Since we only want to report it once, we
3565 mark it as ignored for all LWPs except this one. */
3566 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3567 set_ignore_sigint, NULL);
3568 lp->ignore_sigint = 0;
3569 }
3570 else
3571 maybe_clear_ignore_sigint (lp);
3572 }
3573 }
3574
3575 /* This LWP is stopped now. */
3576 lp->stopped = 1;
3577
3578 if (debug_linux_nat)
3579 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3580 status_to_str (status), target_pid_to_str (lp->ptid));
3581
3582 if (!non_stop)
3583 {
3584 /* Now stop all other LWP's ... */
3585 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3586
3587 /* ... and wait until all of them have reported back that
3588 they're no longer running. */
3589 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3590
3591 /* If we're not waiting for a specific LWP, choose an event LWP
3592 from among those that have had events. Giving equal priority
3593 to all LWPs that have had events helps prevent
3594 starvation. */
3595 if (pid == -1)
3596 select_event_lwp (ptid, &lp, &status);
3597
3598 /* Now that we've selected our final event LWP, cancel any
3599 breakpoints in other LWPs that have hit a GDB breakpoint.
3600 See the comment in cancel_breakpoints_callback to find out
3601 why. */
3602 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3603
3604 /* In all-stop, from the core's perspective, all LWPs are now
3605 stopped until a new resume action is sent over. */
3606 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3607 }
3608 else
3609 lp->resumed = 0;
3610
3611 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3612 {
3613 if (debug_linux_nat)
3614 fprintf_unfiltered (gdb_stdlog,
3615 "LLW: trap ptid is %s.\n",
3616 target_pid_to_str (lp->ptid));
3617 }
3618
3619 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3620 {
3621 *ourstatus = lp->waitstatus;
3622 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3623 }
3624 else
3625 store_waitstatus (ourstatus, status);
3626
3627 if (debug_linux_nat_async)
3628 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3629
3630 restore_child_signals_mask (&prev_mask);
3631
3632 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3633 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3634 lp->core = -1;
3635 else
3636 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3637
3638 return lp->ptid;
3639 }
3640
3641 /* Resume LWPs that are currently stopped without any pending status
3642 to report, but are resumed from the core's perspective. */
3643
3644 static int
3645 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3646 {
3647 ptid_t *wait_ptid_p = data;
3648
3649 if (lp->stopped
3650 && lp->resumed
3651 && lp->status == 0
3652 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3653 {
3654 gdb_assert (is_executing (lp->ptid));
3655
3656 /* Don't bother if there's a breakpoint at PC that we'd hit
3657 immediately, and we're not waiting for this LWP. */
3658 if (!ptid_match (lp->ptid, *wait_ptid_p))
3659 {
3660 struct regcache *regcache = get_thread_regcache (lp->ptid);
3661 CORE_ADDR pc = regcache_read_pc (regcache);
3662
3663 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3664 return 0;
3665 }
3666
3667 if (debug_linux_nat)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "RSRL: resuming stopped-resumed LWP %s\n",
3670 target_pid_to_str (lp->ptid));
3671
3672 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3673 lp->step, TARGET_SIGNAL_0);
3674 lp->stopped = 0;
3675 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3676 lp->stopped_by_watchpoint = 0;
3677 }
3678
3679 return 0;
3680 }
3681
3682 static ptid_t
3683 linux_nat_wait (struct target_ops *ops,
3684 ptid_t ptid, struct target_waitstatus *ourstatus,
3685 int target_options)
3686 {
3687 ptid_t event_ptid;
3688
3689 if (debug_linux_nat)
3690 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3691
3692 /* Flush the async file first. */
3693 if (target_can_async_p ())
3694 async_file_flush ();
3695
3696 /* Resume LWPs that are currently stopped without any pending status
3697 to report, but are resumed from the core's perspective. LWPs get
3698 in this state if we find them stopping at a time we're not
3699 interested in reporting the event (target_wait on a
3700 specific_process, for example, see linux_nat_wait_1), and
3701 meanwhile the event became uninteresting. Don't bother resuming
3702 LWPs we're not going to wait for if they'd stop immediately. */
3703 if (non_stop)
3704 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3705
3706 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3707
3708 /* If we requested any event, and something came out, assume there
3709 may be more. If we requested a specific lwp or process, also
3710 assume there may be more. */
3711 if (target_can_async_p ()
3712 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3713 || !ptid_equal (ptid, minus_one_ptid)))
3714 async_file_mark ();
3715
3716 /* Get ready for the next event. */
3717 if (target_can_async_p ())
3718 target_async (inferior_event_handler, 0);
3719
3720 return event_ptid;
3721 }
3722
3723 static int
3724 kill_callback (struct lwp_info *lp, void *data)
3725 {
3726 errno = 0;
3727 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3728 if (debug_linux_nat)
3729 fprintf_unfiltered (gdb_stdlog,
3730 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3731 target_pid_to_str (lp->ptid),
3732 errno ? safe_strerror (errno) : "OK");
3733
3734 return 0;
3735 }
3736
3737 static int
3738 kill_wait_callback (struct lwp_info *lp, void *data)
3739 {
3740 pid_t pid;
3741
3742 /* We must make sure that there are no pending events (delayed
3743 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3744 program doesn't interfere with any following debugging session. */
3745
3746 /* For cloned processes we must check both with __WCLONE and
3747 without, since the exit status of a cloned process isn't reported
3748 with __WCLONE. */
3749 if (lp->cloned)
3750 {
3751 do
3752 {
3753 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3754 if (pid != (pid_t) -1)
3755 {
3756 if (debug_linux_nat)
3757 fprintf_unfiltered (gdb_stdlog,
3758 "KWC: wait %s received unknown.\n",
3759 target_pid_to_str (lp->ptid));
3760 /* The Linux kernel sometimes fails to kill a thread
3761 completely after PTRACE_KILL; that goes from the stop
3762 point in do_fork out to the one in
3763 get_signal_to_deliever and waits again. So kill it
3764 again. */
3765 kill_callback (lp, NULL);
3766 }
3767 }
3768 while (pid == GET_LWP (lp->ptid));
3769
3770 gdb_assert (pid == -1 && errno == ECHILD);
3771 }
3772
3773 do
3774 {
3775 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3776 if (pid != (pid_t) -1)
3777 {
3778 if (debug_linux_nat)
3779 fprintf_unfiltered (gdb_stdlog,
3780 "KWC: wait %s received unk.\n",
3781 target_pid_to_str (lp->ptid));
3782 /* See the call to kill_callback above. */
3783 kill_callback (lp, NULL);
3784 }
3785 }
3786 while (pid == GET_LWP (lp->ptid));
3787
3788 gdb_assert (pid == -1 && errno == ECHILD);
3789 return 0;
3790 }
3791
3792 static void
3793 linux_nat_kill (struct target_ops *ops)
3794 {
3795 struct target_waitstatus last;
