Make linux_nat_detach/thread_db_detach use the inferior parameter
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199
200 /* The method to call, if any, when a thread is destroyed. */
201 static void (*linux_nat_delete_thread) (struct arch_lwp_info *);
202
203 /* The method to call, if any, when a new fork is attached. */
204 static linux_nat_new_fork_ftype *linux_nat_new_fork;
205
206 /* The method to call, if any, when a process is no longer
207 attached. */
208 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
209
210 /* Hook to call prior to resuming a thread. */
211 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static target_xfer_partial_ftype *super_xfer_partial;
223
224 /* The saved to_close method, inherited from inf-ptrace.c.
225 Called by our to_close. */
226 static void (*super_close) (struct target_ops *);
227
228 static unsigned int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 struct simple_pid_list
238 {
239 int pid;
240 int status;
241 struct simple_pid_list *next;
242 };
243 struct simple_pid_list *stopped_pids;
244
245 /* Whether target_thread_events is in effect. */
246 static int report_thread_events;
247
248 /* Async mode support. */
249
250 /* The read/write ends of the pipe registered as waitable file in the
251 event loop. */
252 static int linux_nat_event_pipe[2] = { -1, -1 };
253
254 /* True if we're currently in async mode. */
255 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
256
257 /* Flush the event pipe. */
258
259 static void
260 async_file_flush (void)
261 {
262 int ret;
263 char buf;
264
265 do
266 {
267 ret = read (linux_nat_event_pipe[0], &buf, 1);
268 }
269 while (ret >= 0 || (ret == -1 && errno == EINTR));
270 }
271
272 /* Put something (anything, doesn't matter what, or how much) in event
273 pipe, so that the select/poll in the event-loop realizes we have
274 something to process. */
275
276 static void
277 async_file_mark (void)
278 {
279 int ret;
280
281 /* It doesn't really matter what the pipe contains, as long we end
282 up with something in it. Might as well flush the previous
283 left-overs. */
284 async_file_flush ();
285
286 do
287 {
288 ret = write (linux_nat_event_pipe[1], "+", 1);
289 }
290 while (ret == -1 && errno == EINTR);
291
292 /* Ignore EAGAIN. If the pipe is full, the event loop will already
293 be awakened anyway. */
294 }
295
296 static int kill_lwp (int lwpid, int signo);
297
298 static int stop_callback (struct lwp_info *lp, void *data);
299 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
300
301 static void block_child_signals (sigset_t *prev_mask);
302 static void restore_child_signals_mask (sigset_t *prev_mask);
303
304 struct lwp_info;
305 static struct lwp_info *add_lwp (ptid_t ptid);
306 static void purge_lwp_list (int pid);
307 static void delete_lwp (ptid_t ptid);
308 static struct lwp_info *find_lwp_pid (ptid_t ptid);
309
310 static int lwp_status_pending_p (struct lwp_info *lp);
311
312 static int sigtrap_is_event (int status);
313 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
314
315 static void save_stop_reason (struct lwp_info *lp);
316
317 \f
318 /* LWP accessors. */
319
320 /* See nat/linux-nat.h. */
321
322 ptid_t
323 ptid_of_lwp (struct lwp_info *lwp)
324 {
325 return lwp->ptid;
326 }
327
328 /* See nat/linux-nat.h. */
329
330 void
331 lwp_set_arch_private_info (struct lwp_info *lwp,
332 struct arch_lwp_info *info)
333 {
334 lwp->arch_private = info;
335 }
336
337 /* See nat/linux-nat.h. */
338
339 struct arch_lwp_info *
340 lwp_arch_private_info (struct lwp_info *lwp)
341 {
342 return lwp->arch_private;
343 }
344
345 /* See nat/linux-nat.h. */
346
347 int
348 lwp_is_stopped (struct lwp_info *lwp)
349 {
350 return lwp->stopped;
351 }
352
353 /* See nat/linux-nat.h. */
354
355 enum target_stop_reason
356 lwp_stop_reason (struct lwp_info *lwp)
357 {
358 return lwp->stop_reason;
359 }
360
361 /* See nat/linux-nat.h. */
362
363 int
364 lwp_is_stepping (struct lwp_info *lwp)
365 {
366 return lwp->step;
367 }
368
369 \f
370 /* Trivial list manipulation functions to keep track of a list of
371 new stopped processes. */
372 static void
373 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
374 {
375 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
376
377 new_pid->pid = pid;
378 new_pid->status = status;
379 new_pid->next = *listp;
380 *listp = new_pid;
381 }
382
383 static int
384 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
385 {
386 struct simple_pid_list **p;
387
388 for (p = listp; *p != NULL; p = &(*p)->next)
389 if ((*p)->pid == pid)
390 {
391 struct simple_pid_list *next = (*p)->next;
392
393 *statusp = (*p)->status;
394 xfree (*p);
395 *p = next;
396 return 1;
397 }
398 return 0;
399 }
400
401 /* Return the ptrace options that we want to try to enable. */
402
403 static int
404 linux_nat_ptrace_options (int attached)
405 {
406 int options = 0;
407
408 if (!attached)
409 options |= PTRACE_O_EXITKILL;
410
411 options |= (PTRACE_O_TRACESYSGOOD
412 | PTRACE_O_TRACEVFORKDONE
413 | PTRACE_O_TRACEVFORK
414 | PTRACE_O_TRACEFORK
415 | PTRACE_O_TRACEEXEC);
416
417 return options;
418 }
419
420 /* Initialize ptrace warnings and check for supported ptrace
421 features given PID.
422
423 ATTACHED should be nonzero iff we attached to the inferior. */
424
425 static void
426 linux_init_ptrace (pid_t pid, int attached)
427 {
428 int options = linux_nat_ptrace_options (attached);
429
430 linux_enable_event_reporting (pid, options);
431 linux_ptrace_init_warnings ();
432 }
433
434 static void
435 linux_child_post_attach (struct target_ops *self, int pid)
436 {
437 linux_init_ptrace (pid, 1);
438 }
439
440 static void
441 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
442 {
443 linux_init_ptrace (ptid_get_pid (ptid), 0);
444 }
445
446 /* Return the number of known LWPs in the tgid given by PID. */
447
448 static int
449 num_lwps (int pid)
450 {
451 int count = 0;
452 struct lwp_info *lp;
453
454 for (lp = lwp_list; lp; lp = lp->next)
455 if (ptid_get_pid (lp->ptid) == pid)
456 count++;
457
458 return count;
459 }
460
461 /* Call delete_lwp with prototype compatible for make_cleanup. */
462
463 static void
464 delete_lwp_cleanup (void *lp_voidp)
465 {
466 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
467
468 delete_lwp (lp->ptid);
469 }
470
471 /* Target hook for follow_fork. On entry inferior_ptid must be the
472 ptid of the followed inferior. At return, inferior_ptid will be
473 unchanged. */
474
475 static int
476 linux_child_follow_fork (struct target_ops *ops, int follow_child,
477 int detach_fork)
478 {
479 if (!follow_child)
480 {
481 struct lwp_info *child_lp = NULL;
482 int status = W_STOPCODE (0);
483 int has_vforked;
484 ptid_t parent_ptid, child_ptid;
485 int parent_pid, child_pid;
486
487 has_vforked = (inferior_thread ()->pending_follow.kind
488 == TARGET_WAITKIND_VFORKED);
489 parent_ptid = inferior_ptid;
490 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
491 parent_pid = ptid_get_lwp (parent_ptid);
492 child_pid = ptid_get_lwp (child_ptid);
493
494 /* We're already attached to the parent, by default. */
495 child_lp = add_lwp (child_ptid);
496 child_lp->stopped = 1;
497 child_lp->last_resume_kind = resume_stop;
498
499 /* Detach new forked process? */
500 if (detach_fork)
501 {
502 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
503 child_lp);
504
505 if (linux_nat_prepare_to_resume != NULL)
506 linux_nat_prepare_to_resume (child_lp);
507
508 /* When debugging an inferior in an architecture that supports
509 hardware single stepping on a kernel without commit
510 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
511 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
512 set if the parent process had them set.
513 To work around this, single step the child process
514 once before detaching to clear the flags. */
515
516 /* Note that we consult the parent's architecture instead of
517 the child's because there's no inferior for the child at
518 this point. */
519 if (!gdbarch_software_single_step_p (target_thread_architecture
520 (parent_ptid)))
521 {
522 linux_disable_event_reporting (child_pid);
523 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
524 perror_with_name (_("Couldn't do single step"));
525 if (my_waitpid (child_pid, &status, 0) < 0)
526 perror_with_name (_("Couldn't wait vfork process"));
527 }
528
529 if (WIFSTOPPED (status))
530 {
531 int signo;
532
533 signo = WSTOPSIG (status);
534 if (signo != 0
535 && !signal_pass_state (gdb_signal_from_host (signo)))
536 signo = 0;
537 ptrace (PTRACE_DETACH, child_pid, 0, signo);
538 }
539
540 do_cleanups (old_chain);
541 }
542 else
543 {
544 scoped_restore save_inferior_ptid
545 = make_scoped_restore (&inferior_ptid);
546 inferior_ptid = child_ptid;
547
548 /* Let the thread_db layer learn about this new process. */
549 check_for_thread_db ();
550 }
551
552 if (has_vforked)
553 {
554 struct lwp_info *parent_lp;
555
556 parent_lp = find_lwp_pid (parent_ptid);
557 gdb_assert (linux_supports_tracefork () >= 0);
558
559 if (linux_supports_tracevforkdone ())
560 {
561 if (debug_linux_nat)
562 fprintf_unfiltered (gdb_stdlog,
563 "LCFF: waiting for VFORK_DONE on %d\n",
564 parent_pid);
565 parent_lp->stopped = 1;
566
567 /* We'll handle the VFORK_DONE event like any other
568 event, in target_wait. */
569 }
570 else
571 {
572 /* We can't insert breakpoints until the child has
573 finished with the shared memory region. We need to
574 wait until that happens. Ideal would be to just
575 call:
576 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
577 - waitpid (parent_pid, &status, __WALL);
578 However, most architectures can't handle a syscall
579 being traced on the way out if it wasn't traced on
580 the way in.
581
582 We might also think to loop, continuing the child
583 until it exits or gets a SIGTRAP. One problem is
584 that the child might call ptrace with PTRACE_TRACEME.
585
586 There's no simple and reliable way to figure out when
587 the vforked child will be done with its copy of the
588 shared memory. We could step it out of the syscall,
589 two instructions, let it go, and then single-step the
590 parent once. When we have hardware single-step, this
591 would work; with software single-step it could still
592 be made to work but we'd have to be able to insert
593 single-step breakpoints in the child, and we'd have
594 to insert -just- the single-step breakpoint in the
595 parent. Very awkward.
596
597 In the end, the best we can do is to make sure it
598 runs for a little while. Hopefully it will be out of
599 range of any breakpoints we reinsert. Usually this
600 is only the single-step breakpoint at vfork's return
601 point. */
602
603 if (debug_linux_nat)
604 fprintf_unfiltered (gdb_stdlog,
605 "LCFF: no VFORK_DONE "
606 "support, sleeping a bit\n");
607
608 usleep (10000);
609
610 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
611 and leave it pending. The next linux_nat_resume call
612 will notice a pending event, and bypasses actually
613 resuming the inferior. */
614 parent_lp->status = 0;
615 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
616 parent_lp->stopped = 1;
617
618 /* If we're in async mode, need to tell the event loop
619 there's something here to process. */
620 if (target_is_async_p ())
621 async_file_mark ();
622 }
623 }
624 }
625 else
626 {
627 struct lwp_info *child_lp;
628
629 child_lp = add_lwp (inferior_ptid);
630 child_lp->stopped = 1;
631 child_lp->last_resume_kind = resume_stop;
632
633 /* Let the thread_db layer learn about this new process. */
634 check_for_thread_db ();
635 }
636
637 return 0;
638 }
639
640 \f
641 static int
642 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
643 {
644 return !linux_supports_tracefork ();
645 }
646
647 static int
648 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
649 {
650 return 0;
651 }
652
653 static int
654 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
655 {
656 return !linux_supports_tracefork ();
657 }
658
659 static int
660 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
661 {
662 return 0;
663 }
664
665 static int
666 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
667 {
668 return !linux_supports_tracefork ();
669 }
670
671 static int
672 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
673 {
674 return 0;
675 }
676
677 static int
678 linux_child_set_syscall_catchpoint (struct target_ops *self,
679 int pid, bool needed, int any_count,
680 gdb::array_view<const int> syscall_counts)
681 {
682 if (!linux_supports_tracesysgood ())
683 return 1;
684
685 /* On GNU/Linux, we ignore the arguments. It means that we only
686 enable the syscall catchpoints, but do not disable them.
687
688 Also, we do not use the `syscall_counts' information because we do not
689 filter system calls here. We let GDB do the logic for us. */
690 return 0;
691 }
692
693 /* List of known LWPs, keyed by LWP PID. This speeds up the common
694 case of mapping a PID returned from the kernel to our corresponding
695 lwp_info data structure. */
696 static htab_t lwp_lwpid_htab;
697
698 /* Calculate a hash from a lwp_info's LWP PID. */
699
700 static hashval_t
701 lwp_info_hash (const void *ap)
702 {
703 const struct lwp_info *lp = (struct lwp_info *) ap;
704 pid_t pid = ptid_get_lwp (lp->ptid);
705
706 return iterative_hash_object (pid, 0);
707 }
708
709 /* Equality function for the lwp_info hash table. Compares the LWP's
710 PID. */
711
712 static int
713 lwp_lwpid_htab_eq (const void *a, const void *b)
714 {
715 const struct lwp_info *entry = (const struct lwp_info *) a;
716 const struct lwp_info *element = (const struct lwp_info *) b;
717
718 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
719 }
720
721 /* Create the lwp_lwpid_htab hash table. */
722
723 static void
724 lwp_lwpid_htab_create (void)
725 {
726 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
727 }
728
729 /* Add LP to the hash table. */
730
731 static void
732 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
733 {
734 void **slot;
735
736 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
737 gdb_assert (slot != NULL && *slot == NULL);
738 *slot = lp;
739 }
740
741 /* Head of doubly-linked list of known LWPs. Sorted by reverse
742 creation order. This order is assumed in some cases. E.g.,
743 reaping status after killing alls lwps of a process: the leader LWP
744 must be reaped last. */
745 struct lwp_info *lwp_list;
746
747 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
748
749 static void
750 lwp_list_add (struct lwp_info *lp)
751 {
752 lp->next = lwp_list;
753 if (lwp_list != NULL)
754 lwp_list->prev = lp;
755 lwp_list = lp;
756 }
757
758 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
759 list. */
760
761 static void
762 lwp_list_remove (struct lwp_info *lp)
763 {
764 /* Remove from sorted-by-creation-order list. */
765 if (lp->next != NULL)
766 lp->next->prev = lp->prev;
767 if (lp->prev != NULL)
768 lp->prev->next = lp->next;
769 if (lp == lwp_list)
770 lwp_list = lp->next;
771 }
772
773 \f
774
775 /* Original signal mask. */
776 static sigset_t normal_mask;
777
778 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
779 _initialize_linux_nat. */
780 static sigset_t suspend_mask;
781
782 /* Signals to block to make that sigsuspend work. */
783 static sigset_t blocked_mask;
784
785 /* SIGCHLD action. */
786 struct sigaction sigchld_action;
787
788 /* Block child signals (SIGCHLD and linux threads signals), and store
789 the previous mask in PREV_MASK. */
790
791 static void
792 block_child_signals (sigset_t *prev_mask)
793 {
794 /* Make sure SIGCHLD is blocked. */
795 if (!sigismember (&blocked_mask, SIGCHLD))
796 sigaddset (&blocked_mask, SIGCHLD);
797
798 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
799 }
800
801 /* Restore child signals mask, previously returned by
802 block_child_signals. */
803
804 static void
805 restore_child_signals_mask (sigset_t *prev_mask)
806 {
807 sigprocmask (SIG_SETMASK, prev_mask, NULL);
808 }
809
810 /* Mask of signals to pass directly to the inferior. */
811 static sigset_t pass_mask;
812
813 /* Update signals to pass to the inferior. */
814 static void
815 linux_nat_pass_signals (struct target_ops *self,
816 int numsigs, unsigned char *pass_signals)
817 {
818 int signo;
819
820 sigemptyset (&pass_mask);
821
822 for (signo = 1; signo < NSIG; signo++)
823 {
824 int target_signo = gdb_signal_from_host (signo);
825 if (target_signo < numsigs && pass_signals[target_signo])
826 sigaddset (&pass_mask, signo);
827 }
828 }
829
830 \f
831
832 /* Prototypes for local functions. */
833 static int stop_wait_callback (struct lwp_info *lp, void *data);
834 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
835 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
836 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
837
838 \f
839
840 /* Destroy and free LP. */
841
842 static void
843 lwp_free (struct lwp_info *lp)
844 {
845 /* Let the arch specific bits release arch_lwp_info. */
846 if (linux_nat_delete_thread != NULL)
847 linux_nat_delete_thread (lp->arch_private);
848 else
849 gdb_assert (lp->arch_private == NULL);
850
851 xfree (lp);
852 }
853
854 /* Traversal function for purge_lwp_list. */
855
856 static int
857 lwp_lwpid_htab_remove_pid (void **slot, void *info)
858 {
859 struct lwp_info *lp = (struct lwp_info *) *slot;
860 int pid = *(int *) info;
861
862 if (ptid_get_pid (lp->ptid) == pid)
863 {
864 htab_clear_slot (lwp_lwpid_htab, slot);
865 lwp_list_remove (lp);
866 lwp_free (lp);
867 }
868
869 return 1;
870 }
871
872 /* Remove all LWPs belong to PID from the lwp list. */
873
874 static void
875 purge_lwp_list (int pid)
876 {
877 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
878 }
879
880 /* Add the LWP specified by PTID to the list. PTID is the first LWP
881 in the process. Return a pointer to the structure describing the
882 new LWP.
