* linux-nat.c (linux_nat_resume): In non-stop, also only tag
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 static int linux_parent_pid;
274
275 struct simple_pid_list
276 {
277 int pid;
278 int status;
279 struct simple_pid_list *next;
280 };
281 struct simple_pid_list *stopped_pids;
282
283 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
284 can not be used, 1 if it can. */
285
286 static int linux_supports_tracefork_flag = -1;
287
288 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
289 can not be used, 1 if it can. */
290
291 static int linux_supports_tracesysgood_flag = -1;
292
293 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
294 PTRACE_O_TRACEVFORKDONE. */
295
296 static int linux_supports_tracevforkdone_flag = -1;
297
298 /* Async mode support */
299
300 /* Zero if the async mode, although enabled, is masked, which means
301 linux_nat_wait should behave as if async mode was off. */
302 static int linux_nat_async_mask_value = 1;
303
304 /* Stores the current used ptrace() options. */
305 static int current_ptrace_options = 0;
306
307 /* The read/write ends of the pipe registered as waitable file in the
308 event loop. */
309 static int linux_nat_event_pipe[2] = { -1, -1 };
310
311 /* Flush the event pipe. */
312
313 static void
314 async_file_flush (void)
315 {
316 int ret;
317 char buf;
318
319 do
320 {
321 ret = read (linux_nat_event_pipe[0], &buf, 1);
322 }
323 while (ret >= 0 || (ret == -1 && errno == EINTR));
324 }
325
326 /* Put something (anything, doesn't matter what, or how much) in event
327 pipe, so that the select/poll in the event-loop realizes we have
328 something to process. */
329
330 static void
331 async_file_mark (void)
332 {
333 int ret;
334
335 /* It doesn't really matter what the pipe contains, as long we end
336 up with something in it. Might as well flush the previous
337 left-overs. */
338 async_file_flush ();
339
340 do
341 {
342 ret = write (linux_nat_event_pipe[1], "+", 1);
343 }
344 while (ret == -1 && errno == EINTR);
345
346 /* Ignore EAGAIN. If the pipe is full, the event loop will already
347 be awakened anyway. */
348 }
349
350 static void linux_nat_async (void (*callback)
351 (enum inferior_event_type event_type, void *context),
352 void *context);
353 static int linux_nat_async_mask (int mask);
354 static int kill_lwp (int lwpid, int signo);
355
356 static int stop_callback (struct lwp_info *lp, void *data);
357
358 static void block_child_signals (sigset_t *prev_mask);
359 static void restore_child_signals_mask (sigset_t *prev_mask);
360
361 struct lwp_info;
362 static struct lwp_info *add_lwp (ptid_t ptid);
363 static void purge_lwp_list (int pid);
364 static struct lwp_info *find_lwp_pid (ptid_t ptid);
365
366 \f
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->pid = pid;
374 new_pid->status = status;
375 new_pid->next = *listp;
376 *listp = new_pid;
377 }
378
379 static int
380 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
381 {
382 struct simple_pid_list **p;
383
384 for (p = listp; *p != NULL; p = &(*p)->next)
385 if ((*p)->pid == pid)
386 {
387 struct simple_pid_list *next = (*p)->next;
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 int ret;
409
410 ptrace (PTRACE_TRACEME, 0, 0, 0);
411 kill (getpid (), SIGSTOP);
412 fork ();
413 _exit (0);
414 }
415
416 /* Wrapper function for waitpid which handles EINTR. */
417
418 static int
419 my_waitpid (int pid, int *status, int flags)
420 {
421 int ret;
422
423 do
424 {
425 ret = waitpid (pid, status, flags);
426 }
427 while (ret == -1 && errno == EINTR);
428
429 return ret;
430 }
431
432 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
433
434 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
435 we know that the feature is not available. This may change the tracing
436 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
437
438 However, if it succeeds, we don't know for sure that the feature is
439 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
440 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
441 fork tracing, and let it fork. If the process exits, we assume that we
442 can't use TRACEFORK; if we get the fork notification, and we can extract
443 the new child's PID, then we assume that we can. */
444
445 static void
446 linux_test_for_tracefork (int original_pid)
447 {
448 int child_pid, ret, status;
449 long second_pid;
450 sigset_t prev_mask;
451
452 /* We don't want those ptrace calls to be interrupted. */
453 block_child_signals (&prev_mask);
454
455 linux_supports_tracefork_flag = 0;
456 linux_supports_tracevforkdone_flag = 0;
