PR server/16255: gdbserver cannot attach to a second inferior that is multi-threaded.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
25 #include <string.h>
26 #include "gdb_wait.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
29 #include <unistd.h>
30 #include <sys/syscall.h>
31 #endif
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62 #include "linux-tdep.h"
63 #include "symfile.h"
64 #include "agent.h"
65 #include "tracepoint.h"
66 #include "exceptions.h"
67 #include "buffer.h"
68 #include "target-descriptions.h"
69 #include "filestuff.h"
70 #include "objfiles.h"
71
72 #ifndef SPUFS_MAGIC
73 #define SPUFS_MAGIC 0x23c9b64e
74 #endif
75
76 #ifdef HAVE_PERSONALITY
77 # include <sys/personality.h>
78 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
79 # define ADDR_NO_RANDOMIZE 0x0040000
80 # endif
81 #endif /* HAVE_PERSONALITY */
82
83 /* This comment documents high-level logic of this file.
84
85 Waiting for events in sync mode
86 ===============================
87
88 When waiting for an event in a specific thread, we just use waitpid, passing
89 the specific pid, and not passing WNOHANG.
90
91 When waiting for an event in all threads, waitpid is not quite good. Prior to
92 version 2.4, Linux can either wait for event in main thread, or in secondary
93 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
94 miss an event. The solution is to use non-blocking waitpid, together with
95 sigsuspend. First, we use non-blocking waitpid to get an event in the main
96 process, if any. Second, we use non-blocking waitpid with the __WCLONED
97 flag to check for events in cloned processes. If nothing is found, we use
98 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
99 happened to a child process -- and SIGCHLD will be delivered both for events
100 in main debugged process and in cloned processes. As soon as we know there's
101 an event, we get back to calling nonblocking waitpid with and without
102 __WCLONED.
103
104 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
105 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
106 blocked, the signal becomes pending and sigsuspend immediately
107 notices it and returns.
108
109 Waiting for events in async mode
110 ================================
111
112 In async mode, GDB should always be ready to handle both user input
113 and target events, so neither blocking waitpid nor sigsuspend are
114 viable options. Instead, we should asynchronously notify the GDB main
115 event loop whenever there's an unprocessed event from the target. We
116 detect asynchronous target events by handling SIGCHLD signals. To
117 notify the event loop about target events, the self-pipe trick is used
118 --- a pipe is registered as waitable event source in the event loop,
119 the event loop select/poll's on the read end of this pipe (as well on
120 other event sources, e.g., stdin), and the SIGCHLD handler writes a
121 byte to this pipe. This is more portable than relying on
122 pselect/ppoll, since on kernels that lack those syscalls, libc
123 emulates them with select/poll+sigprocmask, and that is racy
124 (a.k.a. plain broken).
125
126 Obviously, if we fail to notify the event loop if there's a target
127 event, it's bad. OTOH, if we notify the event loop when there's no
128 event from the target, linux_nat_wait will detect that there's no real
129 event to report, and return event of type TARGET_WAITKIND_IGNORE.
130 This is mostly harmless, but it will waste time and is better avoided.
131
132 The main design point is that every time GDB is outside linux-nat.c,
133 we have a SIGCHLD handler installed that is called when something
134 happens to the target and notifies the GDB event loop. Whenever GDB
135 core decides to handle the event, and calls into linux-nat.c, we
136 process things as in sync mode, except that the we never block in
137 sigsuspend.
138
139 While processing an event, we may end up momentarily blocked in
140 waitpid calls. Those waitpid calls, while blocking, are guarantied to
141 return quickly. E.g., in all-stop mode, before reporting to the core
142 that an LWP hit a breakpoint, all LWPs are stopped by sending them
143 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
144 Note that this is different from blocking indefinitely waiting for the
145 next event --- here, we're already handling an event.
146
147 Use of signals
148 ==============
149
150 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
151 signal is not entirely significant; we just need for a signal to be delivered,
152 so that we can intercept it. SIGSTOP's advantage is that it can not be
153 blocked. A disadvantage is that it is not a real-time signal, so it can only
154 be queued once; we do not keep track of other sources of SIGSTOP.
155
156 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
157 use them, because they have special behavior when the signal is generated -
158 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
159 kills the entire thread group.
160
161 A delivered SIGSTOP would stop the entire thread group, not just the thread we
162 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
163 cancel it (by PTRACE_CONT without passing SIGSTOP).
164
165 We could use a real-time signal instead. This would solve those problems; we
166 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
167 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
168 generates it, and there are races with trying to find a signal that is not
169 blocked. */
170
171 #ifndef O_LARGEFILE
172 #define O_LARGEFILE 0
173 #endif
174
175 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
176 the use of the multi-threaded target. */
177 static struct target_ops *linux_ops;
178 static struct target_ops linux_ops_saved;
179
180 /* The method to call, if any, when a new thread is attached. */
181 static void (*linux_nat_new_thread) (struct lwp_info *);
182
183 /* The method to call, if any, when a new fork is attached. */
184 static linux_nat_new_fork_ftype *linux_nat_new_fork;
185
186 /* The method to call, if any, when a process is no longer
187 attached. */
188 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
189
190 /* Hook to call prior to resuming a thread. */
191 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
192
193 /* The method to call, if any, when the siginfo object needs to be
194 converted between the layout returned by ptrace, and the layout in
195 the architecture of the inferior. */
196 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
197 gdb_byte *,
198 int);
199
200 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
201 Called by our to_xfer_partial. */
202 static target_xfer_partial_ftype *super_xfer_partial;
203
204 static unsigned int debug_linux_nat;
205 static void
206 show_debug_linux_nat (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
210 value);
211 }
212
213 struct simple_pid_list
214 {
215 int pid;
216 int status;
217 struct simple_pid_list *next;
218 };
219 struct simple_pid_list *stopped_pids;
220
221 /* Async mode support. */
222
223 /* The read/write ends of the pipe registered as waitable file in the
224 event loop. */
225 static int linux_nat_event_pipe[2] = { -1, -1 };
226
227 /* Flush the event pipe. */
228
229 static void
230 async_file_flush (void)
231 {
232 int ret;
233 char buf;
234
235 do
236 {
237 ret = read (linux_nat_event_pipe[0], &buf, 1);
238 }
239 while (ret >= 0 || (ret == -1 && errno == EINTR));
240 }
241
242 /* Put something (anything, doesn't matter what, or how much) in event
243 pipe, so that the select/poll in the event-loop realizes we have
244 something to process. */
245
246 static void
247 async_file_mark (void)
248 {
249 int ret;
250
251 /* It doesn't really matter what the pipe contains, as long we end
252 up with something in it. Might as well flush the previous
253 left-overs. */
254 async_file_flush ();
255
256 do
257 {
258 ret = write (linux_nat_event_pipe[1], "+", 1);
259 }
260 while (ret == -1 && errno == EINTR);
261
262 /* Ignore EAGAIN. If the pipe is full, the event loop will already
263 be awakened anyway. */
264 }
265
266 static int kill_lwp (int lwpid, int signo);
267
268 static int stop_callback (struct lwp_info *lp, void *data);
269
270 static void block_child_signals (sigset_t *prev_mask);
271 static void restore_child_signals_mask (sigset_t *prev_mask);
272
273 struct lwp_info;
274 static struct lwp_info *add_lwp (ptid_t ptid);
275 static void purge_lwp_list (int pid);
276 static void delete_lwp (ptid_t ptid);
277 static struct lwp_info *find_lwp_pid (ptid_t ptid);
278
279 \f
280 /* Trivial list manipulation functions to keep track of a list of
281 new stopped processes. */
282 static void
283 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
284 {
285 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
286
287 new_pid->pid = pid;
288 new_pid->status = status;
289 new_pid->next = *listp;
290 *listp = new_pid;
291 }
292
293 static int
294 in_pid_list_p (struct simple_pid_list *list, int pid)
295 {
296 struct simple_pid_list *p;
297
298 for (p = list; p != NULL; p = p->next)
299 if (p->pid == pid)
300 return 1;
301 return 0;
302 }
303
304 static int
305 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
306 {
307 struct simple_pid_list **p;
308
309 for (p = listp; *p != NULL; p = &(*p)->next)
310 if ((*p)->pid == pid)
311 {
312 struct simple_pid_list *next = (*p)->next;
313
314 *statusp = (*p)->status;
315 xfree (*p);
316 *p = next;
317 return 1;
318 }
319 return 0;
320 }
321
322 /* Initialize ptrace warnings and check for supported ptrace
323 features given PID. */
324
325 static void
326 linux_init_ptrace (pid_t pid)
327 {
328 linux_enable_event_reporting (pid);
329 linux_ptrace_init_warnings ();
330 }
331
332 static void
333 linux_child_post_attach (struct target_ops *self, int pid)
334 {
335 linux_init_ptrace (pid);
336 }
337
338 static void
339 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
340 {
341 linux_init_ptrace (ptid_get_pid (ptid));
342 }
343
344 /* Return the number of known LWPs in the tgid given by PID. */
345
346 static int
347 num_lwps (int pid)
348 {
349 int count = 0;
350 struct lwp_info *lp;
351
352 for (lp = lwp_list; lp; lp = lp->next)
353 if (ptid_get_pid (lp->ptid) == pid)
354 count++;
355
356 return count;
357 }
358
359 /* Call delete_lwp with prototype compatible for make_cleanup. */
360
361 static void
362 delete_lwp_cleanup (void *lp_voidp)
363 {
364 struct lwp_info *lp = lp_voidp;
365
366 delete_lwp (lp->ptid);
367 }
368
369 static int
370 linux_child_follow_fork (struct target_ops *ops, int follow_child,
371 int detach_fork)
372 {
373 int has_vforked;
374 int parent_pid, child_pid;
375
376 has_vforked = (inferior_thread ()->pending_follow.kind
377 == TARGET_WAITKIND_VFORKED);
378 parent_pid = ptid_get_lwp (inferior_ptid);
379 if (parent_pid == 0)
380 parent_pid = ptid_get_pid (inferior_ptid);
381 child_pid
382 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
383
384 if (has_vforked
385 && !non_stop /* Non-stop always resumes both branches. */
386 && (!target_is_async_p () || sync_execution)
387 && !(follow_child || detach_fork || sched_multi))
388 {
389 /* The parent stays blocked inside the vfork syscall until the
390 child execs or exits. If we don't let the child run, then
391 the parent stays blocked. If we're telling the parent to run
392 in the foreground, the user will not be able to ctrl-c to get
393 back the terminal, effectively hanging the debug session. */
394 fprintf_filtered (gdb_stderr, _("\
395 Can not resume the parent process over vfork in the foreground while\n\
396 holding the child stopped. Try \"set detach-on-fork\" or \
397 \"set schedule-multiple\".\n"));
398 /* FIXME output string > 80 columns. */
399 return 1;
400 }
401
402 if (! follow_child)
403 {
404 struct lwp_info *child_lp = NULL;
405
406 /* We're already attached to the parent, by default. */
407
408 /* Detach new forked process? */
409 if (detach_fork)
410 {
411 struct cleanup *old_chain;
412
413 /* Before detaching from the child, remove all breakpoints
414 from it. If we forked, then this has already been taken
415 care of by infrun.c. If we vforked however, any
416 breakpoint inserted in the parent is visible in the
417 child, even those added while stopped in a vfork
418 catchpoint. This will remove the breakpoints from the
419 parent also, but they'll be reinserted below. */
420 if (has_vforked)
421 {
422 /* keep breakpoints list in sync. */
423 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
424 }
425
426 if (info_verbose || debug_linux_nat)
427 {
428 target_terminal_ours ();
429 fprintf_filtered (gdb_stdlog,
430 "Detaching after fork from "
431 "child process %d.\n",
432 child_pid);
433 }
434
435 old_chain = save_inferior_ptid ();
436 inferior_ptid = ptid_build (child_pid, child_pid, 0);
437
438 child_lp = add_lwp (inferior_ptid);
439 child_lp->stopped = 1;
440 child_lp->last_resume_kind = resume_stop;
441 make_cleanup (delete_lwp_cleanup, child_lp);
442
443 if (linux_nat_prepare_to_resume != NULL)
444 linux_nat_prepare_to_resume (child_lp);
445 ptrace (PTRACE_DETACH, child_pid, 0, 0);
446
447 do_cleanups (old_chain);
448 }
449 else
450 {
451 struct inferior *parent_inf, *child_inf;
452 struct cleanup *old_chain;
453
454 /* Add process to GDB's tables. */
455 child_inf = add_inferior (child_pid);
456
457 parent_inf = current_inferior ();
458 child_inf->attach_flag = parent_inf->attach_flag;
459 copy_terminal_info (child_inf, parent_inf);
460 child_inf->gdbarch = parent_inf->gdbarch;
461 copy_inferior_target_desc_info (child_inf, parent_inf);
462
463 old_chain = save_inferior_ptid ();
464 save_current_program_space ();
465
466 inferior_ptid = ptid_build (child_pid, child_pid, 0);
467 add_thread (inferior_ptid);
468 child_lp = add_lwp (inferior_ptid);
469 child_lp->stopped = 1;
470 child_lp->last_resume_kind = resume_stop;
471 child_inf->symfile_flags = SYMFILE_NO_READ;
472
473 /* If this is a vfork child, then the address-space is
474 shared with the parent. */
475 if (has_vforked)
476 {
477 child_inf->pspace = parent_inf->pspace;
478 child_inf->aspace = parent_inf->aspace;
479
480 /* The parent will be frozen until the child is done
481 with the shared region. Keep track of the
482 parent. */
483 child_inf->vfork_parent = parent_inf;
484 child_inf->pending_detach = 0;
485 parent_inf->vfork_child = child_inf;
486 parent_inf->pending_detach = 0;
487 }
488 else
489 {
490 child_inf->aspace = new_address_space ();
491 child_inf->pspace = add_program_space (child_inf->aspace);
492 child_inf->removable = 1;
493 set_current_program_space (child_inf->pspace);
494 clone_program_space (child_inf->pspace, parent_inf->pspace);
495
496 /* Let the shared library layer (solib-svr4) learn about
497 this new process, relocate the cloned exec, pull in
498 shared libraries, and install the solib event
499 breakpoint. If a "cloned-VM" event was propagated
500 better throughout the core, this wouldn't be
501 required. */
502 solib_create_inferior_hook (0);
503 }
504
505 /* Let the thread_db layer learn about this new process. */
506 check_for_thread_db ();
507
508 do_cleanups (old_chain);
509 }
510
511 if (has_vforked)
512 {
513 struct lwp_info *parent_lp;
514 struct inferior *parent_inf;
515
516 parent_inf = current_inferior ();
517
518 /* If we detached from the child, then we have to be careful
519 to not insert breakpoints in the parent until the child
520 is done with the shared memory region. However, if we're
521 staying attached to the child, then we can and should
522 insert breakpoints, so that we can debug it. A
523 subsequent child exec or exit is enough to know when does
524 the child stops using the parent's address space. */
525 parent_inf->waiting_for_vfork_done = detach_fork;
526 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
527
528 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
529 gdb_assert (linux_supports_tracefork () >= 0);
530
531 if (linux_supports_tracevforkdone ())
532 {
533 if (debug_linux_nat)
534 fprintf_unfiltered (gdb_stdlog,
535 "LCFF: waiting for VFORK_DONE on %d\n",
536 parent_pid);
537 parent_lp->stopped = 1;
538
539 /* We'll handle the VFORK_DONE event like any other
540 event, in target_wait. */
541 }
542 else
543 {
544 /* We can't insert breakpoints until the child has
545 finished with the shared memory region. We need to
546 wait until that happens. Ideal would be to just
547 call:
548 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
549 - waitpid (parent_pid, &status, __WALL);
550 However, most architectures can't handle a syscall
551 being traced on the way out if it wasn't traced on
552 the way in.
553
554 We might also think to loop, continuing the child
555 until it exits or gets a SIGTRAP. One problem is
556 that the child might call ptrace with PTRACE_TRACEME.
557
558 There's no simple and reliable way to figure out when
559 the vforked child will be done with its copy of the
560 shared memory. We could step it out of the syscall,
561 two instructions, let it go, and then single-step the
562 parent once. When we have hardware single-step, this
563 would work; with software single-step it could still
564 be made to work but we'd have to be able to insert
565 single-step breakpoints in the child, and we'd have
566 to insert -just- the single-step breakpoint in the
567 parent. Very awkward.
568
569 In the end, the best we can do is to make sure it
570 runs for a little while. Hopefully it will be out of
571 range of any breakpoints we reinsert. Usually this
572 is only the single-step breakpoint at vfork's return
573 point. */
574
575 if (debug_linux_nat)
576 fprintf_unfiltered (gdb_stdlog,
577 "LCFF: no VFORK_DONE "
578 "support, sleeping a bit\n");
579
580 usleep (10000);
581
582 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
583 and leave it pending. The next linux_nat_resume call
584 will notice a pending event, and bypasses actually
585 resuming the inferior. */
586 parent_lp->status = 0;
587 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
588 parent_lp->stopped = 1;
589
590 /* If we're in async mode, need to tell the event loop
591 there's something here to process. */
592 if (target_can_async_p ())
593 async_file_mark ();
594 }
595 }
596 }
597 else
598 {
599 struct inferior *parent_inf, *child_inf;
600 struct lwp_info *child_lp;
601 struct program_space *parent_pspace;
602
603 if (info_verbose || debug_linux_nat)
604 {
605 target_terminal_ours ();
606 if (has_vforked)
607 fprintf_filtered (gdb_stdlog,
608 _("Attaching after process %d "
609 "vfork to child process %d.\n"),
610 parent_pid, child_pid);
611 else
612 fprintf_filtered (gdb_stdlog,
613 _("Attaching after process %d "
614 "fork to child process %d.\n"),
615 parent_pid, child_pid);
616 }
617
618 /* Add the new inferior first, so that the target_detach below
619 doesn't unpush the target. */
620
621 child_inf = add_inferior (child_pid);
622
623 parent_inf = current_inferior ();
624 child_inf->attach_flag = parent_inf->attach_flag;
625 copy_terminal_info (child_inf, parent_inf);
626 child_inf->gdbarch = parent_inf->gdbarch;
627 copy_inferior_target_desc_info (child_inf, parent_inf);
628
629 parent_pspace = parent_inf->pspace;
630
631 /* If we're vforking, we want to hold on to the parent until the
632 child exits or execs. At child exec or exit time we can
633 remove the old breakpoints from the parent and detach or
634 resume debugging it. Otherwise, detach the parent now; we'll
635 want to reuse it's program/address spaces, but we can't set
636 them to the child before removing breakpoints from the
637 parent, otherwise, the breakpoints module could decide to
638 remove breakpoints from the wrong process (since they'd be
639 assigned to the same address space). */
640
641 if (has_vforked)
642 {
643 gdb_assert (child_inf->vfork_parent == NULL);
644 gdb_assert (parent_inf->vfork_child == NULL);
645 child_inf->vfork_parent = parent_inf;
646 child_inf->pending_detach = 0;
647 parent_inf->vfork_child = child_inf;
648 parent_inf->pending_detach = detach_fork;
649 parent_inf->waiting_for_vfork_done = 0;
650 }
651 else if (detach_fork)
652 target_detach (NULL, 0);
653
654 /* Note that the detach above makes PARENT_INF dangling. */
655
656 /* Add the child thread to the appropriate lists, and switch to
657 this new thread, before cloning the program space, and
658 informing the solib layer about this new process. */
659
660 inferior_ptid = ptid_build (child_pid, child_pid, 0);
661 add_thread (inferior_ptid);
662 child_lp = add_lwp (inferior_ptid);
663 child_lp->stopped = 1;
664 child_lp->last_resume_kind = resume_stop;
665
666 /* If this is a vfork child, then the address-space is shared
667 with the parent. If we detached from the parent, then we can
668 reuse the parent's program/address spaces. */
669 if (has_vforked || detach_fork)
670 {
671 child_inf->pspace = parent_pspace;
672 child_inf->aspace = child_inf->pspace->aspace;
673 }
674 else
675 {
676 child_inf->aspace = new_address_space ();
677 child_inf->pspace = add_program_space (child_inf->aspace);
678 child_inf->removable = 1;
679 child_inf->symfile_flags = SYMFILE_NO_READ;
680 set_current_program_space (child_inf->pspace);
681 clone_program_space (child_inf->pspace, parent_pspace);
682
683 /* Let the shared library layer (solib-svr4) learn about
684 this new process, relocate the cloned exec, pull in
685 shared libraries, and install the solib event breakpoint.