883
884 This differs from add_lwp in that we don't let the arch specific
885 bits know about this new thread. Current clients of this callback
886 take the opportunity to install watchpoints in the new thread, and
887 we shouldn't do that for the first thread. If we're spawning a
888 child ("run"), the thread executes the shell wrapper first, and we
889 shouldn't touch it until it execs the program we want to debug.
890 For "attach", it'd be okay to call the callback, but it's not
891 necessary, because watchpoints can't yet have been inserted into
892 the inferior. */
893
894 static struct lwp_info *
895 add_initial_lwp (ptid_t ptid)
896 {
897 struct lwp_info *lp;
898
899 gdb_assert (ptid_lwp_p (ptid));
900
901 lp = XNEW (struct lwp_info);
902
903 memset (lp, 0, sizeof (struct lwp_info));
904
905 lp->last_resume_kind = resume_continue;
906 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
907
908 lp->ptid = ptid;
909 lp->core = -1;
910
911 /* Add to sorted-by-reverse-creation-order list. */
912 lwp_list_add (lp);
913
914 /* Add to keyed-by-pid htab. */
915 lwp_lwpid_htab_add_lwp (lp);
916
917 return lp;
918 }
919
920 /* Add the LWP specified by PID to the list. Return a pointer to the
921 structure describing the new LWP. The LWP should already be
922 stopped. */
923
924 static struct lwp_info *
925 add_lwp (ptid_t ptid)
926 {
927 struct lwp_info *lp;
928
929 lp = add_initial_lwp (ptid);
930
931 /* Let the arch specific bits know about this new thread. Current
932 clients of this callback take the opportunity to install
933 watchpoints in the new thread. We don't do this for the first
934 thread though. See add_initial_lwp. */
935 if (linux_nat_new_thread != NULL)
936 linux_nat_new_thread (lp);
937
938 return lp;
939 }
940
941 /* Remove the LWP specified by PID from the list. */
942
943 static void
944 delete_lwp (ptid_t ptid)
945 {
946 struct lwp_info *lp;
947 void **slot;
948 struct lwp_info dummy;
949
950 dummy.ptid = ptid;
951 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
952 if (slot == NULL)
953 return;
954
955 lp = *(struct lwp_info **) slot;
956 gdb_assert (lp != NULL);
957
958 htab_clear_slot (lwp_lwpid_htab, slot);
959
960 /* Remove from sorted-by-creation-order list. */
961 lwp_list_remove (lp);
962
963 /* Release. */
964 lwp_free (lp);
965 }
966
967 /* Return a pointer to the structure describing the LWP corresponding
968 to PID. If no corresponding LWP could be found, return NULL. */
969
970 static struct lwp_info *
971 find_lwp_pid (ptid_t ptid)
972 {
973 struct lwp_info *lp;
974 int lwp;
975 struct lwp_info dummy;
976
977 if (ptid_lwp_p (ptid))
978 lwp = ptid_get_lwp (ptid);
979 else
980 lwp = ptid_get_pid (ptid);
981
982 dummy.ptid = ptid_build (0, lwp, 0);
983 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
984 return lp;
985 }
986
987 /* See nat/linux-nat.h. */
988
989 struct lwp_info *
990 iterate_over_lwps (ptid_t filter,
991 iterate_over_lwps_ftype callback,
992 void *data)
993 {
994 struct lwp_info *lp, *lpnext;
995
996 for (lp = lwp_list; lp; lp = lpnext)
997 {
998 lpnext = lp->next;
999
1000 if (ptid_match (lp->ptid, filter))
1001 {
1002 if ((*callback) (lp, data) != 0)
1003 return lp;
1004 }
1005 }
1006
1007 return NULL;
1008 }
1009
1010 /* Update our internal state when changing from one checkpoint to
1011 another indicated by NEW_PTID. We can only switch single-threaded
1012 applications, so we only create one new LWP, and the previous list
1013 is discarded. */
1014
1015 void
1016 linux_nat_switch_fork (ptid_t new_ptid)
1017 {
1018 struct lwp_info *lp;
1019
1020 purge_lwp_list (ptid_get_pid (inferior_ptid));
1021
1022 lp = add_lwp (new_ptid);
1023 lp->stopped = 1;
1024
1025 /* This changes the thread's ptid while preserving the gdb thread
1026 num. Also changes the inferior pid, while preserving the
1027 inferior num. */
1028 thread_change_ptid (inferior_ptid, new_ptid);
1029
1030 /* We've just told GDB core that the thread changed target id, but,
1031 in fact, it really is a different thread, with different register
1032 contents. */
1033 registers_changed ();
1034 }
1035
1036 /* Handle the exit of a single thread LP. */
1037
1038 static void
1039 exit_lwp (struct lwp_info *lp)
1040 {
1041 struct thread_info *th = find_thread_ptid (lp->ptid);
1042
1043 if (th)
1044 {
1045 if (print_thread_events)
1046 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1047
1048 delete_thread (lp->ptid);
1049 }
1050
1051 delete_lwp (lp->ptid);
1052 }
1053
1054 /* Wait for the LWP specified by LP, which we have just attached to.
1055 Returns a wait status for that LWP, to cache. */
1056
1057 static int
1058 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1059 {
1060 pid_t new_pid, pid = ptid_get_lwp (ptid);
1061 int status;
1062
1063 if (linux_proc_pid_is_stopped (pid))
1064 {
1065 if (debug_linux_nat)
1066 fprintf_unfiltered (gdb_stdlog,
1067 "LNPAW: Attaching to a stopped process\n");
1068
1069 /* The process is definitely stopped. It is in a job control
1070 stop, unless the kernel predates the TASK_STOPPED /
1071 TASK_TRACED distinction, in which case it might be in a
1072 ptrace stop. Make sure it is in a ptrace stop; from there we
1073 can kill it, signal it, et cetera.
1074
1075 First make sure there is a pending SIGSTOP. Since we are
1076 already attached, the process can not transition from stopped
1077 to running without a PTRACE_CONT; so we know this signal will
1078 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1079 probably already in the queue (unless this kernel is old
1080 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1081 is not an RT signal, it can only be queued once. */
1082 kill_lwp (pid, SIGSTOP);
1083
1084 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1085 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1086 ptrace (PTRACE_CONT, pid, 0, 0);
1087 }
1088
1089 /* Make sure the initial process is stopped. The user-level threads
1090 layer might want to poke around in the inferior, and that won't
1091 work if things haven't stabilized yet. */
1092 new_pid = my_waitpid (pid, &status, __WALL);
1093 gdb_assert (pid == new_pid);
1094
1095 if (!WIFSTOPPED (status))
1096 {
1097 /* The pid we tried to attach has apparently just exited. */
1098 if (debug_linux_nat)
1099 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1100 pid, status_to_str (status));
1101 return status;
1102 }
1103
1104 if (WSTOPSIG (status) != SIGSTOP)
1105 {
1106 *signalled = 1;
1107 if (debug_linux_nat)
1108 fprintf_unfiltered (gdb_stdlog,
1109 "LNPAW: Received %s after attaching\n",
1110 status_to_str (status));
1111 }
1112
1113 return status;
1114 }
1115
1116 static void
1117 linux_nat_create_inferior (struct target_ops *ops,
1118 const char *exec_file, const std::string &allargs,
1119 char **env, int from_tty)
1120 {
1121 maybe_disable_address_space_randomization restore_personality
1122 (disable_randomization);
1123
1124 /* The fork_child mechanism is synchronous and calls target_wait, so
1125 we have to mask the async mode. */
1126
1127 /* Make sure we report all signals during startup. */
1128 linux_nat_pass_signals (ops, 0, NULL);
1129
1130 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1131 }
1132
1133 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1134 already attached. Returns true if a new LWP is found, false
1135 otherwise. */
1136
1137 static int
1138 attach_proc_task_lwp_callback (ptid_t ptid)
1139 {
1140 struct lwp_info *lp;
1141
1142 /* Ignore LWPs we're already attached to. */
1143 lp = find_lwp_pid (ptid);
1144 if (lp == NULL)
1145 {
1146 int lwpid = ptid_get_lwp (ptid);
1147
1148 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1149 {
1150 int err = errno;
1151
1152 /* Be quiet if we simply raced with the thread exiting.
1153 EPERM is returned if the thread's task still exists, and
1154 is marked as exited or zombie, as well as other
1155 conditions, so in that case, confirm the status in
1156 /proc/PID/status. */
1157 if (err == ESRCH
1158 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1159 {
1160 if (debug_linux_nat)
1161 {
1162 fprintf_unfiltered (gdb_stdlog,
1163 "Cannot attach to lwp %d: "
1164 "thread is gone (%d: %s)\n",
1165 lwpid, err, safe_strerror (err));
1166 }
1167 }
1168 else
1169 {
1170 std::string reason
1171 = linux_ptrace_attach_fail_reason_string (ptid, err);
1172
1173 warning (_("Cannot attach to lwp %d: %s"),
1174 lwpid, reason.c_str ());
1175 }
1176 }
1177 else
1178 {
1179 if (debug_linux_nat)
1180 fprintf_unfiltered (gdb_stdlog,
1181 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1182 target_pid_to_str (ptid));
1183
1184 lp = add_lwp (ptid);
1185
1186 /* The next time we wait for this LWP we'll see a SIGSTOP as
1187 PTRACE_ATTACH brings it to a halt. */
1188 lp->signalled = 1;
1189
1190 /* We need to wait for a stop before being able to make the
1191 next ptrace call on this LWP. */
1192 lp->must_set_ptrace_flags = 1;
1193
1194 /* So that wait collects the SIGSTOP. */
1195 lp->resumed = 1;
1196
1197 /* Also add the LWP to gdb's thread list, in case a
1198 matching libthread_db is not found (or the process uses
1199 raw clone). */
1200 add_thread (lp->ptid);
1201 set_running (lp->ptid, 1);
1202 set_executing (lp->ptid, 1);
1203 }
1204
1205 return 1;
1206 }
1207 return 0;
1208 }
1209
1210 static void
1211 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1212 {
1213 struct lwp_info *lp;
1214 int status;
1215 ptid_t ptid;
1216
1217 /* Make sure we report all signals during attach. */
1218 linux_nat_pass_signals (ops, 0, NULL);
1219
1220 TRY
1221 {
1222 linux_ops->to_attach (ops, args, from_tty);
1223 }
1224 CATCH (ex, RETURN_MASK_ERROR)
1225 {
1226 pid_t pid = parse_pid_to_attach (args);
1227 std::string reason = linux_ptrace_attach_fail_reason (pid);
1228
1229 if (!reason.empty ())
1230 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), ex.message);
1231 else
1232 throw_error (ex.error, "%s", ex.message);
1233 }
1234 END_CATCH
1235
1236 /* The ptrace base target adds the main thread with (pid,0,0)
1237 format. Decorate it with lwp info. */
1238 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1239 ptid_get_pid (inferior_ptid),
1240 0);
1241 thread_change_ptid (inferior_ptid, ptid);
1242
1243 /* Add the initial process as the first LWP to the list. */
1244 lp = add_initial_lwp (ptid);
1245
1246 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1247 if (!WIFSTOPPED (status))
1248 {
1249 if (WIFEXITED (status))
1250 {
1251 int exit_code = WEXITSTATUS (status);
1252
1253 target_terminal::ours ();
1254 target_mourn_inferior (inferior_ptid);
1255 if (exit_code == 0)
1256 error (_("Unable to attach: program exited normally."));
1257 else
1258 error (_("Unable to attach: program exited with code %d."),
1259 exit_code);
1260 }
1261 else if (WIFSIGNALED (status))
1262 {
1263 enum gdb_signal signo;
1264
1265 target_terminal::ours ();
1266 target_mourn_inferior (inferior_ptid);
1267
1268 signo = gdb_signal_from_host (WTERMSIG (status));
1269 error (_("Unable to attach: program terminated with signal "
1270 "%s, %s."),
1271 gdb_signal_to_name (signo),
1272 gdb_signal_to_string (signo));
1273 }
1274
1275 internal_error (__FILE__, __LINE__,
1276 _("unexpected status %d for PID %ld"),
1277 status, (long) ptid_get_lwp (ptid));
1278 }
1279
1280 lp->stopped = 1;
1281
1282 /* Save the wait status to report later. */
1283 lp->resumed = 1;
1284 if (debug_linux_nat)
1285 fprintf_unfiltered (gdb_stdlog,
1286 "LNA: waitpid %ld, saving status %s\n",
1287 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1288
1289 lp->status = status;
1290
1291 /* We must attach to every LWP. If /proc is mounted, use that to
1292 find them now. The inferior may be using raw clone instead of
1293 using pthreads. But even if it is using pthreads, thread_db
1294 walks structures in the inferior's address space to find the list
1295 of threads/LWPs, and those structures may well be corrupted.
1296 Note that once thread_db is loaded, we'll still use it to list
1297 threads and associate pthread info with each LWP. */
1298 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1299 attach_proc_task_lwp_callback);
1300
1301 if (target_can_async_p ())
1302 target_async (1);
1303 }
1304
1305 /* Get pending signal of THREAD as a host signal number, for detaching
1306 purposes. This is the signal the thread last stopped for, which we
1307 need to deliver to the thread when detaching, otherwise, it'd be
1308 suppressed/lost. */
1309
1310 static int
1311 get_detach_signal (struct lwp_info *lp)
1312 {
1313 enum gdb_signal signo = GDB_SIGNAL_0;
1314
1315 /* If we paused threads momentarily, we may have stored pending
1316 events in lp->status or lp->waitstatus (see stop_wait_callback),
1317 and GDB core hasn't seen any signal for those threads.
1318 Otherwise, the last signal reported to the core is found in the
1319 thread object's stop_signal.
1320
1321 There's a corner case that isn't handled here at present. Only
1322 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1323 stop_signal make sense as a real signal to pass to the inferior.
1324 Some catchpoint related events, like
1325 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1326 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1327 those traps are debug API (ptrace in our case) related and
1328 induced; the inferior wouldn't see them if it wasn't being
1329 traced. Hence, we should never pass them to the inferior, even
1330 when set to pass state. Since this corner case isn't handled by
1331 infrun.c when proceeding with a signal, for consistency, neither
1332 do we handle it here (or elsewhere in the file we check for
1333 signal pass state). Normally SIGTRAP isn't set to pass state, so
1334 this is really a corner case. */
1335
1336 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1337 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1338 else if (lp->status)
1339 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1340 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1341 {
1342 struct thread_info *tp = find_thread_ptid (lp->ptid);
1343
1344 if (tp->suspend.waitstatus_pending_p)
1345 signo = tp->suspend.waitstatus.value.sig;
1346 else
1347 signo = tp->suspend.stop_signal;
1348 }
1349 else if (!target_is_non_stop_p ())
1350 {
1351 struct target_waitstatus last;
1352 ptid_t last_ptid;
1353
1354 get_last_target_status (&last_ptid, &last);
1355
1356 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1357 {
1358 struct thread_info *tp = find_thread_ptid (lp->ptid);
1359
1360 signo = tp->suspend.stop_signal;
1361 }
1362 }
1363
1364 if (signo == GDB_SIGNAL_0)
1365 {
1366 if (debug_linux_nat)
1367 fprintf_unfiltered (gdb_stdlog,
1368 "GPT: lwp %s has no pending signal\n",
1369 target_pid_to_str (lp->ptid));
1370 }
1371 else if (!signal_pass_state (signo))
1372 {
1373 if (debug_linux_nat)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "GPT: lwp %s had signal %s, "
1376 "but it is in no pass state\n",
1377 target_pid_to_str (lp->ptid),
1378 gdb_signal_to_string (signo));
1379 }
1380 else
1381 {
1382 if (debug_linux_nat)
1383 fprintf_unfiltered (gdb_stdlog,
1384 "GPT: lwp %s has pending signal %s\n",
1385 target_pid_to_str (lp->ptid),
1386 gdb_signal_to_string (signo));
1387
1388 return gdb_signal_to_host (signo);
1389 }
1390
1391 return 0;
1392 }
1393
1394 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1395 signal number that should be passed to the LWP when detaching.
1396 Otherwise pass any pending signal the LWP may have, if any. */
1397
1398 static void
1399 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1400 {
1401 int lwpid = ptid_get_lwp (lp->ptid);
1402 int signo;
1403
1404 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1405
1406 if (debug_linux_nat && lp->status)
1407 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1408 strsignal (WSTOPSIG (lp->status)),
1409 target_pid_to_str (lp->ptid));
1410
1411 /* If there is a pending SIGSTOP, get rid of it. */
1412 if (lp->signalled)
1413 {
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "DC: Sending SIGCONT to %s\n",
1417 target_pid_to_str (lp->ptid));
1418
1419 kill_lwp (lwpid, SIGCONT);
1420 lp->signalled = 0;
1421 }
1422
1423 if (signo_p == NULL)
1424 {
1425 /* Pass on any pending signal for this LWP. */
1426 signo = get_detach_signal (lp);
1427 }
1428 else
1429 signo = *signo_p;
1430
1431 /* Preparing to resume may try to write registers, and fail if the
1432 lwp is zombie. If that happens, ignore the error. We'll handle
1433 it below, when detach fails with ESRCH. */
1434 TRY
1435 {
1436 if (linux_nat_prepare_to_resume != NULL)
1437 linux_nat_prepare_to_resume (lp);
1438 }
1439 CATCH (ex, RETURN_MASK_ERROR)
1440 {
1441 if (!check_ptrace_stopped_lwp_gone (lp))
1442 throw_exception (ex);
1443 }
1444 END_CATCH
1445
1446 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1447 {
1448 int save_errno = errno;
1449
1450 /* We know the thread exists, so ESRCH must mean the lwp is
1451 zombie. This can happen if one of the already-detached
1452 threads exits the whole thread group. In that case we're
1453 still attached, and must reap the lwp. */
1454 if (save_errno == ESRCH)
1455 {
1456 int ret, status;
1457
1458 ret = my_waitpid (lwpid, &status, __WALL);
1459 if (ret == -1)
1460 {
1461 warning (_("Couldn't reap LWP %d while detaching: %s"),
1462 lwpid, strerror (errno));
1463 }
1464 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1465 {
1466 warning (_("Reaping LWP %d while detaching "
1467 "returned unexpected status 0x%x"),
1468 lwpid, status);
1469 }
1470 }
1471 else
1472 {
1473 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1474 safe_strerror (save_errno));
1475 }
1476 }
1477 else if (debug_linux_nat)
1478 {
1479 fprintf_unfiltered (gdb_stdlog,
1480 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1481 target_pid_to_str (lp->ptid),
1482 strsignal (signo));
1483 }
1484
1485 delete_lwp (lp->ptid);
1486 }
1487
1488 static int
1489 detach_callback (struct lwp_info *lp, void *data)
1490 {
1491 /* We don't actually detach from the thread group leader just yet.