3796 ptid_t last_ptid;
3797 int status;
3798
3799 /* If we're stopped while forking and we haven't followed yet,
3800 kill the other task. We need to do this first because the
3801 parent will be sleeping if this is a vfork. */
3802
3803 get_last_target_status (&last_ptid, &last);
3804
3805 if (last.kind == TARGET_WAITKIND_FORKED
3806 || last.kind == TARGET_WAITKIND_VFORKED)
3807 {
3808 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3809 wait (&status);
3810 }
3811
3812 if (forks_exist_p ())
3813 linux_fork_killall ();
3814 else
3815 {
3816 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3817
3818 /* Stop all threads before killing them, since ptrace requires
3819 that the thread is stopped to sucessfully PTRACE_KILL. */
3820 iterate_over_lwps (ptid, stop_callback, NULL);
3821 /* ... and wait until all of them have reported back that
3822 they're no longer running. */
3823 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3824
3825 /* Kill all LWP's ... */
3826 iterate_over_lwps (ptid, kill_callback, NULL);
3827
3828 /* ... and wait until we've flushed all events. */
3829 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3830 }
3831
3832 target_mourn_inferior ();
3833 }
3834
3835 static void
3836 linux_nat_mourn_inferior (struct target_ops *ops)
3837 {
3838 purge_lwp_list (ptid_get_pid (inferior_ptid));
3839
3840 if (! forks_exist_p ())
3841 /* Normal case, no other forks available. */
3842 linux_ops->to_mourn_inferior (ops);
3843 else
3844 /* Multi-fork case. The current inferior_ptid has exited, but
3845 there are other viable forks to debug. Delete the exiting
3846 one and context-switch to the first available. */
3847 linux_fork_mourn_inferior ();
3848 }
3849
3850 /* Convert a native/host siginfo object, into/from the siginfo in the
3851 layout of the inferiors' architecture. */
3852
3853 static void
3854 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3855 {
3856 int done = 0;
3857
3858 if (linux_nat_siginfo_fixup != NULL)
3859 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3860
3861 /* If there was no callback, or the callback didn't do anything,
3862 then just do a straight memcpy. */
3863 if (!done)
3864 {
3865 if (direction == 1)
3866 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3867 else
3868 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3869 }
3870 }
3871
3872 static LONGEST
3873 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3874 const char *annex, gdb_byte *readbuf,
3875 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3876 {
3877 int pid;
3878 struct siginfo siginfo;
3879 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3880
3881 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3882 gdb_assert (readbuf || writebuf);
3883
3884 pid = GET_LWP (inferior_ptid);
3885 if (pid == 0)
3886 pid = GET_PID (inferior_ptid);
3887
3888 if (offset > sizeof (siginfo))
3889 return -1;
3890
3891 errno = 0;
3892 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3893 if (errno != 0)
3894 return -1;
3895
3896 /* When GDB is built as a 64-bit application, ptrace writes into
3897 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3898 inferior with a 64-bit GDB should look the same as debugging it
3899 with a 32-bit GDB, we need to convert it. GDB core always sees
3900 the converted layout, so any read/write will have to be done
3901 post-conversion. */
3902 siginfo_fixup (&siginfo, inf_siginfo, 0);
3903
3904 if (offset + len > sizeof (siginfo))
3905 len = sizeof (siginfo) - offset;
3906
3907 if (readbuf != NULL)
3908 memcpy (readbuf, inf_siginfo + offset, len);
3909 else
3910 {
3911 memcpy (inf_siginfo + offset, writebuf, len);
3912
3913 /* Convert back to ptrace layout before flushing it out. */
3914 siginfo_fixup (&siginfo, inf_siginfo, 1);
3915
3916 errno = 0;
3917 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3918 if (errno != 0)
3919 return -1;
3920 }
3921
3922 return len;
3923 }
3924
3925 static LONGEST
3926 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3927 const char *annex, gdb_byte *readbuf,
3928 const gdb_byte *writebuf,
3929 ULONGEST offset, LONGEST len)
3930 {
3931 struct cleanup *old_chain;
3932 LONGEST xfer;
3933
3934 if (object == TARGET_OBJECT_SIGNAL_INFO)
3935 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3936 offset, len);
3937
3938 /* The target is connected but no live inferior is selected. Pass
3939 this request down to a lower stratum (e.g., the executable
3940 file). */
3941 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3942 return 0;
3943
3944 old_chain = save_inferior_ptid ();
3945
3946 if (is_lwp (inferior_ptid))
3947 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3948
3949 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3950 offset, len);
3951
3952 do_cleanups (old_chain);
3953 return xfer;
3954 }
3955
3956 static int
3957 linux_thread_alive (ptid_t ptid)
3958 {
3959 int err;
3960
3961 gdb_assert (is_lwp (ptid));
3962
3963 /* Send signal 0 instead of anything ptrace, because ptracing a
3964 running thread errors out claiming that the thread doesn't
3965 exist. */
3966 err = kill_lwp (GET_LWP (ptid), 0);
3967
3968 if (debug_linux_nat)
3969 fprintf_unfiltered (gdb_stdlog,
3970 "LLTA: KILL(SIG0) %s (%s)\n",
3971 target_pid_to_str (ptid),
3972 err ? safe_strerror (err) : "OK");
3973
3974 if (err != 0)
3975 return 0;
3976
3977 return 1;
3978 }
3979
3980 static int
3981 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3982 {
3983 return linux_thread_alive (ptid);
3984 }
3985
3986 static char *
3987 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3988 {
3989 static char buf[64];
3990
3991 if (is_lwp (ptid)
3992 && (GET_PID (ptid) != GET_LWP (ptid)
3993 || num_lwps (GET_PID (ptid)) > 1))
3994 {
3995 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3996 return buf;
3997 }
3998
3999 return normal_pid_to_str (ptid);
4000 }
4001
4002 /* Accepts an integer PID; Returns a string representing a file that
4003 can be opened to get the symbols for the child process. */
4004
4005 static char *
4006 linux_child_pid_to_exec_file (int pid)
4007 {
4008 char *name1, *name2;
4009
4010 name1 = xmalloc (MAXPATHLEN);
4011 name2 = xmalloc (MAXPATHLEN);
4012 make_cleanup (xfree, name1);
4013 make_cleanup (xfree, name2);
4014 memset (name2, 0, MAXPATHLEN);
4015
4016 sprintf (name1, "/proc/%d/exe", pid);
4017 if (readlink (name1, name2, MAXPATHLEN) > 0)
4018 return name2;
4019 else
4020 return name1;
4021 }
4022
4023 /* Service function for corefiles and info proc. */
4024
4025 static int
4026 read_mapping (FILE *mapfile,
4027 long long *addr,
4028 long long *endaddr,
4029 char *permissions,
4030 long long *offset,
4031 char *device, long long *inode, char *filename)
4032 {
4033 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4034 addr, endaddr, permissions, offset, device, inode);
4035
4036 filename[0] = '\0';
4037 if (ret > 0 && ret != EOF)
4038 {
4039 /* Eat everything up to EOL for the filename. This will prevent
4040 weird filenames (such as one with embedded whitespace) from
4041 confusing this code. It also makes this code more robust in
4042 respect to annotations the kernel may add after the filename.