686 If a "cloned-VM" event was propagated better throughout
687 the core, this wouldn't be required. */
688 solib_create_inferior_hook (0);
689 }
690
691 /* Let the thread_db layer learn about this new process. */
692 check_for_thread_db ();
693 }
694
695 return 0;
696 }
697
698 \f
699 static int
700 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
701 {
702 return !linux_supports_tracefork ();
703 }
704
705 static int
706 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
707 {
708 return 0;
709 }
710
711 static int
712 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
713 {
714 return !linux_supports_tracefork ();
715 }
716
717 static int
718 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
719 {
720 return 0;
721 }
722
723 static int
724 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
725 {
726 return !linux_supports_tracefork ();
727 }
728
729 static int
730 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
731 {
732 return 0;
733 }
734
735 static int
736 linux_child_set_syscall_catchpoint (struct target_ops *self,
737 int pid, int needed, int any_count,
738 int table_size, int *table)
739 {
740 if (!linux_supports_tracesysgood ())
741 return 1;
742
743 /* On GNU/Linux, we ignore the arguments. It means that we only
744 enable the syscall catchpoints, but do not disable them.
745
746 Also, we do not use the `table' information because we do not
747 filter system calls here. We let GDB do the logic for us. */
748 return 0;
749 }
750
751 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
752 are processes sharing the same VM space. A multi-threaded process
753 is basically a group of such processes. However, such a grouping
754 is almost entirely a user-space issue; the kernel doesn't enforce
755 such a grouping at all (this might change in the future). In
756 general, we'll rely on the threads library (i.e. the GNU/Linux
757 Threads library) to provide such a grouping.
758
759 It is perfectly well possible to write a multi-threaded application
760 without the assistance of a threads library, by using the clone
761 system call directly. This module should be able to give some
762 rudimentary support for debugging such applications if developers
763 specify the CLONE_PTRACE flag in the clone system call, and are
764 using the Linux kernel 2.4 or above.
765
766 Note that there are some peculiarities in GNU/Linux that affect
767 this code:
768
769 - In general one should specify the __WCLONE flag to waitpid in
770 order to make it report events for any of the cloned processes
771 (and leave it out for the initial process). However, if a cloned
772 process has exited the exit status is only reported if the
773 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
774 we cannot use it since GDB must work on older systems too.
775
776 - When a traced, cloned process exits and is waited for by the
777 debugger, the kernel reassigns it to the original parent and
778 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
779 library doesn't notice this, which leads to the "zombie problem":
780 When debugged a multi-threaded process that spawns a lot of
781 threads will run out of processes, even if the threads exit,
782 because the "zombies" stay around. */
783
784 /* List of known LWPs. */
785 struct lwp_info *lwp_list;
786 \f
787
788 /* Original signal mask. */
789 static sigset_t normal_mask;
790
791 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
792 _initialize_linux_nat. */
793 static sigset_t suspend_mask;
794
795 /* Signals to block to make that sigsuspend work. */
796 static sigset_t blocked_mask;
797
798 /* SIGCHLD action. */
799 struct sigaction sigchld_action;
800
801 /* Block child signals (SIGCHLD and linux threads signals), and store
802 the previous mask in PREV_MASK. */
803
804 static void
805 block_child_signals (sigset_t *prev_mask)
806 {
807 /* Make sure SIGCHLD is blocked. */
808 if (!sigismember (&blocked_mask, SIGCHLD))
809 sigaddset (&blocked_mask, SIGCHLD);
810
811 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
812 }
813
814 /* Restore child signals mask, previously returned by
815 block_child_signals. */
816
817 static void
818 restore_child_signals_mask (sigset_t *prev_mask)
819 {
820 sigprocmask (SIG_SETMASK, prev_mask, NULL);
821 }
822
823 /* Mask of signals to pass directly to the inferior. */
824 static sigset_t pass_mask;
825
826 /* Update signals to pass to the inferior. */
827 static void
828 linux_nat_pass_signals (struct target_ops *self,
829 int numsigs, unsigned char *pass_signals)
830 {
831 int signo;
832
833 sigemptyset (&pass_mask);
834
835 for (signo = 1; signo < NSIG; signo++)
836 {
837 int target_signo = gdb_signal_from_host (signo);
838 if (target_signo < numsigs && pass_signals[target_signo])
839 sigaddset (&pass_mask, signo);
840 }
841 }
842
843 \f
844
845 /* Prototypes for local functions. */
846 static int stop_wait_callback (struct lwp_info *lp, void *data);
847 static int linux_thread_alive (ptid_t ptid);
848 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
849
850 \f
851
852 /* Destroy and free LP. */
853
854 static void
855 lwp_free (struct lwp_info *lp)
856 {
857 xfree (lp->arch_private);
858 xfree (lp);
859 }
860
861 /* Remove all LWPs belong to PID from the lwp list. */
862
863 static void
864 purge_lwp_list (int pid)
865 {
866 struct lwp_info *lp, *lpprev, *lpnext;
867
868 lpprev = NULL;
869
870 for (lp = lwp_list; lp; lp = lpnext)
871 {
872 lpnext = lp->next;
873
874 if (ptid_get_pid (lp->ptid) == pid)
875 {
876 if (lp == lwp_list)
877 lwp_list = lp->next;
878 else
879 lpprev->next = lp->next;
880
881 lwp_free (lp);
882 }
883 else
884 lpprev = lp;
885 }
886 }
887
888 /* Add the LWP specified by PTID to the list. PTID is the first LWP
889 in the process. Return a pointer to the structure describing the
890 new LWP.
891
892 This differs from add_lwp in that we don't let the arch specific
893 bits know about this new thread. Current clients of this callback
894 take the opportunity to install watchpoints in the new thread, and
895 we shouldn't do that for the first thread. If we're spawning a
896 child ("run"), the thread executes the shell wrapper first, and we
897 shouldn't touch it until it execs the program we want to debug.
898 For "attach", it'd be okay to call the callback, but it's not
899 necessary, because watchpoints can't yet have been inserted into
900 the inferior. */
901
902 static struct lwp_info *
903 add_initial_lwp (ptid_t ptid)
904 {
905 struct lwp_info *lp;
906
907 gdb_assert (ptid_lwp_p (ptid));
908
909 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
910
911 memset (lp, 0, sizeof (struct lwp_info));
912
913 lp->last_resume_kind = resume_continue;
914 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
915
916 lp->ptid = ptid;
917 lp->core = -1;
918
919 lp->next = lwp_list;
920 lwp_list = lp;
921
922 return lp;
923 }
924
925 /* Add the LWP specified by PID to the list. Return a pointer to the
926 structure describing the new LWP. The LWP should already be
927 stopped. */
928
929 static struct lwp_info *
930 add_lwp (ptid_t ptid)
931 {
932 struct lwp_info *lp;
933
934 lp = add_initial_lwp (ptid);
935
936 /* Let the arch specific bits know about this new thread. Current
937 clients of this callback take the opportunity to install
938 watchpoints in the new thread. We don't do this for the first
939 thread though. See add_initial_lwp. */
940 if (linux_nat_new_thread != NULL)
941 linux_nat_new_thread (lp);
942
943 return lp;
944 }
945
946 /* Remove the LWP specified by PID from the list. */
947
948 static void
949 delete_lwp (ptid_t ptid)
950 {
951 struct lwp_info *lp, *lpprev;
952
953 lpprev = NULL;
954
955 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
956 if (ptid_equal (lp->ptid, ptid))
957 break;
958
959 if (!lp)
960 return;
961
962 if (lpprev)
963 lpprev->next = lp->next;
964 else
965 lwp_list = lp->next;
966
967 lwp_free (lp);
968 }
969
970 /* Return a pointer to the structure describing the LWP corresponding
971 to PID. If no corresponding LWP could be found, return NULL. */
972
973 static struct lwp_info *
974 find_lwp_pid (ptid_t ptid)
975 {
976 struct lwp_info *lp;
977 int lwp;
978
979 if (ptid_lwp_p (ptid))
980 lwp = ptid_get_lwp (ptid);
981 else
982 lwp = ptid_get_pid (ptid);
983
984 for (lp = lwp_list; lp; lp = lp->next)
985 if (lwp == ptid_get_lwp (lp->ptid))
986 return lp;
987
988 return NULL;
989 }
990
991 /* Call CALLBACK with its second argument set to DATA for every LWP in
992 the list. If CALLBACK returns 1 for a particular LWP, return a
993 pointer to the structure describing that LWP immediately.
994 Otherwise return NULL. */
995
996 struct lwp_info *
997 iterate_over_lwps (ptid_t filter,
998 int (*callback) (struct lwp_info *, void *),
999 void *data)
1000 {
1001 struct lwp_info *lp, *lpnext;
1002
1003 for (lp = lwp_list; lp; lp = lpnext)
1004 {
1005 lpnext = lp->next;
1006
1007 if (ptid_match (lp->ptid, filter))
1008 {
1009 if ((*callback) (lp, data))
1010 return lp;
1011 }
1012 }
1013
1014 return NULL;
1015 }
1016
1017 /* Update our internal state when changing from one checkpoint to
1018 another indicated by NEW_PTID. We can only switch single-threaded
1019 applications, so we only create one new LWP, and the previous list
1020 is discarded. */
1021
1022 void
1023 linux_nat_switch_fork (ptid_t new_ptid)
1024 {
1025 struct lwp_info *lp;
1026
1027 purge_lwp_list (ptid_get_pid (inferior_ptid));
1028
1029 lp = add_lwp (new_ptid);
1030 lp->stopped = 1;
1031
1032 /* This changes the thread's ptid while preserving the gdb thread
1033 num. Also changes the inferior pid, while preserving the
1034 inferior num. */
1035 thread_change_ptid (inferior_ptid, new_ptid);
1036
1037 /* We've just told GDB core that the thread changed target id, but,
1038 in fact, it really is a different thread, with different register
1039 contents. */
1040 registers_changed ();
1041 }
1042
1043 /* Handle the exit of a single thread LP. */
1044
1045 static void
1046 exit_lwp (struct lwp_info *lp)
1047 {
1048 struct thread_info *th = find_thread_ptid (lp->ptid);
1049
1050 if (th)
1051 {
1052 if (print_thread_events)
1053 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1054
1055 delete_thread (lp->ptid);
1056 }
1057
1058 delete_lwp (lp->ptid);
1059 }
1060
1061 /* Wait for the LWP specified by LP, which we have just attached to.
1062 Returns a wait status for that LWP, to cache. */
1063
1064 static int
1065 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1066 int *signalled)
1067 {
1068 pid_t new_pid, pid = ptid_get_lwp (ptid);
1069 int status;
1070
1071 if (linux_proc_pid_is_stopped (pid))
1072 {
1073 if (debug_linux_nat)
1074 fprintf_unfiltered (gdb_stdlog,
1075 "LNPAW: Attaching to a stopped process\n");
1076
1077 /* The process is definitely stopped. It is in a job control
1078 stop, unless the kernel predates the TASK_STOPPED /
1079 TASK_TRACED distinction, in which case it might be in a
1080 ptrace stop. Make sure it is in a ptrace stop; from there we
1081 can kill it, signal it, et cetera.
1082
1083 First make sure there is a pending SIGSTOP. Since we are
1084 already attached, the process can not transition from stopped
1085 to running without a PTRACE_CONT; so we know this signal will
1086 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1087 probably already in the queue (unless this kernel is old
1088 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1089 is not an RT signal, it can only be queued once. */
1090 kill_lwp (pid, SIGSTOP);
1091
1092 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1093 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1094 ptrace (PTRACE_CONT, pid, 0, 0);
1095 }
1096
1097 /* Make sure the initial process is stopped. The user-level threads
1098 layer might want to poke around in the inferior, and that won't
1099 work if things haven't stabilized yet. */
1100 new_pid = my_waitpid (pid, &status, 0);
1101 if (new_pid == -1 && errno == ECHILD)
1102 {
1103 if (first)
1104 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1105
1106 /* Try again with __WCLONE to check cloned processes. */
1107 new_pid = my_waitpid (pid, &status, __WCLONE);
1108 *cloned = 1;
1109 }
1110
1111 gdb_assert (pid == new_pid);
1112
1113 if (!WIFSTOPPED (status))
1114 {
1115 /* The pid we tried to attach has apparently just exited. */
1116 if (debug_linux_nat)
1117 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1118 pid, status_to_str (status));
1119 return status;
1120 }
1121
1122 if (WSTOPSIG (status) != SIGSTOP)
1123 {
1124 *signalled = 1;
1125 if (debug_linux_nat)
1126 fprintf_unfiltered (gdb_stdlog,
1127 "LNPAW: Received %s after attaching\n",
1128 status_to_str (status));
1129 }
1130
1131 return status;
1132 }
1133
1134 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1135 the new LWP could not be attached, or 1 if we're already auto
1136 attached to this thread, but haven't processed the
1137 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1138 its existance, without considering it an error. */
1139
1140 int
1141 lin_lwp_attach_lwp (ptid_t ptid)
1142 {
1143 struct lwp_info *lp;
1144 int lwpid;
1145
1146 gdb_assert (ptid_lwp_p (ptid));
1147
1148 lp = find_lwp_pid (ptid);
1149 lwpid = ptid_get_lwp (ptid);
1150
1151 /* We assume that we're already attached to any LWP that has an id
1152 equal to the overall process id, and to any LWP that is already
1153 in our list of LWPs. If we're not seeing exit events from threads
1154 and we've had PID wraparound since we last tried to stop all threads,
1155 this assumption might be wrong; fortunately, this is very unlikely
1156 to happen. */
1157 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1158 {
1159 int status, cloned = 0, signalled = 0;
1160
1161 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1162 {
1163 if (linux_supports_tracefork ())
1164 {
1165 /* If we haven't stopped all threads when we get here,
1166 we may have seen a thread listed in thread_db's list,
1167 but not processed the PTRACE_EVENT_CLONE yet. If
1168 that's the case, ignore this new thread, and let
1169 normal event handling discover it later. */
1170 if (in_pid_list_p (stopped_pids, lwpid))
1171 {
1172 /* We've already seen this thread stop, but we
1173 haven't seen the PTRACE_EVENT_CLONE extended
1174 event yet. */
1175 return 0;
1176 }
1177 else
1178 {
1179 int new_pid;
1180 int status;
1181
1182 /* See if we've got a stop for this new child
1183 pending. If so, we're already attached. */
1184 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1185 if (new_pid == -1 && errno == ECHILD)
1186 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1187 if (new_pid != -1)
1188 {
1189 if (WIFSTOPPED (status))
1190 add_to_pid_list (&stopped_pids, lwpid, status);
1191 return 1;
1192 }
1193 }
1194 }
1195
1196 /* If we fail to attach to the thread, issue a warning,
1197 but continue. One way this can happen is if thread
1198 creation is interrupted; as of Linux kernel 2.6.19, a
1199 bug may place threads in the thread list and then fail
1200 to create them. */
1201 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1202 safe_strerror (errno));
1203 return -1;
1204 }
1205
1206 if (debug_linux_nat)
1207 fprintf_unfiltered (gdb_stdlog,
1208 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1209 target_pid_to_str (ptid));
1210
1211 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1212 if (!WIFSTOPPED (status))
1213 return 1;
1214
1215 lp = add_lwp (ptid);
1216 lp->stopped = 1;
1217 lp->cloned = cloned;
1218 lp->signalled = signalled;
1219 if (WSTOPSIG (status) != SIGSTOP)
1220 {
1221 lp->resumed = 1;
1222 lp->status = status;
1223 }
1224
1225 target_post_attach (ptid_get_lwp (lp->ptid));
1226
1227 if (debug_linux_nat)
1228 {
1229 fprintf_unfiltered (gdb_stdlog,
1230 "LLAL: waitpid %s received %s\n",
1231 target_pid_to_str (ptid),
1232 status_to_str (status));
1233 }
1234 }
1235 else
1236 {
1237 /* We assume that the LWP representing the original process is
1238 already stopped. Mark it as stopped in the data structure
1239 that the GNU/linux ptrace layer uses to keep track of
1240 threads. Note that this won't have already been done since
1241 the main thread will have, we assume, been stopped by an
1242 attach from a different layer. */
1243 if (lp == NULL)
1244 lp = add_lwp (ptid);
1245 lp->stopped = 1;
1246 }
1247
1248 lp->last_resume_kind = resume_stop;
1249 return 0;
1250 }
1251
1252 static void
1253 linux_nat_create_inferior (struct target_ops *ops,
1254 char *exec_file, char *allargs, char **env,
1255 int from_tty)
1256 {
1257 #ifdef HAVE_PERSONALITY
1258 int personality_orig = 0, personality_set = 0;
1259 #endif /* HAVE_PERSONALITY */
1260
1261 /* The fork_child mechanism is synchronous and calls target_wait, so
1262 we have to mask the async mode. */
1263
1264 #ifdef HAVE_PERSONALITY
1265 if (disable_randomization)
1266 {
1267 errno = 0;
1268 personality_orig = personality (0xffffffff);
1269 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1270 {
1271 personality_set = 1;
1272 personality (personality_orig | ADDR_NO_RANDOMIZE);
1273 }
1274 if (errno != 0 || (personality_set
1275 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1276 warning (_("Error disabling address space randomization: %s"),
1277 safe_strerror (errno));
1278 }
1279 #endif /* HAVE_PERSONALITY */
1280
1281 /* Make sure we report all signals during startup. */
1282 linux_nat_pass_signals (ops, 0, NULL);
1283
1284 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1285
1286 #ifdef HAVE_PERSONALITY
1287 if (personality_set)
1288 {
1289 errno = 0;
1290 personality (personality_orig);
1291 if (errno != 0)
1292 warning (_("Error restoring address space randomization: %s"),
1293 safe_strerror (errno));
1294 }
1295 #endif /* HAVE_PERSONALITY */
1296 }
1297
1298 static void
1299 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1300 {
1301 struct lwp_info *lp;
1302 int status;
1303 ptid_t ptid;
1304 volatile struct gdb_exception ex;
1305
1306 /* Make sure we report all signals during attach. */
1307 linux_nat_pass_signals (ops, 0, NULL);
1308
1309 TRY_CATCH (ex, RETURN_MASK_ERROR)
1310 {
1311 linux_ops->to_attach (ops, args, from_tty);
1312 }
1313 if (ex.reason < 0)
1314 {
1315 pid_t pid = parse_pid_to_attach (args);
1316 struct buffer buffer;
1317 char *message, *buffer_s;
1318
1319 message = xstrdup (ex.message);
1320 make_cleanup (xfree, message);
1321
1322 buffer_init (&buffer);
1323 linux_ptrace_attach_fail_reason (pid, &buffer);
1324
1325 buffer_grow_str0 (&buffer, "");
1326 buffer_s = buffer_finish (&buffer);
1327 make_cleanup (xfree, buffer_s);
1328
1329 if (*buffer_s != '\0')
1330 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1331 else
1332 throw_error (ex.error, "%s", message);
1333 }
1334
1335 /* The ptrace base target adds the main thread with (pid,0,0)
1336 format. Decorate it with lwp info. */
1337 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1338 ptid_get_pid (inferior_ptid),
1339 0);
1340 thread_change_ptid (inferior_ptid, ptid);
1341
1342 /* Add the initial process as the first LWP to the list. */
1343 lp = add_initial_lwp (ptid);
1344
1345 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1346 &lp->signalled);
1347 if (!WIFSTOPPED (status))
1348 {
1349 if (WIFEXITED (status))
1350 {
1351 int exit_code = WEXITSTATUS (status);
1352
1353 target_terminal_ours ();
1354 target_mourn_inferior ();
1355 if (exit_code == 0)
1356 error (_("Unable to attach: program exited normally."));
1357 else
1358 error (_("Unable to attach: program exited with code %d."),
1359 exit_code);
1360 }
1361 else if (WIFSIGNALED (status))
1362 {
1363 enum gdb_signal signo;
1364
1365 target_terminal_ours ();
1366 target_mourn_inferior ();
1367
1368 signo = gdb_signal_from_host (WTERMSIG (status));
1369 error (_("Unable to attach: program terminated with signal "
1370 "%s, %s."),
1371 gdb_signal_to_name (signo),
1372 gdb_signal_to_string (signo));
1373 }
1374
1375 internal_error (__FILE__, __LINE__,
1376 _("unexpected status %d for PID %ld"),
1377 status, (long) ptid_get_lwp (ptid));
1378 }
1379
1380 lp->stopped = 1;
1381
1382 /* Save the wait status to report later. */
1383 lp->resumed = 1;
1384 if (debug_linux_nat)
1385 fprintf_unfiltered (gdb_stdlog,
1386 "LNA: waitpid %ld, saving status %s\n",
1387 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1388
1389 lp->status = status;
1390
1391 if (target_can_async_p ())
1392 target_async (inferior_event_handler, 0);
1393 }
1394
1395 /* Get pending status of LP. */
1396 static int
1397 get_pending_status (struct lwp_info *lp, int *status)
1398 {
1399 enum gdb_signal signo = GDB_SIGNAL_0;
1400
1401 /* If we paused threads momentarily, we may have stored pending
1402 events in lp->status or lp->waitstatus (see stop_wait_callback),
1403 and GDB core hasn't seen any signal for those threads.