457
458 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 if (ret != 0)
460 {
461 restore_child_signals_mask (&prev_mask);
462 return;
463 }
464
465 child_pid = fork ();
466 if (child_pid == -1)
467 perror_with_name (("fork"));
468
469 if (child_pid == 0)
470 linux_tracefork_child ();
471
472 ret = my_waitpid (child_pid, &status, 0);
473 if (ret == -1)
474 perror_with_name (("waitpid"));
475 else if (ret != child_pid)
476 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
477 if (! WIFSTOPPED (status))
478 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
479
480 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 if (ret != 0)
482 {
483 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 if (ret != 0)
485 {
486 warning (_("linux_test_for_tracefork: failed to kill child"));
487 restore_child_signals_mask (&prev_mask);
488 return;
489 }
490
491 ret = my_waitpid (child_pid, &status, 0);
492 if (ret != child_pid)
493 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
494 else if (!WIFSIGNALED (status))
495 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
496 "killed child"), status);
497
498 restore_child_signals_mask (&prev_mask);
499 return;
500 }
501
502 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
503 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
504 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
505 linux_supports_tracevforkdone_flag = (ret == 0);
506
507 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
508 if (ret != 0)
509 warning (_("linux_test_for_tracefork: failed to resume child"));
510
511 ret = my_waitpid (child_pid, &status, 0);
512
513 if (ret == child_pid && WIFSTOPPED (status)
514 && status >> 16 == PTRACE_EVENT_FORK)
515 {
516 second_pid = 0;
517 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
518 if (ret == 0 && second_pid != 0)
519 {
520 int second_status;
521
522 linux_supports_tracefork_flag = 1;
523 my_waitpid (second_pid, &second_status, 0);
524 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
525 if (ret != 0)
526 warning (_("linux_test_for_tracefork: failed to kill second child"));
527 my_waitpid (second_pid, &status, 0);
528 }
529 }
530 else
531 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
532 "(%d, status 0x%x)"), ret, status);
533
534 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
535 if (ret != 0)
536 warning (_("linux_test_for_tracefork: failed to kill child"));
537 my_waitpid (child_pid, &status, 0);
538
539 restore_child_signals_mask (&prev_mask);
540 }
541
542 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
543
544 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
545 we know that the feature is not available. This may change the tracing
546 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547
548 static void
549 linux_test_for_tracesysgood (int original_pid)
550 {
551 int ret;
552 sigset_t prev_mask;
553
554 /* We don't want those ptrace calls to be interrupted. */
555 block_child_signals (&prev_mask);
556
557 linux_supports_tracesysgood_flag = 0;
558
559 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
560 if (ret != 0)
561 goto out;
562
563 linux_supports_tracesysgood_flag = 1;
564 out:
565 restore_child_signals_mask (&prev_mask);
566 }
567
568 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
569 This function also sets linux_supports_tracesysgood_flag. */
570
571 static int
572 linux_supports_tracesysgood (int pid)
573 {
574 if (linux_supports_tracesysgood_flag == -1)
575 linux_test_for_tracesysgood (pid);
576 return linux_supports_tracesysgood_flag;
577 }
578
579 /* Return non-zero iff we have tracefork functionality available.
580 This function also sets linux_supports_tracefork_flag. */
581
582 static int
583 linux_supports_tracefork (int pid)
584 {
585 if (linux_supports_tracefork_flag == -1)
586 linux_test_for_tracefork (pid);
587 return linux_supports_tracefork_flag;
588 }
589
590 static int
591 linux_supports_tracevforkdone (int pid)
592 {
593 if (linux_supports_tracefork_flag == -1)
594 linux_test_for_tracefork (pid);
595 return linux_supports_tracevforkdone_flag;
596 }
597
598 static void
599 linux_enable_tracesysgood (ptid_t ptid)
600 {
601 int pid = ptid_get_lwp (ptid);
602
603 if (pid == 0)
604 pid = ptid_get_pid (ptid);
605
606 if (linux_supports_tracesysgood (pid) == 0)
607 return;
608
609 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
612 }
613
614 \f
615 void
616 linux_enable_event_reporting (ptid_t ptid)
617 {
618 int pid = ptid_get_lwp (ptid);
619
620 if (pid == 0)
621 pid = ptid_get_pid (ptid);
622