1492 If the thread group exits, we must reap the zombie clone lwps
1493 before we're able to reap the leader. */
1494 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1495 detach_one_lwp (lp, NULL);
1496 return 0;
1497 }
1498
1499 static void
1500 linux_nat_detach (struct target_ops *ops, inferior *inf, int from_tty)
1501 {
1502 struct lwp_info *main_lwp;
1503 int pid = inf->pid;
1504
1505 /* Don't unregister from the event loop, as there may be other
1506 inferiors running. */
1507
1508 /* Stop all threads before detaching. ptrace requires that the
1509 thread is stopped to sucessfully detach. */
1510 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1511 /* ... and wait until all of them have reported back that
1512 they're no longer running. */
1513 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1514
1515 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1516
1517 /* Only the initial process should be left right now. */
1518 gdb_assert (num_lwps (pid) == 1);
1519
1520 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1521
1522 if (forks_exist_p ())
1523 {
1524 /* Multi-fork case. The current inferior_ptid is being detached
1525 from, but there are other viable forks to debug. Detach from
1526 the current fork, and context-switch to the first
1527 available. */
1528 linux_fork_detach (from_tty);
1529 }
1530 else
1531 {
1532 target_announce_detach (from_tty);
1533
1534 /* Pass on any pending signal for the last LWP. */
1535 int signo = get_detach_signal (main_lwp);
1536
1537 detach_one_lwp (main_lwp, &signo);
1538
1539 inf_ptrace_detach_success (ops, inf);
1540 }
1541 }
1542
1543 /* Resume execution of the inferior process. If STEP is nonzero,
1544 single-step it. If SIGNAL is nonzero, give it that signal. */
1545
1546 static void
1547 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1548 enum gdb_signal signo)
1549 {
1550 lp->step = step;
1551
1552 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1553 We only presently need that if the LWP is stepped though (to
1554 handle the case of stepping a breakpoint instruction). */
1555 if (step)
1556 {
1557 struct regcache *regcache = get_thread_regcache (lp->ptid);
1558
1559 lp->stop_pc = regcache_read_pc (regcache);
1560 }
1561 else
1562 lp->stop_pc = 0;
1563
1564 if (linux_nat_prepare_to_resume != NULL)
1565 linux_nat_prepare_to_resume (lp);
1566 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1567
1568 /* Successfully resumed. Clear state that no longer makes sense,
1569 and mark the LWP as running. Must not do this before resuming
1570 otherwise if that fails other code will be confused. E.g., we'd
1571 later try to stop the LWP and hang forever waiting for a stop
1572 status. Note that we must not throw after this is cleared,
1573 otherwise handle_zombie_lwp_error would get confused. */
1574 lp->stopped = 0;
1575 lp->core = -1;
1576 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1577 registers_changed_ptid (lp->ptid);
1578 }
1579
1580 /* Called when we try to resume a stopped LWP and that errors out. If
1581 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1582 or about to become), discard the error, clear any pending status
1583 the LWP may have, and return true (we'll collect the exit status
1584 soon enough). Otherwise, return false. */
1585
1586 static int
1587 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1588 {
1589 /* If we get an error after resuming the LWP successfully, we'd
1590 confuse !T state for the LWP being gone. */
1591 gdb_assert (lp->stopped);
1592
1593 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1594 because even if ptrace failed with ESRCH, the tracee may be "not
1595 yet fully dead", but already refusing ptrace requests. In that
1596 case the tracee has 'R (Running)' state for a little bit
1597 (observed in Linux 3.18). See also the note on ESRCH in the
1598 ptrace(2) man page. Instead, check whether the LWP has any state
1599 other than ptrace-stopped. */
1600
1601 /* Don't assume anything if /proc/PID/status can't be read. */
1602 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1603 {
1604 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1605 lp->status = 0;
1606 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1607 return 1;
1608 }
1609 return 0;
1610 }
1611
1612 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1613 disappears while we try to resume it. */
1614
1615 static void
1616 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1617 {
1618 TRY
1619 {
1620 linux_resume_one_lwp_throw (lp, step, signo);
1621 }
1622 CATCH (ex, RETURN_MASK_ERROR)
1623 {
1624 if (!check_ptrace_stopped_lwp_gone (lp))
1625 throw_exception (ex);
1626 }
1627 END_CATCH
1628 }
1629
1630 /* Resume LP. */
1631
1632 static void
1633 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1634 {
1635 if (lp->stopped)
1636 {
1637 struct inferior *inf = find_inferior_ptid (lp->ptid);
1638
1639 if (inf->vfork_child != NULL)
1640 {
1641 if (debug_linux_nat)
1642 fprintf_unfiltered (gdb_stdlog,
1643 "RC: Not resuming %s (vfork parent)\n",
1644 target_pid_to_str (lp->ptid));
1645 }
1646 else if (!lwp_status_pending_p (lp))
1647 {
1648 if (debug_linux_nat)
1649 fprintf_unfiltered (gdb_stdlog,
1650 "RC: Resuming sibling %s, %s, %s\n",
1651 target_pid_to_str (lp->ptid),
1652 (signo != GDB_SIGNAL_0
1653 ? strsignal (gdb_signal_to_host (signo))
1654 : "0"),
1655 step ? "step" : "resume");
1656
1657 linux_resume_one_lwp (lp, step, signo);
1658 }
1659 else
1660 {
1661 if (debug_linux_nat)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "RC: Not resuming sibling %s (has pending)\n",
1664 target_pid_to_str (lp->ptid));
1665 }
1666 }
1667 else
1668 {
1669 if (debug_linux_nat)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "RC: Not resuming sibling %s (not stopped)\n",
1672 target_pid_to_str (lp->ptid));
1673 }
1674 }
1675
1676 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1677 Resume LWP with the last stop signal, if it is in pass state. */
1678
1679 static int
1680 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1681 {
1682 enum gdb_signal signo = GDB_SIGNAL_0;
1683
1684 if (lp == except)
1685 return 0;
1686
1687 if (lp->stopped)
1688 {
1689 struct thread_info *thread;
1690
1691 thread = find_thread_ptid (lp->ptid);
1692 if (thread != NULL)
1693 {
1694 signo = thread->suspend.stop_signal;
1695 thread->suspend.stop_signal = GDB_SIGNAL_0;
1696 }
1697 }
1698
1699 resume_lwp (lp, 0, signo);
1700 return 0;
1701 }
1702
1703 static int
1704 resume_clear_callback (struct lwp_info *lp, void *data)
1705 {
1706 lp->resumed = 0;
1707 lp->last_resume_kind = resume_stop;
1708 return 0;
1709 }
1710
1711 static int
1712 resume_set_callback (struct lwp_info *lp, void *data)
1713 {
1714 lp->resumed = 1;
1715 lp->last_resume_kind = resume_continue;
1716 return 0;
1717 }
1718
1719 static void
1720 linux_nat_resume (struct target_ops *ops,
1721 ptid_t ptid, int step, enum gdb_signal signo)
1722 {
1723 struct lwp_info *lp;
1724 int resume_many;
1725
1726 if (debug_linux_nat)
1727 fprintf_unfiltered (gdb_stdlog,
1728 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1729 step ? "step" : "resume",
1730 target_pid_to_str (ptid),
1731 (signo != GDB_SIGNAL_0
1732 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1733 target_pid_to_str (inferior_ptid));
1734
1735 /* A specific PTID means `step only this process id'. */
1736 resume_many = (ptid_equal (minus_one_ptid, ptid)
1737 || ptid_is_pid (ptid));
1738
1739 /* Mark the lwps we're resuming as resumed. */
1740 iterate_over_lwps (ptid, resume_set_callback, NULL);
1741
1742 /* See if it's the current inferior that should be handled
1743 specially. */
1744 if (resume_many)
1745 lp = find_lwp_pid (inferior_ptid);
1746 else
1747 lp = find_lwp_pid (ptid);
1748 gdb_assert (lp != NULL);
1749
1750 /* Remember if we're stepping. */
1751 lp->last_resume_kind = step ? resume_step : resume_continue;
1752
1753 /* If we have a pending wait status for this thread, there is no
1754 point in resuming the process. But first make sure that
1755 linux_nat_wait won't preemptively handle the event - we
1756 should never take this short-circuit if we are going to
1757 leave LP running, since we have skipped resuming all the
1758 other threads. This bit of code needs to be synchronized
1759 with linux_nat_wait. */
1760
1761 if (lp->status && WIFSTOPPED (lp->status))
1762 {
1763 if (!lp->step
1764 && WSTOPSIG (lp->status)
1765 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1766 {
1767 if (debug_linux_nat)
1768 fprintf_unfiltered (gdb_stdlog,
1769 "LLR: Not short circuiting for ignored "
1770 "status 0x%x\n", lp->status);
1771
1772 /* FIXME: What should we do if we are supposed to continue
1773 this thread with a signal? */
1774 gdb_assert (signo == GDB_SIGNAL_0);
1775 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1776 lp->status = 0;
1777 }
1778 }
1779
1780 if (lwp_status_pending_p (lp))
1781 {
1782 /* FIXME: What should we do if we are supposed to continue
1783 this thread with a signal? */
1784 gdb_assert (signo == GDB_SIGNAL_0);
1785
1786 if (debug_linux_nat)
1787 fprintf_unfiltered (gdb_stdlog,
1788 "LLR: Short circuiting for status 0x%x\n",
1789 lp->status);
1790
1791 if (target_can_async_p ())
1792 {
1793 target_async (1);
1794 /* Tell the event loop we have something to process. */
1795 async_file_mark ();
1796 }
1797 return;
1798 }
1799
1800 if (resume_many)
1801 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1802
1803 if (debug_linux_nat)
1804 fprintf_unfiltered (gdb_stdlog,
1805 "LLR: %s %s, %s (resume event thread)\n",
1806 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1807 target_pid_to_str (lp->ptid),
1808 (signo != GDB_SIGNAL_0
1809 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1810
1811 linux_resume_one_lwp (lp, step, signo);
1812
1813 if (target_can_async_p ())
1814 target_async (1);
1815 }
1816
1817 /* Send a signal to an LWP. */
1818
1819 static int
1820 kill_lwp (int lwpid, int signo)
1821 {
1822 int ret;
1823
1824 errno = 0;
1825 ret = syscall (__NR_tkill, lwpid, signo);
1826 if (errno == ENOSYS)
1827 {
1828 /* If tkill fails, then we are not using nptl threads, a
1829 configuration we no longer support. */
1830 perror_with_name (("tkill"));
1831 }
1832 return ret;
1833 }
1834
1835 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1836 event, check if the core is interested in it: if not, ignore the
1837 event, and keep waiting; otherwise, we need to toggle the LWP's
1838 syscall entry/exit status, since the ptrace event itself doesn't
1839 indicate it, and report the trap to higher layers. */
1840
1841 static int
1842 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1843 {
1844 struct target_waitstatus *ourstatus = &lp->waitstatus;
1845 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1846 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1847
1848 if (stopping)
1849 {
1850 /* If we're stopping threads, there's a SIGSTOP pending, which
1851 makes it so that the LWP reports an immediate syscall return,
1852 followed by the SIGSTOP. Skip seeing that "return" using
1853 PTRACE_CONT directly, and let stop_wait_callback collect the
1854 SIGSTOP. Later when the thread is resumed, a new syscall
1855 entry event. If we didn't do this (and returned 0), we'd
1856 leave a syscall entry pending, and our caller, by using
1857 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1858 itself. Later, when the user re-resumes this LWP, we'd see
1859 another syscall entry event and we'd mistake it for a return.
1860
1861 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1862 (leaving immediately with LWP->signalled set, without issuing
1863 a PTRACE_CONT), it would still be problematic to leave this
1864 syscall enter pending, as later when the thread is resumed,
1865 it would then see the same syscall exit mentioned above,
1866 followed by the delayed SIGSTOP, while the syscall didn't
1867 actually get to execute. It seems it would be even more
1868 confusing to the user. */
1869
1870 if (debug_linux_nat)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "LHST: ignoring syscall %d "
1873 "for LWP %ld (stopping threads), "
1874 "resuming with PTRACE_CONT for SIGSTOP\n",
1875 syscall_number,
1876 ptid_get_lwp (lp->ptid));
1877
1878 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1879 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1880 lp->stopped = 0;
1881 return 1;
1882 }
1883
1884 /* Always update the entry/return state, even if this particular
1885 syscall isn't interesting to the core now. In async mode,
1886 the user could install a new catchpoint for this syscall
1887 between syscall enter/return, and we'll need to know to
1888 report a syscall return if that happens. */
1889 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1890 ? TARGET_WAITKIND_SYSCALL_RETURN
1891 : TARGET_WAITKIND_SYSCALL_ENTRY);
1892
1893 if (catch_syscall_enabled ())
1894 {
1895 if (catching_syscall_number (syscall_number))
1896 {
1897 /* Alright, an event to report. */
1898 ourstatus->kind = lp->syscall_state;
1899 ourstatus->value.syscall_number = syscall_number;
1900
1901 if (debug_linux_nat)
1902 fprintf_unfiltered (gdb_stdlog,
1903 "LHST: stopping for %s of syscall %d"
1904 " for LWP %ld\n",
1905 lp->syscall_state
1906 == TARGET_WAITKIND_SYSCALL_ENTRY
1907 ? "entry" : "return",
1908 syscall_number,
1909 ptid_get_lwp (lp->ptid));
1910 return 0;
1911 }
1912
1913 if (debug_linux_nat)
1914 fprintf_unfiltered (gdb_stdlog,
1915 "LHST: ignoring %s of syscall %d "
1916 "for LWP %ld\n",
1917 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1918 ? "entry" : "return",
1919 syscall_number,
1920 ptid_get_lwp (lp->ptid));
1921 }
1922 else
1923 {
1924 /* If we had been syscall tracing, and hence used PT_SYSCALL
1925 before on this LWP, it could happen that the user removes all
1926 syscall catchpoints before we get to process this event.
1927 There are two noteworthy issues here:
1928
1929 - When stopped at a syscall entry event, resuming with
1930 PT_STEP still resumes executing the syscall and reports a
1931 syscall return.
1932
1933 - Only PT_SYSCALL catches syscall enters. If we last
1934 single-stepped this thread, then this event can't be a
1935 syscall enter. If we last single-stepped this thread, this
1936 has to be a syscall exit.
1937
1938 The points above mean that the next resume, be it PT_STEP or
1939 PT_CONTINUE, can not trigger a syscall trace event. */
1940 if (debug_linux_nat)
1941 fprintf_unfiltered (gdb_stdlog,
1942 "LHST: caught syscall event "
1943 "with no syscall catchpoints."
1944 " %d for LWP %ld, ignoring\n",
1945 syscall_number,
1946 ptid_get_lwp (lp->ptid));
1947 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1948 }
1949
1950 /* The core isn't interested in this event. For efficiency, avoid
1951 stopping all threads only to have the core resume them all again.