4043
4044 Note the filename is used for informational purposes
4045 only. */
4046 ret += fscanf (mapfile, "%[^\n]\n", filename);
4047 }
4048
4049 return (ret != 0 && ret != EOF);
4050 }
4051
4052 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4053 regions in the inferior for a corefile. */
4054
4055 static int
4056 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4057 unsigned long,
4058 int, int, int, void *), void *obfd)
4059 {
4060 int pid = PIDGET (inferior_ptid);
4061 char mapsfilename[MAXPATHLEN];
4062 FILE *mapsfile;
4063 long long addr, endaddr, size, offset, inode;
4064 char permissions[8], device[8], filename[MAXPATHLEN];
4065 int read, write, exec;
4066 struct cleanup *cleanup;
4067
4068 /* Compose the filename for the /proc memory map, and open it. */
4069 sprintf (mapsfilename, "/proc/%d/maps", pid);
4070 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4071 error (_("Could not open %s."), mapsfilename);
4072 cleanup = make_cleanup_fclose (mapsfile);
4073
4074 if (info_verbose)
4075 fprintf_filtered (gdb_stdout,
4076 "Reading memory regions from %s\n", mapsfilename);
4077
4078 /* Now iterate until end-of-file. */
4079 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4080 &offset, &device[0], &inode, &filename[0]))
4081 {
4082 size = endaddr - addr;
4083
4084 /* Get the segment's permissions. */
4085 read = (strchr (permissions, 'r') != 0);
4086 write = (strchr (permissions, 'w') != 0);
4087 exec = (strchr (permissions, 'x') != 0);
4088
4089 if (info_verbose)
4090 {
4091 fprintf_filtered (gdb_stdout,
4092 "Save segment, %s bytes at %s (%c%c%c)",
4093 plongest (size), paddress (target_gdbarch, addr),
4094 read ? 'r' : ' ',
4095 write ? 'w' : ' ', exec ? 'x' : ' ');
4096 if (filename[0])
4097 fprintf_filtered (gdb_stdout, " for %s", filename);
4098 fprintf_filtered (gdb_stdout, "\n");
4099 }
4100
4101 /* Invoke the callback function to create the corefile
4102 segment. */
4103 func (addr, size, read, write, exec, obfd);
4104 }
4105 do_cleanups (cleanup);
4106 return 0;
4107 }
4108
4109 static int
4110 find_signalled_thread (struct thread_info *info, void *data)
4111 {
4112 if (info->stop_signal != TARGET_SIGNAL_0
4113 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4114 return 1;
4115
4116 return 0;
4117 }
4118
4119 static enum target_signal
4120 find_stop_signal (void)
4121 {
4122 struct thread_info *info =
4123 iterate_over_threads (find_signalled_thread, NULL);
4124
4125 if (info)
4126 return info->stop_signal;
4127 else
4128 return TARGET_SIGNAL_0;
4129 }
4130
4131 /* Records the thread's register state for the corefile note
4132 section. */
4133
4134 static char *
4135 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4136 char *note_data, int *note_size,
4137 enum target_signal stop_signal)
4138 {
4139 unsigned long lwp = ptid_get_lwp (ptid);
4140 struct gdbarch *gdbarch = target_gdbarch;
4141 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4142 const struct regset *regset;
4143 int core_regset_p;
4144 struct cleanup *old_chain;
4145 struct core_regset_section *sect_list;
4146 char *gdb_regset;
4147
4148 old_chain = save_inferior_ptid ();
4149 inferior_ptid = ptid;
4150 target_fetch_registers (regcache, -1);
4151 do_cleanups (old_chain);
4152
4153 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4154 sect_list = gdbarch_core_regset_sections (gdbarch);
4155
4156 /* The loop below uses the new struct core_regset_section, which stores
4157 the supported section names and sizes for the core file. Note that
4158 note PRSTATUS needs to be treated specially. But the other notes are
4159 structurally the same, so they can benefit from the new struct. */
4160 if (core_regset_p && sect_list != NULL)
4161 while (sect_list->sect_name != NULL)
4162 {
4163 regset = gdbarch_regset_from_core_section (gdbarch,
4164 sect_list->sect_name,
4165 sect_list->size);
4166 gdb_assert (regset && regset->collect_regset);
4167 gdb_regset = xmalloc (sect_list->size);
4168 regset->collect_regset (regset, regcache, -1,
4169 gdb_regset, sect_list->size);
4170
4171 if (strcmp (sect_list->sect_name, ".reg") == 0)
4172 note_data = (char *) elfcore_write_prstatus
4173 (obfd, note_data, note_size,
4174 lwp, stop_signal, gdb_regset);
4175 else
4176 note_data = (char *) elfcore_write_register_note
4177 (obfd, note_data, note_size,
4178 sect_list->sect_name, gdb_regset,
4179 sect_list->size);
4180 xfree (gdb_regset);
4181 sect_list++;
4182 }
4183
4184 /* For architectures that does not have the struct core_regset_section
4185 implemented, we use the old method. When all the architectures have
4186 the new support, the code below should be deleted. */
4187 else
4188 {
4189 gdb_gregset_t gregs;
4190 gdb_fpregset_t fpregs;
4191
4192 if (core_regset_p
4193 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4194 sizeof (gregs))) != NULL
4195 && regset->collect_regset != NULL)
4196 regset->collect_regset (regset, regcache, -1,
4197 &gregs, sizeof (gregs));
4198 else
4199 fill_gregset (regcache, &gregs, -1);
4200
4201 note_data = (char *) elfcore_write_prstatus (obfd,
4202 note_data,
4203 note_size,
4204 lwp,
4205 stop_signal, &gregs);
4206
4207 if (core_regset_p
4208 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4209 sizeof (fpregs))) != NULL
4210 && regset->collect_regset != NULL)
4211 regset->collect_regset (regset, regcache, -1,
4212 &fpregs, sizeof (fpregs));
4213 else
4214 fill_fpregset (regcache, &fpregs, -1);
4215
4216 note_data = (char *) elfcore_write_prfpreg (obfd,
4217 note_data,
4218 note_size,
4219 &fpregs, sizeof (fpregs));
4220 }
4221
4222 return note_data;
4223 }
4224
4225 struct linux_nat_corefile_thread_data
4226 {
4227 bfd *obfd;
4228 char *note_data;
4229 int *note_size;
4230 int num_notes;
4231 enum target_signal stop_signal;
4232 };
4233
4234 /* Called by gdbthread.c once per thread. Records the thread's
4235 register state for the corefile note section. */
4236
4237 static int
4238 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4239 {
4240 struct linux_nat_corefile_thread_data *args = data;
4241
4242 args->note_data = linux_nat_do_thread_registers (args->obfd,
4243 ti->ptid,
4244 args->note_data,
4245 args->note_size,
4246 args->stop_signal);
4247 args->num_notes++;
4248
4249 return 0;
4250 }
4251
4252 /* Enumerate spufs IDs for process PID. */
4253
4254 static void
4255 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4256 {
4257 char path[128];
4258 DIR *dir;
4259 struct dirent *entry;
4260
4261 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4262 dir = opendir (path);
4263 if (!dir)
4264 return;
4265
4266 rewinddir (dir);
4267 while ((entry = readdir (dir)) != NULL)
4268 {
4269 struct stat st;
4270 struct statfs stfs;
4271 int fd;
4272
4273 fd = atoi (entry->d_name);
4274 if (!fd)
4275 continue;
4276
4277 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4278 if (stat (path, &st) != 0)
4279 continue;
4280 if (!S_ISDIR (st.st_mode))
4281 continue;
4282
4283 if (statfs (path, &stfs) != 0)
4284 continue;
4285 if (stfs.f_type != SPUFS_MAGIC)
4286 continue;
4287
4288 callback (data, fd);
4289 }
4290
4291 closedir (dir);
4292 }
4293
4294 /* Generate corefile notes for SPU contexts. */
4295
4296 struct linux_spu_corefile_data
4297 {
4298 bfd *obfd;
4299 char *note_data;
4300 int *note_size;
4301 };
4302
4303 static void
4304 linux_spu_corefile_callback (void *data, int fd)
4305 {
4306 struct linux_spu_corefile_data *args = data;
4307 int i;
4308
4309 static const char *spu_files[] =
4310 {
4311 "object-id",
4312 "mem",
4313 "regs",
4314 "fpcr",
4315 "lslr",
4316 "decr",
4317 "decr_status",
4318 "signal1",
4319 "signal1_type",
4320 "signal2",
4321 "signal2_type",
4322 "event_mask",
4323 "event_status",
4324 "mbox_info",
4325 "ibox_info",
4326 "wbox_info",
4327 "dma_info",
4328 "proxydma_info",
4329 };
4330
4331 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4332 {
4333 char annex[32], note_name[32];
4334 gdb_byte *spu_data;
4335 LONGEST spu_len;
4336
4337 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4338 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4339 annex, &spu_data);
4340 if (spu_len > 0)
4341 {
4342 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4343 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4344 args->note_size, note_name,
4345 NT_SPU, spu_data, spu_len);
4346 xfree (spu_data);
4347 }
4348 }
4349 }
4350
4351 static char *
4352 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4353 {
4354 struct linux_spu_corefile_data args;
4355
4356 args.obfd = obfd;
4357 args.note_data = note_data;
4358 args.note_size = note_size;
4359
4360 iterate_over_spus (PIDGET (inferior_ptid),
4361 linux_spu_corefile_callback, &args);
4362
4363 return args.note_data;
4364 }
4365
4366 /* Fills the "to_make_corefile_note" target vector. Builds the note
4367 section for a corefile, and returns it in a malloc buffer. */
4368
4369 static char *
4370 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4371 {
4372 struct linux_nat_corefile_thread_data thread_args;
4373 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4374 char fname[16] = { '\0' };
4375 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4376 char psargs[80] = { '\0' };
4377 char *note_data = NULL;
4378 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4379 gdb_byte *auxv;
4380 int auxv_len;
4381
4382 if (get_exec_file (0))
4383 {
4384 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4385 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4386 if (get_inferior_args ())
4387 {
4388 char *string_end;
4389 char *psargs_end = psargs + sizeof (psargs);
4390
4391 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4392 strings fine. */
4393 string_end = memchr (psargs, 0, sizeof (psargs));
4394 if (string_end != NULL)