623 if (! linux_supports_tracefork (pid))
624 return;
625
626 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
627 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
628
629 if (linux_supports_tracevforkdone (pid))
630 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
631
632 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
633 read-only process state. */
634
635 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
636 }
637
638 static void
639 linux_child_post_attach (int pid)
640 {
641 linux_enable_event_reporting (pid_to_ptid (pid));
642 check_for_thread_db ();
643 linux_enable_tracesysgood (pid_to_ptid (pid));
644 }
645
646 static void
647 linux_child_post_startup_inferior (ptid_t ptid)
648 {
649 linux_enable_event_reporting (ptid);
650 check_for_thread_db ();
651 linux_enable_tracesysgood (ptid);
652 }
653
654 static int
655 linux_child_follow_fork (struct target_ops *ops, int follow_child)
656 {
657 sigset_t prev_mask;
658 int has_vforked;
659 int parent_pid, child_pid;
660
661 block_child_signals (&prev_mask);
662
663 has_vforked = (inferior_thread ()->pending_follow.kind
664 == TARGET_WAITKIND_VFORKED);
665 parent_pid = ptid_get_lwp (inferior_ptid);
666 if (parent_pid == 0)
667 parent_pid = ptid_get_pid (inferior_ptid);
668 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
669
670 if (!detach_fork)
671 linux_enable_event_reporting (pid_to_ptid (child_pid));
672
673 if (has_vforked
674 && !non_stop /* Non-stop always resumes both branches. */
675 && (!target_is_async_p () || sync_execution)
676 && !(follow_child || detach_fork || sched_multi))
677 {
678 /* The parent stays blocked inside the vfork syscall until the
679 child execs or exits. If we don't let the child run, then
680 the parent stays blocked. If we're telling the parent to run
681 in the foreground, the user will not be able to ctrl-c to get
682 back the terminal, effectively hanging the debug session. */
683 fprintf_filtered (gdb_stderr, _("\
684 Can not resume the parent process over vfork in the foreground while \n\
685 holding the child stopped. Try \"set detach-on-fork\" or \
686 \"set schedule-multiple\".\n"));
687 return 1;
688 }
689
690 if (! follow_child)
691 {
692 struct lwp_info *child_lp = NULL;
693
694 /* We're already attached to the parent, by default. */
695
696 /* Detach new forked process? */
697 if (detach_fork)
698 {
699 /* Before detaching from the child, remove all breakpoints
700 from it. If we forked, then this has already been taken
701 care of by infrun.c. If we vforked however, any
702 breakpoint inserted in the parent is visible in the
703 child, even those added while stopped in a vfork
704 catchpoint. This will remove the breakpoints from the
705 parent also, but they'll be reinserted below. */
706 if (has_vforked)
707 {
708 /* keep breakpoints list in sync. */
709 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 }
711
712 if (info_verbose || debug_linux_nat)
713 {
714 target_terminal_ours ();
715 fprintf_filtered (gdb_stdlog,
716 "Detaching after fork from child process %d.\n",
717 child_pid);
718 }
719
720 ptrace (PTRACE_DETACH, child_pid, 0, 0);
721 }
722 else
723 {
724 struct inferior *parent_inf, *child_inf;
725 struct cleanup *old_chain;
726
727 /* Add process to GDB's tables. */
728 child_inf = add_inferior (child_pid);
729
730 parent_inf = current_inferior ();
731 child_inf->attach_flag = parent_inf->attach_flag;
732 copy_terminal_info (child_inf, parent_inf);
733
734 old_chain = save_inferior_ptid ();
735 save_current_program_space ();
736
737 inferior_ptid = ptid_build (child_pid, child_pid, 0);
738 add_thread (inferior_ptid);
739 child_lp = add_lwp (inferior_ptid);
740 child_lp->stopped = 1;
741 child_lp->resumed = 1;
742
743 /* If this is a vfork child, then the address-space is
744 shared with the parent. */
745 if (has_vforked)
746 {
747 child_inf->pspace = parent_inf->pspace;
748 child_inf->aspace = parent_inf->aspace;
749
750 /* The parent will be frozen until the child is done
751 with the shared region. Keep track of the
752 parent. */
753 child_inf->vfork_parent = parent_inf;
754 child_inf->pending_detach = 0;
755 parent_inf->vfork_child = child_inf;
756 parent_inf->pending_detach = 0;
757 }
758 else
759 {
760 child_inf->aspace = new_address_space ();
761 child_inf->pspace = add_program_space (child_inf->aspace);
762 child_inf->removable = 1;
763 set_current_program_space (child_inf->pspace);
764 clone_program_space (child_inf->pspace, parent_inf->pspace);
765
766 /* Let the shared library layer (solib-svr4) learn about
767 this new process, relocate the cloned exec, pull in