1952 Since we're not stopping threads, if we're still syscall tracing
1953 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1954 subsequent syscall. Simply resume using the inf-ptrace layer,
1955 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1956
1957 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1958 return 1;
1959 }
1960
1961 /* Handle a GNU/Linux extended wait response. If we see a clone
1962 event, we need to add the new LWP to our list (and not report the
1963 trap to higher layers). This function returns non-zero if the
1964 event should be ignored and we should wait again. If STOPPING is
1965 true, the new LWP remains stopped, otherwise it is continued. */
1966
1967 static int
1968 linux_handle_extended_wait (struct lwp_info *lp, int status)
1969 {
1970 int pid = ptid_get_lwp (lp->ptid);
1971 struct target_waitstatus *ourstatus = &lp->waitstatus;
1972 int event = linux_ptrace_get_extended_event (status);
1973
1974 /* All extended events we currently use are mid-syscall. Only
1975 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1976 you have to be using PTRACE_SEIZE to get that. */
1977 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1978
1979 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1980 || event == PTRACE_EVENT_CLONE)
1981 {
1982 unsigned long new_pid;
1983 int ret;
1984
1985 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1986
1987 /* If we haven't already seen the new PID stop, wait for it now. */
1988 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1989 {
1990 /* The new child has a pending SIGSTOP. We can't affect it until it
1991 hits the SIGSTOP, but we're already attached. */
1992 ret = my_waitpid (new_pid, &status, __WALL);
1993 if (ret == -1)
1994 perror_with_name (_("waiting for new child"));
1995 else if (ret != new_pid)
1996 internal_error (__FILE__, __LINE__,
1997 _("wait returned unexpected PID %d"), ret);
1998 else if (!WIFSTOPPED (status))
1999 internal_error (__FILE__, __LINE__,
2000 _("wait returned unexpected status 0x%x"), status);
2001 }
2002
2003 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2004
2005 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2006 {
2007 /* The arch-specific native code may need to know about new
2008 forks even if those end up never mapped to an
2009 inferior. */
2010 if (linux_nat_new_fork != NULL)
2011 linux_nat_new_fork (lp, new_pid);
2012 }
2013
2014 if (event == PTRACE_EVENT_FORK
2015 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2016 {
2017 /* Handle checkpointing by linux-fork.c here as a special
2018 case. We don't want the follow-fork-mode or 'catch fork'
2019 to interfere with this. */
2020
2021 /* This won't actually modify the breakpoint list, but will
2022 physically remove the breakpoints from the child. */
2023 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2024
2025 /* Retain child fork in ptrace (stopped) state. */
2026 if (!find_fork_pid (new_pid))
2027 add_fork (new_pid);
2028
2029 /* Report as spurious, so that infrun doesn't want to follow
2030 this fork. We're actually doing an infcall in
2031 linux-fork.c. */
2032 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2033
2034 /* Report the stop to the core. */
2035 return 0;
2036 }
2037
2038 if (event == PTRACE_EVENT_FORK)
2039 ourstatus->kind = TARGET_WAITKIND_FORKED;
2040 else if (event == PTRACE_EVENT_VFORK)
2041 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2042 else if (event == PTRACE_EVENT_CLONE)
2043 {
2044 struct lwp_info *new_lp;
2045
2046 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2047
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHEW: Got clone event "
2051 "from LWP %d, new child is LWP %ld\n",
2052 pid, new_pid);
2053
2054 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2055 new_lp->stopped = 1;
2056 new_lp->resumed = 1;
2057
2058 /* If the thread_db layer is active, let it record the user
2059 level thread id and status, and add the thread to GDB's
2060 list. */
2061 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2062 {
2063 /* The process is not using thread_db. Add the LWP to
2064 GDB's list. */
2065 target_post_attach (ptid_get_lwp (new_lp->ptid));
2066 add_thread (new_lp->ptid);
2067 }
2068
2069 /* Even if we're stopping the thread for some reason
2070 internal to this module, from the perspective of infrun
2071 and the user/frontend, this new thread is running until
2072 it next reports a stop. */
2073 set_running (new_lp->ptid, 1);
2074 set_executing (new_lp->ptid, 1);
2075
2076 if (WSTOPSIG (status) != SIGSTOP)
2077 {
2078 /* This can happen if someone starts sending signals to
2079 the new thread before it gets a chance to run, which
2080 have a lower number than SIGSTOP (e.g. SIGUSR1).
2081 This is an unlikely case, and harder to handle for
2082 fork / vfork than for clone, so we do not try - but
2083 we handle it for clone events here. */
2084
2085 new_lp->signalled = 1;
2086
2087 /* We created NEW_LP so it cannot yet contain STATUS. */
2088 gdb_assert (new_lp->status == 0);
2089
2090 /* Save the wait status to report later. */
2091 if (debug_linux_nat)
2092 fprintf_unfiltered (gdb_stdlog,
2093 "LHEW: waitpid of new LWP %ld, "
2094 "saving status %s\n",
2095 (long) ptid_get_lwp (new_lp->ptid),
2096 status_to_str (status));
2097 new_lp->status = status;
2098 }
2099 else if (report_thread_events)
2100 {
2101 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2102 new_lp->status = status;
2103 }
2104
2105 return 1;
2106 }
2107
2108 return 0;
2109 }
2110
2111 if (event == PTRACE_EVENT_EXEC)
2112 {
2113 if (debug_linux_nat)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "LHEW: Got exec event from LWP %ld\n",
2116 ptid_get_lwp (lp->ptid));
2117
2118 ourstatus->kind = TARGET_WAITKIND_EXECD;
2119 ourstatus->value.execd_pathname
2120 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2121
2122 /* The thread that execed must have been resumed, but, when a
2123 thread execs, it changes its tid to the tgid, and the old
2124 tgid thread might have not been resumed. */
2125 lp->resumed = 1;
2126 return 0;
2127 }
2128
2129 if (event == PTRACE_EVENT_VFORK_DONE)
2130 {
2131 if (current_inferior ()->waiting_for_vfork_done)
2132 {
2133 if (debug_linux_nat)
2134 fprintf_unfiltered (gdb_stdlog,
2135 "LHEW: Got expected PTRACE_EVENT_"
2136 "VFORK_DONE from LWP %ld: stopping\n",
2137 ptid_get_lwp (lp->ptid));
2138
2139 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2140 return 0;
2141 }
2142
2143 if (debug_linux_nat)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2146 "from LWP %ld: ignoring\n",
2147 ptid_get_lwp (lp->ptid));
2148 return 1;
2149 }
2150
2151 internal_error (__FILE__, __LINE__,
2152 _("unknown ptrace event %d"), event);
2153 }
2154
2155 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2156 exited. */
2157
2158 static int
2159 wait_lwp (struct lwp_info *lp)
2160 {
2161 pid_t pid;
2162 int status = 0;
2163 int thread_dead = 0;
2164 sigset_t prev_mask;
2165
2166 gdb_assert (!lp->stopped);
2167 gdb_assert (lp->status == 0);
2168
2169 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2170 block_child_signals (&prev_mask);
2171
2172 for (;;)
2173 {
2174 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2175 if (pid == -1 && errno == ECHILD)
2176 {
2177 /* The thread has previously exited. We need to delete it
2178 now because if this was a non-leader thread execing, we
2179 won't get an exit event. See comments on exec events at
2180 the top of the file. */
2181 thread_dead = 1;
2182 if (debug_linux_nat)
2183 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2184 target_pid_to_str (lp->ptid));
2185 }
2186 if (pid != 0)
2187 break;
2188
2189 /* Bugs 10970, 12702.
2190 Thread group leader may have exited in which case we'll lock up in
2191 waitpid if there are other threads, even if they are all zombies too.
2192 Basically, we're not supposed to use waitpid this way.
2193 tkill(pid,0) cannot be used here as it gets ESRCH for both
2194 for zombie and running processes.
2195
2196 As a workaround, check if we're waiting for the thread group leader and
2197 if it's a zombie, and avoid calling waitpid if it is.
2198
2199 This is racy, what if the tgl becomes a zombie right after we check?
2200 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2201 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2202
2203 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2204 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2205 {
2206 thread_dead = 1;
2207 if (debug_linux_nat)
2208 fprintf_unfiltered (gdb_stdlog,
2209 "WL: Thread group leader %s vanished.\n",
2210 target_pid_to_str (lp->ptid));
2211 break;
2212 }
2213
2214 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2215 get invoked despite our caller had them intentionally blocked by
2216 block_child_signals. This is sensitive only to the loop of
2217 linux_nat_wait_1 and there if we get called my_waitpid gets called
2218 again before it gets to sigsuspend so we can safely let the handlers
2219 get executed here. */
2220
2221 if (debug_linux_nat)
2222 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2223 sigsuspend (&suspend_mask);
2224 }
2225
2226 restore_child_signals_mask (&prev_mask);
2227
2228 if (!thread_dead)
2229 {
2230 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2231
2232 if (debug_linux_nat)
2233 {
2234 fprintf_unfiltered (gdb_stdlog,
2235 "WL: waitpid %s received %s\n",
2236 target_pid_to_str (lp->ptid),
2237 status_to_str (status));
2238 }
2239
2240 /* Check if the thread has exited. */
2241 if (WIFEXITED (status) || WIFSIGNALED (status))
2242 {
2243 if (report_thread_events
2244 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2245 {
2246 if (debug_linux_nat)
2247 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2248 ptid_get_pid (lp->ptid));
2249
2250 /* If this is the leader exiting, it means the whole
2251 process is gone. Store the status to report to the
2252 core. Store it in lp->waitstatus, because lp->status
2253 would be ambiguous (W_EXITCODE(0,0) == 0). */
2254 store_waitstatus (&lp->waitstatus, status);
2255 return 0;
2256 }
2257
2258 thread_dead = 1;
2259 if (debug_linux_nat)
2260 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2261 target_pid_to_str (lp->ptid));
2262 }
2263 }
2264
2265 if (thread_dead)
2266 {
2267 exit_lwp (lp);
2268 return 0;
2269 }
2270
2271 gdb_assert (WIFSTOPPED (status));
2272 lp->stopped = 1;
2273
2274 if (lp->must_set_ptrace_flags)
2275 {
2276 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2277 int options = linux_nat_ptrace_options (inf->attach_flag);
2278
2279 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2280 lp->must_set_ptrace_flags = 0;
2281 }
2282
2283 /* Handle GNU/Linux's syscall SIGTRAPs. */
2284 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2285 {
2286 /* No longer need the sysgood bit. The ptrace event ends up
2287 recorded in lp->waitstatus if we care for it. We can carry
2288 on handling the event like a regular SIGTRAP from here
2289 on. */
2290 status = W_STOPCODE (SIGTRAP);
2291 if (linux_handle_syscall_trap (lp, 1))
2292 return wait_lwp (lp);
2293 }
2294 else
2295 {
2296 /* Almost all other ptrace-stops are known to be outside of system
2297 calls, with further exceptions in linux_handle_extended_wait. */
2298 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2299 }
2300
2301 /* Handle GNU/Linux's extended waitstatus for trace events. */
2302 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2303 && linux_is_extended_waitstatus (status))
2304 {
2305 if (debug_linux_nat)
2306 fprintf_unfiltered (gdb_stdlog,
2307 "WL: Handling extended status 0x%06x\n",
2308 status);
2309 linux_handle_extended_wait (lp, status);
2310 return 0;
2311 }
2312
2313 return status;
2314 }
2315
2316 /* Send a SIGSTOP to LP. */
2317
2318 static int
2319 stop_callback (struct lwp_info *lp, void *data)
2320 {
2321 if (!lp->stopped && !lp->signalled)
2322 {
2323 int ret;
2324
2325 if (debug_linux_nat)
2326 {
2327 fprintf_unfiltered (gdb_stdlog,
2328 "SC: kill %s **<SIGSTOP>**\n",
2329 target_pid_to_str (lp->ptid));
2330 }
2331 errno = 0;
2332 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2333 if (debug_linux_nat)
2334 {
2335 fprintf_unfiltered (gdb_stdlog,
2336 "SC: lwp kill %d %s\n",
2337 ret,
2338 errno ? safe_strerror (errno) : "ERRNO-OK");
2339 }
2340
2341 lp->signalled = 1;
2342 gdb_assert (lp->status == 0);
2343 }
2344
2345 return 0;
2346 }
2347
2348 /* Request a stop on LWP. */
2349
2350 void
2351 linux_stop_lwp (struct lwp_info *lwp)
2352 {
2353 stop_callback (lwp, NULL);
2354 }
2355
2356 /* See linux-nat.h */
2357
2358 void
2359 linux_stop_and_wait_all_lwps (void)
2360 {
2361 /* Stop all LWP's ... */
2362 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2363
2364 /* ... and wait until all of them have reported back that
2365 they're no longer running. */
2366 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2367 }
2368
2369 /* See linux-nat.h */
2370
2371 void
2372 linux_unstop_all_lwps (void)
2373 {
2374 iterate_over_lwps (minus_one_ptid,
2375 resume_stopped_resumed_lwps, &minus_one_ptid);
2376 }
2377
2378 /* Return non-zero if LWP PID has a pending SIGINT. */
2379
2380 static int
2381 linux_nat_has_pending_sigint (int pid)
2382 {
2383 sigset_t pending, blocked, ignored;
2384
2385 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2386
2387 if (sigismember (&pending, SIGINT)
2388 && !sigismember (&ignored, SIGINT))
2389 return 1;
2390
2391 return 0;
2392 }
2393
2394 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2395
2396 static int
2397 set_ignore_sigint (struct lwp_info *lp, void *data)
2398 {
2399 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2400 flag to consume the next one. */
2401 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2402 && WSTOPSIG (lp->status) == SIGINT)
2403 lp->status = 0;
2404 else
2405 lp->ignore_sigint = 1;
2406
2407 return 0;
2408 }
2409
2410 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2411 This function is called after we know the LWP has stopped; if the LWP
2412 stopped before the expected SIGINT was delivered, then it will never have
2413 arrived. Also, if the signal was delivered to a shared queue and consumed
2414 by a different thread, it will never be delivered to this LWP. */
2415
2416 static void
2417 maybe_clear_ignore_sigint (struct lwp_info *lp)
2418 {
2419 if (!lp->ignore_sigint)
2420 return;
2421
2422 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2423 {
2424 if (debug_linux_nat)
2425 fprintf_unfiltered (gdb_stdlog,
2426 "MCIS: Clearing bogus flag for %s\n",
2427 target_pid_to_str (lp->ptid));
2428 lp->ignore_sigint = 0;