1404 Otherwise, the last signal reported to the core is found in the
1405 thread object's stop_signal.
1406
1407 There's a corner case that isn't handled here at present. Only
1408 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1409 stop_signal make sense as a real signal to pass to the inferior.
1410 Some catchpoint related events, like
1411 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1412 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1413 those traps are debug API (ptrace in our case) related and
1414 induced; the inferior wouldn't see them if it wasn't being
1415 traced. Hence, we should never pass them to the inferior, even
1416 when set to pass state. Since this corner case isn't handled by
1417 infrun.c when proceeding with a signal, for consistency, neither
1418 do we handle it here (or elsewhere in the file we check for
1419 signal pass state). Normally SIGTRAP isn't set to pass state, so
1420 this is really a corner case. */
1421
1422 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1423 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1424 else if (lp->status)
1425 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1426 else if (non_stop && !is_executing (lp->ptid))
1427 {
1428 struct thread_info *tp = find_thread_ptid (lp->ptid);
1429
1430 signo = tp->suspend.stop_signal;
1431 }
1432 else if (!non_stop)
1433 {
1434 struct target_waitstatus last;
1435 ptid_t last_ptid;
1436
1437 get_last_target_status (&last_ptid, &last);
1438
1439 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1440 {
1441 struct thread_info *tp = find_thread_ptid (lp->ptid);
1442
1443 signo = tp->suspend.stop_signal;
1444 }
1445 }
1446
1447 *status = 0;
1448
1449 if (signo == GDB_SIGNAL_0)
1450 {
1451 if (debug_linux_nat)
1452 fprintf_unfiltered (gdb_stdlog,
1453 "GPT: lwp %s has no pending signal\n",
1454 target_pid_to_str (lp->ptid));
1455 }
1456 else if (!signal_pass_state (signo))
1457 {
1458 if (debug_linux_nat)
1459 fprintf_unfiltered (gdb_stdlog,
1460 "GPT: lwp %s had signal %s, "
1461 "but it is in no pass state\n",
1462 target_pid_to_str (lp->ptid),
1463 gdb_signal_to_string (signo));
1464 }
1465 else
1466 {
1467 *status = W_STOPCODE (gdb_signal_to_host (signo));
1468
1469 if (debug_linux_nat)
1470 fprintf_unfiltered (gdb_stdlog,
1471 "GPT: lwp %s has pending signal %s\n",
1472 target_pid_to_str (lp->ptid),
1473 gdb_signal_to_string (signo));
1474 }
1475
1476 return 0;
1477 }
1478
1479 static int
1480 detach_callback (struct lwp_info *lp, void *data)
1481 {
1482 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1483
1484 if (debug_linux_nat && lp->status)
1485 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1486 strsignal (WSTOPSIG (lp->status)),
1487 target_pid_to_str (lp->ptid));
1488
1489 /* If there is a pending SIGSTOP, get rid of it. */
1490 if (lp->signalled)
1491 {
1492 if (debug_linux_nat)
1493 fprintf_unfiltered (gdb_stdlog,
1494 "DC: Sending SIGCONT to %s\n",
1495 target_pid_to_str (lp->ptid));
1496
1497 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1498 lp->signalled = 0;
1499 }
1500
1501 /* We don't actually detach from the LWP that has an id equal to the
1502 overall process id just yet. */
1503 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1504 {
1505 int status = 0;
1506
1507 /* Pass on any pending signal for this LWP. */
1508 get_pending_status (lp, &status);
1509
1510 if (linux_nat_prepare_to_resume != NULL)
1511 linux_nat_prepare_to_resume (lp);
1512 errno = 0;
1513 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1514 WSTOPSIG (status)) < 0)
1515 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1516 safe_strerror (errno));
1517
1518 if (debug_linux_nat)
1519 fprintf_unfiltered (gdb_stdlog,
1520 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1521 target_pid_to_str (lp->ptid),
1522 strsignal (WSTOPSIG (status)));
1523
1524 delete_lwp (lp->ptid);
1525 }
1526
1527 return 0;
1528 }
1529
1530 static void
1531 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1532 {
1533 int pid;
1534 int status;
1535 struct lwp_info *main_lwp;
1536
1537 pid = ptid_get_pid (inferior_ptid);
1538
1539 /* Don't unregister from the event loop, as there may be other
1540 inferiors running. */
1541
1542 /* Stop all threads before detaching. ptrace requires that the
1543 thread is stopped to sucessfully detach. */
1544 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1545 /* ... and wait until all of them have reported back that
1546 they're no longer running. */
1547 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1548
1549 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1550
1551 /* Only the initial process should be left right now. */
1552 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1553
1554 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1555
1556 /* Pass on any pending signal for the last LWP. */
1557 if ((args == NULL || *args == '\0')
1558 && get_pending_status (main_lwp, &status) != -1
1559 && WIFSTOPPED (status))
1560 {
1561 char *tem;
1562
1563 /* Put the signal number in ARGS so that inf_ptrace_detach will
1564 pass it along with PTRACE_DETACH. */
1565 tem = alloca (8);
1566 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1567 args = tem;
1568 if (debug_linux_nat)
1569 fprintf_unfiltered (gdb_stdlog,
1570 "LND: Sending signal %s to %s\n",
1571 args,
1572 target_pid_to_str (main_lwp->ptid));
1573 }
1574
1575 if (linux_nat_prepare_to_resume != NULL)
1576 linux_nat_prepare_to_resume (main_lwp);
1577 delete_lwp (main_lwp->ptid);
1578
1579 if (forks_exist_p ())
1580 {
1581 /* Multi-fork case. The current inferior_ptid is being detached
1582 from, but there are other viable forks to debug. Detach from
1583 the current fork, and context-switch to the first
1584 available. */
1585 linux_fork_detach (args, from_tty);
1586 }
1587 else
1588 linux_ops->to_detach (ops, args, from_tty);
1589 }
1590
1591 /* Resume LP. */
1592
1593 static void
1594 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1595 {
1596 if (lp->stopped)
1597 {
1598 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1599
1600 if (inf->vfork_child != NULL)
1601 {
1602 if (debug_linux_nat)
1603 fprintf_unfiltered (gdb_stdlog,
1604 "RC: Not resuming %s (vfork parent)\n",
1605 target_pid_to_str (lp->ptid));
1606 }
1607 else if (lp->status == 0
1608 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1609 {
1610 if (debug_linux_nat)
1611 fprintf_unfiltered (gdb_stdlog,
1612 "RC: Resuming sibling %s, %s, %s\n",
1613 target_pid_to_str (lp->ptid),
1614 (signo != GDB_SIGNAL_0
1615 ? strsignal (gdb_signal_to_host (signo))
1616 : "0"),
1617 step ? "step" : "resume");
1618
1619 if (linux_nat_prepare_to_resume != NULL)
1620 linux_nat_prepare_to_resume (lp);
1621 linux_ops->to_resume (linux_ops,
1622 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1623 step, signo);
1624 lp->stopped = 0;
1625 lp->step = step;
1626 lp->stopped_by_watchpoint = 0;
1627 }
1628 else
1629 {
1630 if (debug_linux_nat)
1631 fprintf_unfiltered (gdb_stdlog,
1632 "RC: Not resuming sibling %s (has pending)\n",
1633 target_pid_to_str (lp->ptid));
1634 }
1635 }
1636 else
1637 {
1638 if (debug_linux_nat)
1639 fprintf_unfiltered (gdb_stdlog,
1640 "RC: Not resuming sibling %s (not stopped)\n",
1641 target_pid_to_str (lp->ptid));
1642 }
1643 }
1644
1645 /* Resume LWP, with the last stop signal, if it is in pass state. */
1646
1647 static int
1648 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1649 {
1650 enum gdb_signal signo = GDB_SIGNAL_0;
1651
1652 if (lp->stopped)
1653 {
1654 struct thread_info *thread;
1655
1656 thread = find_thread_ptid (lp->ptid);
1657 if (thread != NULL)
1658 {
1659 if (signal_pass_state (thread->suspend.stop_signal))
1660 signo = thread->suspend.stop_signal;
1661 thread->suspend.stop_signal = GDB_SIGNAL_0;
1662 }
1663 }
1664
1665 resume_lwp (lp, 0, signo);
1666 return 0;
1667 }
1668
1669 static int
1670 resume_clear_callback (struct lwp_info *lp, void *data)
1671 {
1672 lp->resumed = 0;
1673 lp->last_resume_kind = resume_stop;
1674 return 0;
1675 }
1676
1677 static int
1678 resume_set_callback (struct lwp_info *lp, void *data)
1679 {
1680 lp->resumed = 1;
1681 lp->last_resume_kind = resume_continue;
1682 return 0;
1683 }
1684
1685 static void
1686 linux_nat_resume (struct target_ops *ops,
1687 ptid_t ptid, int step, enum gdb_signal signo)
1688 {
1689 struct lwp_info *lp;
1690 int resume_many;
1691
1692 if (debug_linux_nat)
1693 fprintf_unfiltered (gdb_stdlog,
1694 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1695 step ? "step" : "resume",
1696 target_pid_to_str (ptid),
1697 (signo != GDB_SIGNAL_0
1698 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1699 target_pid_to_str (inferior_ptid));
1700
1701 /* A specific PTID means `step only this process id'. */
1702 resume_many = (ptid_equal (minus_one_ptid, ptid)
1703 || ptid_is_pid (ptid));
1704
1705 /* Mark the lwps we're resuming as resumed. */
1706 iterate_over_lwps (ptid, resume_set_callback, NULL);
1707
1708 /* See if it's the current inferior that should be handled
1709 specially. */
1710 if (resume_many)
1711 lp = find_lwp_pid (inferior_ptid);
1712 else
1713 lp = find_lwp_pid (ptid);
1714 gdb_assert (lp != NULL);
1715
1716 /* Remember if we're stepping. */
1717 lp->step = step;
1718 lp->last_resume_kind = step ? resume_step : resume_continue;
1719
1720 /* If we have a pending wait status for this thread, there is no
1721 point in resuming the process. But first make sure that
1722 linux_nat_wait won't preemptively handle the event - we
1723 should never take this short-circuit if we are going to
1724 leave LP running, since we have skipped resuming all the
1725 other threads. This bit of code needs to be synchronized
1726 with linux_nat_wait. */
1727
1728 if (lp->status && WIFSTOPPED (lp->status))
1729 {
1730 if (!lp->step
1731 && WSTOPSIG (lp->status)
1732 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1733 {
1734 if (debug_linux_nat)
1735 fprintf_unfiltered (gdb_stdlog,
1736 "LLR: Not short circuiting for ignored "
1737 "status 0x%x\n", lp->status);
1738
1739 /* FIXME: What should we do if we are supposed to continue
1740 this thread with a signal? */
1741 gdb_assert (signo == GDB_SIGNAL_0);
1742 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1743 lp->status = 0;
1744 }
1745 }
1746
1747 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1748 {
1749 /* FIXME: What should we do if we are supposed to continue
1750 this thread with a signal? */
1751 gdb_assert (signo == GDB_SIGNAL_0);
1752
1753 if (debug_linux_nat)
1754 fprintf_unfiltered (gdb_stdlog,
1755 "LLR: Short circuiting for status 0x%x\n",
1756 lp->status);
1757
1758 if (target_can_async_p ())
1759 {
1760 target_async (inferior_event_handler, 0);
1761 /* Tell the event loop we have something to process. */
1762 async_file_mark ();
1763 }
1764 return;
1765 }
1766
1767 /* Mark LWP as not stopped to prevent it from being continued by
1768 linux_nat_resume_callback. */
1769 lp->stopped = 0;
1770
1771 if (resume_many)
1772 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1773
1774 /* Convert to something the lower layer understands. */
1775 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1776
1777 if (linux_nat_prepare_to_resume != NULL)
1778 linux_nat_prepare_to_resume (lp);
1779 linux_ops->to_resume (linux_ops, ptid, step, signo);
1780 lp->stopped_by_watchpoint = 0;
1781
1782 if (debug_linux_nat)
1783 fprintf_unfiltered (gdb_stdlog,
1784 "LLR: %s %s, %s (resume event thread)\n",
1785 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1786 target_pid_to_str (ptid),
1787 (signo != GDB_SIGNAL_0
1788 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1789
1790 if (target_can_async_p ())
1791 target_async (inferior_event_handler, 0);
1792 }
1793
1794 /* Send a signal to an LWP. */
1795
1796 static int
1797 kill_lwp (int lwpid, int signo)
1798 {
1799 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1800 fails, then we are not using nptl threads and we should be using kill. */
1801
1802 #ifdef HAVE_TKILL_SYSCALL
1803 {
1804 static int tkill_failed;
1805
1806 if (!tkill_failed)
1807 {
1808 int ret;
1809
1810 errno = 0;
1811 ret = syscall (__NR_tkill, lwpid, signo);
1812 if (errno != ENOSYS)
1813 return ret;
1814 tkill_failed = 1;
1815 }
1816 }
1817 #endif
1818
1819 return kill (lwpid, signo);
1820 }
1821
1822 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1823 event, check if the core is interested in it: if not, ignore the
1824 event, and keep waiting; otherwise, we need to toggle the LWP's
1825 syscall entry/exit status, since the ptrace event itself doesn't
1826 indicate it, and report the trap to higher layers. */
1827
1828 static int
1829 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1830 {
1831 struct target_waitstatus *ourstatus = &lp->waitstatus;
1832 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1833 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1834
1835 if (stopping)
1836 {
1837 /* If we're stopping threads, there's a SIGSTOP pending, which
1838 makes it so that the LWP reports an immediate syscall return,
1839 followed by the SIGSTOP. Skip seeing that "return" using
1840 PTRACE_CONT directly, and let stop_wait_callback collect the
1841 SIGSTOP. Later when the thread is resumed, a new syscall
1842 entry event. If we didn't do this (and returned 0), we'd
1843 leave a syscall entry pending, and our caller, by using
1844 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1845 itself. Later, when the user re-resumes this LWP, we'd see
1846 another syscall entry event and we'd mistake it for a return.
1847
1848 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1849 (leaving immediately with LWP->signalled set, without issuing
1850 a PTRACE_CONT), it would still be problematic to leave this
1851 syscall enter pending, as later when the thread is resumed,
1852 it would then see the same syscall exit mentioned above,
1853 followed by the delayed SIGSTOP, while the syscall didn't
1854 actually get to execute. It seems it would be even more
1855 confusing to the user. */
1856
1857 if (debug_linux_nat)
1858 fprintf_unfiltered (gdb_stdlog,
1859 "LHST: ignoring syscall %d "
1860 "for LWP %ld (stopping threads), "
1861 "resuming with PTRACE_CONT for SIGSTOP\n",
1862 syscall_number,
1863 ptid_get_lwp (lp->ptid));
1864
1865 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1866 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1867 return 1;
1868 }
1869
1870 if (catch_syscall_enabled ())
1871 {
1872 /* Always update the entry/return state, even if this particular
1873 syscall isn't interesting to the core now. In async mode,
1874 the user could install a new catchpoint for this syscall
1875 between syscall enter/return, and we'll need to know to
1876 report a syscall return if that happens. */
1877 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1878 ? TARGET_WAITKIND_SYSCALL_RETURN
1879 : TARGET_WAITKIND_SYSCALL_ENTRY);
1880
1881 if (catching_syscall_number (syscall_number))
1882 {
1883 /* Alright, an event to report. */
1884 ourstatus->kind = lp->syscall_state;
1885 ourstatus->value.syscall_number = syscall_number;
1886
1887 if (debug_linux_nat)
1888 fprintf_unfiltered (gdb_stdlog,
1889 "LHST: stopping for %s of syscall %d"
1890 " for LWP %ld\n",
1891 lp->syscall_state
1892 == TARGET_WAITKIND_SYSCALL_ENTRY
1893 ? "entry" : "return",
1894 syscall_number,
1895 ptid_get_lwp (lp->ptid));
1896 return 0;
1897 }
1898
1899 if (debug_linux_nat)
1900 fprintf_unfiltered (gdb_stdlog,
1901 "LHST: ignoring %s of syscall %d "
1902 "for LWP %ld\n",
1903 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1904 ? "entry" : "return",
1905 syscall_number,
1906 ptid_get_lwp (lp->ptid));
1907 }
1908 else
1909 {
1910 /* If we had been syscall tracing, and hence used PT_SYSCALL
1911 before on this LWP, it could happen that the user removes all
1912 syscall catchpoints before we get to process this event.