4395 {
4396 *string_end++ = ' ';
4397 strncpy (string_end, get_inferior_args (),
4398 psargs_end - string_end);
4399 }
4400 }
4401 note_data = (char *) elfcore_write_prpsinfo (obfd,
4402 note_data,
4403 note_size, fname, psargs);
4404 }
4405
4406 /* Dump information for threads. */
4407 thread_args.obfd = obfd;
4408 thread_args.note_data = note_data;
4409 thread_args.note_size = note_size;
4410 thread_args.num_notes = 0;
4411 thread_args.stop_signal = find_stop_signal ();
4412 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4413 gdb_assert (thread_args.num_notes != 0);
4414 note_data = thread_args.note_data;
4415
4416 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4417 NULL, &auxv);
4418 if (auxv_len > 0)
4419 {
4420 note_data = elfcore_write_note (obfd, note_data, note_size,
4421 "CORE", NT_AUXV, auxv, auxv_len);
4422 xfree (auxv);
4423 }
4424
4425 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4426
4427 make_cleanup (xfree, note_data);
4428 return note_data;
4429 }
4430
4431 /* Implement the "info proc" command. */
4432
4433 static void
4434 linux_nat_info_proc_cmd (char *args, int from_tty)
4435 {
4436 /* A long is used for pid instead of an int to avoid a loss of precision
4437 compiler warning from the output of strtoul. */
4438 long pid = PIDGET (inferior_ptid);
4439 FILE *procfile;
4440 char **argv = NULL;
4441 char buffer[MAXPATHLEN];
4442 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4443 int cmdline_f = 1;
4444 int cwd_f = 1;
4445 int exe_f = 1;
4446 int mappings_f = 0;
4447 int status_f = 0;
4448 int stat_f = 0;
4449 int all = 0;
4450 struct stat dummy;
4451
4452 if (args)
4453 {
4454 /* Break up 'args' into an argv array. */
4455 argv = gdb_buildargv (args);
4456 make_cleanup_freeargv (argv);
4457 }
4458 while (argv != NULL && *argv != NULL)
4459 {
4460 if (isdigit (argv[0][0]))
4461 {
4462 pid = strtoul (argv[0], NULL, 10);
4463 }
4464 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4465 {
4466 mappings_f = 1;
4467 }
4468 else if (strcmp (argv[0], "status") == 0)
4469 {
4470 status_f = 1;
4471 }
4472 else if (strcmp (argv[0], "stat") == 0)
4473 {
4474 stat_f = 1;
4475 }
4476 else if (strcmp (argv[0], "cmd") == 0)
4477 {
4478 cmdline_f = 1;
4479 }
4480 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4481 {
4482 exe_f = 1;
4483 }
4484 else if (strcmp (argv[0], "cwd") == 0)
4485 {
4486 cwd_f = 1;
4487 }
4488 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4489 {
4490 all = 1;
4491 }
4492 else
4493 {
4494 /* [...] (future options here) */
4495 }
4496 argv++;
4497 }
4498 if (pid == 0)
4499 error (_("No current process: you must name one."));
4500
4501 sprintf (fname1, "/proc/%ld", pid);
4502 if (stat (fname1, &dummy) != 0)
4503 error (_("No /proc directory: '%s'"), fname1);
4504
4505 printf_filtered (_("process %ld\n"), pid);
4506 if (cmdline_f || all)
4507 {
4508 sprintf (fname1, "/proc/%ld/cmdline", pid);
4509 if ((procfile = fopen (fname1, "r")) != NULL)
4510 {
4511 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4512
4513 if (fgets (buffer, sizeof (buffer), procfile))
4514 printf_filtered ("cmdline = '%s'\n", buffer);
4515 else
4516 warning (_("unable to read '%s'"), fname1);
4517 do_cleanups (cleanup);
4518 }
4519 else
4520 warning (_("unable to open /proc file '%s'"), fname1);
4521 }
4522 if (cwd_f || all)
4523 {
4524 sprintf (fname1, "/proc/%ld/cwd", pid);
4525 memset (fname2, 0, sizeof (fname2));
4526 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4527 printf_filtered ("cwd = '%s'\n", fname2);
4528 else
4529 warning (_("unable to read link '%s'"), fname1);
4530 }
4531 if (exe_f || all)
4532 {
4533 sprintf (fname1, "/proc/%ld/exe", pid);
4534 memset (fname2, 0, sizeof (fname2));
4535 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4536 printf_filtered ("exe = '%s'\n", fname2);
4537 else
4538 warning (_("unable to read link '%s'"), fname1);
4539 }
4540 if (mappings_f || all)
4541 {
4542 sprintf (fname1, "/proc/%ld/maps", pid);
4543 if ((procfile = fopen (fname1, "r")) != NULL)
4544 {
4545 long long addr, endaddr, size, offset, inode;
4546 char permissions[8], device[8], filename[MAXPATHLEN];
4547 struct cleanup *cleanup;
4548
4549 cleanup = make_cleanup_fclose (procfile);
4550 printf_filtered (_("Mapped address spaces:\n\n"));
4551 if (gdbarch_addr_bit (target_gdbarch) == 32)
4552 {
4553 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4554 "Start Addr",
4555 " End Addr",
4556 " Size", " Offset", "objfile");
4557 }
4558 else
4559 {
4560 printf_filtered (" %18s %18s %10s %10s %7s\n",
4561 "Start Addr",
4562 " End Addr",
4563 " Size", " Offset", "objfile");
4564 }
4565
4566 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4567 &offset, &device[0], &inode, &filename[0]))
4568 {
4569 size = endaddr - addr;
4570
4571 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4572 calls here (and possibly above) should be abstracted
4573 out into their own functions? Andrew suggests using
4574 a generic local_address_string instead to print out
4575 the addresses; that makes sense to me, too. */
4576
4577 if (gdbarch_addr_bit (target_gdbarch) == 32)
4578 {
4579 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4580 (unsigned long) addr, /* FIXME: pr_addr */
4581 (unsigned long) endaddr,
4582 (int) size,
4583 (unsigned int) offset,
4584 filename[0] ? filename : "");
4585 }
4586 else
4587 {
4588 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4589 (unsigned long) addr, /* FIXME: pr_addr */
4590 (unsigned long) endaddr,
4591 (int) size,
4592 (unsigned int) offset,
4593 filename[0] ? filename : "");
4594 }
4595 }
4596
4597 do_cleanups (cleanup);
4598 }
4599 else
4600 warning (_("unable to open /proc file '%s'"), fname1);
4601 }
4602 if (status_f || all)
4603 {
4604 sprintf (fname1, "/proc/%ld/status", pid);
4605 if ((procfile = fopen (fname1, "r")) != NULL)
4606 {
4607 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4608
4609 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4610 puts_filtered (buffer);
4611 do_cleanups (cleanup);
4612 }
4613 else
4614 warning (_("unable to open /proc file '%s'"), fname1);
4615 }
4616 if (stat_f || all)
4617 {
4618 sprintf (fname1, "/proc/%ld/stat", pid);
4619 if ((procfile = fopen (fname1, "r")) != NULL)
4620 {
4621 int itmp;
4622 char ctmp;
4623 long ltmp;
4624 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4625
4626 if (fscanf (procfile, "%d ", &itmp) > 0)
4627 printf_filtered (_("Process: %d\n"), itmp);
4628 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4629 printf_filtered (_("Exec file: %s\n"), buffer);
4630 if (fscanf (procfile, "%c ", &ctmp) > 0)
4631 printf_filtered (_("State: %c\n"), ctmp);
4632 if (fscanf (procfile, "%d ", &itmp) > 0)
4633 printf_filtered (_("Parent process: %d\n"), itmp);
4634 if (fscanf (procfile, "%d ", &itmp) > 0)
4635 printf_filtered (_("Process group: %d\n"), itmp);
4636 if (fscanf (procfile, "%d ", &itmp) > 0)
4637 printf_filtered (_("Session id: %d\n"), itmp);
4638 if (fscanf (procfile, "%d ", &itmp) > 0)
4639 printf_filtered (_("TTY: %d\n"), itmp);
4640 if (fscanf (procfile, "%d ", &itmp) > 0)
4641 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4642 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4643 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4644 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4645 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4646 (unsigned long) ltmp);
4647 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4648 printf_filtered (_("Minor faults, children: %lu\n"),
4649 (unsigned long) ltmp);
4650 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4651 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4652 (unsigned long) ltmp);
4653 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4654 printf_filtered (_("Major faults, children: %lu\n"),
4655 (unsigned long) ltmp);
4656 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4657 printf_filtered (_("utime: %ld\n"), ltmp);
4658 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4659 printf_filtered (_("stime: %ld\n"), ltmp);
4660 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4661 printf_filtered (_("utime, children: %ld\n"), ltmp);
4662 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4663 printf_filtered (_("stime, children: %ld\n"), ltmp);
4664 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4665 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4666 ltmp);
4667 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4668 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4669 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4670 printf_filtered (_("jiffies until next timeout: %lu\n"),
4671 (unsigned long) ltmp);
4672 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4673 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4674 (unsigned long) ltmp);
4675 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4676 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4677 ltmp);
4678 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4679 printf_filtered (_("Virtual memory size: %lu\n"),
4680 (unsigned long) ltmp);
4681 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4682 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4683 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4684 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4685 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4686 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4687 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4688 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4689 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4690 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4691 #if 0 /* Don't know how architecture-dependent the rest is...