2429 }
2430 }
2431
2432 /* Fetch the possible triggered data watchpoint info and store it in
2433 LP.
2434
2435 On some archs, like x86, that use debug registers to set
2436 watchpoints, it's possible that the way to know which watched
2437 address trapped, is to check the register that is used to select
2438 which address to watch. Problem is, between setting the watchpoint
2439 and reading back which data address trapped, the user may change
2440 the set of watchpoints, and, as a consequence, GDB changes the
2441 debug registers in the inferior. To avoid reading back a stale
2442 stopped-data-address when that happens, we cache in LP the fact
2443 that a watchpoint trapped, and the corresponding data address, as
2444 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2445 registers meanwhile, we have the cached data we can rely on. */
2446
2447 static int
2448 check_stopped_by_watchpoint (struct lwp_info *lp)
2449 {
2450 if (linux_ops->to_stopped_by_watchpoint == NULL)
2451 return 0;
2452
2453 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2454 inferior_ptid = lp->ptid;
2455
2456 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2457 {
2458 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2459
2460 if (linux_ops->to_stopped_data_address != NULL)
2461 lp->stopped_data_address_p =
2462 linux_ops->to_stopped_data_address (&current_target,
2463 &lp->stopped_data_address);
2464 else
2465 lp->stopped_data_address_p = 0;
2466 }
2467
2468 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2469 }
2470
2471 /* Returns true if the LWP had stopped for a watchpoint. */
2472
2473 static int
2474 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2475 {
2476 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2477
2478 gdb_assert (lp != NULL);
2479
2480 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2481 }
2482
2483 static int
2484 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2485 {
2486 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2487
2488 gdb_assert (lp != NULL);
2489
2490 *addr_p = lp->stopped_data_address;
2491
2492 return lp->stopped_data_address_p;
2493 }
2494
2495 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2496
2497 static int
2498 sigtrap_is_event (int status)
2499 {
2500 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2501 }
2502
2503 /* Set alternative SIGTRAP-like events recognizer. If
2504 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2505 applied. */
2506
2507 void
2508 linux_nat_set_status_is_event (struct target_ops *t,
2509 int (*status_is_event) (int status))
2510 {
2511 linux_nat_status_is_event = status_is_event;
2512 }
2513
2514 /* Wait until LP is stopped. */
2515
2516 static int
2517 stop_wait_callback (struct lwp_info *lp, void *data)
2518 {
2519 struct inferior *inf = find_inferior_ptid (lp->ptid);
2520
2521 /* If this is a vfork parent, bail out, it is not going to report
2522 any SIGSTOP until the vfork is done with. */
2523 if (inf->vfork_child != NULL)
2524 return 0;
2525
2526 if (!lp->stopped)
2527 {
2528 int status;
2529
2530 status = wait_lwp (lp);
2531 if (status == 0)
2532 return 0;
2533
2534 if (lp->ignore_sigint && WIFSTOPPED (status)
2535 && WSTOPSIG (status) == SIGINT)
2536 {
2537 lp->ignore_sigint = 0;
2538
2539 errno = 0;
2540 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2541 lp->stopped = 0;
2542 if (debug_linux_nat)
2543 fprintf_unfiltered (gdb_stdlog,
2544 "PTRACE_CONT %s, 0, 0 (%s) "
2545 "(discarding SIGINT)\n",
2546 target_pid_to_str (lp->ptid),
2547 errno ? safe_strerror (errno) : "OK");
2548
2549 return stop_wait_callback (lp, NULL);
2550 }
2551
2552 maybe_clear_ignore_sigint (lp);
2553
2554 if (WSTOPSIG (status) != SIGSTOP)
2555 {
2556 /* The thread was stopped with a signal other than SIGSTOP. */
2557
2558 if (debug_linux_nat)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "SWC: Pending event %s in %s\n",
2561 status_to_str ((int) status),
2562 target_pid_to_str (lp->ptid));
2563
2564 /* Save the sigtrap event. */
2565 lp->status = status;
2566 gdb_assert (lp->signalled);
2567 save_stop_reason (lp);
2568 }
2569 else
2570 {
2571 /* We caught the SIGSTOP that we intended to catch, so
2572 there's no SIGSTOP pending. */
2573
2574 if (debug_linux_nat)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "SWC: Expected SIGSTOP caught for %s.\n",
2577 target_pid_to_str (lp->ptid));
2578
2579 /* Reset SIGNALLED only after the stop_wait_callback call
2580 above as it does gdb_assert on SIGNALLED. */
2581 lp->signalled = 0;
2582 }
2583 }
2584
2585 return 0;
2586 }
2587
2588 /* Return non-zero if LP has a wait status pending. Discard the
2589 pending event and resume the LWP if the event that originally
2590 caused the stop became uninteresting. */
2591
2592 static int
2593 status_callback (struct lwp_info *lp, void *data)
2594 {
2595 /* Only report a pending wait status if we pretend that this has
2596 indeed been resumed. */
2597 if (!lp->resumed)
2598 return 0;
2599
2600 if (!lwp_status_pending_p (lp))
2601 return 0;
2602
2603 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2604 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2605 {
2606 struct regcache *regcache = get_thread_regcache (lp->ptid);
2607 CORE_ADDR pc;
2608 int discard = 0;
2609
2610 pc = regcache_read_pc (regcache);
2611
2612 if (pc != lp->stop_pc)
2613 {
2614 if (debug_linux_nat)
2615 fprintf_unfiltered (gdb_stdlog,
2616 "SC: PC of %s changed. was=%s, now=%s\n",
2617 target_pid_to_str (lp->ptid),
2618 paddress (target_gdbarch (), lp->stop_pc),
2619 paddress (target_gdbarch (), pc));
2620 discard = 1;
2621 }
2622
2623 #if !USE_SIGTRAP_SIGINFO
2624 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2625 {
2626 if (debug_linux_nat)
2627 fprintf_unfiltered (gdb_stdlog,
2628 "SC: previous breakpoint of %s, at %s gone\n",
2629 target_pid_to_str (lp->ptid),
2630 paddress (target_gdbarch (), lp->stop_pc));
2631
2632 discard = 1;
2633 }
2634 #endif
2635
2636 if (discard)
2637 {
2638 if (debug_linux_nat)
2639 fprintf_unfiltered (gdb_stdlog,
2640 "SC: pending event of %s cancelled.\n",
2641 target_pid_to_str (lp->ptid));
2642
2643 lp->status = 0;
2644 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2645 return 0;
2646 }
2647 }
2648
2649 return 1;
2650 }
2651
2652 /* Count the LWP's that have had events. */
2653
2654 static int
2655 count_events_callback (struct lwp_info *lp, void *data)
2656 {
2657 int *count = (int *) data;
2658
2659 gdb_assert (count != NULL);
2660
2661 /* Select only resumed LWPs that have an event pending. */
2662 if (lp->resumed && lwp_status_pending_p (lp))
2663 (*count)++;
2664
2665 return 0;
2666 }
2667
2668 /* Select the LWP (if any) that is currently being single-stepped. */
2669
2670 static int
2671 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2672 {
2673 if (lp->last_resume_kind == resume_step
2674 && lp->status != 0)
2675 return 1;
2676 else
2677 return 0;
2678 }
2679
2680 /* Returns true if LP has a status pending. */
2681
2682 static int
2683 lwp_status_pending_p (struct lwp_info *lp)
2684 {
2685 /* We check for lp->waitstatus in addition to lp->status, because we
2686 can have pending process exits recorded in lp->status and
2687 W_EXITCODE(0,0) happens to be 0. */
2688 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2689 }
2690
2691 /* Select the Nth LWP that has had an event. */
2692
2693 static int
2694 select_event_lwp_callback (struct lwp_info *lp, void *data)
2695 {
2696 int *selector = (int *) data;
2697
2698 gdb_assert (selector != NULL);
2699
2700 /* Select only resumed LWPs that have an event pending. */
2701 if (lp->resumed && lwp_status_pending_p (lp))
2702 if ((*selector)-- == 0)
2703 return 1;
2704
2705 return 0;
2706 }
2707
2708 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2709 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2710 and save the result in the LWP's stop_reason field. If it stopped
2711 for a breakpoint, decrement the PC if necessary on the lwp's
2712 architecture. */
2713
2714 static void
2715 save_stop_reason (struct lwp_info *lp)
2716 {
2717 struct regcache *regcache;
2718 struct gdbarch *gdbarch;
2719 CORE_ADDR pc;
2720 CORE_ADDR sw_bp_pc;
2721 #if USE_SIGTRAP_SIGINFO
2722 siginfo_t siginfo;
2723 #endif
2724
2725 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2726 gdb_assert (lp->status != 0);
2727
2728 if (!linux_nat_status_is_event (lp->status))
2729 return;
2730
2731 regcache = get_thread_regcache (lp->ptid);
2732 gdbarch = regcache->arch ();
2733
2734 pc = regcache_read_pc (regcache);
2735 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2736
2737 #if USE_SIGTRAP_SIGINFO
2738 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2739 {
2740 if (siginfo.si_signo == SIGTRAP)
2741 {
2742 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2743 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2744 {
2745 /* The si_code is ambiguous on this arch -- check debug
2746 registers. */
2747 if (!check_stopped_by_watchpoint (lp))
2748 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2749 }
2750 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2751 {
2752 /* If we determine the LWP stopped for a SW breakpoint,
2753 trust it. Particularly don't check watchpoint
2754 registers, because at least on s390, we'd find
2755 stopped-by-watchpoint as long as there's a watchpoint
2756 set. */
2757 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2758 }
2759 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2760 {
2761 /* This can indicate either a hardware breakpoint or
2762 hardware watchpoint. Check debug registers. */
2763 if (!check_stopped_by_watchpoint (lp))
2764 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2765 }
2766 else if (siginfo.si_code == TRAP_TRACE)
2767 {
2768 if (debug_linux_nat)
2769 fprintf_unfiltered (gdb_stdlog,
2770 "CSBB: %s stopped by trace\n",
2771 target_pid_to_str (lp->ptid));
2772
2773 /* We may have single stepped an instruction that
2774 triggered a watchpoint. In that case, on some
2775 architectures (such as x86), instead of TRAP_HWBKPT,
2776 si_code indicates TRAP_TRACE, and we need to check
2777 the debug registers separately. */
2778 check_stopped_by_watchpoint (lp);
2779 }
2780 }
2781 }
2782 #else
2783 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2784 && software_breakpoint_inserted_here_p (regcache->aspace (),
2785 sw_bp_pc))
2786 {
2787 /* The LWP was either continued, or stepped a software
2788 breakpoint instruction. */
2789 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2790 }
2791
2792 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2793 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2794
2795 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2796 check_stopped_by_watchpoint (lp);
2797 #endif
2798
2799 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2800 {
2801 if (debug_linux_nat)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "CSBB: %s stopped by software breakpoint\n",
2804 target_pid_to_str (lp->ptid));
2805
2806 /* Back up the PC if necessary. */
2807 if (pc != sw_bp_pc)
2808 regcache_write_pc (regcache, sw_bp_pc);
2809
2810 /* Update this so we record the correct stop PC below. */
2811 pc = sw_bp_pc;
2812 }
2813 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2814 {
2815 if (debug_linux_nat)
2816 fprintf_unfiltered (gdb_stdlog,
2817 "CSBB: %s stopped by hardware breakpoint\n",
2818 target_pid_to_str (lp->ptid));
2819 }
2820 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2821 {
2822 if (debug_linux_nat)
2823 fprintf_unfiltered (gdb_stdlog,
2824 "CSBB: %s stopped by hardware watchpoint\n",
2825 target_pid_to_str (lp->ptid));
2826 }
2827
2828 lp->stop_pc = pc;
2829 }
2830
2831
2832 /* Returns true if the LWP had stopped for a software breakpoint. */
2833
2834 static int
2835 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2836 {
2837 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2838
2839 gdb_assert (lp != NULL);
2840
2841 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2842 }
2843
2844 /* Implement the supports_stopped_by_sw_breakpoint method. */
2845
2846 static int
2847 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2848 {
2849 return USE_SIGTRAP_SIGINFO;
2850 }
2851
2852 /* Returns true if the LWP had stopped for a hardware
2853 breakpoint/watchpoint. */
2854
2855 static int
2856 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2857 {
2858 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2859
2860 gdb_assert (lp != NULL);
2861
2862 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2863 }
2864
2865 /* Implement the supports_stopped_by_hw_breakpoint method. */
2866
2867 static int
2868 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2869 {
2870 return USE_SIGTRAP_SIGINFO;
2871 }
2872
2873 /* Select one LWP out of those that have events pending. */
2874
2875 static void
2876 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2877 {
2878 int num_events = 0;
2879 int random_selector;
2880 struct lwp_info *event_lp = NULL;
2881
2882 /* Record the wait status for the original LWP. */
2883 (*orig_lp)->status = *status;
2884
2885 /* In all-stop, give preference to the LWP that is being
2886 single-stepped. There will be at most one, and it will be the
2887 LWP that the core is most interested in. If we didn't do this,
2888 then we'd have to handle pending step SIGTRAPs somehow in case
2889 the core later continues the previously-stepped thread, as
2890 otherwise we'd report the pending SIGTRAP then, and the core, not
2891 having stepped the thread, wouldn't understand what the trap was
2892 for, and therefore would report it to the user as a random
2893 signal. */
2894 if (!target_is_non_stop_p ())
2895 {
2896 event_lp = iterate_over_lwps (filter,
2897 select_singlestep_lwp_callback, NULL);
2898 if (event_lp != NULL)
2899 {
2900 if (debug_linux_nat)
2901 fprintf_unfiltered (gdb_stdlog,
2902 "SEL: Select single-step %s\n",
2903 target_pid_to_str (event_lp->ptid));
2904 }
2905 }
2906
2907 if (event_lp == NULL)
2908 {
2909 /* Pick one at random, out of those which have had events. */
2910
2911 /* First see how many events we have. */
2912 iterate_over_lwps (filter, count_events_callback, &num_events);
2913 gdb_assert (num_events > 0);
2914
2915 /* Now randomly pick a LWP out of those that have had
2916 events. */
2917 random_selector = (int)
2918 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2919
2920 if (debug_linux_nat && num_events > 1)
2921 fprintf_unfiltered (gdb_stdlog,
2922 "SEL: Found %d events, selecting #%d\n",
2923 num_events, random_selector);
2924
2925 event_lp = iterate_over_lwps (filter,
2926 select_event_lwp_callback,
2927 &random_selector);
2928 }
2929
2930 if (event_lp != NULL)
2931 {
2932 /* Switch the event LWP. */
2933 *orig_lp = event_lp;
2934 *status = event_lp->status;
2935 }
2936
2937 /* Flush the wait status for the event LWP. */
2938 (*orig_lp)->status = 0;
2939 }
2940
2941 /* Return non-zero if LP has been resumed. */
2942
2943 static int
2944 resumed_callback (struct lwp_info *lp, void *data)
2945 {
2946 return lp->resumed;
2947 }
2948
2949 /* Check if we should go on and pass this event to common code.
2950 Return the affected lwp if we are, or NULL otherwise. */
2951
2952 static struct lwp_info *
2953 linux_nat_filter_event (int lwpid, int status)
2954 {
2955 struct lwp_info *lp;
2956 int event = linux_ptrace_get_extended_event (status);
2957
2958 lp = find_lwp_pid (pid_to_ptid (lwpid));
2959
2960 /* Check for stop events reported by a process we didn't already
2961 know about - anything not already in our LWP list.
2962
2963 If we're expecting to receive stopped processes after
2964 fork, vfork, and clone events, then we'll just add the
2965 new one to our list and go back to waiting for the event
2966 to be reported - the stopped process might be returned
2967 from waitpid before or after the event is.
2968
2969 But note the case of a non-leader thread exec'ing after the
2970 leader having exited, and gone from our lists. The non-leader
2971 thread changes its tid to the tgid. */
2972
2973 if (WIFSTOPPED (status) && lp == NULL
2974 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2975 {
2976 /* A multi-thread exec after we had seen the leader exiting. */
2977 if (debug_linux_nat)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "LLW: Re-adding thread group leader LWP %d.\n",
2980 lwpid);
2981
2982 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2983 lp->stopped = 1;
2984 lp->resumed = 1;
2985 add_thread (lp->ptid);
2986 }
2987
2988 if (WIFSTOPPED (status) && !lp)
2989 {
2990 if (debug_linux_nat)
2991 fprintf_unfiltered (gdb_stdlog,
2992 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2993 (long) lwpid, status_to_str (status));
2994 add_to_pid_list (&stopped_pids, lwpid, status);
2995 return NULL;
2996 }
2997
2998 /* Make sure we don't report an event for the exit of an LWP not in
2999 our list, i.e. not part of the current process. This can happen
3000 if we detach from a program we originally forked and then it
3001 exits. */
3002 if (!WIFSTOPPED (status) && !lp)
3003 return NULL;
3004
3005 /* This LWP is stopped now. (And if dead, this prevents it from
3006 ever being continued.) */
3007 lp->stopped = 1;
3008
3009 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3010 {
3011 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3012 int options = linux_nat_ptrace_options (inf->attach_flag);
3013
3014 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3015 lp->must_set_ptrace_flags = 0;
3016 }
3017
3018 /* Handle GNU/Linux's syscall SIGTRAPs. */
3019 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3020 {
3021 /* No longer need the sysgood bit. The ptrace event ends up
3022 recorded in lp->waitstatus if we care for it. We can carry
3023 on handling the event like a regular SIGTRAP from here
3024 on. */
3025 status = W_STOPCODE (SIGTRAP);
3026 if (linux_handle_syscall_trap (lp, 0))
3027 return NULL;
3028 }
3029 else
3030 {
3031 /* Almost all other ptrace-stops are known to be outside of system
3032 calls, with further exceptions in linux_handle_extended_wait. */
3033 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3034 }
3035
3036 /* Handle GNU/Linux's extended waitstatus for trace events. */
3037 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3038 && linux_is_extended_waitstatus (status))
3039 {
3040 if (debug_linux_nat)
3041 fprintf_unfiltered (gdb_stdlog,
3042 "LLW: Handling extended status 0x%06x\n",
3043 status);
3044 if (linux_handle_extended_wait (lp, status))
3045 return NULL;
3046 }
3047
3048 /* Check if the thread has exited. */
3049 if (WIFEXITED (status) || WIFSIGNALED (status))
3050 {
3051 if (!report_thread_events
3052 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3053 {
3054 if (debug_linux_nat)
3055 fprintf_unfiltered (gdb_stdlog,
3056 "LLW: %s exited.\n",
3057 target_pid_to_str (lp->ptid));
3058
3059 /* If there is at least one more LWP, then the exit signal
3060 was not the end of the debugged application and should be
3061 ignored. */
3062 exit_lwp (lp);
3063 return NULL;
3064 }
3065
3066 /* Note that even if the leader was ptrace-stopped, it can still
3067 exit, if e.g., some other thread brings down the whole
3068 process (calls `exit'). So don't assert that the lwp is
3069 resumed. */
3070 if (debug_linux_nat)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "LWP %ld exited (resumed=%d)\n",
3073 ptid_get_lwp (lp->ptid), lp->resumed);
3074
3075 /* Dead LWP's aren't expected to reported a pending sigstop. */
3076 lp->signalled = 0;
3077
3078 /* Store the pending event in the waitstatus, because
3079 W_EXITCODE(0,0) == 0. */
3080 store_waitstatus (&lp->waitstatus, status);
3081 return lp;
3082 }
3083
3084 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3085 an attempt to stop an LWP. */
3086 if (lp->signalled
3087 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3088 {
3089 lp->signalled = 0;
3090
3091 if (lp->last_resume_kind == resume_stop)
3092 {
3093 if (debug_linux_nat)
3094 fprintf_unfiltered (gdb_stdlog,
3095 "LLW: resume_stop SIGSTOP caught for %s.\n",
3096 target_pid_to_str (lp->ptid));
3097 }
3098 else
3099 {
3100 /* This is a delayed SIGSTOP. Filter out the event. */
3101
3102 if (debug_linux_nat)
3103 fprintf_unfiltered (gdb_stdlog,
3104 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3105 lp->step ?
3106 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3107 target_pid_to_str (lp->ptid));
3108
3109 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3110 gdb_assert (lp->resumed);
3111 return NULL;
3112 }
3113 }
3114
3115 /* Make sure we don't report a SIGINT that we have already displayed
3116 for another thread. */
3117 if (lp->ignore_sigint
3118 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3119 {
3120 if (debug_linux_nat)
3121 fprintf_unfiltered (gdb_stdlog,
3122 "LLW: Delayed SIGINT caught for %s.\n",
3123 target_pid_to_str (lp->ptid));
3124
3125 /* This is a delayed SIGINT. */
3126 lp->ignore_sigint = 0;
3127
3128 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3129 if (debug_linux_nat)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3132 lp->step ?
3133 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3134 target_pid_to_str (lp->ptid));
3135 gdb_assert (lp->resumed);
3136
3137 /* Discard the event. */
3138 return NULL;
3139 }
3140
3141 /* Don't report signals that GDB isn't interested in, such as
3142 signals that are neither printed nor stopped upon. Stopping all
3143 threads can be a bit time-consuming so if we want decent
3144 performance with heavily multi-threaded programs, especially when
3145 they're using a high frequency timer, we'd better avoid it if we
3146 can. */
3147 if (WIFSTOPPED (status))
3148 {
3149 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3150
3151 if (!target_is_non_stop_p ())
3152 {
3153 /* Only do the below in all-stop, as we currently use SIGSTOP
3154 to implement target_stop (see linux_nat_stop) in
3155 non-stop. */
3156 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3157 {
3158 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3159 forwarded to the entire process group, that is, all LWPs
3160 will receive it - unless they're using CLONE_THREAD to
3161 share signals. Since we only want to report it once, we
3162 mark it as ignored for all LWPs except this one. */
3163 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3164 set_ignore_sigint, NULL);
3165 lp->ignore_sigint = 0;
3166 }
3167 else
3168 maybe_clear_ignore_sigint (lp);
3169 }
3170
3171 /* When using hardware single-step, we need to report every signal.
3172 Otherwise, signals in pass_mask may be short-circuited
3173 except signals that might be caused by a breakpoint. */
3174 if (!lp->step
3175 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3176 && !linux_wstatus_maybe_breakpoint (status))
3177 {
3178 linux_resume_one_lwp (lp, lp->step, signo);
3179 if (debug_linux_nat)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "LLW: %s %s, %s (preempt 'handle')\n",
3182 lp->step ?