1913 There are two noteworthy issues here:
1914
1915 - When stopped at a syscall entry event, resuming with
1916 PT_STEP still resumes executing the syscall and reports a
1917 syscall return.
1918
1919 - Only PT_SYSCALL catches syscall enters. If we last
1920 single-stepped this thread, then this event can't be a
1921 syscall enter. If we last single-stepped this thread, this
1922 has to be a syscall exit.
1923
1924 The points above mean that the next resume, be it PT_STEP or
1925 PT_CONTINUE, can not trigger a syscall trace event. */
1926 if (debug_linux_nat)
1927 fprintf_unfiltered (gdb_stdlog,
1928 "LHST: caught syscall event "
1929 "with no syscall catchpoints."
1930 " %d for LWP %ld, ignoring\n",
1931 syscall_number,
1932 ptid_get_lwp (lp->ptid));
1933 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1934 }
1935
1936 /* The core isn't interested in this event. For efficiency, avoid
1937 stopping all threads only to have the core resume them all again.
1938 Since we're not stopping threads, if we're still syscall tracing
1939 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1940 subsequent syscall. Simply resume using the inf-ptrace layer,
1941 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1942
1943 /* Note that gdbarch_get_syscall_number may access registers, hence
1944 fill a regcache. */
1945 registers_changed ();
1946 if (linux_nat_prepare_to_resume != NULL)
1947 linux_nat_prepare_to_resume (lp);
1948 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1949 lp->step, GDB_SIGNAL_0);
1950 return 1;
1951 }
1952
1953 /* Handle a GNU/Linux extended wait response. If we see a clone
1954 event, we need to add the new LWP to our list (and not report the
1955 trap to higher layers). This function returns non-zero if the
1956 event should be ignored and we should wait again. If STOPPING is
1957 true, the new LWP remains stopped, otherwise it is continued. */
1958
1959 static int
1960 linux_handle_extended_wait (struct lwp_info *lp, int status,
1961 int stopping)
1962 {
1963 int pid = ptid_get_lwp (lp->ptid);
1964 struct target_waitstatus *ourstatus = &lp->waitstatus;
1965 int event = status >> 16;
1966
1967 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1968 || event == PTRACE_EVENT_CLONE)
1969 {
1970 unsigned long new_pid;
1971 int ret;
1972
1973 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1974
1975 /* If we haven't already seen the new PID stop, wait for it now. */
1976 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1977 {
1978 /* The new child has a pending SIGSTOP. We can't affect it until it
1979 hits the SIGSTOP, but we're already attached. */
1980 ret = my_waitpid (new_pid, &status,
1981 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1982 if (ret == -1)
1983 perror_with_name (_("waiting for new child"));
1984 else if (ret != new_pid)
1985 internal_error (__FILE__, __LINE__,
1986 _("wait returned unexpected PID %d"), ret);
1987 else if (!WIFSTOPPED (status))
1988 internal_error (__FILE__, __LINE__,
1989 _("wait returned unexpected status 0x%x"), status);
1990 }
1991
1992 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1993
1994 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1995 {
1996 /* The arch-specific native code may need to know about new
1997 forks even if those end up never mapped to an
1998 inferior. */
1999 if (linux_nat_new_fork != NULL)
2000 linux_nat_new_fork (lp, new_pid);
2001 }
2002
2003 if (event == PTRACE_EVENT_FORK
2004 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2005 {
2006 /* Handle checkpointing by linux-fork.c here as a special
2007 case. We don't want the follow-fork-mode or 'catch fork'
2008 to interfere with this. */
2009
2010 /* This won't actually modify the breakpoint list, but will
2011 physically remove the breakpoints from the child. */
2012 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2013
2014 /* Retain child fork in ptrace (stopped) state. */
2015 if (!find_fork_pid (new_pid))
2016 add_fork (new_pid);
2017
2018 /* Report as spurious, so that infrun doesn't want to follow
2019 this fork. We're actually doing an infcall in
2020 linux-fork.c. */
2021 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2022
2023 /* Report the stop to the core. */
2024 return 0;
2025 }
2026
2027 if (event == PTRACE_EVENT_FORK)
2028 ourstatus->kind = TARGET_WAITKIND_FORKED;
2029 else if (event == PTRACE_EVENT_VFORK)
2030 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2031 else
2032 {
2033 struct lwp_info *new_lp;
2034
2035 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2036
2037 if (debug_linux_nat)
2038 fprintf_unfiltered (gdb_stdlog,
2039 "LHEW: Got clone event "
2040 "from LWP %d, new child is LWP %ld\n",
2041 pid, new_pid);
2042
2043 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2044 new_lp->cloned = 1;
2045 new_lp->stopped = 1;
2046
2047 if (WSTOPSIG (status) != SIGSTOP)
2048 {
2049 /* This can happen if someone starts sending signals to
2050 the new thread before it gets a chance to run, which
2051 have a lower number than SIGSTOP (e.g. SIGUSR1).
2052 This is an unlikely case, and harder to handle for
2053 fork / vfork than for clone, so we do not try - but
2054 we handle it for clone events here. We'll send
2055 the other signal on to the thread below. */
2056
2057 new_lp->signalled = 1;
2058 }
2059 else
2060 {
2061 struct thread_info *tp;
2062
2063 /* When we stop for an event in some other thread, and
2064 pull the thread list just as this thread has cloned,
2065 we'll have seen the new thread in the thread_db list
2066 before handling the CLONE event (glibc's
2067 pthread_create adds the new thread to the thread list
2068 before clone'ing, and has the kernel fill in the
2069 thread's tid on the clone call with
2070 CLONE_PARENT_SETTID). If that happened, and the core
2071 had requested the new thread to stop, we'll have
2072 killed it with SIGSTOP. But since SIGSTOP is not an
2073 RT signal, it can only be queued once. We need to be
2074 careful to not resume the LWP if we wanted it to
2075 stop. In that case, we'll leave the SIGSTOP pending.
2076 It will later be reported as GDB_SIGNAL_0. */
2077 tp = find_thread_ptid (new_lp->ptid);
2078 if (tp != NULL && tp->stop_requested)
2079 new_lp->last_resume_kind = resume_stop;
2080 else
2081 status = 0;
2082 }
2083
2084 if (non_stop)
2085 {
2086 /* Add the new thread to GDB's lists as soon as possible
2087 so that:
2088
2089 1) the frontend doesn't have to wait for a stop to
2090 display them, and,
2091
2092 2) we tag it with the correct running state. */
2093
2094 /* If the thread_db layer is active, let it know about
2095 this new thread, and add it to GDB's list. */
2096 if (!thread_db_attach_lwp (new_lp->ptid))
2097 {
2098 /* We're not using thread_db. Add it to GDB's
2099 list. */
2100 target_post_attach (ptid_get_lwp (new_lp->ptid));
2101 add_thread (new_lp->ptid);
2102 }
2103
2104 if (!stopping)
2105 {
2106 set_running (new_lp->ptid, 1);
2107 set_executing (new_lp->ptid, 1);
2108 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2109 resume_stop. */
2110 new_lp->last_resume_kind = resume_continue;
2111 }
2112 }
2113
2114 if (status != 0)
2115 {
2116 /* We created NEW_LP so it cannot yet contain STATUS. */
2117 gdb_assert (new_lp->status == 0);
2118
2119 /* Save the wait status to report later. */
2120 if (debug_linux_nat)
2121 fprintf_unfiltered (gdb_stdlog,
2122 "LHEW: waitpid of new LWP %ld, "
2123 "saving status %s\n",
2124 (long) ptid_get_lwp (new_lp->ptid),
2125 status_to_str (status));
2126 new_lp->status = status;
2127 }
2128
2129 /* Note the need to use the low target ops to resume, to
2130 handle resuming with PT_SYSCALL if we have syscall
2131 catchpoints. */
2132 if (!stopping)
2133 {
2134 new_lp->resumed = 1;
2135
2136 if (status == 0)
2137 {
2138 gdb_assert (new_lp->last_resume_kind == resume_continue);
2139 if (debug_linux_nat)
2140 fprintf_unfiltered (gdb_stdlog,
2141 "LHEW: resuming new LWP %ld\n",
2142 ptid_get_lwp (new_lp->ptid));
2143 if (linux_nat_prepare_to_resume != NULL)
2144 linux_nat_prepare_to_resume (new_lp);
2145 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2146 0, GDB_SIGNAL_0);
2147 new_lp->stopped = 0;
2148 }
2149 }
2150
2151 if (debug_linux_nat)
2152 fprintf_unfiltered (gdb_stdlog,
2153 "LHEW: resuming parent LWP %d\n", pid);
2154 if (linux_nat_prepare_to_resume != NULL)
2155 linux_nat_prepare_to_resume (lp);
2156 linux_ops->to_resume (linux_ops,
2157 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2158 0, GDB_SIGNAL_0);
2159
2160 return 1;
2161 }
2162
2163 return 0;
2164 }
2165
2166 if (event == PTRACE_EVENT_EXEC)
2167 {
2168 if (debug_linux_nat)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "LHEW: Got exec event from LWP %ld\n",
2171 ptid_get_lwp (lp->ptid));
2172
2173 ourstatus->kind = TARGET_WAITKIND_EXECD;
2174 ourstatus->value.execd_pathname
2175 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2176
2177 return 0;
2178 }
2179
2180 if (event == PTRACE_EVENT_VFORK_DONE)
2181 {
2182 if (current_inferior ()->waiting_for_vfork_done)
2183 {
2184 if (debug_linux_nat)
2185 fprintf_unfiltered (gdb_stdlog,
2186 "LHEW: Got expected PTRACE_EVENT_"
2187 "VFORK_DONE from LWP %ld: stopping\n",
2188 ptid_get_lwp (lp->ptid));
2189
2190 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2191 return 0;
2192 }
2193
2194 if (debug_linux_nat)
2195 fprintf_unfiltered (gdb_stdlog,
2196 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2197 "from LWP %ld: resuming\n",
2198 ptid_get_lwp (lp->ptid));
2199 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2200 return 1;
2201 }
2202
2203 internal_error (__FILE__, __LINE__,
2204 _("unknown ptrace event %d"), event);
2205 }
2206
2207 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2208 exited. */
2209
2210 static int
2211 wait_lwp (struct lwp_info *lp)
2212 {
2213 pid_t pid;
2214 int status = 0;
2215 int thread_dead = 0;
2216 sigset_t prev_mask;
2217
2218 gdb_assert (!lp->stopped);
2219 gdb_assert (lp->status == 0);
2220
2221 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2222 block_child_signals (&prev_mask);
2223
2224 for (;;)
2225 {
2226 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2227 was right and we should just call sigsuspend. */
2228
2229 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2230 if (pid == -1 && errno == ECHILD)
2231 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2232 if (pid == -1 && errno == ECHILD)
2233 {
2234 /* The thread has previously exited. We need to delete it
2235 now because, for some vendor 2.4 kernels with NPTL
2236 support backported, there won't be an exit event unless
2237 it is the main thread. 2.6 kernels will report an exit
2238 event for each thread that exits, as expected. */
2239 thread_dead = 1;
2240 if (debug_linux_nat)
2241 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2242 target_pid_to_str (lp->ptid));
2243 }
2244 if (pid != 0)
2245 break;
2246
2247 /* Bugs 10970, 12702.
2248 Thread group leader may have exited in which case we'll lock up in
2249 waitpid if there are other threads, even if they are all zombies too.
2250 Basically, we're not supposed to use waitpid this way.
2251 __WCLONE is not applicable for the leader so we can't use that.
2252 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2253 process; it gets ESRCH both for the zombie and for running processes.
2254
2255 As a workaround, check if we're waiting for the thread group leader and
2256 if it's a zombie, and avoid calling waitpid if it is.
2257
2258 This is racy, what if the tgl becomes a zombie right after we check?
2259 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2260 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2261
2262 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2263 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2264 {
2265 thread_dead = 1;
2266 if (debug_linux_nat)
2267 fprintf_unfiltered (gdb_stdlog,
2268 "WL: Thread group leader %s vanished.\n",
2269 target_pid_to_str (lp->ptid));
2270 break;
2271 }
2272
2273 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2274 get invoked despite our caller had them intentionally blocked by
2275 block_child_signals. This is sensitive only to the loop of
2276 linux_nat_wait_1 and there if we get called my_waitpid gets called
2277 again before it gets to sigsuspend so we can safely let the handlers
2278 get executed here. */
2279
2280 sigsuspend (&suspend_mask);
2281 }
2282
2283 restore_child_signals_mask (&prev_mask);
2284
2285 if (!thread_dead)
2286 {
2287 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2288
2289 if (debug_linux_nat)
2290 {
2291 fprintf_unfiltered (gdb_stdlog,
2292 "WL: waitpid %s received %s\n",
2293 target_pid_to_str (lp->ptid),
2294 status_to_str (status));
2295 }
2296
2297 /* Check if the thread has exited. */
2298 if (WIFEXITED (status) || WIFSIGNALED (status))
2299 {
2300 thread_dead = 1;
2301 if (debug_linux_nat)
2302 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2303 target_pid_to_str (lp->ptid));
2304 }
2305 }
2306
2307 if (thread_dead)
2308 {
2309 exit_lwp (lp);
2310 return 0;
2311 }
2312
2313 gdb_assert (WIFSTOPPED (status));
2314
2315 /* Handle GNU/Linux's syscall SIGTRAPs. */
2316 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2317 {
2318 /* No longer need the sysgood bit. The ptrace event ends up
2319 recorded in lp->waitstatus if we care for it. We can carry
2320 on handling the event like a regular SIGTRAP from here
2321 on. */
2322 status = W_STOPCODE (SIGTRAP);
2323 if (linux_handle_syscall_trap (lp, 1))
2324 return wait_lwp (lp);
2325 }
2326
2327 /* Handle GNU/Linux's extended waitstatus for trace events. */
2328 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2329 {
2330 if (debug_linux_nat)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "WL: Handling extended status 0x%06x\n",
2333 status);
2334 if (linux_handle_extended_wait (lp, status, 1))
2335 return wait_lwp (lp);
2336 }
2337
2338 return status;
2339 }
2340
2341 /* Send a SIGSTOP to LP. */
2342
2343 static int
2344 stop_callback (struct lwp_info *lp, void *data)
2345 {
2346 if (!lp->stopped && !lp->signalled)
2347 {
2348 int ret;
2349
2350 if (debug_linux_nat)
2351 {
2352 fprintf_unfiltered (gdb_stdlog,
2353 "SC: kill %s **<SIGSTOP>**\n",
2354 target_pid_to_str (lp->ptid));
2355 }
2356 errno = 0;
2357 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2358 if (debug_linux_nat)
2359 {
2360 fprintf_unfiltered (gdb_stdlog,
2361 "SC: lwp kill %d %s\n",
2362 ret,
2363 errno ? safe_strerror (errno) : "ERRNO-OK");
2364 }
2365
2366 lp->signalled = 1;
2367 gdb_assert (lp->status == 0);
2368 }
2369
2370 return 0;
2371 }
2372
2373 /* Request a stop on LWP. */
2374
2375 void
2376 linux_stop_lwp (struct lwp_info *lwp)
2377 {
2378 stop_callback (lwp, NULL);
2379 }
2380
2381 /* Return non-zero if LWP PID has a pending SIGINT. */
2382
2383 static int
2384 linux_nat_has_pending_sigint (int pid)
2385 {
2386 sigset_t pending, blocked, ignored;
2387
2388 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2389
2390 if (sigismember (&pending, SIGINT)
2391 && !sigismember (&ignored, SIGINT))
2392 return 1;
2393
2394 return 0;
2395 }
2396
2397 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2398
2399 static int
2400 set_ignore_sigint (struct lwp_info *lp, void *data)
2401 {
2402 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2403 flag to consume the next one. */
2404 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2405 && WSTOPSIG (lp->status) == SIGINT)
2406 lp->status = 0;
2407 else
2408 lp->ignore_sigint = 1;
2409
2410 return 0;
2411 }
2412
2413 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2414 This function is called after we know the LWP has stopped; if the LWP
2415 stopped before the expected SIGINT was delivered, then it will never have
2416 arrived. Also, if the signal was delivered to a shared queue and consumed
2417 by a different thread, it will never be delivered to this LWP. */
2418
2419 static void
2420 maybe_clear_ignore_sigint (struct lwp_info *lp)
2421 {
2422 if (!lp->ignore_sigint)
2423 return;
2424
2425 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2426 {
2427 if (debug_linux_nat)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "MCIS: Clearing bogus flag for %s\n",
2430 target_pid_to_str (lp->ptid));
2431 lp->ignore_sigint = 0;