4692 Anyway the signal bitmap info is available from "status". */
4693 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4694 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4695 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4696 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4697 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4698 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4699 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4700 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4701 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4702 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4703 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4704 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4705 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4706 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4707 #endif
4708 do_cleanups (cleanup);
4709 }
4710 else
4711 warning (_("unable to open /proc file '%s'"), fname1);
4712 }
4713 }
4714
4715 /* Implement the to_xfer_partial interface for memory reads using the /proc
4716 filesystem. Because we can use a single read() call for /proc, this
4717 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4718 but it doesn't support writes. */
4719
4720 static LONGEST
4721 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4722 const char *annex, gdb_byte *readbuf,
4723 const gdb_byte *writebuf,
4724 ULONGEST offset, LONGEST len)
4725 {
4726 LONGEST ret;
4727 int fd;
4728 char filename[64];
4729
4730 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4731 return 0;
4732
4733 /* Don't bother for one word. */
4734 if (len < 3 * sizeof (long))
4735 return 0;
4736
4737 /* We could keep this file open and cache it - possibly one per
4738 thread. That requires some juggling, but is even faster. */
4739 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4740 fd = open (filename, O_RDONLY | O_LARGEFILE);
4741 if (fd == -1)
4742 return 0;
4743
4744 /* If pread64 is available, use it. It's faster if the kernel
4745 supports it (only one syscall), and it's 64-bit safe even on
4746 32-bit platforms (for instance, SPARC debugging a SPARC64
4747 application). */
4748 #ifdef HAVE_PREAD64
4749 if (pread64 (fd, readbuf, len, offset) != len)
4750 #else
4751 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4752 #endif
4753 ret = 0;
4754 else
4755 ret = len;
4756
4757 close (fd);
4758 return ret;
4759 }
4760
4761
4762 /* Enumerate spufs IDs for process PID. */
4763 static LONGEST
4764 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4765 {
4766 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4767 LONGEST pos = 0;
4768 LONGEST written = 0;
4769 char path[128];
4770 DIR *dir;
4771 struct dirent *entry;
4772
4773 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4774 dir = opendir (path);
4775 if (!dir)
4776 return -1;
4777
4778 rewinddir (dir);
4779 while ((entry = readdir (dir)) != NULL)
4780 {
4781 struct stat st;
4782 struct statfs stfs;
4783 int fd;
4784
4785 fd = atoi (entry->d_name);
4786 if (!fd)
4787 continue;
4788
4789 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4790 if (stat (path, &st) != 0)
4791 continue;
4792 if (!S_ISDIR (st.st_mode))
4793 continue;
4794
4795 if (statfs (path, &stfs) != 0)
4796 continue;
4797 if (stfs.f_type != SPUFS_MAGIC)
4798 continue;
4799
4800 if (pos >= offset && pos + 4 <= offset + len)
4801 {
4802 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4803 written += 4;
4804 }
4805 pos += 4;
4806 }
4807
4808 closedir (dir);
4809 return written;
4810 }
4811
4812 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4813 object type, using the /proc file system. */
4814 static LONGEST
4815 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4816 const char *annex, gdb_byte *readbuf,
4817 const gdb_byte *writebuf,
4818 ULONGEST offset, LONGEST len)
4819 {
4820 char buf[128];
4821 int fd = 0;
4822 int ret = -1;
4823 int pid = PIDGET (inferior_ptid);
4824
4825 if (!annex)
4826 {
4827 if (!readbuf)
4828 return -1;
4829 else
4830 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4831 }
4832
4833 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4834 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4835 if (fd <= 0)
4836 return -1;
4837
4838 if (offset != 0
4839 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4840 {
4841 close (fd);
4842 return 0;
4843 }
4844
4845 if (writebuf)
4846 ret = write (fd, writebuf, (size_t) len);
4847 else if (readbuf)
4848 ret = read (fd, readbuf, (size_t) len);
4849
4850 close (fd);
4851 return ret;
4852 }
4853
4854
4855 /* Parse LINE as a signal set and add its set bits to SIGS. */
4856
4857 static void
4858 add_line_to_sigset (const char *line, sigset_t *sigs)
4859 {
4860 int len = strlen (line) - 1;
4861 const char *p;
4862 int signum;
4863
4864 if (line[len] != '\n')
4865 error (_("Could not parse signal set: %s"), line);
4866
4867 p = line;
4868 signum = len * 4;
4869 while (len-- > 0)
4870 {
4871 int digit;
4872
4873 if (*p >= '0' && *p <= '9')
4874 digit = *p - '0';
4875 else if (*p >= 'a' && *p <= 'f')
4876 digit = *p - 'a' + 10;
4877 else
4878 error (_("Could not parse signal set: %s"), line);
4879
4880 signum -= 4;
4881
4882 if (digit & 1)
4883 sigaddset (sigs, signum + 1);
4884 if (digit & 2)
4885 sigaddset (sigs, signum + 2);
4886 if (digit & 4)
4887 sigaddset (sigs, signum + 3);
4888 if (digit & 8)
4889 sigaddset (sigs, signum + 4);
4890
4891 p++;
4892 }
4893 }
4894
4895 /* Find process PID's pending signals from /proc/pid/status and set
4896 SIGS to match. */
4897
4898 void
4899 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4900 {
4901 FILE *procfile;
4902 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4903 struct cleanup *cleanup;
4904
4905 sigemptyset (pending);
4906 sigemptyset (blocked);
4907 sigemptyset (ignored);
4908 sprintf (fname, "/proc/%d/status", pid);
4909 procfile = fopen (fname, "r");
4910 if (procfile == NULL)
4911 error (_("Could not open %s"), fname);
4912 cleanup = make_cleanup_fclose (procfile);
4913
4914 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4915 {
4916 /* Normal queued signals are on the SigPnd line in the status
4917 file. However, 2.6 kernels also have a "shared" pending
4918 queue for delivering signals to a thread group, so check for
4919 a ShdPnd line also.