3183 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3184 target_pid_to_str (lp->ptid),
3185 (signo != GDB_SIGNAL_0
3186 ? strsignal (gdb_signal_to_host (signo))
3187 : "0"));
3188 return NULL;
3189 }
3190 }
3191
3192 /* An interesting event. */
3193 gdb_assert (lp);
3194 lp->status = status;
3195 save_stop_reason (lp);
3196 return lp;
3197 }
3198
3199 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3200 their exits until all other threads in the group have exited. */
3201
3202 static void
3203 check_zombie_leaders (void)
3204 {
3205 struct inferior *inf;
3206
3207 ALL_INFERIORS (inf)
3208 {
3209 struct lwp_info *leader_lp;
3210
3211 if (inf->pid == 0)
3212 continue;
3213
3214 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3215 if (leader_lp != NULL
3216 /* Check if there are other threads in the group, as we may
3217 have raced with the inferior simply exiting. */
3218 && num_lwps (inf->pid) > 1
3219 && linux_proc_pid_is_zombie (inf->pid))
3220 {
3221 if (debug_linux_nat)
3222 fprintf_unfiltered (gdb_stdlog,
3223 "CZL: Thread group leader %d zombie "
3224 "(it exited, or another thread execd).\n",
3225 inf->pid);
3226
3227 /* A leader zombie can mean one of two things:
3228
3229 - It exited, and there's an exit status pending
3230 available, or only the leader exited (not the whole
3231 program). In the latter case, we can't waitpid the
3232 leader's exit status until all other threads are gone.
3233
3234 - There are 3 or more threads in the group, and a thread
3235 other than the leader exec'd. See comments on exec
3236 events at the top of the file. We could try
3237 distinguishing the exit and exec cases, by waiting once
3238 more, and seeing if something comes out, but it doesn't
3239 sound useful. The previous leader _does_ go away, and
3240 we'll re-add the new one once we see the exec event
3241 (which is just the same as what would happen if the
3242 previous leader did exit voluntarily before some other
3243 thread execs). */
3244
3245 if (debug_linux_nat)
3246 fprintf_unfiltered (gdb_stdlog,
3247 "CZL: Thread group leader %d vanished.\n",
3248 inf->pid);
3249 exit_lwp (leader_lp);
3250 }
3251 }
3252 }
3253
3254 /* Convenience function that is called when the kernel reports an exit
3255 event. This decides whether to report the event to GDB as a
3256 process exit event, a thread exit event, or to suppress the
3257 event. */
3258
3259 static ptid_t
3260 filter_exit_event (struct lwp_info *event_child,
3261 struct target_waitstatus *ourstatus)
3262 {
3263 ptid_t ptid = event_child->ptid;
3264
3265 if (num_lwps (ptid_get_pid (ptid)) > 1)
3266 {
3267 if (report_thread_events)
3268 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3269 else
3270 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3271
3272 exit_lwp (event_child);
3273 }
3274
3275 return ptid;
3276 }
3277
3278 static ptid_t
3279 linux_nat_wait_1 (struct target_ops *ops,
3280 ptid_t ptid, struct target_waitstatus *ourstatus,
3281 int target_options)
3282 {
3283 sigset_t prev_mask;
3284 enum resume_kind last_resume_kind;
3285 struct lwp_info *lp;
3286 int status;
3287
3288 if (debug_linux_nat)
3289 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3290
3291 /* The first time we get here after starting a new inferior, we may
3292 not have added it to the LWP list yet - this is the earliest
3293 moment at which we know its PID. */
3294 if (ptid_is_pid (inferior_ptid))
3295 {
3296 /* Upgrade the main thread's ptid. */
3297 thread_change_ptid (inferior_ptid,
3298 ptid_build (ptid_get_pid (inferior_ptid),
3299 ptid_get_pid (inferior_ptid), 0));
3300
3301 lp = add_initial_lwp (inferior_ptid);
3302 lp->resumed = 1;
3303 }
3304
3305 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3306 block_child_signals (&prev_mask);
3307
3308 /* First check if there is a LWP with a wait status pending. */
3309 lp = iterate_over_lwps (ptid, status_callback, NULL);
3310 if (lp != NULL)
3311 {
3312 if (debug_linux_nat)
3313 fprintf_unfiltered (gdb_stdlog,
3314 "LLW: Using pending wait status %s for %s.\n",
3315 status_to_str (lp->status),
3316 target_pid_to_str (lp->ptid));
3317 }
3318
3319 /* But if we don't find a pending event, we'll have to wait. Always
3320 pull all events out of the kernel. We'll randomly select an
3321 event LWP out of all that have events, to prevent starvation. */
3322
3323 while (lp == NULL)
3324 {
3325 pid_t lwpid;
3326
3327 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3328 quirks:
3329
3330 - If the thread group leader exits while other threads in the
3331 thread group still exist, waitpid(TGID, ...) hangs. That
3332 waitpid won't return an exit status until the other threads
3333 in the group are reapped.
3334
3335 - When a non-leader thread execs, that thread just vanishes
3336 without reporting an exit (so we'd hang if we waited for it
3337 explicitly in that case). The exec event is reported to
3338 the TGID pid. */
3339
3340 errno = 0;
3341 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3342
3343 if (debug_linux_nat)
3344 fprintf_unfiltered (gdb_stdlog,
3345 "LNW: waitpid(-1, ...) returned %d, %s\n",
3346 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3347
3348 if (lwpid > 0)
3349 {
3350 if (debug_linux_nat)
3351 {
3352 fprintf_unfiltered (gdb_stdlog,
3353 "LLW: waitpid %ld received %s\n",
3354 (long) lwpid, status_to_str (status));
3355 }
3356
3357 linux_nat_filter_event (lwpid, status);
3358 /* Retry until nothing comes out of waitpid. A single
3359 SIGCHLD can indicate more than one child stopped. */
3360 continue;
3361 }
3362
3363 /* Now that we've pulled all events out of the kernel, resume
3364 LWPs that don't have an interesting event to report. */
3365 iterate_over_lwps (minus_one_ptid,
3366 resume_stopped_resumed_lwps, &minus_one_ptid);
3367
3368 /* ... and find an LWP with a status to report to the core, if
3369 any. */
3370 lp = iterate_over_lwps (ptid, status_callback, NULL);
3371 if (lp != NULL)
3372 break;
3373
3374 /* Check for zombie thread group leaders. Those can't be reaped
3375 until all other threads in the thread group are. */
3376 check_zombie_leaders ();
3377
3378 /* If there are no resumed children left, bail. We'd be stuck
3379 forever in the sigsuspend call below otherwise. */
3380 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3381 {
3382 if (debug_linux_nat)
3383 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3384
3385 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3386
3387 restore_child_signals_mask (&prev_mask);
3388 return minus_one_ptid;
3389 }
3390
3391 /* No interesting event to report to the core. */
3392
3393 if (target_options & TARGET_WNOHANG)
3394 {
3395 if (debug_linux_nat)
3396 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3397
3398 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3399 restore_child_signals_mask (&prev_mask);
3400 return minus_one_ptid;
3401 }
3402
3403 /* We shouldn't end up here unless we want to try again. */
3404 gdb_assert (lp == NULL);
3405
3406 /* Block until we get an event reported with SIGCHLD. */
3407 if (debug_linux_nat)
3408 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3409 sigsuspend (&suspend_mask);
3410 }
3411
3412 gdb_assert (lp);
3413
3414 status = lp->status;
3415 lp->status = 0;
3416
3417 if (!target_is_non_stop_p ())
3418 {
3419 /* Now stop all other LWP's ... */
3420 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3421
3422 /* ... and wait until all of them have reported back that
3423 they're no longer running. */
3424 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3425 }
3426
3427 /* If we're not waiting for a specific LWP, choose an event LWP from
3428 among those that have had events. Giving equal priority to all
3429 LWPs that have had events helps prevent starvation. */
3430 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3431 select_event_lwp (ptid, &lp, &status);
3432
3433 gdb_assert (lp != NULL);
3434
3435 /* Now that we've selected our final event LWP, un-adjust its PC if
3436 it was a software breakpoint, and we can't reliably support the
3437 "stopped by software breakpoint" stop reason. */
3438 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3439 && !USE_SIGTRAP_SIGINFO)
3440 {
3441 struct regcache *regcache = get_thread_regcache (lp->ptid);
3442 struct gdbarch *gdbarch = regcache->arch ();
3443 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3444
3445 if (decr_pc != 0)
3446 {
3447 CORE_ADDR pc;
3448
3449 pc = regcache_read_pc (regcache);
3450 regcache_write_pc (regcache, pc + decr_pc);
3451 }
3452 }
3453
3454 /* We'll need this to determine whether to report a SIGSTOP as
3455 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3456 clears it. */
3457 last_resume_kind = lp->last_resume_kind;
3458
3459 if (!target_is_non_stop_p ())
3460 {
3461 /* In all-stop, from the core's perspective, all LWPs are now
3462 stopped until a new resume action is sent over. */
3463 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3464 }
3465 else
3466 {
3467 resume_clear_callback (lp, NULL);
3468 }
3469
3470 if (linux_nat_status_is_event (status))
3471 {
3472 if (debug_linux_nat)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "LLW: trap ptid is %s.\n",
3475 target_pid_to_str (lp->ptid));
3476 }
3477
3478 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3479 {
3480 *ourstatus = lp->waitstatus;
3481 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3482 }
3483 else
3484 store_waitstatus (ourstatus, status);
3485
3486 if (debug_linux_nat)
3487 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3488
3489 restore_child_signals_mask (&prev_mask);
3490
3491 if (last_resume_kind == resume_stop
3492 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3493 && WSTOPSIG (status) == SIGSTOP)
3494 {
3495 /* A thread that has been requested to stop by GDB with
3496 target_stop, and it stopped cleanly, so report as SIG0. The
3497 use of SIGSTOP is an implementation detail. */
3498 ourstatus->value.sig = GDB_SIGNAL_0;
3499 }
3500
3501 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3502 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3503 lp->core = -1;
3504 else
3505 lp->core = linux_common_core_of_thread (lp->ptid);
3506
3507 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3508 return filter_exit_event (lp, ourstatus);
3509
3510 return lp->ptid;
3511 }
3512
3513 /* Resume LWPs that are currently stopped without any pending status
3514 to report, but are resumed from the core's perspective. */
3515
3516 static int
3517 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3518 {
3519 ptid_t *wait_ptid_p = (ptid_t *) data;
3520
3521 if (!lp->stopped)
3522 {
3523 if (debug_linux_nat)
3524 fprintf_unfiltered (gdb_stdlog,
3525 "RSRL: NOT resuming LWP %s, not stopped\n",
3526 target_pid_to_str (lp->ptid));
3527 }
3528 else if (!lp->resumed)
3529 {
3530 if (debug_linux_nat)
3531 fprintf_unfiltered (gdb_stdlog,
3532 "RSRL: NOT resuming LWP %s, not resumed\n",
3533 target_pid_to_str (lp->ptid));
3534 }
3535 else if (lwp_status_pending_p (lp))
3536 {
3537 if (debug_linux_nat)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "RSRL: NOT resuming LWP %s, has pending status\n",
3540 target_pid_to_str (lp->ptid));
3541 }
3542 else
3543 {
3544 struct regcache *regcache = get_thread_regcache (lp->ptid);
3545 struct gdbarch *gdbarch = regcache->arch ();
3546
3547 TRY
3548 {
3549 CORE_ADDR pc = regcache_read_pc (regcache);
3550 int leave_stopped = 0;
3551
3552 /* Don't bother if there's a breakpoint at PC that we'd hit
3553 immediately, and we're not waiting for this LWP. */
3554 if (!ptid_match (lp->ptid, *wait_ptid_p))
3555 {
3556 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3557 leave_stopped = 1;
3558 }
3559
3560 if (!leave_stopped)
3561 {
3562 if (debug_linux_nat)
3563 fprintf_unfiltered (gdb_stdlog,
3564 "RSRL: resuming stopped-resumed LWP %s at "
3565 "%s: step=%d\n",
3566 target_pid_to_str (lp->ptid),
3567 paddress (gdbarch, pc),
3568 lp->step);
3569
3570 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3571 }
3572 }
3573 CATCH (ex, RETURN_MASK_ERROR)
3574 {
3575 if (!check_ptrace_stopped_lwp_gone (lp))
3576 throw_exception (ex);
3577 }
3578 END_CATCH
3579 }
3580
3581 return 0;
3582 }
3583
3584 static ptid_t
3585 linux_nat_wait (struct target_ops *ops,
3586 ptid_t ptid, struct target_waitstatus *ourstatus,
3587 int target_options)
3588 {
3589 ptid_t event_ptid;
3590
3591 if (debug_linux_nat)
3592 {
3593 char *options_string;
3594
3595 options_string = target_options_to_string (target_options);
3596 fprintf_unfiltered (gdb_stdlog,
3597 "linux_nat_wait: [%s], [%s]\n",
3598 target_pid_to_str (ptid),
3599 options_string);
3600 xfree (options_string);
3601 }
3602
3603 /* Flush the async file first. */
3604 if (target_is_async_p ())
3605 async_file_flush ();
3606
3607 /* Resume LWPs that are currently stopped without any pending status
3608 to report, but are resumed from the core's perspective. LWPs get
3609 in this state if we find them stopping at a time we're not
3610 interested in reporting the event (target_wait on a
3611 specific_process, for example, see linux_nat_wait_1), and
3612 meanwhile the event became uninteresting. Don't bother resuming
3613 LWPs we're not going to wait for if they'd stop immediately. */
3614 if (target_is_non_stop_p ())
3615 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3616
3617 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3618
3619 /* If we requested any event, and something came out, assume there
3620 may be more. If we requested a specific lwp or process, also
3621 assume there may be more. */
3622 if (target_is_async_p ()
3623 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3624 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3625 || !ptid_equal (ptid, minus_one_ptid)))
3626 async_file_mark ();
3627
3628 return event_ptid;
3629 }
3630
3631 /* Kill one LWP. */
3632
3633 static void
3634 kill_one_lwp (pid_t pid)
3635 {
3636 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3637
3638 errno = 0;
3639 kill_lwp (pid, SIGKILL);
3640 if (debug_linux_nat)
3641 {
3642 int save_errno = errno;
3643
3644 fprintf_unfiltered (gdb_stdlog,
3645 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3646 save_errno ? safe_strerror (save_errno) : "OK");
3647 }
3648
3649 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3650
3651 errno = 0;
3652 ptrace (PTRACE_KILL, pid, 0, 0);
3653 if (debug_linux_nat)
3654 {
3655 int save_errno = errno;
3656
3657 fprintf_unfiltered (gdb_stdlog,
3658 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3659 save_errno ? safe_strerror (save_errno) : "OK");
3660 }
3661 }
3662
3663 /* Wait for an LWP to die. */
3664
3665 static void
3666 kill_wait_one_lwp (pid_t pid)
3667 {
3668 pid_t res;
3669
3670 /* We must make sure that there are no pending events (delayed
3671 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3672 program doesn't interfere with any following debugging session. */
3673
3674 do
3675 {
3676 res = my_waitpid (pid, NULL, __WALL);
3677 if (res != (pid_t) -1)
3678 {
3679 if (debug_linux_nat)
3680 fprintf_unfiltered (gdb_stdlog,
3681 "KWC: wait %ld received unknown.\n",
3682 (long) pid);
3683 /* The Linux kernel sometimes fails to kill a thread
3684 completely after PTRACE_KILL; that goes from the stop
3685 point in do_fork out to the one in get_signal_to_deliver
3686 and waits again. So kill it again. */
3687 kill_one_lwp (pid);
3688 }
3689 }
3690 while (res == pid);
3691
3692 gdb_assert (res == -1 && errno == ECHILD);
3693 }
3694
3695 /* Callback for iterate_over_lwps. */
3696
3697 static int
3698 kill_callback (struct lwp_info *lp, void *data)
3699 {
3700 kill_one_lwp (ptid_get_lwp (lp->ptid));
3701 return 0;
3702 }
3703
3704 /* Callback for iterate_over_lwps. */
3705
3706 static int
3707 kill_wait_callback (struct lwp_info *lp, void *data)
3708 {
3709 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3710 return 0;
3711 }
3712
3713 /* Kill the fork children of any threads of inferior INF that are
3714 stopped at a fork event. */
3715
3716 static void
3717 kill_unfollowed_fork_children (struct inferior *inf)
3718 {
3719 struct thread_info *thread;
3720
3721 ALL_NON_EXITED_THREADS (thread)
3722 if (thread->inf == inf)
3723 {
3724 struct target_waitstatus *ws = &thread->pending_follow;
3725
3726 if (ws->kind == TARGET_WAITKIND_FORKED
3727 || ws->kind == TARGET_WAITKIND_VFORKED)
3728 {
3729 ptid_t child_ptid = ws->value.related_pid;
3730 int child_pid = ptid_get_pid (child_ptid);
3731 int child_lwp = ptid_get_lwp (child_ptid);
3732
3733 kill_one_lwp (child_lwp);
3734 kill_wait_one_lwp (child_lwp);
3735
3736 /* Let the arch-specific native code know this process is
3737 gone. */
3738 linux_nat_forget_process (child_pid);
3739 }
3740 }
3741 }
3742
3743 static void
3744 linux_nat_kill (struct target_ops *ops)
3745 {
3746 /* If we're stopped while forking and we haven't followed yet,
3747 kill the other task. We need to do this first because the
3748 parent will be sleeping if this is a vfork. */
3749 kill_unfollowed_fork_children (current_inferior ());
3750
3751 if (forks_exist_p ())
3752 linux_fork_killall ();
3753 else
3754 {
3755 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3756
3757 /* Stop all threads before killing them, since ptrace requires
3758 that the thread is stopped to sucessfully PTRACE_KILL. */
3759 iterate_over_lwps (ptid, stop_callback, NULL);
3760 /* ... and wait until all of them have reported back that
3761 they're no longer running. */
3762 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3763
3764 /* Kill all LWP's ... */
3765 iterate_over_lwps (ptid, kill_callback, NULL);
3766
3767 /* ... and wait until we've flushed all events. */
3768 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3769 }
3770
3771 target_mourn_inferior (inferior_ptid);
3772 }
3773
3774 static void
3775 linux_nat_mourn_inferior (struct target_ops *ops)
3776 {
3777 int pid = ptid_get_pid (inferior_ptid);
3778
3779 purge_lwp_list (pid);
3780
3781 if (! forks_exist_p ())
3782 /* Normal case, no other forks available. */
3783 linux_ops->to_mourn_inferior (ops);
3784 else
3785 /* Multi-fork case. The current inferior_ptid has exited, but