2432 }
2433 }
2434
2435 /* Fetch the possible triggered data watchpoint info and store it in
2436 LP.
2437
2438 On some archs, like x86, that use debug registers to set
2439 watchpoints, it's possible that the way to know which watched
2440 address trapped, is to check the register that is used to select
2441 which address to watch. Problem is, between setting the watchpoint
2442 and reading back which data address trapped, the user may change
2443 the set of watchpoints, and, as a consequence, GDB changes the
2444 debug registers in the inferior. To avoid reading back a stale
2445 stopped-data-address when that happens, we cache in LP the fact
2446 that a watchpoint trapped, and the corresponding data address, as
2447 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2448 registers meanwhile, we have the cached data we can rely on. */
2449
2450 static void
2451 save_sigtrap (struct lwp_info *lp)
2452 {
2453 struct cleanup *old_chain;
2454
2455 if (linux_ops->to_stopped_by_watchpoint == NULL)
2456 {
2457 lp->stopped_by_watchpoint = 0;
2458 return;
2459 }
2460
2461 old_chain = save_inferior_ptid ();
2462 inferior_ptid = lp->ptid;
2463
2464 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint (linux_ops);
2465
2466 if (lp->stopped_by_watchpoint)
2467 {
2468 if (linux_ops->to_stopped_data_address != NULL)
2469 lp->stopped_data_address_p =
2470 linux_ops->to_stopped_data_address (&current_target,
2471 &lp->stopped_data_address);
2472 else
2473 lp->stopped_data_address_p = 0;
2474 }
2475
2476 do_cleanups (old_chain);
2477 }
2478
2479 /* See save_sigtrap. */
2480
2481 static int
2482 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2483 {
2484 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2485
2486 gdb_assert (lp != NULL);
2487
2488 return lp->stopped_by_watchpoint;
2489 }
2490
2491 static int
2492 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2493 {
2494 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2495
2496 gdb_assert (lp != NULL);
2497
2498 *addr_p = lp->stopped_data_address;
2499
2500 return lp->stopped_data_address_p;
2501 }
2502
2503 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2504
2505 static int
2506 sigtrap_is_event (int status)
2507 {
2508 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2509 }
2510
2511 /* SIGTRAP-like events recognizer. */
2512
2513 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2514
2515 /* Check for SIGTRAP-like events in LP. */
2516
2517 static int
2518 linux_nat_lp_status_is_event (struct lwp_info *lp)
2519 {
2520 /* We check for lp->waitstatus in addition to lp->status, because we can
2521 have pending process exits recorded in lp->status
2522 and W_EXITCODE(0,0) == 0. We should probably have an additional
2523 lp->status_p flag. */
2524
2525 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2526 && linux_nat_status_is_event (lp->status));
2527 }
2528
2529 /* Set alternative SIGTRAP-like events recognizer. If
2530 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2531 applied. */
2532
2533 void
2534 linux_nat_set_status_is_event (struct target_ops *t,
2535 int (*status_is_event) (int status))
2536 {
2537 linux_nat_status_is_event = status_is_event;
2538 }
2539
2540 /* Wait until LP is stopped. */
2541
2542 static int
2543 stop_wait_callback (struct lwp_info *lp, void *data)
2544 {
2545 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2546
2547 /* If this is a vfork parent, bail out, it is not going to report
2548 any SIGSTOP until the vfork is done with. */
2549 if (inf->vfork_child != NULL)
2550 return 0;
2551
2552 if (!lp->stopped)
2553 {
2554 int status;
2555
2556 status = wait_lwp (lp);
2557 if (status == 0)
2558 return 0;
2559
2560 if (lp->ignore_sigint && WIFSTOPPED (status)
2561 && WSTOPSIG (status) == SIGINT)
2562 {
2563 lp->ignore_sigint = 0;
2564
2565 errno = 0;
2566 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2567 if (debug_linux_nat)
2568 fprintf_unfiltered (gdb_stdlog,
2569 "PTRACE_CONT %s, 0, 0 (%s) "
2570 "(discarding SIGINT)\n",
2571 target_pid_to_str (lp->ptid),
2572 errno ? safe_strerror (errno) : "OK");
2573
2574 return stop_wait_callback (lp, NULL);
2575 }
2576
2577 maybe_clear_ignore_sigint (lp);
2578
2579 if (WSTOPSIG (status) != SIGSTOP)
2580 {
2581 /* The thread was stopped with a signal other than SIGSTOP. */
2582
2583 save_sigtrap (lp);
2584
2585 if (debug_linux_nat)
2586 fprintf_unfiltered (gdb_stdlog,
2587 "SWC: Pending event %s in %s\n",
2588 status_to_str ((int) status),
2589 target_pid_to_str (lp->ptid));
2590
2591 /* Save the sigtrap event. */
2592 lp->status = status;
2593 gdb_assert (!lp->stopped);
2594 gdb_assert (lp->signalled);
2595 lp->stopped = 1;
2596 }
2597 else
2598 {
2599 /* We caught the SIGSTOP that we intended to catch, so
2600 there's no SIGSTOP pending. */
2601
2602 if (debug_linux_nat)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "SWC: Delayed SIGSTOP caught for %s.\n",
2605 target_pid_to_str (lp->ptid));
2606
2607 lp->stopped = 1;
2608
2609 /* Reset SIGNALLED only after the stop_wait_callback call
2610 above as it does gdb_assert on SIGNALLED. */
2611 lp->signalled = 0;
2612 }
2613 }
2614
2615 return 0;
2616 }
2617
2618 /* Return non-zero if LP has a wait status pending. */
2619
2620 static int
2621 status_callback (struct lwp_info *lp, void *data)
2622 {
2623 /* Only report a pending wait status if we pretend that this has
2624 indeed been resumed. */
2625 if (!lp->resumed)
2626 return 0;
2627
2628 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2629 {
2630 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2631 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2632 0', so a clean process exit can not be stored pending in
2633 lp->status, it is indistinguishable from
2634 no-pending-status. */
2635 return 1;
2636 }
2637
2638 if (lp->status != 0)
2639 return 1;
2640
2641 return 0;
2642 }
2643
2644 /* Return non-zero if LP isn't stopped. */
2645
2646 static int
2647 running_callback (struct lwp_info *lp, void *data)
2648 {
2649 return (!lp->stopped
2650 || ((lp->status != 0
2651 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2652 && lp->resumed));
2653 }
2654
2655 /* Count the LWP's that have had events. */
2656
2657 static int
2658 count_events_callback (struct lwp_info *lp, void *data)
2659 {
2660 int *count = data;
2661
2662 gdb_assert (count != NULL);
2663
2664 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2665 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2666 (*count)++;
2667
2668 return 0;
2669 }
2670
2671 /* Select the LWP (if any) that is currently being single-stepped. */
2672
2673 static int
2674 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2675 {
2676 if (lp->last_resume_kind == resume_step
2677 && lp->status != 0)
2678 return 1;
2679 else
2680 return 0;
2681 }
2682
2683 /* Select the Nth LWP that has had a SIGTRAP event. */
2684
2685 static int
2686 select_event_lwp_callback (struct lwp_info *lp, void *data)
2687 {
2688 int *selector = data;
2689
2690 gdb_assert (selector != NULL);
2691
2692 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2693 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2694 if ((*selector)-- == 0)
2695 return 1;
2696
2697 return 0;
2698 }
2699
2700 static int
2701 cancel_breakpoint (struct lwp_info *lp)
2702 {
2703 /* Arrange for a breakpoint to be hit again later. We don't keep
2704 the SIGTRAP status and don't forward the SIGTRAP signal to the
2705 LWP. We will handle the current event, eventually we will resume
2706 this LWP, and this breakpoint will trap again.
2707
2708 If we do not do this, then we run the risk that the user will
2709 delete or disable the breakpoint, but the LWP will have already
2710 tripped on it. */
2711
2712 struct regcache *regcache = get_thread_regcache (lp->ptid);
2713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2714 CORE_ADDR pc;
2715
2716 pc = regcache_read_pc (regcache) - target_decr_pc_after_break (gdbarch);
2717 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2718 {
2719 if (debug_linux_nat)
2720 fprintf_unfiltered (gdb_stdlog,
2721 "CB: Push back breakpoint for %s\n",
2722 target_pid_to_str (lp->ptid));
2723
2724 /* Back up the PC if necessary. */
2725 if (target_decr_pc_after_break (gdbarch))
2726 regcache_write_pc (regcache, pc);
2727
2728 return 1;
2729 }
2730 return 0;
2731 }
2732
2733 static int
2734 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2735 {
2736 struct lwp_info *event_lp = data;
2737
2738 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2739 if (lp == event_lp)
2740 return 0;
2741
2742 /* If a LWP other than the LWP that we're reporting an event for has
2743 hit a GDB breakpoint (as opposed to some random trap signal),
2744 then just arrange for it to hit it again later. We don't keep
2745 the SIGTRAP status and don't forward the SIGTRAP signal to the
2746 LWP. We will handle the current event, eventually we will resume
2747 all LWPs, and this one will get its breakpoint trap again.
2748
2749 If we do not do this, then we run the risk that the user will
2750 delete or disable the breakpoint, but the LWP will have already
2751 tripped on it. */
2752
2753 if (linux_nat_lp_status_is_event (lp)
2754 && cancel_breakpoint (lp))
2755 /* Throw away the SIGTRAP. */
2756 lp->status = 0;
2757
2758 return 0;
2759 }
2760
2761 /* Select one LWP out of those that have events pending. */
2762
2763 static void
2764 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2765 {
2766 int num_events = 0;
2767 int random_selector;
2768 struct lwp_info *event_lp;
2769
2770 /* Record the wait status for the original LWP. */
2771 (*orig_lp)->status = *status;
2772
2773 /* Give preference to any LWP that is being single-stepped. */
2774 event_lp = iterate_over_lwps (filter,
2775 select_singlestep_lwp_callback, NULL);
2776 if (event_lp != NULL)
2777 {
2778 if (debug_linux_nat)
2779 fprintf_unfiltered (gdb_stdlog,
2780 "SEL: Select single-step %s\n",
2781 target_pid_to_str (event_lp->ptid));
2782 }
2783 else
2784 {
2785 /* No single-stepping LWP. Select one at random, out of those
2786 which have had SIGTRAP events. */
2787
2788 /* First see how many SIGTRAP events we have. */
2789 iterate_over_lwps (filter, count_events_callback, &num_events);
2790
2791 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2792 random_selector = (int)
2793 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2794
2795 if (debug_linux_nat && num_events > 1)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2798 num_events, random_selector);
2799
2800 event_lp = iterate_over_lwps (filter,
2801 select_event_lwp_callback,
2802 &random_selector);
2803 }
2804
2805 if (event_lp != NULL)
2806 {
2807 /* Switch the event LWP. */
2808 *orig_lp = event_lp;
2809 *status = event_lp->status;
2810 }
2811
2812 /* Flush the wait status for the event LWP. */
2813 (*orig_lp)->status = 0;
2814 }
2815
2816 /* Return non-zero if LP has been resumed. */
2817
2818 static int
2819 resumed_callback (struct lwp_info *lp, void *data)
2820 {
2821 return lp->resumed;
2822 }
2823
2824 /* Stop an active thread, verify it still exists, then resume it. If
2825 the thread ends up with a pending status, then it is not resumed,
2826 and *DATA (really a pointer to int), is set. */
2827
2828 static int
2829 stop_and_resume_callback (struct lwp_info *lp, void *data)
2830 {
2831 int *new_pending_p = data;
2832
2833 if (!lp->stopped)
2834 {
2835 ptid_t ptid = lp->ptid;
2836
2837 stop_callback (lp, NULL);
2838 stop_wait_callback (lp, NULL);
2839
2840 /* Resume if the lwp still exists, and the core wanted it
2841 running. */
2842 lp = find_lwp_pid (ptid);
2843 if (lp != NULL)
2844 {
2845 if (lp->last_resume_kind == resume_stop
2846 && lp->status == 0)
2847 {
2848 /* The core wanted the LWP to stop. Even if it stopped
2849 cleanly (with SIGSTOP), leave the event pending. */
2850 if (debug_linux_nat)
2851 fprintf_unfiltered (gdb_stdlog,
2852 "SARC: core wanted LWP %ld stopped "
2853 "(leaving SIGSTOP pending)\n",
2854 ptid_get_lwp (lp->ptid));
2855 lp->status = W_STOPCODE (SIGSTOP);
2856 }
2857
2858 if (lp->status == 0)
2859 {
2860 if (debug_linux_nat)
2861 fprintf_unfiltered (gdb_stdlog,
2862 "SARC: re-resuming LWP %ld\n",
2863 ptid_get_lwp (lp->ptid));
2864 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2865 }
2866 else
2867 {
2868 if (debug_linux_nat)
2869 fprintf_unfiltered (gdb_stdlog,
2870 "SARC: not re-resuming LWP %ld "
2871 "(has pending)\n",
2872 ptid_get_lwp (lp->ptid));
2873 if (new_pending_p)
2874 *new_pending_p = 1;
2875 }
2876 }
2877 }
2878 return 0;
2879 }
2880
2881 /* Check if we should go on and pass this event to common code.
2882 Return the affected lwp if we are, or NULL otherwise. If we stop
2883 all lwps temporarily, we may end up with new pending events in some
2884 other lwp. In that case set *NEW_PENDING_P to true. */
2885
2886 static struct lwp_info *
2887 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2888 {
2889 struct lwp_info *lp;
2890
2891 *new_pending_p = 0;
2892
2893 lp = find_lwp_pid (pid_to_ptid (lwpid));
2894
2895 /* Check for stop events reported by a process we didn't already
2896 know about - anything not already in our LWP list.
2897
2898 If we're expecting to receive stopped processes after
2899 fork, vfork, and clone events, then we'll just add the
2900 new one to our list and go back to waiting for the event
2901 to be reported - the stopped process might be returned
2902 from waitpid before or after the event is.
2903
2904 But note the case of a non-leader thread exec'ing after the
2905 leader having exited, and gone from our lists. The non-leader
2906 thread changes its tid to the tgid. */
2907
2908 if (WIFSTOPPED (status) && lp == NULL
2909 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2910 {
2911 /* A multi-thread exec after we had seen the leader exiting. */
2912 if (debug_linux_nat)
2913 fprintf_unfiltered (gdb_stdlog,
2914 "LLW: Re-adding thread group leader LWP %d.\n",
2915 lwpid);
2916
2917 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2918 lp->stopped = 1;
2919 lp->resumed = 1;
2920 add_thread (lp->ptid);
2921 }
2922
2923 if (WIFSTOPPED (status) && !lp)
2924 {
2925 add_to_pid_list (&stopped_pids, lwpid, status);
2926 return NULL;
2927 }
2928
2929 /* Make sure we don't report an event for the exit of an LWP not in
2930 our list, i.e. not part of the current process. This can happen
2931 if we detach from a program we originally forked and then it
2932 exits. */
2933 if (!WIFSTOPPED (status) && !lp)
2934 return NULL;
2935
2936 /* Handle GNU/Linux's syscall SIGTRAPs. */
2937 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2938 {
2939 /* No longer need the sysgood bit. The ptrace event ends up
2940 recorded in lp->waitstatus if we care for it. We can carry
2941 on handling the event like a regular SIGTRAP from here
2942 on. */
2943 status = W_STOPCODE (SIGTRAP);
2944 if (linux_handle_syscall_trap (lp, 0))
2945 return NULL;
2946 }
2947
2948 /* Handle GNU/Linux's extended waitstatus for trace events. */
2949 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2950 {
2951 if (debug_linux_nat)
2952 fprintf_unfiltered (gdb_stdlog,
2953 "LLW: Handling extended status 0x%06x\n",
2954 status);
2955 if (linux_handle_extended_wait (lp, status, 0))
2956 return NULL;
2957 }
2958
2959 if (linux_nat_status_is_event (status))
2960 save_sigtrap (lp);
2961
2962 /* Check if the thread has exited. */
2963 if ((WIFEXITED (status) || WIFSIGNALED (status))
2964 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2965 {
2966 /* If this is the main thread, we must stop all threads and verify
2967 if they are still alive. This is because in the nptl thread model
2968 on Linux 2.4, there is no signal issued for exiting LWPs
2969 other than the main thread. We only get the main thread exit
2970 signal once all child threads have already exited. If we
2971 stop all the threads and use the stop_wait_callback to check
2972 if they have exited we can determine whether this signal
2973 should be ignored or whether it means the end of the debugged
2974 application, regardless of which threading model is being
2975 used. */
2976 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2977 {
2978 lp->stopped = 1;
2979 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
2980 stop_and_resume_callback, new_pending_p);
2981 }
2982
2983 if (debug_linux_nat)
2984 fprintf_unfiltered (gdb_stdlog,
2985 "LLW: %s exited.\n",
2986 target_pid_to_str (lp->ptid));
2987
2988 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2989 {
2990 /* If there is at least one more LWP, then the exit signal
2991 was not the end of the debugged application and should be
2992 ignored. */
2993 exit_lwp (lp);
2994 return NULL;
2995 }
2996 }
2997
2998 /* Check if the current LWP has previously exited. In the nptl
2999 thread model, LWPs other than the main thread do not issue
3000 signals when they exit so we must check whenever the thread has
3001 stopped. A similar check is made in stop_wait_callback(). */
3002 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3003 {
3004 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3005
3006 if (debug_linux_nat)
3007 fprintf_unfiltered (gdb_stdlog,
3008 "LLW: %s exited.\n",
3009 target_pid_to_str (lp->ptid));
3010
3011 exit_lwp (lp);
3012
3013 /* Make sure there is at least one thread running. */
3014 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3015
3016 /* Discard the event. */
3017 return NULL;
3018 }
3019
3020 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3021 an attempt to stop an LWP. */
3022 if (lp->signalled
3023 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3024 {
3025 if (debug_linux_nat)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "LLW: Delayed SIGSTOP caught for %s.\n",
3028 target_pid_to_str (lp->ptid));
3029
3030 lp->signalled = 0;
3031
3032 if (lp->last_resume_kind != resume_stop)
3033 {
3034 /* This is a delayed SIGSTOP. */
3035
3036 registers_changed ();
3037
3038 if (linux_nat_prepare_to_resume != NULL)
3039 linux_nat_prepare_to_resume (lp);
3040 linux_ops->to_resume (linux_ops,
3041 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3042 lp->step, GDB_SIGNAL_0);
3043 if (debug_linux_nat)
3044 fprintf_unfiltered (gdb_stdlog,
3045 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3046 lp->step ?
3047 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3048 target_pid_to_str (lp->ptid));
3049
3050 lp->stopped = 0;
3051 gdb_assert (lp->resumed);
3052
3053 /* Discard the event. */
3054 return NULL;
3055 }
3056 }
3057
3058 /* Make sure we don't report a SIGINT that we have already displayed
3059 for another thread. */
3060 if (lp->ignore_sigint
3061 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3062 {
3063 if (debug_linux_nat)
3064 fprintf_unfiltered (gdb_stdlog,
3065 "LLW: Delayed SIGINT caught for %s.\n",
3066 target_pid_to_str (lp->ptid));
3067
3068 /* This is a delayed SIGINT. */
3069 lp->ignore_sigint = 0;
3070
3071 registers_changed ();
3072 if (linux_nat_prepare_to_resume != NULL)
3073 linux_nat_prepare_to_resume (lp);
3074 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3075 lp->step, GDB_SIGNAL_0);
3076 if (debug_linux_nat)
3077 fprintf_unfiltered (gdb_stdlog,
3078 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3079 lp->step ?
3080 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3081 target_pid_to_str (lp->ptid));
3082
3083 lp->stopped = 0;
3084 gdb_assert (lp->resumed);
3085
3086 /* Discard the event. */
3087 return NULL;
3088 }
3089
3090 /* An interesting event. */
3091 gdb_assert (lp);
3092 lp->status = status;
3093 return lp;
3094 }
3095
3096 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3097 their exits until all other threads in the group have exited. */
3098
3099 static void
3100 check_zombie_leaders (void)
3101 {
3102 struct inferior *inf;
3103
3104 ALL_INFERIORS (inf)
3105 {
3106 struct lwp_info *leader_lp;
3107
3108 if (inf->pid == 0)
3109 continue;
3110
3111 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3112 if (leader_lp != NULL
3113 /* Check if there are other threads in the group, as we may
3114 have raced with the inferior simply exiting. */
3115 && num_lwps (inf->pid) > 1
3116 && linux_proc_pid_is_zombie (inf->pid))
3117 {
3118 if (debug_linux_nat)
3119 fprintf_unfiltered (gdb_stdlog,
3120 "CZL: Thread group leader %d zombie "
3121 "(it exited, or another thread execd).\n",
3122 inf->pid);
3123
3124 /* A leader zombie can mean one of two things:
3125
3126 - It exited, and there's an exit status pending
3127 available, or only the leader exited (not the whole
3128 program). In the latter case, we can't waitpid the
3129 leader's exit status until all other threads are gone.