4920
4921 Unfortunately some Red Hat kernels include the shared pending
4922 queue but not the ShdPnd status field. */
4923
4924 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4925 add_line_to_sigset (buffer + 8, pending);
4926 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4927 add_line_to_sigset (buffer + 8, pending);
4928 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4929 add_line_to_sigset (buffer + 8, blocked);
4930 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4931 add_line_to_sigset (buffer + 8, ignored);
4932 }
4933
4934 do_cleanups (cleanup);
4935 }
4936
4937 static LONGEST
4938 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4939 const char *annex, gdb_byte *readbuf,
4940 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4941 {
4942 /* We make the process list snapshot when the object starts to be
4943 read. */
4944 static const char *buf;
4945 static LONGEST len_avail = -1;
4946 static struct obstack obstack;
4947
4948 DIR *dirp;
4949
4950 gdb_assert (object == TARGET_OBJECT_OSDATA);
4951
4952 if (!annex)
4953 {
4954 if (offset == 0)
4955 {
4956 if (len_avail != -1 && len_avail != 0)
4957 obstack_free (&obstack, NULL);
4958 len_avail = 0;
4959 buf = NULL;
4960 obstack_init (&obstack);
4961 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
4962
4963 obstack_xml_printf (
4964 &obstack,
4965 "<item>"
4966 "<column name=\"Type\">processes</column>"
4967 "<column name=\"Description\">Listing of all processes</column>"
4968 "</item>");
4969
4970 obstack_grow_str0 (&obstack, "</osdata>\n");
4971 buf = obstack_finish (&obstack);
4972 len_avail = strlen (buf);
4973 }
4974
4975 if (offset >= len_avail)
4976 {
4977 /* Done. Get rid of the obstack. */
4978 obstack_free (&obstack, NULL);
4979 buf = NULL;
4980 len_avail = 0;
4981 return 0;
4982 }
4983
4984 if (len > len_avail - offset)
4985 len = len_avail - offset;
4986 memcpy (readbuf, buf + offset, len);
4987
4988 return len;
4989 }
4990
4991 if (strcmp (annex, "processes") != 0)
4992 return 0;
4993
4994 gdb_assert (readbuf && !writebuf);
4995
4996 if (offset == 0)
4997 {
4998 if (len_avail != -1 && len_avail != 0)
4999 obstack_free (&obstack, NULL);
5000 len_avail = 0;
5001 buf = NULL;
5002 obstack_init (&obstack);
5003 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5004
5005 dirp = opendir ("/proc");
5006 if (dirp)
5007 {
5008 struct dirent *dp;
5009
5010 while ((dp = readdir (dirp)) != NULL)
5011 {
5012 struct stat statbuf;
5013 char procentry[sizeof ("/proc/4294967295")];
5014
5015 if (!isdigit (dp->d_name[0])
5016 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5017 continue;
5018
5019 sprintf (procentry, "/proc/%s", dp->d_name);
5020 if (stat (procentry, &statbuf) == 0
5021 && S_ISDIR (statbuf.st_mode))
5022 {
5023 char *pathname;
5024 FILE *f;
5025 char cmd[MAXPATHLEN + 1];
5026 struct passwd *entry;
5027
5028 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5029 entry = getpwuid (statbuf.st_uid);
5030
5031 if ((f = fopen (pathname, "r")) != NULL)
5032 {
5033 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5034
5035 if (len > 0)
5036 {
5037 int i;
5038
5039 for (i = 0; i < len; i++)
5040 if (cmd[i] == '\0')
5041 cmd[i] = ' ';
5042 cmd[len] = '\0';
5043
5044 obstack_xml_printf (
5045 &obstack,
5046 "<item>"
5047 "<column name=\"pid\">%s</column>"
5048 "<column name=\"user\">%s</column>"
5049 "<column name=\"command\">%s</column>"
5050 "</item>",
5051 dp->d_name,
5052 entry ? entry->pw_name : "?",
5053 cmd);
5054 }
5055 fclose (f);
5056 }
5057
5058 xfree (pathname);
5059 }
5060 }
5061
5062 closedir (dirp);
5063 }
5064
5065 obstack_grow_str0 (&obstack, "</osdata>\n");
5066 buf = obstack_finish (&obstack);
5067 len_avail = strlen (buf);
5068 }
5069
5070 if (offset >= len_avail)
5071 {
5072 /* Done. Get rid of the obstack. */
5073 obstack_free (&obstack, NULL);
5074 buf = NULL;
5075 len_avail = 0;
5076 return 0;
5077 }
5078
5079 if (len > len_avail - offset)
5080 len = len_avail - offset;
5081 memcpy (readbuf, buf + offset, len);
5082
5083 return len;
5084 }
5085
5086 static LONGEST
5087 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5088 const char *annex, gdb_byte *readbuf,
5089 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5090 {
5091 LONGEST xfer;
5092
5093 if (object == TARGET_OBJECT_AUXV)
5094 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5095 offset, len);
5096
5097 if (object == TARGET_OBJECT_OSDATA)
5098 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5099 offset, len);
5100
5101 if (object == TARGET_OBJECT_SPU)
5102 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5103 offset, len);
5104
5105 /* GDB calculates all the addresses in possibly larget width of the address.
5106 Address width needs to be masked before its final use - either by
5107 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5108
5109 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5110
5111 if (object == TARGET_OBJECT_MEMORY)
5112 {
5113 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5114
5115 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5116 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5117 }
5118
5119 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5120 offset, len);
5121 if (xfer != 0)
5122 return xfer;
5123
5124 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5125 offset, len);
5126 }
5127
5128 /* Create a prototype generic GNU/Linux target. The client can override
5129 it with local methods. */
5130
5131 static void
5132 linux_target_install_ops (struct target_ops *t)
5133 {
5134 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5135 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5136 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5137 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5138 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5139 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5140 t->to_post_attach = linux_child_post_attach;
5141 t->to_follow_fork = linux_child_follow_fork;
5142 t->to_find_memory_regions = linux_nat_find_memory_regions;
5143 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5144
5145 super_xfer_partial = t->to_xfer_partial;
5146 t->to_xfer_partial = linux_xfer_partial;
5147 }
5148
5149 struct target_ops *
5150 linux_target (void)
5151 {
5152 struct target_ops *t;
5153
5154 t = inf_ptrace_target ();
5155 linux_target_install_ops (t);
5156
5157 return t;
5158 }
5159
5160 struct target_ops *
5161 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5162 {
5163 struct target_ops *t;
5164
5165 t = inf_ptrace_trad_target (register_u_offset);
5166 linux_target_install_ops (t);
5167
5168 return t;
5169 }
5170
5171 /* target_is_async_p implementation. */
5172
5173 static int
5174 linux_nat_is_async_p (void)
5175 {
5176 /* NOTE: palves 2008-03-21: We're only async when the user requests
5177 it explicitly with the "set target-async" command.
5178 Someday, linux will always be async. */
5179 if (!target_async_permitted)
5180 return 0;
5181
5182 /* See target.h/target_async_mask. */
5183 return linux_nat_async_mask_value;
5184 }
5185
5186 /* target_can_async_p implementation. */
5187
5188 static int
5189 linux_nat_can_async_p (void)
5190 {
5191 /* NOTE: palves 2008-03-21: We're only async when the user requests
5192 it explicitly with the "set target-async" command.