3786 there are other viable forks to debug. Delete the exiting
3787 one and context-switch to the first available. */
3788 linux_fork_mourn_inferior ();
3789
3790 /* Let the arch-specific native code know this process is gone. */
3791 linux_nat_forget_process (pid);
3792 }
3793
3794 /* Convert a native/host siginfo object, into/from the siginfo in the
3795 layout of the inferiors' architecture. */
3796
3797 static void
3798 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3799 {
3800 int done = 0;
3801
3802 if (linux_nat_siginfo_fixup != NULL)
3803 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3804
3805 /* If there was no callback, or the callback didn't do anything,
3806 then just do a straight memcpy. */
3807 if (!done)
3808 {
3809 if (direction == 1)
3810 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3811 else
3812 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3813 }
3814 }
3815
3816 static enum target_xfer_status
3817 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3818 const char *annex, gdb_byte *readbuf,
3819 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3820 ULONGEST *xfered_len)
3821 {
3822 int pid;
3823 siginfo_t siginfo;
3824 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3825
3826 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3827 gdb_assert (readbuf || writebuf);
3828
3829 pid = ptid_get_lwp (inferior_ptid);
3830 if (pid == 0)
3831 pid = ptid_get_pid (inferior_ptid);
3832
3833 if (offset > sizeof (siginfo))
3834 return TARGET_XFER_E_IO;
3835
3836 errno = 0;
3837 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3838 if (errno != 0)
3839 return TARGET_XFER_E_IO;
3840
3841 /* When GDB is built as a 64-bit application, ptrace writes into
3842 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3843 inferior with a 64-bit GDB should look the same as debugging it
3844 with a 32-bit GDB, we need to convert it. GDB core always sees
3845 the converted layout, so any read/write will have to be done
3846 post-conversion. */
3847 siginfo_fixup (&siginfo, inf_siginfo, 0);
3848
3849 if (offset + len > sizeof (siginfo))
3850 len = sizeof (siginfo) - offset;
3851
3852 if (readbuf != NULL)
3853 memcpy (readbuf, inf_siginfo + offset, len);
3854 else
3855 {
3856 memcpy (inf_siginfo + offset, writebuf, len);
3857
3858 /* Convert back to ptrace layout before flushing it out. */
3859 siginfo_fixup (&siginfo, inf_siginfo, 1);
3860
3861 errno = 0;
3862 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3863 if (errno != 0)
3864 return TARGET_XFER_E_IO;
3865 }
3866
3867 *xfered_len = len;
3868 return TARGET_XFER_OK;
3869 }
3870
3871 static enum target_xfer_status
3872 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3873 const char *annex, gdb_byte *readbuf,
3874 const gdb_byte *writebuf,
3875 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3876 {
3877 enum target_xfer_status xfer;
3878
3879 if (object == TARGET_OBJECT_SIGNAL_INFO)
3880 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3881 offset, len, xfered_len);
3882
3883 /* The target is connected but no live inferior is selected. Pass
3884 this request down to a lower stratum (e.g., the executable
3885 file). */
3886 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3887 return TARGET_XFER_EOF;
3888
3889 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3890 offset, len, xfered_len);
3891
3892 return xfer;
3893 }
3894
3895 static int
3896 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3897 {
3898 /* As long as a PTID is in lwp list, consider it alive. */
3899 return find_lwp_pid (ptid) != NULL;
3900 }
3901
3902 /* Implement the to_update_thread_list target method for this
3903 target. */
3904
3905 static void
3906 linux_nat_update_thread_list (struct target_ops *ops)
3907 {
3908 struct lwp_info *lwp;
3909
3910 /* We add/delete threads from the list as clone/exit events are
3911 processed, so just try deleting exited threads still in the
3912 thread list. */
3913 delete_exited_threads ();
3914
3915 /* Update the processor core that each lwp/thread was last seen
3916 running on. */
3917 ALL_LWPS (lwp)
3918 {
3919 /* Avoid accessing /proc if the thread hasn't run since we last
3920 time we fetched the thread's core. Accessing /proc becomes
3921 noticeably expensive when we have thousands of LWPs. */
3922 if (lwp->core == -1)
3923 lwp->core = linux_common_core_of_thread (lwp->ptid);
3924 }
3925 }
3926
3927 static const char *
3928 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3929 {
3930 static char buf[64];
3931
3932 if (ptid_lwp_p (ptid)
3933 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3934 || num_lwps (ptid_get_pid (ptid)) > 1))
3935 {
3936 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3937 return buf;
3938 }
3939
3940 return normal_pid_to_str (ptid);
3941 }
3942
3943 static const char *
3944 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3945 {
3946 return linux_proc_tid_get_name (thr->ptid);
3947 }
3948
3949 /* Accepts an integer PID; Returns a string representing a file that
3950 can be opened to get the symbols for the child process. */
3951
3952 static char *
3953 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3954 {
3955 return linux_proc_pid_to_exec_file (pid);
3956 }
3957
3958 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3959 Because we can use a single read/write call, this can be much more
3960 efficient than banging away at PTRACE_PEEKTEXT. */
3961
3962 static enum target_xfer_status
3963 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3964 const char *annex, gdb_byte *readbuf,
3965 const gdb_byte *writebuf,
3966 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3967 {
3968 LONGEST ret;
3969 int fd;
3970 char filename[64];
3971
3972 if (object != TARGET_OBJECT_MEMORY)
3973 return TARGET_XFER_EOF;
3974
3975 /* Don't bother for one word. */
3976 if (len < 3 * sizeof (long))
3977 return TARGET_XFER_EOF;
3978
3979 /* We could keep this file open and cache it - possibly one per
3980 thread. That requires some juggling, but is even faster. */
3981 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3982 ptid_get_lwp (inferior_ptid));
3983 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3984 | O_LARGEFILE), 0);
3985 if (fd == -1)
3986 return TARGET_XFER_EOF;
3987
3988 /* Use pread64/pwrite64 if available, since they save a syscall and can
3989 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3990 debugging a SPARC64 application). */
3991 #ifdef HAVE_PREAD64
3992 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3993 : pwrite64 (fd, writebuf, len, offset));
3994 #else
3995 ret = lseek (fd, offset, SEEK_SET);
3996 if (ret != -1)
3997 ret = (readbuf ? read (fd, readbuf, len)
3998 : write (fd, writebuf, len));
3999 #endif
4000
4001 close (fd);
4002
4003 if (ret == -1 || ret == 0)
4004 return TARGET_XFER_EOF;
4005 else
4006 {
4007 *xfered_len = ret;
4008 return TARGET_XFER_OK;
4009 }
4010 }
4011
4012
4013 /* Enumerate spufs IDs for process PID. */
4014 static LONGEST
4015 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4016 {
4017 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4018 LONGEST pos = 0;
4019 LONGEST written = 0;
4020 char path[128];
4021 DIR *dir;
4022 struct dirent *entry;
4023
4024 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4025 dir = opendir (path);
4026 if (!dir)
4027 return -1;
4028
4029 rewinddir (dir);
4030 while ((entry = readdir (dir)) != NULL)
4031 {
4032 struct stat st;
4033 struct statfs stfs;
4034 int fd;
4035
4036 fd = atoi (entry->d_name);
4037 if (!fd)
4038 continue;
4039
4040 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4041 if (stat (path, &st) != 0)
4042 continue;
4043 if (!S_ISDIR (st.st_mode))
4044 continue;
4045
4046 if (statfs (path, &stfs) != 0)
4047 continue;
4048 if (stfs.f_type != SPUFS_MAGIC)
4049 continue;
4050
4051 if (pos >= offset && pos + 4 <= offset + len)
4052 {
4053 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4054 written += 4;
4055 }
4056 pos += 4;
4057 }
4058
4059 closedir (dir);
4060 return written;
4061 }
4062
4063 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4064 object type, using the /proc file system. */
4065
4066 static enum target_xfer_status
4067 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4068 const char *annex, gdb_byte *readbuf,
4069 const gdb_byte *writebuf,
4070 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4071 {
4072 char buf[128];
4073 int fd = 0;
4074 int ret = -1;
4075 int pid = ptid_get_lwp (inferior_ptid);
4076
4077 if (!annex)
4078 {
4079 if (!readbuf)
4080 return TARGET_XFER_E_IO;
4081 else
4082 {
4083 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4084
4085 if (l < 0)
4086 return TARGET_XFER_E_IO;
4087 else if (l == 0)
4088 return TARGET_XFER_EOF;
4089 else
4090 {
4091 *xfered_len = (ULONGEST) l;
4092 return TARGET_XFER_OK;
4093 }
4094 }
4095 }
4096
4097 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4098 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4099 if (fd <= 0)
4100 return TARGET_XFER_E_IO;
4101
4102 if (offset != 0
4103 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4104 {
4105 close (fd);
4106 return TARGET_XFER_EOF;
4107 }
4108
4109 if (writebuf)
4110 ret = write (fd, writebuf, (size_t) len);
4111 else if (readbuf)
4112 ret = read (fd, readbuf, (size_t) len);
4113
4114 close (fd);
4115
4116 if (ret < 0)
4117 return TARGET_XFER_E_IO;
4118 else if (ret == 0)
4119 return TARGET_XFER_EOF;
4120 else
4121 {
4122 *xfered_len = (ULONGEST) ret;
4123 return TARGET_XFER_OK;
4124 }
4125 }
4126
4127
4128 /* Parse LINE as a signal set and add its set bits to SIGS. */
4129
4130 static void
4131 add_line_to_sigset (const char *line, sigset_t *sigs)
4132 {
4133 int len = strlen (line) - 1;
4134 const char *p;
4135 int signum;
4136
4137 if (line[len] != '\n')
4138 error (_("Could not parse signal set: %s"), line);
4139
4140 p = line;
4141 signum = len * 4;
4142 while (len-- > 0)
4143 {
4144 int digit;
4145
4146 if (*p >= '0' && *p <= '9')
4147 digit = *p - '0';
4148 else if (*p >= 'a' && *p <= 'f')
4149 digit = *p - 'a' + 10;
4150 else
4151 error (_("Could not parse signal set: %s"), line);
4152
4153 signum -= 4;
4154
4155 if (digit & 1)
4156 sigaddset (sigs, signum + 1);
4157 if (digit & 2)
4158 sigaddset (sigs, signum + 2);
4159 if (digit & 4)
4160 sigaddset (sigs, signum + 3);
4161 if (digit & 8)
4162 sigaddset (sigs, signum + 4);
4163
4164 p++;
4165 }
4166 }
4167
4168 /* Find process PID's pending signals from /proc/pid/status and set
4169 SIGS to match. */
4170
4171 void
4172 linux_proc_pending_signals (int pid, sigset_t *pending,
4173 sigset_t *blocked, sigset_t *ignored)
4174 {
4175 char buffer[PATH_MAX], fname[PATH_MAX];
4176
4177 sigemptyset (pending);
4178 sigemptyset (blocked);
4179 sigemptyset (ignored);
4180 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4181 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4182 if (procfile == NULL)
4183 error (_("Could not open %s"), fname);
4184
4185 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4186 {
4187 /* Normal queued signals are on the SigPnd line in the status
4188 file. However, 2.6 kernels also have a "shared" pending
4189 queue for delivering signals to a thread group, so check for
4190 a ShdPnd line also.
4191
4192 Unfortunately some Red Hat kernels include the shared pending
4193 queue but not the ShdPnd status field. */
4194
4195 if (startswith (buffer, "SigPnd:\t"))
4196 add_line_to_sigset (buffer + 8, pending);
4197 else if (startswith (buffer, "ShdPnd:\t"))
4198 add_line_to_sigset (buffer + 8, pending);
4199 else if (startswith (buffer, "SigBlk:\t"))
4200 add_line_to_sigset (buffer + 8, blocked);
4201 else if (startswith (buffer, "SigIgn:\t"))
4202 add_line_to_sigset (buffer + 8, ignored);
4203 }
4204 }
4205
4206 static enum target_xfer_status
4207 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4208 const char *annex, gdb_byte *readbuf,
4209 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4210 ULONGEST *xfered_len)
4211 {
4212 gdb_assert (object == TARGET_OBJECT_OSDATA);
4213
4214 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4215 if (*xfered_len == 0)
4216 return TARGET_XFER_EOF;
4217 else
4218 return TARGET_XFER_OK;
4219 }
4220
4221 static enum target_xfer_status
4222 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4223 const char *annex, gdb_byte *readbuf,
4224 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4225 ULONGEST *xfered_len)
4226 {
4227 enum target_xfer_status xfer;
4228
4229 if (object == TARGET_OBJECT_AUXV)
4230 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4231 offset, len, xfered_len);
4232
4233 if (object == TARGET_OBJECT_OSDATA)
4234 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4235 offset, len, xfered_len);
4236
4237 if (object == TARGET_OBJECT_SPU)
4238 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4239 offset, len, xfered_len);
4240
4241 /* GDB calculates all the addresses in possibly larget width of the address.
4242 Address width needs to be masked before its final use - either by
4243 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4244
4245 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4246
4247 if (object == TARGET_OBJECT_MEMORY)
4248 {
4249 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4250
4251 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4252 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4253 }
4254
4255 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4256 offset, len, xfered_len);
4257 if (xfer != TARGET_XFER_EOF)
4258 return xfer;
4259
4260 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4261 offset, len, xfered_len);
4262 }
4263
4264 static void
4265 cleanup_target_stop (void *arg)
4266 {
4267 ptid_t *ptid = (ptid_t *) arg;
4268
4269 gdb_assert (arg != NULL);
4270
4271 /* Unpause all */
4272 target_continue_no_signal (*ptid);
4273 }
4274
4275 static VEC(static_tracepoint_marker_p) *
4276 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4277 const char *strid)
4278 {
4279 char s[IPA_CMD_BUF_SIZE];
4280 struct cleanup *old_chain;
4281 int pid = ptid_get_pid (inferior_ptid);
4282 VEC(static_tracepoint_marker_p) *markers = NULL;
4283 struct static_tracepoint_marker *marker = NULL;
4284 const char *p = s;
4285 ptid_t ptid = ptid_build (pid, 0, 0);
4286
4287 /* Pause all */
4288 target_stop (ptid);
4289
4290 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4291 s[sizeof ("qTfSTM")] = 0;
4292
4293 agent_run_command (pid, s, strlen (s) + 1);
4294
4295 old_chain = make_cleanup (free_current_marker, &marker);
4296 make_cleanup (cleanup_target_stop, &ptid);
4297
4298 while (*p++ == 'm')
4299 {
4300 if (marker == NULL)
4301 marker = XCNEW (struct static_tracepoint_marker);
4302
4303 do
4304 {
4305 parse_static_tracepoint_marker_definition (p, &p, marker);
4306
4307 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4308 {
4309 VEC_safe_push (static_tracepoint_marker_p,
4310 markers, marker);
4311 marker = NULL;
4312 }
4313 else
4314 {
4315 release_static_tracepoint_marker (marker);
4316 memset (marker, 0, sizeof (*marker));
4317 }
4318 }
4319 while (*p++ == ','); /* comma-separated list */
4320
4321 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4322 s[sizeof ("qTsSTM")] = 0;
4323 agent_run_command (pid, s, strlen (s) + 1);
4324 p = s;
4325 }
4326
4327 do_cleanups (old_chain);
4328
4329 return markers;
4330 }
4331
4332 /* Create a prototype generic GNU/Linux target. The client can override
4333 it with local methods. */
4334
4335 static void
4336 linux_target_install_ops (struct target_ops *t)
4337 {
4338 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4339 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4340 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4341 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4342 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4343 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4344 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4345 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4346 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4347 t->to_post_attach = linux_child_post_attach;
4348 t->to_follow_fork = linux_child_follow_fork;
4349
4350 super_xfer_partial = t->to_xfer_partial;
4351 t->to_xfer_partial = linux_xfer_partial;
4352
4353 t->to_static_tracepoint_markers_by_strid
4354 = linux_child_static_tracepoint_markers_by_strid;
4355 }
4356
4357 struct target_ops *
4358 linux_target (void)
4359 {
4360 struct target_ops *t;
4361
4362 t = inf_ptrace_target ();
4363 linux_target_install_ops (t);
4364
4365 return t;
4366 }
4367
4368 struct target_ops *
4369 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4370 {
4371 struct target_ops *t;
4372
4373 t = inf_ptrace_trad_target (register_u_offset);
4374 linux_target_install_ops (t);
4375
4376 return t;
4377 }
4378
4379 /* target_is_async_p implementation. */
4380
4381 static int
4382 linux_nat_is_async_p (struct target_ops *ops)
4383 {
4384 return linux_is_async_p ();
4385 }
4386
4387 /* target_can_async_p implementation. */
4388
4389 static int
4390 linux_nat_can_async_p (struct target_ops *ops)
4391 {
4392 /* We're always async, unless the user explicitly prevented it with the
4393 "maint set target-async" command. */
4394 return target_async_permitted;
4395 }
4396
4397 static int
4398 linux_nat_supports_non_stop (struct target_ops *self)
4399 {
4400 return 1;
4401 }
4402
4403 /* to_always_non_stop_p implementation. */
4404
4405 static int
4406 linux_nat_always_non_stop_p (struct target_ops *self)
4407 {
4408 return 1;
4409 }
4410
4411 /* True if we want to support multi-process. To be removed when GDB
4412 supports multi-exec. */
4413
4414 int linux_multi_process = 1;
4415
4416 static int
4417 linux_nat_supports_multi_process (struct target_ops *self)
4418 {
4419 return linux_multi_process;
4420 }
4421
4422 static int
4423 linux_nat_supports_disable_randomization (struct target_ops *self)
4424 {
4425 #ifdef HAVE_PERSONALITY
4426 return 1;
4427 #else
4428 return 0;
4429 #endif
4430 }
4431
4432 static int async_terminal_is_ours = 1;
4433
4434 /* target_terminal_inferior implementation.