3130
3131 - There are 3 or more threads in the group, and a thread
3132 other than the leader exec'd. On an exec, the Linux
3133 kernel destroys all other threads (except the execing
3134 one) in the thread group, and resets the execing thread's
3135 tid to the tgid. No exit notification is sent for the
3136 execing thread -- from the ptracer's perspective, it
3137 appears as though the execing thread just vanishes.
3138 Until we reap all other threads except the leader and the
3139 execing thread, the leader will be zombie, and the
3140 execing thread will be in `D (disc sleep)'. As soon as
3141 all other threads are reaped, the execing thread changes
3142 it's tid to the tgid, and the previous (zombie) leader
3143 vanishes, giving place to the "new" leader. We could try
3144 distinguishing the exit and exec cases, by waiting once
3145 more, and seeing if something comes out, but it doesn't
3146 sound useful. The previous leader _does_ go away, and
3147 we'll re-add the new one once we see the exec event
3148 (which is just the same as what would happen if the
3149 previous leader did exit voluntarily before some other
3150 thread execs). */
3151
3152 if (debug_linux_nat)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "CZL: Thread group leader %d vanished.\n",
3155 inf->pid);
3156 exit_lwp (leader_lp);
3157 }
3158 }
3159 }
3160
3161 static ptid_t
3162 linux_nat_wait_1 (struct target_ops *ops,
3163 ptid_t ptid, struct target_waitstatus *ourstatus,
3164 int target_options)
3165 {
3166 static sigset_t prev_mask;
3167 enum resume_kind last_resume_kind;
3168 struct lwp_info *lp;
3169 int status;
3170
3171 if (debug_linux_nat)
3172 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3173
3174 /* The first time we get here after starting a new inferior, we may
3175 not have added it to the LWP list yet - this is the earliest
3176 moment at which we know its PID. */
3177 if (ptid_is_pid (inferior_ptid))
3178 {
3179 /* Upgrade the main thread's ptid. */
3180 thread_change_ptid (inferior_ptid,
3181 ptid_build (ptid_get_pid (inferior_ptid),
3182 ptid_get_pid (inferior_ptid), 0));
3183
3184 lp = add_initial_lwp (inferior_ptid);
3185 lp->resumed = 1;
3186 }
3187
3188 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3189 block_child_signals (&prev_mask);
3190
3191 retry:
3192 lp = NULL;
3193 status = 0;
3194
3195 /* First check if there is a LWP with a wait status pending. */
3196 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3197 {
3198 /* Any LWP in the PTID group that's been resumed will do. */
3199 lp = iterate_over_lwps (ptid, status_callback, NULL);
3200 if (lp)
3201 {
3202 if (debug_linux_nat && lp->status)
3203 fprintf_unfiltered (gdb_stdlog,
3204 "LLW: Using pending wait status %s for %s.\n",
3205 status_to_str (lp->status),
3206 target_pid_to_str (lp->ptid));
3207 }
3208 }
3209 else if (ptid_lwp_p (ptid))
3210 {
3211 if (debug_linux_nat)
3212 fprintf_unfiltered (gdb_stdlog,
3213 "LLW: Waiting for specific LWP %s.\n",
3214 target_pid_to_str (ptid));
3215
3216 /* We have a specific LWP to check. */
3217 lp = find_lwp_pid (ptid);
3218 gdb_assert (lp);
3219
3220 if (debug_linux_nat && lp->status)
3221 fprintf_unfiltered (gdb_stdlog,
3222 "LLW: Using pending wait status %s for %s.\n",
3223 status_to_str (lp->status),
3224 target_pid_to_str (lp->ptid));
3225
3226 /* We check for lp->waitstatus in addition to lp->status,
3227 because we can have pending process exits recorded in
3228 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3229 an additional lp->status_p flag. */
3230 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3231 lp = NULL;
3232 }
3233
3234 if (!target_can_async_p ())
3235 {
3236 /* Causes SIGINT to be passed on to the attached process. */
3237 set_sigint_trap ();
3238 }
3239
3240 /* But if we don't find a pending event, we'll have to wait. */
3241
3242 while (lp == NULL)
3243 {
3244 pid_t lwpid;
3245
3246 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3247 quirks:
3248
3249 - If the thread group leader exits while other threads in the
3250 thread group still exist, waitpid(TGID, ...) hangs. That
3251 waitpid won't return an exit status until the other threads
3252 in the group are reapped.
3253
3254 - When a non-leader thread execs, that thread just vanishes
3255 without reporting an exit (so we'd hang if we waited for it
3256 explicitly in that case). The exec event is reported to
3257 the TGID pid. */
3258
3259 errno = 0;
3260 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3261 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3262 lwpid = my_waitpid (-1, &status, WNOHANG);
3263
3264 if (debug_linux_nat)
3265 fprintf_unfiltered (gdb_stdlog,
3266 "LNW: waitpid(-1, ...) returned %d, %s\n",
3267 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3268
3269 if (lwpid > 0)
3270 {
3271 /* If this is true, then we paused LWPs momentarily, and may
3272 now have pending events to handle. */
3273 int new_pending;
3274
3275 if (debug_linux_nat)
3276 {
3277 fprintf_unfiltered (gdb_stdlog,
3278 "LLW: waitpid %ld received %s\n",
3279 (long) lwpid, status_to_str (status));
3280 }
3281
3282 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3283
3284 /* STATUS is now no longer valid, use LP->STATUS instead. */
3285 status = 0;
3286
3287 if (lp && !ptid_match (lp->ptid, ptid))
3288 {
3289 gdb_assert (lp->resumed);
3290
3291 if (debug_linux_nat)
3292 fprintf (stderr,
3293 "LWP %ld got an event %06x, leaving pending.\n",
3294 ptid_get_lwp (lp->ptid), lp->status);
3295
3296 if (WIFSTOPPED (lp->status))
3297 {
3298 if (WSTOPSIG (lp->status) != SIGSTOP)
3299 {
3300 /* Cancel breakpoint hits. The breakpoint may
3301 be removed before we fetch events from this
3302 process to report to the core. It is best
3303 not to assume the moribund breakpoints
3304 heuristic always handles these cases --- it
3305 could be too many events go through to the
3306 core before this one is handled. All-stop
3307 always cancels breakpoint hits in all
3308 threads. */
3309 if (non_stop
3310 && linux_nat_lp_status_is_event (lp)
3311 && cancel_breakpoint (lp))
3312 {
3313 /* Throw away the SIGTRAP. */
3314 lp->status = 0;
3315
3316 if (debug_linux_nat)
3317 fprintf (stderr,
3318 "LLW: LWP %ld hit a breakpoint while"
3319 " waiting for another process;"
3320 " cancelled it\n",
3321 ptid_get_lwp (lp->ptid));
3322 }
3323 lp->stopped = 1;
3324 }
3325 else
3326 {
3327 lp->stopped = 1;
3328 lp->signalled = 0;
3329 }
3330 }
3331 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3332 {
3333 if (debug_linux_nat)
3334 fprintf (stderr,
3335 "Process %ld exited while stopping LWPs\n",
3336 ptid_get_lwp (lp->ptid));
3337
3338 /* This was the last lwp in the process. Since
3339 events are serialized to GDB core, and we can't
3340 report this one right now, but GDB core and the
3341 other target layers will want to be notified
3342 about the exit code/signal, leave the status
3343 pending for the next time we're able to report
3344 it. */
3345
3346 /* Prevent trying to stop this thread again. We'll
3347 never try to resume it because it has a pending
3348 status. */
3349 lp->stopped = 1;
3350
3351 /* Dead LWP's aren't expected to reported a pending
3352 sigstop. */
3353 lp->signalled = 0;
3354
3355 /* Store the pending event in the waitstatus as
3356 well, because W_EXITCODE(0,0) == 0. */
3357 store_waitstatus (&lp->waitstatus, lp->status);
3358 }
3359
3360 /* Keep looking. */
3361 lp = NULL;
3362 }
3363
3364 if (new_pending)
3365 {
3366 /* Some LWP now has a pending event. Go all the way
3367 back to check it. */
3368 goto retry;
3369 }
3370
3371 if (lp)
3372 {
3373 /* We got an event to report to the core. */
3374 break;
3375 }
3376
3377 /* Retry until nothing comes out of waitpid. A single
3378 SIGCHLD can indicate more than one child stopped. */
3379 continue;
3380 }
3381
3382 /* Check for zombie thread group leaders. Those can't be reaped
3383 until all other threads in the thread group are. */
3384 check_zombie_leaders ();
3385
3386 /* If there are no resumed children left, bail. We'd be stuck
3387 forever in the sigsuspend call below otherwise. */
3388 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3389 {
3390 if (debug_linux_nat)
3391 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3392
3393 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3394
3395 if (!target_can_async_p ())
3396 clear_sigint_trap ();
3397
3398 restore_child_signals_mask (&prev_mask);
3399 return minus_one_ptid;
3400 }
3401
3402 /* No interesting event to report to the core. */
3403
3404 if (target_options & TARGET_WNOHANG)
3405 {
3406 if (debug_linux_nat)
3407 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3408
3409 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3410 restore_child_signals_mask (&prev_mask);
3411 return minus_one_ptid;
3412 }
3413
3414 /* We shouldn't end up here unless we want to try again. */
3415 gdb_assert (lp == NULL);
3416
3417 /* Block until we get an event reported with SIGCHLD. */
3418 sigsuspend (&suspend_mask);
3419 }
3420
3421 if (!target_can_async_p ())
3422 clear_sigint_trap ();
3423
3424 gdb_assert (lp);
3425
3426 status = lp->status;
3427 lp->status = 0;
3428
3429 /* Don't report signals that GDB isn't interested in, such as
3430 signals that are neither printed nor stopped upon. Stopping all
3431 threads can be a bit time-consuming so if we want decent
3432 performance with heavily multi-threaded programs, especially when
3433 they're using a high frequency timer, we'd better avoid it if we
3434 can. */
3435
3436 if (WIFSTOPPED (status))
3437 {
3438 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3439
3440 /* When using hardware single-step, we need to report every signal.
3441 Otherwise, signals in pass_mask may be short-circuited. */
3442 if (!lp->step
3443 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3444 {
3445 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3446 here? It is not clear we should. GDB may not expect
3447 other threads to run. On the other hand, not resuming
3448 newly attached threads may cause an unwanted delay in
3449 getting them running. */
3450 registers_changed ();
3451 if (linux_nat_prepare_to_resume != NULL)
3452 linux_nat_prepare_to_resume (lp);
3453 linux_ops->to_resume (linux_ops,
3454 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3455 lp->step, signo);
3456 if (debug_linux_nat)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "LLW: %s %s, %s (preempt 'handle')\n",
3459 lp->step ?
3460 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3461 target_pid_to_str (lp->ptid),
3462 (signo != GDB_SIGNAL_0
3463 ? strsignal (gdb_signal_to_host (signo))
3464 : "0"));
3465 lp->stopped = 0;
3466 goto retry;
3467 }
3468
3469 if (!non_stop)
3470 {
3471 /* Only do the below in all-stop, as we currently use SIGINT
3472 to implement target_stop (see linux_nat_stop) in
3473 non-stop. */
3474 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3475 {
3476 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3477 forwarded to the entire process group, that is, all LWPs
3478 will receive it - unless they're using CLONE_THREAD to
3479 share signals. Since we only want to report it once, we
3480 mark it as ignored for all LWPs except this one. */
3481 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3482 set_ignore_sigint, NULL);
3483 lp->ignore_sigint = 0;
3484 }
3485 else
3486 maybe_clear_ignore_sigint (lp);
3487 }
3488 }
3489
3490 /* This LWP is stopped now. */
3491 lp->stopped = 1;
3492
3493 if (debug_linux_nat)
3494 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3495 status_to_str (status), target_pid_to_str (lp->ptid));
3496
3497 if (!non_stop)
3498 {
3499 /* Now stop all other LWP's ... */
3500 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3501
3502 /* ... and wait until all of them have reported back that
3503 they're no longer running. */
3504 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3505
3506 /* If we're not waiting for a specific LWP, choose an event LWP
3507 from among those that have had events. Giving equal priority
3508 to all LWPs that have had events helps prevent
3509 starvation. */
3510 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3511 select_event_lwp (ptid, &lp, &status);
3512
3513 /* Now that we've selected our final event LWP, cancel any
3514 breakpoints in other LWPs that have hit a GDB breakpoint.
3515 See the comment in cancel_breakpoints_callback to find out
3516 why. */
3517 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3518
3519 /* We'll need this to determine whether to report a SIGSTOP as
3520 TARGET_WAITKIND_0. Need to take a copy because
3521 resume_clear_callback clears it. */
3522 last_resume_kind = lp->last_resume_kind;
3523
3524 /* In all-stop, from the core's perspective, all LWPs are now
3525 stopped until a new resume action is sent over. */
3526 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3527 }
3528 else
3529 {
3530 /* See above. */
3531 last_resume_kind = lp->last_resume_kind;
3532 resume_clear_callback (lp, NULL);
3533 }
3534
3535 if (linux_nat_status_is_event (status))
3536 {
3537 if (debug_linux_nat)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "LLW: trap ptid is %s.\n",
3540 target_pid_to_str (lp->ptid));
3541 }
3542
3543 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3544 {
3545 *ourstatus = lp->waitstatus;
3546 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3547 }
3548 else
3549 store_waitstatus (ourstatus, status);
3550
3551 if (debug_linux_nat)
3552 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3553
3554 restore_child_signals_mask (&prev_mask);
3555
3556 if (last_resume_kind == resume_stop
3557 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3558 && WSTOPSIG (status) == SIGSTOP)
3559 {
3560 /* A thread that has been requested to stop by GDB with
3561 target_stop, and it stopped cleanly, so report as SIG0. The
3562 use of SIGSTOP is an implementation detail. */
3563 ourstatus->value.sig = GDB_SIGNAL_0;
3564 }
3565
3566 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3567 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3568 lp->core = -1;
3569 else
3570 lp->core = linux_common_core_of_thread (lp->ptid);
3571
3572 return lp->ptid;
3573 }
3574
3575 /* Resume LWPs that are currently stopped without any pending status
3576 to report, but are resumed from the core's perspective. */
3577
3578 static int
3579 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3580 {
3581 ptid_t *wait_ptid_p = data;
3582
3583 if (lp->stopped
3584 && lp->resumed
3585 && lp->status == 0
3586 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3587 {
3588 struct regcache *regcache = get_thread_regcache (lp->ptid);
3589 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3590 CORE_ADDR pc = regcache_read_pc (regcache);
3591
3592 gdb_assert (is_executing (lp->ptid));
3593
3594 /* Don't bother if there's a breakpoint at PC that we'd hit
3595 immediately, and we're not waiting for this LWP. */
3596 if (!ptid_match (lp->ptid, *wait_ptid_p))
3597 {
3598 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3599 return 0;
3600 }
3601
3602 if (debug_linux_nat)
3603 fprintf_unfiltered (gdb_stdlog,
3604 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3605 target_pid_to_str (lp->ptid),
3606 paddress (gdbarch, pc),
3607 lp->step);
3608
3609 registers_changed ();
3610 if (linux_nat_prepare_to_resume != NULL)
3611 linux_nat_prepare_to_resume (lp);
3612 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3613 lp->step, GDB_SIGNAL_0);
3614 lp->stopped = 0;
3615 lp->stopped_by_watchpoint = 0;
3616 }
3617
3618 return 0;
3619 }
3620
3621 static ptid_t
3622 linux_nat_wait (struct target_ops *ops,
3623 ptid_t ptid, struct target_waitstatus *ourstatus,
3624 int target_options)
3625 {
3626 ptid_t event_ptid;
3627
3628 if (debug_linux_nat)
3629 {
3630 char *options_string;
3631
3632 options_string = target_options_to_string (target_options);
3633 fprintf_unfiltered (gdb_stdlog,
3634 "linux_nat_wait: [%s], [%s]\n",
3635 target_pid_to_str (ptid),
3636 options_string);
3637 xfree (options_string);
3638 }
3639
3640 /* Flush the async file first. */
3641 if (target_can_async_p ())
3642 async_file_flush ();
3643
3644 /* Resume LWPs that are currently stopped without any pending status
3645 to report, but are resumed from the core's perspective. LWPs get
3646 in this state if we find them stopping at a time we're not
3647 interested in reporting the event (target_wait on a
3648 specific_process, for example, see linux_nat_wait_1), and
3649 meanwhile the event became uninteresting. Don't bother resuming
3650 LWPs we're not going to wait for if they'd stop immediately. */
3651 if (non_stop)
3652 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3653
3654 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3655
3656 /* If we requested any event, and something came out, assume there
3657 may be more. If we requested a specific lwp or process, also
3658 assume there may be more. */
3659 if (target_can_async_p ()
3660 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3661 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3662 || !ptid_equal (ptid, minus_one_ptid)))
3663 async_file_mark ();
3664
3665 /* Get ready for the next event. */
3666 if (target_can_async_p ())
3667 target_async (inferior_event_handler, 0);
3668
3669 return event_ptid;
3670 }
3671
3672 static int
3673 kill_callback (struct lwp_info *lp, void *data)
3674 {
3675 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3676
3677 errno = 0;
3678 kill (ptid_get_lwp (lp->ptid), SIGKILL);
3679 if (debug_linux_nat)
3680 fprintf_unfiltered (gdb_stdlog,
3681 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3682 target_pid_to_str (lp->ptid),
3683 errno ? safe_strerror (errno) : "OK");
3684
3685 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3686
3687 errno = 0;
3688 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3689 if (debug_linux_nat)
3690 fprintf_unfiltered (gdb_stdlog,
3691 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3692 target_pid_to_str (lp->ptid),
3693 errno ? safe_strerror (errno) : "OK");
3694
3695 return 0;
3696 }
3697
3698 static int
3699 kill_wait_callback (struct lwp_info *lp, void *data)
3700 {
3701 pid_t pid;
3702
3703 /* We must make sure that there are no pending events (delayed
3704 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3705 program doesn't interfere with any following debugging session. */
3706
3707 /* For cloned processes we must check both with __WCLONE and
3708 without, since the exit status of a cloned process isn't reported
3709 with __WCLONE. */
3710 if (lp->cloned)
3711 {
3712 do
3713 {