5193 Someday, linux will always be async. */
5194 if (!target_async_permitted)
5195 return 0;
5196
5197 /* See target.h/target_async_mask. */
5198 return linux_nat_async_mask_value;
5199 }
5200
5201 static int
5202 linux_nat_supports_non_stop (void)
5203 {
5204 return 1;
5205 }
5206
5207 /* True if we want to support multi-process. To be removed when GDB
5208 supports multi-exec. */
5209
5210 int linux_multi_process = 1;
5211
5212 static int
5213 linux_nat_supports_multi_process (void)
5214 {
5215 return linux_multi_process;
5216 }
5217
5218 /* target_async_mask implementation. */
5219
5220 static int
5221 linux_nat_async_mask (int new_mask)
5222 {
5223 int curr_mask = linux_nat_async_mask_value;
5224
5225 if (curr_mask != new_mask)
5226 {
5227 if (new_mask == 0)
5228 {
5229 linux_nat_async (NULL, 0);
5230 linux_nat_async_mask_value = new_mask;
5231 }
5232 else
5233 {
5234 linux_nat_async_mask_value = new_mask;
5235
5236 /* If we're going out of async-mask in all-stop, then the
5237 inferior is stopped. The next resume will call
5238 target_async. In non-stop, the target event source
5239 should be always registered in the event loop. Do so
5240 now. */
5241 if (non_stop)
5242 linux_nat_async (inferior_event_handler, 0);
5243 }
5244 }
5245
5246 return curr_mask;
5247 }
5248
5249 static int async_terminal_is_ours = 1;
5250
5251 /* target_terminal_inferior implementation. */
5252
5253 static void
5254 linux_nat_terminal_inferior (void)
5255 {
5256 if (!target_is_async_p ())
5257 {
5258 /* Async mode is disabled. */
5259 terminal_inferior ();
5260 return;
5261 }
5262
5263 terminal_inferior ();
5264
5265 /* Calls to target_terminal_*() are meant to be idempotent. */
5266 if (!async_terminal_is_ours)
5267 return;
5268
5269 delete_file_handler (input_fd);
5270 async_terminal_is_ours = 0;
5271 set_sigint_trap ();
5272 }
5273
5274 /* target_terminal_ours implementation. */
5275
5276 static void
5277 linux_nat_terminal_ours (void)
5278 {
5279 if (!target_is_async_p ())
5280 {
5281 /* Async mode is disabled. */
5282 terminal_ours ();
5283 return;
5284 }
5285
5286 /* GDB should never give the terminal to the inferior if the
5287 inferior is running in the background (run&, continue&, etc.),
5288 but claiming it sure should. */
5289 terminal_ours ();
5290
5291 if (async_terminal_is_ours)
5292 return;
5293
5294 clear_sigint_trap ();
5295 add_file_handler (input_fd, stdin_event_handler, 0);
5296 async_terminal_is_ours = 1;
5297 }
5298
5299 static void (*async_client_callback) (enum inferior_event_type event_type,
5300 void *context);
5301 static void *async_client_context;
5302
5303 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5304 so we notice when any child changes state, and notify the
5305 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5306 above to wait for the arrival of a SIGCHLD. */
5307
5308 static void
5309 sigchld_handler (int signo)
5310 {
5311 int old_errno = errno;
5312
5313 if (debug_linux_nat_async)
5314 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5315
5316 if (signo == SIGCHLD
5317 && linux_nat_event_pipe[0] != -1)
5318 async_file_mark (); /* Let the event loop know that there are
5319 events to handle. */
5320
5321 errno = old_errno;
5322 }
5323
5324 /* Callback registered with the target events file descriptor. */
5325
5326 static void
5327 handle_target_event (int error, gdb_client_data client_data)
5328 {
5329 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5330 }
5331
5332 /* Create/destroy the target events pipe. Returns previous state. */
5333
5334 static int
5335 linux_async_pipe (int enable)
5336 {
5337 int previous = (linux_nat_event_pipe[0] != -1);
5338
5339 if (previous != enable)
5340 {
5341 sigset_t prev_mask;
5342
5343 block_child_signals (&prev_mask);
5344
5345 if (enable)
5346 {
5347 if (pipe (linux_nat_event_pipe) == -1)
5348 internal_error (__FILE__, __LINE__,
5349 "creating event pipe failed.");
5350
5351 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5352 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5353 }
5354 else
5355 {
5356 close (linux_nat_event_pipe[0]);
5357 close (linux_nat_event_pipe[1]);
5358 linux_nat_event_pipe[0] = -1;
5359 linux_nat_event_pipe[1] = -1;
5360 }
5361
5362 restore_child_signals_mask (&prev_mask);
5363 }
5364
5365 return previous;
5366 }
5367
5368 /* target_async implementation. */
5369
5370 static void
5371 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5372 void *context), void *context)
5373 {
5374 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5375 internal_error (__FILE__, __LINE__,
5376 "Calling target_async when async is masked");
5377
5378 if (callback != NULL)
5379 {
5380 async_client_callback = callback;
5381 async_client_context = context;
5382 if (!linux_async_pipe (1))
5383 {
5384 add_file_handler (linux_nat_event_pipe[0],
5385 handle_target_event, NULL);
5386 /* There may be pending events to handle. Tell the event loop
5387 to poll them. */
5388 async_file_mark ();
5389 }
5390 }
5391 else
5392 {
5393 async_client_callback = callback;
5394 async_client_context = context;
5395 delete_file_handler (linux_nat_event_pipe[0]);
5396 linux_async_pipe (0);
5397 }
5398 return;
5399 }
5400
5401 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5402 event came out. */
5403
5404 static int
5405 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5406 {
5407 if (!lwp->stopped)
5408 {
5409 ptid_t ptid = lwp->ptid;
5410
5411 if (debug_linux_nat)
5412 fprintf_unfiltered (gdb_stdlog,
5413 "LNSL: running -> suspending %s\n",
5414 target_pid_to_str (lwp->ptid));
5415
5416
5417 stop_callback (lwp, NULL);
5418 stop_wait_callback (lwp, NULL);
5419
5420 /* If the lwp exits while we try to stop it, there's nothing
5421 else to do. */
5422 lwp = find_lwp_pid (ptid);
5423 if (lwp == NULL)
5424 return 0;
5425
5426 /* If we didn't collect any signal other than SIGSTOP while
5427 stopping the LWP, push a SIGNAL_0 event. In either case, the
5428 event-loop will end up calling target_wait which will collect
5429 these. */
5430 if (lwp->status == 0)
5431 lwp->status = W_STOPCODE (0);
5432 async_file_mark ();
5433 }
5434 else
5435 {
5436 /* Already known to be stopped; do nothing. */
5437
5438 if (debug_linux_nat)
5439 {
5440 if (find_thread_ptid (lwp->ptid)->stop_requested)
5441 fprintf_unfiltered (gdb_stdlog, "\
5442 LNSL: already stopped/stop_requested %s\n",
5443 target_pid_to_str (lwp->ptid));
5444 else
5445 fprintf_unfiltered (gdb_stdlog, "\
5446 LNSL: already stopped/no stop_requested yet %s\n",
5447 target_pid_to_str (lwp->ptid));
5448 }
5449 }
5450 return 0;
5451 }
5452
5453 static void
5454 linux_nat_stop (ptid_t ptid)
5455 {
5456 if (non_stop)
5457 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5458 else
5459 linux_ops->to_stop (ptid);
5460 }
5461
5462 static void
5463 linux_nat_close (int quitting)
5464 {
5465 /* Unregister from the event loop. */
5466 if (target_is_async_p ())
5467 target_async (NULL, 0);
5468
5469 /* Reset the async_masking. */
5470 linux_nat_async_mask_value = 1;
5471
5472 if (linux_ops->to_close)
5473 linux_ops->to_close (quitting);
5474 }
5475
5476 /* When requests are passed down from the linux-nat layer to the
5477 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5478 used. The address space pointer is stored in the inferior object,
5479 but the common code that is passed such ptid can't tell whether
5480 lwpid is a "main" process id or not (it assumes so). We reverse
5481 look up the "main" process id from the lwp here. */
5482
5483 struct address_space *
5484 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5485 {
5486 struct lwp_info *lwp;
5487 struct inferior *inf;
5488 int pid;
5489
5490 pid = GET_LWP (ptid);
5491 if (GET_LWP (ptid) == 0)
5492 {
5493 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5494 tgid. */
5495 lwp = find_lwp_pid (ptid);
5496 pid = GET_PID (lwp->ptid);
5497 }
5498 else
5499 {
5500 /* A (pid,lwpid,0) ptid. */
5501 pid = GET_PID (ptid);
5502 }
5503
5504 inf = find_inferior_pid (pid);
5505 gdb_assert (inf != NULL);
5506 return inf->aspace;
5507 }
5508
5509 int
5510 linux_nat_core_of_thread_1 (ptid_t ptid)
5511 {
5512 struct cleanup *back_to;
5513 char *filename;
5514 FILE *f;
5515 char *content = NULL;
5516 char *p;
5517 char *ts = 0;
5518 int content_read = 0;
5519 int i;
5520 int core;
5521
5522 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5523 GET_PID (ptid), GET_LWP (ptid));
5524 back_to = make_cleanup (xfree, filename);
5525
5526 f = fopen (filename, "r");
5527 if (!f)
5528 {
5529 do_cleanups (back_to);
5530 return -1;
5531 }
5532
5533 make_cleanup_fclose (f);
5534
5535 for (;;)
5536 {
5537 int n;
5538
5539 content = xrealloc (content, content_read + 1024);
5540 n = fread (content + content_read, 1, 1024, f);