4435
4436 This is a wrapper around child_terminal_inferior to add async support. */
4437
4438 static void
4439 linux_nat_terminal_inferior (struct target_ops *self)
4440 {
4441 child_terminal_inferior (self);
4442
4443 /* Calls to target_terminal_*() are meant to be idempotent. */
4444 if (!async_terminal_is_ours)
4445 return;
4446
4447 async_terminal_is_ours = 0;
4448 set_sigint_trap ();
4449 }
4450
4451 /* target_terminal::ours implementation.
4452
4453 This is a wrapper around child_terminal_ours to add async support (and
4454 implement the target_terminal::ours vs target_terminal::ours_for_output
4455 distinction). child_terminal_ours is currently no different than
4456 child_terminal_ours_for_output.
4457 We leave target_terminal::ours_for_output alone, leaving it to
4458 child_terminal_ours_for_output. */
4459
4460 static void
4461 linux_nat_terminal_ours (struct target_ops *self)
4462 {
4463 /* GDB should never give the terminal to the inferior if the
4464 inferior is running in the background (run&, continue&, etc.),
4465 but claiming it sure should. */
4466 child_terminal_ours (self);
4467
4468 if (async_terminal_is_ours)
4469 return;
4470
4471 clear_sigint_trap ();
4472 async_terminal_is_ours = 1;
4473 }
4474
4475 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4476 so we notice when any child changes state, and notify the
4477 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4478 above to wait for the arrival of a SIGCHLD. */
4479
4480 static void
4481 sigchld_handler (int signo)
4482 {
4483 int old_errno = errno;
4484
4485 if (debug_linux_nat)
4486 ui_file_write_async_safe (gdb_stdlog,
4487 "sigchld\n", sizeof ("sigchld\n") - 1);
4488
4489 if (signo == SIGCHLD
4490 && linux_nat_event_pipe[0] != -1)
4491 async_file_mark (); /* Let the event loop know that there are
4492 events to handle. */
4493
4494 errno = old_errno;
4495 }
4496
4497 /* Callback registered with the target events file descriptor. */
4498
4499 static void
4500 handle_target_event (int error, gdb_client_data client_data)
4501 {
4502 inferior_event_handler (INF_REG_EVENT, NULL);
4503 }
4504
4505 /* Create/destroy the target events pipe. Returns previous state. */
4506
4507 static int
4508 linux_async_pipe (int enable)
4509 {
4510 int previous = linux_is_async_p ();
4511
4512 if (previous != enable)
4513 {
4514 sigset_t prev_mask;
4515
4516 /* Block child signals while we create/destroy the pipe, as
4517 their handler writes to it. */
4518 block_child_signals (&prev_mask);
4519
4520 if (enable)
4521 {
4522 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4523 internal_error (__FILE__, __LINE__,
4524 "creating event pipe failed.");
4525
4526 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4527 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4528 }
4529 else
4530 {
4531 close (linux_nat_event_pipe[0]);
4532 close (linux_nat_event_pipe[1]);
4533 linux_nat_event_pipe[0] = -1;
4534 linux_nat_event_pipe[1] = -1;
4535 }
4536
4537 restore_child_signals_mask (&prev_mask);
4538 }
4539
4540 return previous;
4541 }
4542
4543 /* target_async implementation. */
4544
4545 static void
4546 linux_nat_async (struct target_ops *ops, int enable)
4547 {
4548 if (enable)
4549 {
4550 if (!linux_async_pipe (1))
4551 {
4552 add_file_handler (linux_nat_event_pipe[0],
4553 handle_target_event, NULL);
4554 /* There may be pending events to handle. Tell the event loop
4555 to poll them. */
4556 async_file_mark ();
4557 }
4558 }
4559 else
4560 {
4561 delete_file_handler (linux_nat_event_pipe[0]);
4562 linux_async_pipe (0);
4563 }
4564 return;
4565 }
4566
4567 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4568 event came out. */
4569
4570 static int
4571 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4572 {
4573 if (!lwp->stopped)
4574 {
4575 if (debug_linux_nat)
4576 fprintf_unfiltered (gdb_stdlog,
4577 "LNSL: running -> suspending %s\n",
4578 target_pid_to_str (lwp->ptid));
4579
4580
4581 if (lwp->last_resume_kind == resume_stop)
4582 {
4583 if (debug_linux_nat)
4584 fprintf_unfiltered (gdb_stdlog,
4585 "linux-nat: already stopping LWP %ld at "
4586 "GDB's request\n",
4587 ptid_get_lwp (lwp->ptid));
4588 return 0;
4589 }
4590
4591 stop_callback (lwp, NULL);
4592 lwp->last_resume_kind = resume_stop;
4593 }
4594 else
4595 {
4596 /* Already known to be stopped; do nothing. */
4597
4598 if (debug_linux_nat)
4599 {
4600 if (find_thread_ptid (lwp->ptid)->stop_requested)
4601 fprintf_unfiltered (gdb_stdlog,
4602 "LNSL: already stopped/stop_requested %s\n",
4603 target_pid_to_str (lwp->ptid));
4604 else
4605 fprintf_unfiltered (gdb_stdlog,
4606 "LNSL: already stopped/no "
4607 "stop_requested yet %s\n",
4608 target_pid_to_str (lwp->ptid));
4609 }
4610 }
4611 return 0;
4612 }
4613
4614 static void
4615 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4616 {
4617 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4618 }
4619
4620 static void
4621 linux_nat_close (struct target_ops *self)
4622 {
4623 /* Unregister from the event loop. */
4624 if (linux_nat_is_async_p (self))
4625 linux_nat_async (self, 0);
4626
4627 if (linux_ops->to_close)
4628 linux_ops->to_close (linux_ops);
4629
4630 super_close (self);
4631 }
4632
4633 /* When requests are passed down from the linux-nat layer to the
4634 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4635 used. The address space pointer is stored in the inferior object,
4636 but the common code that is passed such ptid can't tell whether
4637 lwpid is a "main" process id or not (it assumes so). We reverse
4638 look up the "main" process id from the lwp here. */
4639
4640 static struct address_space *
4641 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4642 {
4643 struct lwp_info *lwp;
4644 struct inferior *inf;
4645 int pid;
4646
4647 if (ptid_get_lwp (ptid) == 0)
4648 {
4649 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4650 tgid. */
4651 lwp = find_lwp_pid (ptid);
4652 pid = ptid_get_pid (lwp->ptid);
4653 }
4654 else
4655 {
4656 /* A (pid,lwpid,0) ptid. */
4657 pid = ptid_get_pid (ptid);
4658 }
4659
4660 inf = find_inferior_pid (pid);
4661 gdb_assert (inf != NULL);
4662 return inf->aspace;
4663 }
4664
4665 /* Return the cached value of the processor core for thread PTID. */
4666
4667 static int
4668 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4669 {
4670 struct lwp_info *info = find_lwp_pid (ptid);
4671
4672 if (info)
4673 return info->core;
4674 return -1;
4675 }
4676
4677 /* Implementation of to_filesystem_is_local. */
4678
4679 static int
4680 linux_nat_filesystem_is_local (struct target_ops *ops)
4681 {
4682 struct inferior *inf = current_inferior ();
4683
4684 if (inf->fake_pid_p || inf->pid == 0)
4685 return 1;
4686
4687 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4688 }
4689
4690 /* Convert the INF argument passed to a to_fileio_* method
4691 to a process ID suitable for passing to its corresponding
4692 linux_mntns_* function. If INF is non-NULL then the
4693 caller is requesting the filesystem seen by INF. If INF
4694 is NULL then the caller is requesting the filesystem seen
4695 by the GDB. We fall back to GDB's filesystem in the case
4696 that INF is non-NULL but its PID is unknown. */
4697
4698 static pid_t
4699 linux_nat_fileio_pid_of (struct inferior *inf)
4700 {
4701 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4702 return getpid ();
4703 else
4704 return inf->pid;
4705 }
4706
4707 /* Implementation of to_fileio_open. */
4708
4709 static int
4710 linux_nat_fileio_open (struct target_ops *self,
4711 struct inferior *inf, const char *filename,
4712 int flags, int mode, int warn_if_slow,
4713 int *target_errno)
4714 {
4715 int nat_flags;
4716 mode_t nat_mode;
4717 int fd;
4718
4719 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4720 || fileio_to_host_mode (mode, &nat_mode) == -1)
4721 {
4722 *target_errno = FILEIO_EINVAL;
4723 return -1;
4724 }
4725
4726 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4727 filename, nat_flags, nat_mode);
4728 if (fd == -1)
4729 *target_errno = host_to_fileio_error (errno);
4730
4731 return fd;
4732 }
4733
4734 /* Implementation of to_fileio_readlink. */
4735
4736 static char *
4737 linux_nat_fileio_readlink (struct target_ops *self,
4738 struct inferior *inf, const char *filename,
4739 int *target_errno)
4740 {
4741 char buf[PATH_MAX];
4742 int len;
4743 char *ret;
4744
4745 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4746 filename, buf, sizeof (buf));
4747 if (len < 0)
4748 {
4749 *target_errno = host_to_fileio_error (errno);
4750 return NULL;
4751 }
4752
4753 ret = (char *) xmalloc (len + 1);
4754 memcpy (ret, buf, len);
4755 ret[len] = '\0';
4756 return ret;
4757 }
4758
4759 /* Implementation of to_fileio_unlink. */
4760
4761 static int
4762 linux_nat_fileio_unlink (struct target_ops *self,
4763 struct inferior *inf, const char *filename,
4764 int *target_errno)
4765 {
4766 int ret;
4767
4768 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4769 filename);
4770 if (ret == -1)
4771 *target_errno = host_to_fileio_error (errno);
4772
4773 return ret;
4774 }
4775
4776 /* Implementation of the to_thread_events method. */
4777
4778 static void
4779 linux_nat_thread_events (struct target_ops *ops, int enable)
4780 {
4781 report_thread_events = enable;
4782 }
4783
4784 void
4785 linux_nat_add_target (struct target_ops *t)
4786 {
4787 /* Save the provided single-threaded target. We save this in a separate
4788 variable because another target we've inherited from (e.g. inf-ptrace)
4789 may have saved a pointer to T; we want to use it for the final
4790 process stratum target. */
4791 linux_ops_saved = *t;
4792 linux_ops = &linux_ops_saved;
4793
4794 /* Override some methods for multithreading. */
4795 t->to_create_inferior = linux_nat_create_inferior;
4796 t->to_attach = linux_nat_attach;
4797 t->to_detach = linux_nat_detach;
4798 t->to_resume = linux_nat_resume;
4799 t->to_wait = linux_nat_wait;
4800 t->to_pass_signals = linux_nat_pass_signals;
4801 t->to_xfer_partial = linux_nat_xfer_partial;
4802 t->to_kill = linux_nat_kill;
4803 t->to_mourn_inferior = linux_nat_mourn_inferior;
4804 t->to_thread_alive = linux_nat_thread_alive;
4805 t->to_update_thread_list = linux_nat_update_thread_list;
4806 t->to_pid_to_str = linux_nat_pid_to_str;
4807 t->to_thread_name = linux_nat_thread_name;
4808 t->to_has_thread_control = tc_schedlock;
4809 t->to_thread_address_space = linux_nat_thread_address_space;
4810 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4811 t->to_stopped_data_address = linux_nat_stopped_data_address;
4812 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4813 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4814 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4815 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4816 t->to_thread_events = linux_nat_thread_events;
4817
4818 t->to_can_async_p = linux_nat_can_async_p;
4819 t->to_is_async_p = linux_nat_is_async_p;
4820 t->to_supports_non_stop = linux_nat_supports_non_stop;
4821 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4822 t->to_async = linux_nat_async;
4823 t->to_terminal_inferior = linux_nat_terminal_inferior;
4824 t->to_terminal_ours = linux_nat_terminal_ours;
4825
4826 super_close = t->to_close;
4827 t->to_close = linux_nat_close;
4828
4829 t->to_stop = linux_nat_stop;
4830
4831 t->to_supports_multi_process = linux_nat_supports_multi_process;
4832
4833 t->to_supports_disable_randomization
4834 = linux_nat_supports_disable_randomization;
4835
4836 t->to_core_of_thread = linux_nat_core_of_thread;
4837
4838 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4839 t->to_fileio_open = linux_nat_fileio_open;
4840 t->to_fileio_readlink = linux_nat_fileio_readlink;
4841 t->to_fileio_unlink = linux_nat_fileio_unlink;
4842
4843 /* We don't change the stratum; this target will sit at
4844 process_stratum and thread_db will set at thread_stratum. This
4845 is a little strange, since this is a multi-threaded-capable
4846 target, but we want to be on the stack below thread_db, and we
4847 also want to be used for single-threaded processes. */
4848
4849 add_target (t);
4850 }
4851
4852 /* Register a method to call whenever a new thread is attached. */
4853 void
4854 linux_nat_set_new_thread (struct target_ops *t,
4855 void (*new_thread) (struct lwp_info *))
4856 {
4857 /* Save the pointer. We only support a single registered instance
4858 of the GNU/Linux native target, so we do not need to map this to
4859 T. */
4860 linux_nat_new_thread = new_thread;
4861 }
4862
4863 /* Register a method to call whenever a new thread is attached. */
4864 void
4865 linux_nat_set_delete_thread (struct target_ops *t,
4866 void (*delete_thread) (struct arch_lwp_info *))
4867 {
4868 /* Save the pointer. We only support a single registered instance
4869 of the GNU/Linux native target, so we do not need to map this to
4870 T. */
4871 linux_nat_delete_thread = delete_thread;
4872 }
4873
4874 /* See declaration in linux-nat.h. */
4875
4876 void
4877 linux_nat_set_new_fork (struct target_ops *t,
4878 linux_nat_new_fork_ftype *new_fork)
4879 {
4880 /* Save the pointer. */
4881 linux_nat_new_fork = new_fork;
4882 }
4883
4884 /* See declaration in linux-nat.h. */
4885
4886 void
4887 linux_nat_set_forget_process (struct target_ops *t,
4888 linux_nat_forget_process_ftype *fn)
4889 {
4890 /* Save the pointer. */
4891 linux_nat_forget_process_hook = fn;
4892 }
4893
4894 /* See declaration in linux-nat.h. */
4895
4896 void
4897 linux_nat_forget_process (pid_t pid)
4898 {
4899 if (linux_nat_forget_process_hook != NULL)
4900 linux_nat_forget_process_hook (pid);
4901 }
4902
4903 /* Register a method that converts a siginfo object between the layout
4904 that ptrace returns, and the layout in the architecture of the
4905 inferior. */
4906 void
4907 linux_nat_set_siginfo_fixup (struct target_ops *t,
4908 int (*siginfo_fixup) (siginfo_t *,
4909 gdb_byte *,
4910 int))
4911 {
4912 /* Save the pointer. */
4913 linux_nat_siginfo_fixup = siginfo_fixup;
4914 }
4915
4916 /* Register a method to call prior to resuming a thread. */
4917
4918 void
4919 linux_nat_set_prepare_to_resume (struct target_ops *t,
4920 void (*prepare_to_resume) (struct lwp_info *))
4921 {
4922 /* Save the pointer. */
4923 linux_nat_prepare_to_resume = prepare_to_resume;
4924 }
4925
4926 /* See linux-nat.h. */
4927
4928 int
4929 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4930 {
4931 int pid;
4932
4933 pid = ptid_get_lwp (ptid);
4934 if (pid == 0)
4935 pid = ptid_get_pid (ptid);
4936
4937 errno = 0;
4938 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4939 if (errno != 0)
4940 {
4941 memset (siginfo, 0, sizeof (*siginfo));
4942 return 0;
4943 }
4944 return 1;
4945 }
4946
4947 /* See nat/linux-nat.h. */
4948
4949 ptid_t
4950 current_lwp_ptid (void)
4951 {
4952 gdb_assert (ptid_lwp_p (inferior_ptid));
4953 return inferior_ptid;
4954 }
4955
4956 void
4957 _initialize_linux_nat (void)
4958 {
4959 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4960 &debug_linux_nat, _("\
4961 Set debugging of GNU/Linux lwp module."), _("\
4962 Show debugging of GNU/Linux lwp module."), _("\
4963 Enables printf debugging output."),
4964 NULL,
4965 show_debug_linux_nat,
4966 &setdebuglist, &showdebuglist);
4967
4968 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4969 &debug_linux_namespaces, _("\
4970 Set debugging of GNU/Linux namespaces module."), _("\
4971 Show debugging of GNU/Linux namespaces module."), _("\
4972 Enables printf debugging output."),
4973 NULL,
4974 NULL,
4975 &setdebuglist, &showdebuglist);
4976
4977 /* Save this mask as the default. */
4978 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4979
4980 /* Install a SIGCHLD handler. */
4981 sigchld_action.sa_handler = sigchld_handler;
4982 sigemptyset (&sigchld_action.sa_mask);
4983 sigchld_action.sa_flags = SA_RESTART;
4984
4985 /* Make it the default. */
4986 sigaction (SIGCHLD, &sigchld_action, NULL);
4987
4988 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4989 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4990 sigdelset (&suspend_mask, SIGCHLD);
4991
4992 sigemptyset (&blocked_mask);
4993
4994 lwp_lwpid_htab_create ();
4995 }
4996 \f
4997
4998 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4999 the GNU/Linux Threads library and therefore doesn't really belong
5000 here. */
5001
5002 /* Return the set of signals used by the threads library in *SET. */
5003
5004 void
5005 lin_thread_get_thread_signals (sigset_t *set)
5006 {
5007 sigemptyset (set);
5008
5009 /* NPTL reserves the first two RT signals, but does not provide any
5010 way for the debugger to query the signal numbers - fortunately
5011 they don't change. */
5012 sigaddset (set, __SIGRTMIN);
5013 sigaddset (set, __SIGRTMIN + 1);
5014 }
This page took 0.199792 seconds and 5 git commands to generate.