3714 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3715 if (pid != (pid_t) -1)
3716 {
3717 if (debug_linux_nat)
3718 fprintf_unfiltered (gdb_stdlog,
3719 "KWC: wait %s received unknown.\n",
3720 target_pid_to_str (lp->ptid));
3721 /* The Linux kernel sometimes fails to kill a thread
3722 completely after PTRACE_KILL; that goes from the stop
3723 point in do_fork out to the one in
3724 get_signal_to_deliever and waits again. So kill it
3725 again. */
3726 kill_callback (lp, NULL);
3727 }
3728 }
3729 while (pid == ptid_get_lwp (lp->ptid));
3730
3731 gdb_assert (pid == -1 && errno == ECHILD);
3732 }
3733
3734 do
3735 {
3736 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3737 if (pid != (pid_t) -1)
3738 {
3739 if (debug_linux_nat)
3740 fprintf_unfiltered (gdb_stdlog,
3741 "KWC: wait %s received unk.\n",
3742 target_pid_to_str (lp->ptid));
3743 /* See the call to kill_callback above. */
3744 kill_callback (lp, NULL);
3745 }
3746 }
3747 while (pid == ptid_get_lwp (lp->ptid));
3748
3749 gdb_assert (pid == -1 && errno == ECHILD);
3750 return 0;
3751 }
3752
3753 static void
3754 linux_nat_kill (struct target_ops *ops)
3755 {
3756 struct target_waitstatus last;
3757 ptid_t last_ptid;
3758 int status;
3759
3760 /* If we're stopped while forking and we haven't followed yet,
3761 kill the other task. We need to do this first because the
3762 parent will be sleeping if this is a vfork. */
3763
3764 get_last_target_status (&last_ptid, &last);
3765
3766 if (last.kind == TARGET_WAITKIND_FORKED
3767 || last.kind == TARGET_WAITKIND_VFORKED)
3768 {
3769 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3770 wait (&status);
3771
3772 /* Let the arch-specific native code know this process is
3773 gone. */
3774 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3775 }
3776
3777 if (forks_exist_p ())
3778 linux_fork_killall ();
3779 else
3780 {
3781 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3782
3783 /* Stop all threads before killing them, since ptrace requires
3784 that the thread is stopped to sucessfully PTRACE_KILL. */
3785 iterate_over_lwps (ptid, stop_callback, NULL);
3786 /* ... and wait until all of them have reported back that
3787 they're no longer running. */
3788 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3789
3790 /* Kill all LWP's ... */
3791 iterate_over_lwps (ptid, kill_callback, NULL);
3792
3793 /* ... and wait until we've flushed all events. */
3794 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3795 }
3796
3797 target_mourn_inferior ();
3798 }
3799
3800 static void
3801 linux_nat_mourn_inferior (struct target_ops *ops)
3802 {
3803 int pid = ptid_get_pid (inferior_ptid);
3804
3805 purge_lwp_list (pid);
3806
3807 if (! forks_exist_p ())
3808 /* Normal case, no other forks available. */
3809 linux_ops->to_mourn_inferior (ops);
3810 else
3811 /* Multi-fork case. The current inferior_ptid has exited, but
3812 there are other viable forks to debug. Delete the exiting
3813 one and context-switch to the first available. */
3814 linux_fork_mourn_inferior ();
3815
3816 /* Let the arch-specific native code know this process is gone. */
3817 linux_nat_forget_process (pid);
3818 }
3819
3820 /* Convert a native/host siginfo object, into/from the siginfo in the
3821 layout of the inferiors' architecture. */
3822
3823 static void
3824 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3825 {
3826 int done = 0;
3827
3828 if (linux_nat_siginfo_fixup != NULL)
3829 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3830
3831 /* If there was no callback, or the callback didn't do anything,
3832 then just do a straight memcpy. */
3833 if (!done)
3834 {
3835 if (direction == 1)
3836 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3837 else
3838 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3839 }
3840 }
3841
3842 static enum target_xfer_status
3843 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3844 const char *annex, gdb_byte *readbuf,
3845 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3846 ULONGEST *xfered_len)
3847 {
3848 int pid;
3849 siginfo_t siginfo;
3850 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3851
3852 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3853 gdb_assert (readbuf || writebuf);
3854
3855 pid = ptid_get_lwp (inferior_ptid);
3856 if (pid == 0)
3857 pid = ptid_get_pid (inferior_ptid);
3858
3859 if (offset > sizeof (siginfo))
3860 return TARGET_XFER_E_IO;
3861
3862 errno = 0;
3863 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3864 if (errno != 0)
3865 return TARGET_XFER_E_IO;
3866
3867 /* When GDB is built as a 64-bit application, ptrace writes into
3868 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3869 inferior with a 64-bit GDB should look the same as debugging it
3870 with a 32-bit GDB, we need to convert it. GDB core always sees
3871 the converted layout, so any read/write will have to be done
3872 post-conversion. */
3873 siginfo_fixup (&siginfo, inf_siginfo, 0);
3874
3875 if (offset + len > sizeof (siginfo))
3876 len = sizeof (siginfo) - offset;
3877
3878 if (readbuf != NULL)
3879 memcpy (readbuf, inf_siginfo + offset, len);
3880 else
3881 {
3882 memcpy (inf_siginfo + offset, writebuf, len);
3883
3884 /* Convert back to ptrace layout before flushing it out. */
3885 siginfo_fixup (&siginfo, inf_siginfo, 1);
3886
3887 errno = 0;
3888 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3889 if (errno != 0)
3890 return TARGET_XFER_E_IO;
3891 }
3892
3893 *xfered_len = len;
3894 return TARGET_XFER_OK;
3895 }
3896
3897 static enum target_xfer_status
3898 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3899 const char *annex, gdb_byte *readbuf,
3900 const gdb_byte *writebuf,
3901 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3902 {
3903 struct cleanup *old_chain;
3904 enum target_xfer_status xfer;
3905
3906 if (object == TARGET_OBJECT_SIGNAL_INFO)
3907 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3908 offset, len, xfered_len);
3909
3910 /* The target is connected but no live inferior is selected. Pass
3911 this request down to a lower stratum (e.g., the executable
3912 file). */
3913 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3914 return TARGET_XFER_EOF;
3915
3916 old_chain = save_inferior_ptid ();
3917
3918 if (ptid_lwp_p (inferior_ptid))
3919 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3920
3921 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3922 offset, len, xfered_len);
3923
3924 do_cleanups (old_chain);
3925 return xfer;
3926 }
3927
3928 static int
3929 linux_thread_alive (ptid_t ptid)
3930 {
3931 int err, tmp_errno;
3932
3933 gdb_assert (ptid_lwp_p (ptid));
3934
3935 /* Send signal 0 instead of anything ptrace, because ptracing a
3936 running thread errors out claiming that the thread doesn't
3937 exist. */
3938 err = kill_lwp (ptid_get_lwp (ptid), 0);
3939 tmp_errno = errno;
3940 if (debug_linux_nat)
3941 fprintf_unfiltered (gdb_stdlog,
3942 "LLTA: KILL(SIG0) %s (%s)\n",
3943 target_pid_to_str (ptid),
3944 err ? safe_strerror (tmp_errno) : "OK");
3945
3946 if (err != 0)
3947 return 0;
3948
3949 return 1;
3950 }
3951
3952 static int
3953 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3954 {
3955 return linux_thread_alive (ptid);
3956 }
3957
3958 static char *
3959 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3960 {
3961 static char buf[64];
3962
3963 if (ptid_lwp_p (ptid)
3964 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3965 || num_lwps (ptid_get_pid (ptid)) > 1))
3966 {
3967 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3968 return buf;
3969 }
3970
3971 return normal_pid_to_str (ptid);
3972 }
3973
3974 static char *
3975 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3976 {
3977 int pid = ptid_get_pid (thr->ptid);
3978 long lwp = ptid_get_lwp (thr->ptid);
3979 #define FORMAT "/proc/%d/task/%ld/comm"
3980 char buf[sizeof (FORMAT) + 30];
3981 FILE *comm_file;
3982 char *result = NULL;
3983
3984 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
3985 comm_file = gdb_fopen_cloexec (buf, "r");
3986 if (comm_file)
3987 {
3988 /* Not exported by the kernel, so we define it here. */
3989 #define COMM_LEN 16
3990 static char line[COMM_LEN + 1];
3991
3992 if (fgets (line, sizeof (line), comm_file))
3993 {
3994 char *nl = strchr (line, '\n');
3995
3996 if (nl)
3997 *nl = '\0';
3998 if (*line != '\0')
3999 result = line;
4000 }
4001
4002 fclose (comm_file);
4003 }
4004
4005 #undef COMM_LEN
4006 #undef FORMAT
4007
4008 return result;
4009 }
4010
4011 /* Accepts an integer PID; Returns a string representing a file that
4012 can be opened to get the symbols for the child process. */
4013
4014 static char *
4015 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4016 {
4017 static char buf[PATH_MAX];
4018 char name[PATH_MAX];
4019
4020 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
4021 memset (buf, 0, PATH_MAX);
4022 if (readlink (name, buf, PATH_MAX - 1) <= 0)
4023 strcpy (buf, name);
4024
4025 return buf;
4026 }
4027
4028 /* Records the thread's register state for the corefile note
4029 section. */
4030
4031 static char *
4032 linux_nat_collect_thread_registers (const struct regcache *regcache,
4033 ptid_t ptid, bfd *obfd,
4034 char *note_data, int *note_size,
4035 enum gdb_signal stop_signal)
4036 {
4037 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4038 const struct regset *regset;
4039 int core_regset_p;
4040 gdb_gregset_t gregs;
4041 gdb_fpregset_t fpregs;
4042
4043 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4044
4045 if (core_regset_p
4046 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4047 sizeof (gregs)))
4048 != NULL && regset->collect_regset != NULL)
4049 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4050 else
4051 fill_gregset (regcache, &gregs, -1);
4052
4053 note_data = (char *) elfcore_write_prstatus
4054 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4055 gdb_signal_to_host (stop_signal), &gregs);
4056
4057 if (core_regset_p
4058 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4059 sizeof (fpregs)))
4060 != NULL && regset->collect_regset != NULL)
4061 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4062 else
4063 fill_fpregset (regcache, &fpregs, -1);
4064
4065 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4066 &fpregs, sizeof (fpregs));
4067
4068 return note_data;
4069 }
4070
4071 /* Fills the "to_make_corefile_note" target vector. Builds the note
4072 section for a corefile, and returns it in a malloc buffer. */
4073
4074 static char *
4075 linux_nat_make_corefile_notes (struct target_ops *self,
4076 bfd *obfd, int *note_size)
4077 {
4078 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4079 converted to gdbarch_core_regset_sections, this function can go away. */
4080 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4081 linux_nat_collect_thread_registers);
4082 }
4083
4084 /* Implement the to_xfer_partial interface for memory reads using the /proc
4085 filesystem. Because we can use a single read() call for /proc, this
4086 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4087 but it doesn't support writes. */
4088
4089 static enum target_xfer_status
4090 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4091 const char *annex, gdb_byte *readbuf,
4092 const gdb_byte *writebuf,
4093 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4094 {
4095 LONGEST ret;
4096 int fd;
4097 char filename[64];
4098
4099 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4100 return 0;
4101
4102 /* Don't bother for one word. */
4103 if (len < 3 * sizeof (long))
4104 return TARGET_XFER_EOF;
4105
4106 /* We could keep this file open and cache it - possibly one per
4107 thread. That requires some juggling, but is even faster. */
4108 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4109 ptid_get_pid (inferior_ptid));
4110 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4111 if (fd == -1)
4112 return TARGET_XFER_EOF;
4113
4114 /* If pread64 is available, use it. It's faster if the kernel
4115 supports it (only one syscall), and it's 64-bit safe even on
4116 32-bit platforms (for instance, SPARC debugging a SPARC64
4117 application). */
4118 #ifdef HAVE_PREAD64
4119 if (pread64 (fd, readbuf, len, offset) != len)
4120 #else
4121 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4122 #endif
4123 ret = 0;
4124 else
4125 ret = len;
4126
4127 close (fd);
4128
4129 if (ret == 0)
4130 return TARGET_XFER_EOF;
4131 else
4132 {
4133 *xfered_len = ret;
4134 return TARGET_XFER_OK;
4135 }
4136 }
4137
4138
4139 /* Enumerate spufs IDs for process PID. */
4140 static LONGEST
4141 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4142 {
4143 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4144 LONGEST pos = 0;
4145 LONGEST written = 0;
4146 char path[128];
4147 DIR *dir;
4148 struct dirent *entry;
4149
4150 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4151 dir = opendir (path);
4152 if (!dir)
4153 return -1;
4154
4155 rewinddir (dir);
4156 while ((entry = readdir (dir)) != NULL)
4157 {
4158 struct stat st;
4159 struct statfs stfs;
4160 int fd;
4161
4162 fd = atoi (entry->d_name);
4163 if (!fd)
4164 continue;
4165
4166 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4167 if (stat (path, &st) != 0)
4168 continue;
4169 if (!S_ISDIR (st.st_mode))
4170 continue;
4171
4172 if (statfs (path, &stfs) != 0)
4173 continue;
4174 if (stfs.f_type != SPUFS_MAGIC)
4175 continue;
4176
4177 if (pos >= offset && pos + 4 <= offset + len)
4178 {
4179 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4180 written += 4;
4181 }
4182 pos += 4;
4183 }
4184
4185 closedir (dir);
4186 return written;
4187 }
4188
4189 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4190 object type, using the /proc file system. */
4191
4192 static enum target_xfer_status
4193 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4194 const char *annex, gdb_byte *readbuf,
4195 const gdb_byte *writebuf,
4196 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4197 {
4198 char buf[128];
4199 int fd = 0;
4200 int ret = -1;
4201 int pid = ptid_get_pid (inferior_ptid);
4202
4203 if (!annex)
4204 {
4205 if (!readbuf)
4206 return TARGET_XFER_E_IO;
4207 else
4208 {
4209 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4210
4211 if (l < 0)
4212 return TARGET_XFER_E_IO;
4213 else if (l == 0)
4214 return TARGET_XFER_EOF;
4215 else
4216 {
4217 *xfered_len = (ULONGEST) l;
4218 return TARGET_XFER_OK;
4219 }
4220 }
4221 }
4222
4223 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4224 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4225 if (fd <= 0)
4226 return TARGET_XFER_E_IO;
4227
4228 if (offset != 0
4229 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4230 {
4231 close (fd);
4232 return TARGET_XFER_EOF;
4233 }
4234
4235 if (writebuf)
4236 ret = write (fd, writebuf, (size_t) len);
4237 else if (readbuf)
4238 ret = read (fd, readbuf, (size_t) len);
4239
4240 close (fd);
4241
4242 if (ret < 0)
4243 return TARGET_XFER_E_IO;
4244 else if (ret == 0)
4245 return TARGET_XFER_EOF;
4246 else
4247 {
4248 *xfered_len = (ULONGEST) ret;
4249 return TARGET_XFER_OK;
4250 }
4251 }
4252
4253
4254 /* Parse LINE as a signal set and add its set bits to SIGS. */
4255
4256 static void
4257 add_line_to_sigset (const char *line, sigset_t *sigs)
4258 {
4259 int len = strlen (line) - 1;
4260 const char *p;
4261 int signum;
4262
4263 if (line[len] != '\n')
4264 error (_("Could not parse signal set: %s"), line);
4265
4266 p = line;
4267 signum = len * 4;
4268 while (len-- > 0)
4269 {
4270 int digit;
4271
4272 if (*p >= '0' && *p <= '9')
4273 digit = *p - '0';
4274 else if (*p >= 'a' && *p <= 'f')
4275 digit = *p - 'a' + 10;
4276 else
4277 error (_("Could not parse signal set: %s"), line);
4278
4279 signum -= 4;
4280
4281 if (digit & 1)
4282 sigaddset (sigs, signum + 1);
4283 if (digit & 2)
4284 sigaddset (sigs, signum + 2);
4285 if (digit & 4)
4286 sigaddset (sigs, signum + 3);
4287 if (digit & 8)
4288 sigaddset (sigs, signum + 4);
4289
4290 p++;
4291 }
4292 }
4293
4294 /* Find process PID's pending signals from /proc/pid/status and set
4295 SIGS to match. */
4296
4297 void
4298 linux_proc_pending_signals (int pid, sigset_t *pending,
4299 sigset_t *blocked, sigset_t *ignored)
4300 {
4301 FILE *procfile;
4302 char buffer[PATH_MAX], fname[PATH_MAX];
4303 struct cleanup *cleanup;
4304
4305 sigemptyset (pending);
4306 sigemptyset (blocked);
4307 sigemptyset (ignored);
4308 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4309 procfile = gdb_fopen_cloexec (fname, "r");
4310 if (procfile == NULL)
4311 error (_("Could not open %s"), fname);
4312 cleanup = make_cleanup_fclose (procfile);
4313
4314 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4315 {
4316 /* Normal queued signals are on the SigPnd line in the status
4317 file. However, 2.6 kernels also have a "shared" pending
4318 queue for delivering signals to a thread group, so check for
4319 a ShdPnd line also.
4320
4321 Unfortunately some Red Hat kernels include the shared pending
4322 queue but not the ShdPnd status field. */
4323
4324 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4325 add_line_to_sigset (buffer + 8, pending);
4326 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4327 add_line_to_sigset (buffer + 8, pending);
4328 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4329 add_line_to_sigset (buffer + 8, blocked);
4330 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4331 add_line_to_sigset (buffer + 8, ignored);
4332 }
4333
4334 do_cleanups (cleanup);
4335 }
4336
4337 static enum target_xfer_status
4338 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4339 const char *annex, gdb_byte *readbuf,
4340 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4341 ULONGEST *xfered_len)
4342 {
4343 gdb_assert (object == TARGET_OBJECT_OSDATA);
4344
4345 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4346 if (*xfered_len == 0)
4347 return TARGET_XFER_EOF;
4348 else
4349 return TARGET_XFER_OK;
4350 }
4351
4352 static enum target_xfer_status
4353 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4354 const char *annex, gdb_byte *readbuf,
4355 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4356 ULONGEST *xfered_len)
4357 {
4358 enum target_xfer_status xfer;
4359
4360 if (object == TARGET_OBJECT_AUXV)
4361 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4362 offset, len, xfered_len);
4363
4364 if (object == TARGET_OBJECT_OSDATA)
4365 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4366 offset, len, xfered_len);
4367
4368 if (object == TARGET_OBJECT_SPU)
4369 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4370 offset, len, xfered_len);
4371
4372 /* GDB calculates all the addresses in possibly larget width of the address.