5541 content_read += n;
5542 if (n < 1024)
5543 {
5544 content[content_read] = '\0';
5545 break;
5546 }
5547 }
5548
5549 make_cleanup (xfree, content);
5550
5551 p = strchr (content, '(');
5552
5553 /* Skip ")". */
5554 if (p != NULL)
5555 p = strchr (p, ')');
5556 if (p != NULL)
5557 p++;
5558
5559 /* If the first field after program name has index 0, then core number is
5560 the field with index 36. There's no constant for that anywhere. */
5561 if (p != NULL)
5562 p = strtok_r (p, " ", &ts);
5563 for (i = 0; p != NULL && i != 36; ++i)
5564 p = strtok_r (NULL, " ", &ts);
5565
5566 if (p == NULL || sscanf (p, "%d", &core) == 0)
5567 core = -1;
5568
5569 do_cleanups (back_to);
5570
5571 return core;
5572 }
5573
5574 /* Return the cached value of the processor core for thread PTID. */
5575
5576 int
5577 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5578 {
5579 struct lwp_info *info = find_lwp_pid (ptid);
5580
5581 if (info)
5582 return info->core;
5583 return -1;
5584 }
5585
5586 void
5587 linux_nat_add_target (struct target_ops *t)
5588 {
5589 /* Save the provided single-threaded target. We save this in a separate
5590 variable because another target we've inherited from (e.g. inf-ptrace)
5591 may have saved a pointer to T; we want to use it for the final
5592 process stratum target. */
5593 linux_ops_saved = *t;
5594 linux_ops = &linux_ops_saved;
5595
5596 /* Override some methods for multithreading. */
5597 t->to_create_inferior = linux_nat_create_inferior;
5598 t->to_attach = linux_nat_attach;
5599 t->to_detach = linux_nat_detach;
5600 t->to_resume = linux_nat_resume;
5601 t->to_wait = linux_nat_wait;
5602 t->to_xfer_partial = linux_nat_xfer_partial;
5603 t->to_kill = linux_nat_kill;
5604 t->to_mourn_inferior = linux_nat_mourn_inferior;
5605 t->to_thread_alive = linux_nat_thread_alive;
5606 t->to_pid_to_str = linux_nat_pid_to_str;
5607 t->to_has_thread_control = tc_schedlock;
5608 t->to_thread_address_space = linux_nat_thread_address_space;
5609 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5610 t->to_stopped_data_address = linux_nat_stopped_data_address;
5611
5612 t->to_can_async_p = linux_nat_can_async_p;
5613 t->to_is_async_p = linux_nat_is_async_p;
5614 t->to_supports_non_stop = linux_nat_supports_non_stop;
5615 t->to_async = linux_nat_async;
5616 t->to_async_mask = linux_nat_async_mask;
5617 t->to_terminal_inferior = linux_nat_terminal_inferior;
5618 t->to_terminal_ours = linux_nat_terminal_ours;
5619 t->to_close = linux_nat_close;
5620
5621 /* Methods for non-stop support. */
5622 t->to_stop = linux_nat_stop;
5623
5624 t->to_supports_multi_process = linux_nat_supports_multi_process;
5625
5626 t->to_core_of_thread = linux_nat_core_of_thread;
5627
5628 /* We don't change the stratum; this target will sit at
5629 process_stratum and thread_db will set at thread_stratum. This
5630 is a little strange, since this is a multi-threaded-capable
5631 target, but we want to be on the stack below thread_db, and we
5632 also want to be used for single-threaded processes. */
5633
5634 add_target (t);
5635 }
5636
5637 /* Register a method to call whenever a new thread is attached. */
5638 void
5639 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5640 {
5641 /* Save the pointer. We only support a single registered instance
5642 of the GNU/Linux native target, so we do not need to map this to
5643 T. */
5644 linux_nat_new_thread = new_thread;
5645 }
5646
5647 /* Register a method that converts a siginfo object between the layout
5648 that ptrace returns, and the layout in the architecture of the
5649 inferior. */
5650 void
5651 linux_nat_set_siginfo_fixup (struct target_ops *t,
5652 int (*siginfo_fixup) (struct siginfo *,
5653 gdb_byte *,
5654 int))
5655 {
5656 /* Save the pointer. */
5657 linux_nat_siginfo_fixup = siginfo_fixup;
5658 }
5659
5660 /* Return the saved siginfo associated with PTID. */
5661 struct siginfo *
5662 linux_nat_get_siginfo (ptid_t ptid)
5663 {
5664 struct lwp_info *lp = find_lwp_pid (ptid);
5665
5666 gdb_assert (lp != NULL);
5667
5668 return &lp->siginfo;
5669 }
5670
5671 /* Provide a prototype to silence -Wmissing-prototypes. */
5672 extern initialize_file_ftype _initialize_linux_nat;
5673
5674 void
5675 _initialize_linux_nat (void)
5676 {
5677 add_info ("proc", linux_nat_info_proc_cmd, _("\
5678 Show /proc process information about any running process.\n\
5679 Specify any process id, or use the program being debugged by default.\n\
5680 Specify any of the following keywords for detailed info:\n\
5681 mappings -- list of mapped memory regions.\n\
5682 stat -- list a bunch of random process info.\n\
5683 status -- list a different bunch of random process info.\n\
5684 all -- list all available /proc info."));
5685
5686 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5687 &debug_linux_nat, _("\
5688 Set debugging of GNU/Linux lwp module."), _("\
5689 Show debugging of GNU/Linux lwp module."), _("\
5690 Enables printf debugging output."),
5691 NULL,
5692 show_debug_linux_nat,
5693 &setdebuglist, &showdebuglist);
5694
5695 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5696 &debug_linux_nat_async, _("\
5697 Set debugging of GNU/Linux async lwp module."), _("\
5698 Show debugging of GNU/Linux async lwp module."), _("\
5699 Enables printf debugging output."),
5700 NULL,
5701 show_debug_linux_nat_async,
5702 &setdebuglist, &showdebuglist);
5703
5704 /* Save this mask as the default. */
5705 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5706
5707 /* Install a SIGCHLD handler. */
5708 sigchld_action.sa_handler = sigchld_handler;
5709 sigemptyset (&sigchld_action.sa_mask);
5710 sigchld_action.sa_flags = SA_RESTART;
5711
5712 /* Make it the default. */
5713 sigaction (SIGCHLD, &sigchld_action, NULL);
5714
5715 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5716 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5717 sigdelset (&suspend_mask, SIGCHLD);
5718
5719 sigemptyset (&blocked_mask);
5720
5721 add_setshow_boolean_cmd ("disable-randomization", class_support,
5722 &disable_randomization, _("\
5723 Set disabling of debuggee's virtual address space randomization."), _("\
5724 Show disabling of debuggee's virtual address space randomization."), _("\
5725 When this mode is on (which is the default), randomization of the virtual\n\
5726 address space is disabled. Standalone programs run with the randomization\n\
5727 enabled by default on some platforms."),
5728 &set_disable_randomization,
5729 &show_disable_randomization,
5730 &setlist, &showlist);
5731 }
5732 \f
5733
5734 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5735 the GNU/Linux Threads library and therefore doesn't really belong
5736 here. */
5737
5738 /* Read variable NAME in the target and return its value if found.
5739 Otherwise return zero. It is assumed that the type of the variable
5740 is `int'. */
5741
5742 static int
5743 get_signo (const char *name)
5744 {
5745 struct minimal_symbol *ms;
5746 int signo;
5747
5748 ms = lookup_minimal_symbol (name, NULL, NULL);
5749 if (ms == NULL)
5750 return 0;
5751
5752 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5753 sizeof (signo)) != 0)
5754 return 0;
5755
5756 return signo;
5757 }
5758
5759 /* Return the set of signals used by the threads library in *SET. */
5760
5761 void
5762 lin_thread_get_thread_signals (sigset_t *set)
5763 {
5764 struct sigaction action;
5765 int restart, cancel;
5766
5767 sigemptyset (&blocked_mask);
5768 sigemptyset (set);
5769
5770 restart = get_signo ("__pthread_sig_restart");
5771 cancel = get_signo ("__pthread_sig_cancel");
5772
5773 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5774 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5775 not provide any way for the debugger to query the signal numbers -
5776 fortunately they don't change! */
5777
5778 if (restart == 0)
5779 restart = __SIGRTMIN;
5780
5781 if (cancel == 0)
5782 cancel = __SIGRTMIN + 1;
5783
5784 sigaddset (set, restart);
5785 sigaddset (set, cancel);
5786
5787 /* The GNU/Linux Threads library makes terminating threads send a
5788 special "cancel" signal instead of SIGCHLD. Make sure we catch
5789 those (to prevent them from terminating GDB itself, which is
5790 likely to be their default action) and treat them the same way as
5791 SIGCHLD. */
5792
5793 action.sa_handler = sigchld_handler;
5794 sigemptyset (&action.sa_mask);
5795 action.sa_flags = SA_RESTART;
5796 sigaction (cancel, &action, NULL);
5797
5798 /* We block the "cancel" signal throughout this code ... */
5799 sigaddset (&blocked_mask, cancel);
5800 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5801
5802 /* ... except during a sigsuspend. */
5803 sigdelset (&suspend_mask, cancel);
5804 }
This page took 0.140732 seconds and 5 git commands to generate.