4373 Address width needs to be masked before its final use - either by
4374 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4375
4376 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4377
4378 if (object == TARGET_OBJECT_MEMORY)
4379 {
4380 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4381
4382 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4383 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4384 }
4385
4386 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4387 offset, len, xfered_len);
4388 if (xfer != TARGET_XFER_EOF)
4389 return xfer;
4390
4391 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4392 offset, len, xfered_len);
4393 }
4394
4395 static void
4396 cleanup_target_stop (void *arg)
4397 {
4398 ptid_t *ptid = (ptid_t *) arg;
4399
4400 gdb_assert (arg != NULL);
4401
4402 /* Unpause all */
4403 target_resume (*ptid, 0, GDB_SIGNAL_0);
4404 }
4405
4406 static VEC(static_tracepoint_marker_p) *
4407 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4408 const char *strid)
4409 {
4410 char s[IPA_CMD_BUF_SIZE];
4411 struct cleanup *old_chain;
4412 int pid = ptid_get_pid (inferior_ptid);
4413 VEC(static_tracepoint_marker_p) *markers = NULL;
4414 struct static_tracepoint_marker *marker = NULL;
4415 char *p = s;
4416 ptid_t ptid = ptid_build (pid, 0, 0);
4417
4418 /* Pause all */
4419 target_stop (ptid);
4420
4421 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4422 s[sizeof ("qTfSTM")] = 0;
4423
4424 agent_run_command (pid, s, strlen (s) + 1);
4425
4426 old_chain = make_cleanup (free_current_marker, &marker);
4427 make_cleanup (cleanup_target_stop, &ptid);
4428
4429 while (*p++ == 'm')
4430 {
4431 if (marker == NULL)
4432 marker = XCNEW (struct static_tracepoint_marker);
4433
4434 do
4435 {
4436 parse_static_tracepoint_marker_definition (p, &p, marker);
4437
4438 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4439 {
4440 VEC_safe_push (static_tracepoint_marker_p,
4441 markers, marker);
4442 marker = NULL;
4443 }
4444 else
4445 {
4446 release_static_tracepoint_marker (marker);
4447 memset (marker, 0, sizeof (*marker));
4448 }
4449 }
4450 while (*p++ == ','); /* comma-separated list */
4451
4452 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4453 s[sizeof ("qTsSTM")] = 0;
4454 agent_run_command (pid, s, strlen (s) + 1);
4455 p = s;
4456 }
4457
4458 do_cleanups (old_chain);
4459
4460 return markers;
4461 }
4462
4463 /* Create a prototype generic GNU/Linux target. The client can override
4464 it with local methods. */
4465
4466 static void
4467 linux_target_install_ops (struct target_ops *t)
4468 {
4469 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4470 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4471 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4472 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4473 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4474 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4475 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4476 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4477 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4478 t->to_post_attach = linux_child_post_attach;
4479 t->to_follow_fork = linux_child_follow_fork;
4480 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4481
4482 super_xfer_partial = t->to_xfer_partial;
4483 t->to_xfer_partial = linux_xfer_partial;
4484
4485 t->to_static_tracepoint_markers_by_strid
4486 = linux_child_static_tracepoint_markers_by_strid;
4487 }
4488
4489 struct target_ops *
4490 linux_target (void)
4491 {
4492 struct target_ops *t;
4493
4494 t = inf_ptrace_target ();
4495 linux_target_install_ops (t);
4496
4497 return t;
4498 }
4499
4500 struct target_ops *
4501 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4502 {
4503 struct target_ops *t;
4504
4505 t = inf_ptrace_trad_target (register_u_offset);
4506 linux_target_install_ops (t);
4507
4508 return t;
4509 }
4510
4511 /* target_is_async_p implementation. */
4512
4513 static int
4514 linux_nat_is_async_p (struct target_ops *ops)
4515 {
4516 /* NOTE: palves 2008-03-21: We're only async when the user requests
4517 it explicitly with the "set target-async" command.
4518 Someday, linux will always be async. */
4519 return target_async_permitted;
4520 }
4521
4522 /* target_can_async_p implementation. */
4523
4524 static int
4525 linux_nat_can_async_p (struct target_ops *ops)
4526 {
4527 /* NOTE: palves 2008-03-21: We're only async when the user requests
4528 it explicitly with the "set target-async" command.
4529 Someday, linux will always be async. */
4530 return target_async_permitted;
4531 }
4532
4533 static int
4534 linux_nat_supports_non_stop (struct target_ops *self)
4535 {
4536 return 1;
4537 }
4538
4539 /* True if we want to support multi-process. To be removed when GDB
4540 supports multi-exec. */
4541
4542 int linux_multi_process = 1;
4543
4544 static int
4545 linux_nat_supports_multi_process (struct target_ops *self)
4546 {
4547 return linux_multi_process;
4548 }
4549
4550 static int
4551 linux_nat_supports_disable_randomization (struct target_ops *self)
4552 {
4553 #ifdef HAVE_PERSONALITY
4554 return 1;
4555 #else
4556 return 0;
4557 #endif
4558 }
4559
4560 static int async_terminal_is_ours = 1;
4561
4562 /* target_terminal_inferior implementation. */
4563
4564 static void
4565 linux_nat_terminal_inferior (struct target_ops *self)
4566 {
4567 if (!target_is_async_p ())
4568 {
4569 /* Async mode is disabled. */
4570 child_terminal_inferior (self);
4571 return;
4572 }
4573
4574 child_terminal_inferior (self);
4575
4576 /* Calls to target_terminal_*() are meant to be idempotent. */
4577 if (!async_terminal_is_ours)
4578 return;
4579
4580 delete_file_handler (input_fd);
4581 async_terminal_is_ours = 0;
4582 set_sigint_trap ();
4583 }
4584
4585 /* target_terminal_ours implementation. */
4586
4587 static void
4588 linux_nat_terminal_ours (struct target_ops *self)
4589 {
4590 if (!target_is_async_p ())
4591 {
4592 /* Async mode is disabled. */
4593 child_terminal_ours (self);
4594 return;
4595 }
4596
4597 /* GDB should never give the terminal to the inferior if the
4598 inferior is running in the background (run&, continue&, etc.),
4599 but claiming it sure should. */
4600 child_terminal_ours (self);
4601
4602 if (async_terminal_is_ours)
4603 return;
4604
4605 clear_sigint_trap ();
4606 add_file_handler (input_fd, stdin_event_handler, 0);
4607 async_terminal_is_ours = 1;
4608 }
4609
4610 static void (*async_client_callback) (enum inferior_event_type event_type,
4611 void *context);
4612 static void *async_client_context;
4613
4614 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4615 so we notice when any child changes state, and notify the
4616 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4617 above to wait for the arrival of a SIGCHLD. */
4618
4619 static void
4620 sigchld_handler (int signo)
4621 {
4622 int old_errno = errno;
4623
4624 if (debug_linux_nat)
4625 ui_file_write_async_safe (gdb_stdlog,
4626 "sigchld\n", sizeof ("sigchld\n") - 1);
4627
4628 if (signo == SIGCHLD
4629 && linux_nat_event_pipe[0] != -1)
4630 async_file_mark (); /* Let the event loop know that there are
4631 events to handle. */
4632
4633 errno = old_errno;
4634 }
4635
4636 /* Callback registered with the target events file descriptor. */
4637
4638 static void
4639 handle_target_event (int error, gdb_client_data client_data)
4640 {
4641 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4642 }
4643
4644 /* Create/destroy the target events pipe. Returns previous state. */
4645
4646 static int
4647 linux_async_pipe (int enable)
4648 {
4649 int previous = (linux_nat_event_pipe[0] != -1);
4650
4651 if (previous != enable)
4652 {
4653 sigset_t prev_mask;
4654
4655 /* Block child signals while we create/destroy the pipe, as
4656 their handler writes to it. */
4657 block_child_signals (&prev_mask);
4658
4659 if (enable)
4660 {
4661 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4662 internal_error (__FILE__, __LINE__,
4663 "creating event pipe failed.");
4664
4665 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4666 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4667 }
4668 else
4669 {
4670 close (linux_nat_event_pipe[0]);
4671 close (linux_nat_event_pipe[1]);
4672 linux_nat_event_pipe[0] = -1;
4673 linux_nat_event_pipe[1] = -1;
4674 }
4675
4676 restore_child_signals_mask (&prev_mask);
4677 }
4678
4679 return previous;
4680 }
4681
4682 /* target_async implementation. */
4683
4684 static void
4685 linux_nat_async (struct target_ops *ops,
4686 void (*callback) (enum inferior_event_type event_type,
4687 void *context),
4688 void *context)
4689 {
4690 if (callback != NULL)
4691 {
4692 async_client_callback = callback;
4693 async_client_context = context;
4694 if (!linux_async_pipe (1))
4695 {
4696 add_file_handler (linux_nat_event_pipe[0],
4697 handle_target_event, NULL);
4698 /* There may be pending events to handle. Tell the event loop
4699 to poll them. */
4700 async_file_mark ();
4701 }
4702 }
4703 else
4704 {
4705 async_client_callback = callback;
4706 async_client_context = context;
4707 delete_file_handler (linux_nat_event_pipe[0]);
4708 linux_async_pipe (0);
4709 }
4710 return;
4711 }
4712
4713 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4714 event came out. */
4715
4716 static int
4717 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4718 {
4719 if (!lwp->stopped)
4720 {
4721 if (debug_linux_nat)
4722 fprintf_unfiltered (gdb_stdlog,
4723 "LNSL: running -> suspending %s\n",
4724 target_pid_to_str (lwp->ptid));
4725
4726
4727 if (lwp->last_resume_kind == resume_stop)
4728 {
4729 if (debug_linux_nat)
4730 fprintf_unfiltered (gdb_stdlog,
4731 "linux-nat: already stopping LWP %ld at "
4732 "GDB's request\n",
4733 ptid_get_lwp (lwp->ptid));
4734 return 0;
4735 }
4736
4737 stop_callback (lwp, NULL);
4738 lwp->last_resume_kind = resume_stop;
4739 }
4740 else
4741 {
4742 /* Already known to be stopped; do nothing. */
4743
4744 if (debug_linux_nat)
4745 {
4746 if (find_thread_ptid (lwp->ptid)->stop_requested)
4747 fprintf_unfiltered (gdb_stdlog,
4748 "LNSL: already stopped/stop_requested %s\n",
4749 target_pid_to_str (lwp->ptid));
4750 else
4751 fprintf_unfiltered (gdb_stdlog,
4752 "LNSL: already stopped/no "
4753 "stop_requested yet %s\n",
4754 target_pid_to_str (lwp->ptid));
4755 }
4756 }
4757 return 0;
4758 }
4759
4760 static void
4761 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4762 {
4763 if (non_stop)
4764 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4765 else
4766 linux_ops->to_stop (linux_ops, ptid);
4767 }
4768
4769 static void
4770 linux_nat_close (struct target_ops *self)
4771 {
4772 /* Unregister from the event loop. */
4773 if (linux_nat_is_async_p (NULL))
4774 linux_nat_async (NULL, NULL, 0);
4775
4776 if (linux_ops->to_close)
4777 linux_ops->to_close (linux_ops);
4778 }
4779
4780 /* When requests are passed down from the linux-nat layer to the
4781 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4782 used. The address space pointer is stored in the inferior object,
4783 but the common code that is passed such ptid can't tell whether
4784 lwpid is a "main" process id or not (it assumes so). We reverse
4785 look up the "main" process id from the lwp here. */
4786
4787 static struct address_space *
4788 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4789 {
4790 struct lwp_info *lwp;
4791 struct inferior *inf;
4792 int pid;
4793
4794 pid = ptid_get_lwp (ptid);
4795 if (ptid_get_lwp (ptid) == 0)
4796 {
4797 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4798 tgid. */
4799 lwp = find_lwp_pid (ptid);
4800 pid = ptid_get_pid (lwp->ptid);
4801 }
4802 else
4803 {
4804 /* A (pid,lwpid,0) ptid. */
4805 pid = ptid_get_pid (ptid);
4806 }
4807
4808 inf = find_inferior_pid (pid);
4809 gdb_assert (inf != NULL);
4810 return inf->aspace;
4811 }
4812
4813 /* Return the cached value of the processor core for thread PTID. */
4814
4815 static int
4816 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4817 {
4818 struct lwp_info *info = find_lwp_pid (ptid);
4819
4820 if (info)
4821 return info->core;
4822 return -1;
4823 }
4824
4825 void
4826 linux_nat_add_target (struct target_ops *t)
4827 {
4828 /* Save the provided single-threaded target. We save this in a separate
4829 variable because another target we've inherited from (e.g. inf-ptrace)
4830 may have saved a pointer to T; we want to use it for the final
4831 process stratum target. */
4832 linux_ops_saved = *t;
4833 linux_ops = &linux_ops_saved;
4834
4835 /* Override some methods for multithreading. */
4836 t->to_create_inferior = linux_nat_create_inferior;
4837 t->to_attach = linux_nat_attach;
4838 t->to_detach = linux_nat_detach;
4839 t->to_resume = linux_nat_resume;
4840 t->to_wait = linux_nat_wait;
4841 t->to_pass_signals = linux_nat_pass_signals;
4842 t->to_xfer_partial = linux_nat_xfer_partial;
4843 t->to_kill = linux_nat_kill;
4844 t->to_mourn_inferior = linux_nat_mourn_inferior;
4845 t->to_thread_alive = linux_nat_thread_alive;
4846 t->to_pid_to_str = linux_nat_pid_to_str;
4847 t->to_thread_name = linux_nat_thread_name;
4848 t->to_has_thread_control = tc_schedlock;
4849 t->to_thread_address_space = linux_nat_thread_address_space;
4850 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4851 t->to_stopped_data_address = linux_nat_stopped_data_address;
4852
4853 t->to_can_async_p = linux_nat_can_async_p;
4854 t->to_is_async_p = linux_nat_is_async_p;
4855 t->to_supports_non_stop = linux_nat_supports_non_stop;
4856 t->to_async = linux_nat_async;
4857 t->to_terminal_inferior = linux_nat_terminal_inferior;
4858 t->to_terminal_ours = linux_nat_terminal_ours;
4859 t->to_close = linux_nat_close;
4860
4861 /* Methods for non-stop support. */
4862 t->to_stop = linux_nat_stop;
4863
4864 t->to_supports_multi_process = linux_nat_supports_multi_process;
4865
4866 t->to_supports_disable_randomization
4867 = linux_nat_supports_disable_randomization;
4868
4869 t->to_core_of_thread = linux_nat_core_of_thread;
4870
4871 /* We don't change the stratum; this target will sit at
4872 process_stratum and thread_db will set at thread_stratum. This
4873 is a little strange, since this is a multi-threaded-capable
4874 target, but we want to be on the stack below thread_db, and we
4875 also want to be used for single-threaded processes. */
4876
4877 add_target (t);
4878 }
4879
4880 /* Register a method to call whenever a new thread is attached. */
4881 void
4882 linux_nat_set_new_thread (struct target_ops *t,
4883 void (*new_thread) (struct lwp_info *))
4884 {
4885 /* Save the pointer. We only support a single registered instance
4886 of the GNU/Linux native target, so we do not need to map this to
4887 T. */
4888 linux_nat_new_thread = new_thread;
4889 }
4890
4891 /* See declaration in linux-nat.h. */
4892
4893 void
4894 linux_nat_set_new_fork (struct target_ops *t,
4895 linux_nat_new_fork_ftype *new_fork)
4896 {
4897 /* Save the pointer. */
4898 linux_nat_new_fork = new_fork;
4899 }
4900
4901 /* See declaration in linux-nat.h. */
4902
4903 void
4904 linux_nat_set_forget_process (struct target_ops *t,
4905 linux_nat_forget_process_ftype *fn)
4906 {
4907 /* Save the pointer. */
4908 linux_nat_forget_process_hook = fn;
4909 }
4910
4911 /* See declaration in linux-nat.h. */
4912
4913 void
4914 linux_nat_forget_process (pid_t pid)
4915 {
4916 if (linux_nat_forget_process_hook != NULL)
4917 linux_nat_forget_process_hook (pid);
4918 }
4919
4920 /* Register a method that converts a siginfo object between the layout
4921 that ptrace returns, and the layout in the architecture of the
4922 inferior. */
4923 void
4924 linux_nat_set_siginfo_fixup (struct target_ops *t,
4925 int (*siginfo_fixup) (siginfo_t *,
4926 gdb_byte *,
4927 int))
4928 {
4929 /* Save the pointer. */
4930 linux_nat_siginfo_fixup = siginfo_fixup;
4931 }
4932
4933 /* Register a method to call prior to resuming a thread. */
4934
4935 void
4936 linux_nat_set_prepare_to_resume (struct target_ops *t,
4937 void (*prepare_to_resume) (struct lwp_info *))
4938 {
4939 /* Save the pointer. */
4940 linux_nat_prepare_to_resume = prepare_to_resume;
4941 }
4942
4943 /* See linux-nat.h. */
4944
4945 int
4946 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4947 {
4948 int pid;
4949
4950 pid = ptid_get_lwp (ptid);
4951 if (pid == 0)
4952 pid = ptid_get_pid (ptid);
4953
4954 errno = 0;
4955 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4956 if (errno != 0)
4957 {
4958 memset (siginfo, 0, sizeof (*siginfo));
4959 return 0;
4960 }
4961 return 1;
4962 }
4963
4964 /* Provide a prototype to silence -Wmissing-prototypes. */
4965 extern initialize_file_ftype _initialize_linux_nat;
4966
4967 void
4968 _initialize_linux_nat (void)
4969 {
4970 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4971 &debug_linux_nat, _("\
4972 Set debugging of GNU/Linux lwp module."), _("\
4973 Show debugging of GNU/Linux lwp module."), _("\
4974 Enables printf debugging output."),
4975 NULL,
4976 show_debug_linux_nat,
4977 &setdebuglist, &showdebuglist);
4978
4979 /* Save this mask as the default. */
4980 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4981
4982 /* Install a SIGCHLD handler. */
4983 sigchld_action.sa_handler = sigchld_handler;
4984 sigemptyset (&sigchld_action.sa_mask);
4985 sigchld_action.sa_flags = SA_RESTART;
4986
4987 /* Make it the default. */
4988 sigaction (SIGCHLD, &sigchld_action, NULL);
4989
4990 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4991 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4992 sigdelset (&suspend_mask, SIGCHLD);
4993
4994 sigemptyset (&blocked_mask);
4995 }
4996 \f
4997
4998 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4999 the GNU/Linux Threads library and therefore doesn't really belong
5000 here. */
5001
5002 /* Read variable NAME in the target and return its value if found.
5003 Otherwise return zero. It is assumed that the type of the variable
5004 is `int'. */
5005
5006 static int
5007 get_signo (const char *name)
5008 {
5009 struct bound_minimal_symbol ms;
5010 int signo;
5011
5012 ms = lookup_minimal_symbol (name, NULL, NULL);
5013 if (ms.minsym == NULL)
5014 return 0;
5015
5016 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5017 sizeof (signo)) != 0)
5018 return 0;
5019
5020 return signo;
5021 }
5022
5023 /* Return the set of signals used by the threads library in *SET. */
5024
5025 void
5026 lin_thread_get_thread_signals (sigset_t *set)
5027 {
5028 struct sigaction action;
5029 int restart, cancel;
5030
5031 sigemptyset (&blocked_mask);
5032 sigemptyset (set);
5033
5034 restart = get_signo ("__pthread_sig_restart");
5035 cancel = get_signo ("__pthread_sig_cancel");
5036
5037 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5038 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5039 not provide any way for the debugger to query the signal numbers -
5040 fortunately they don't change! */
5041
5042 if (restart == 0)
5043 restart = __SIGRTMIN;
5044
5045 if (cancel == 0)
5046 cancel = __SIGRTMIN + 1;
5047
5048 sigaddset (set, restart);
5049 sigaddset (set, cancel);
5050
5051 /* The GNU/Linux Threads library makes terminating threads send a
5052 special "cancel" signal instead of SIGCHLD. Make sure we catch
5053 those (to prevent them from terminating GDB itself, which is
5054 likely to be their default action) and treat them the same way as
5055 SIGCHLD. */
5056
5057 action.sa_handler = sigchld_handler;
5058 sigemptyset (&action.sa_mask);
5059 action.sa_flags = SA_RESTART;
5060 sigaction (cancel, &action, NULL);
5061
5062 /* We block the "cancel" signal throughout this code ... */
5063 sigaddset (&blocked_mask, cancel);
5064 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5065
5066 /* ... except during a sigsuspend. */
5067 sigdelset (&suspend_mask, cancel);
5068 }
This page took 0.197195 seconds and 5 git commands to generate.