768 shared libraries, and install the solib event
769 breakpoint. If a "cloned-VM" event was propagated
770 better throughout the core, this wouldn't be
771 required. */
772 solib_create_inferior_hook (0);
773 }
774
775 /* Let the thread_db layer learn about this new process. */
776 check_for_thread_db ();
777
778 do_cleanups (old_chain);
779 }
780
781 if (has_vforked)
782 {
783 struct lwp_info *lp;
784 struct inferior *parent_inf;
785
786 parent_inf = current_inferior ();
787
788 /* If we detached from the child, then we have to be careful
789 to not insert breakpoints in the parent until the child
790 is done with the shared memory region. However, if we're
791 staying attached to the child, then we can and should
792 insert breakpoints, so that we can debug it. A
793 subsequent child exec or exit is enough to know when does
794 the child stops using the parent's address space. */
795 parent_inf->waiting_for_vfork_done = detach_fork;
796 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
797
798 lp = find_lwp_pid (pid_to_ptid (parent_pid));
799 gdb_assert (linux_supports_tracefork_flag >= 0);
800 if (linux_supports_tracevforkdone (0))
801 {
802 if (debug_linux_nat)
803 fprintf_unfiltered (gdb_stdlog,
804 "LCFF: waiting for VFORK_DONE on %d\n",
805 parent_pid);
806
807 lp->stopped = 1;
808 lp->resumed = 1;
809
810 /* We'll handle the VFORK_DONE event like any other
811 event, in target_wait. */
812 }
813 else
814 {
815 /* We can't insert breakpoints until the child has
816 finished with the shared memory region. We need to
817 wait until that happens. Ideal would be to just
818 call:
819 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
820 - waitpid (parent_pid, &status, __WALL);
821 However, most architectures can't handle a syscall
822 being traced on the way out if it wasn't traced on
823 the way in.
824
825 We might also think to loop, continuing the child
826 until it exits or gets a SIGTRAP. One problem is
827 that the child might call ptrace with PTRACE_TRACEME.
828
829 There's no simple and reliable way to figure out when
830 the vforked child will be done with its copy of the
831 shared memory. We could step it out of the syscall,
832 two instructions, let it go, and then single-step the
833 parent once. When we have hardware single-step, this
834 would work; with software single-step it could still
835 be made to work but we'd have to be able to insert
836 single-step breakpoints in the child, and we'd have
837 to insert -just- the single-step breakpoint in the
838 parent. Very awkward.
839
840 In the end, the best we can do is to make sure it
841 runs for a little while. Hopefully it will be out of
842 range of any breakpoints we reinsert. Usually this
843 is only the single-step breakpoint at vfork's return
844 point. */
845
846 if (debug_linux_nat)
847 fprintf_unfiltered (gdb_stdlog,
848 "LCFF: no VFORK_DONE support, sleeping a bit\n");
849
850 usleep (10000);
851
852 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
853 and leave it pending. The next linux_nat_resume call
854 will notice a pending event, and bypasses actually
855 resuming the inferior. */
856 lp->status = 0;
857 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
858 lp->stopped = 0;
859 lp->resumed = 1;
860
861 /* If we're in async mode, need to tell the event loop
862 there's something here to process. */
863 if (target_can_async_p ())
864 async_file_mark ();
865 }
866 }
867 }
868 else
869 {
870 struct thread_info *tp;
871 struct inferior *parent_inf, *child_inf;
872 struct lwp_info *lp;
873 struct program_space *parent_pspace;
874
875 if (info_verbose || debug_linux_nat)
876 {
877 target_terminal_ours ();
878 if (has_vforked)
879 fprintf_filtered (gdb_stdlog, _("\
880 Attaching after process %d vfork to child process %d.\n"),
881 parent_pid, child_pid);
882 else
883 fprintf_filtered (gdb_stdlog, _("\
884 Attaching after process %d fork to child process %d.\n"),
885 parent_pid, child_pid);
886 }
887
888 /* Add the new inferior first, so that the target_detach below
889 doesn't unpush the target. */
890
891 child_inf = add_inferior (child_pid);
892
893 parent_inf = current_inferior ();
894 child_inf->attach_flag = parent_inf->attach_flag;
895 copy_terminal_info (child_inf, parent_inf);
896
897 parent_pspace = parent_inf->pspace;
898
899 /* If we're vforking, we want to hold on to the parent until the
900 child exits or execs. At child exec or exit time we can
901 remove the old breakpoints from the parent and detach or
902 resume debugging it. Otherwise, detach the parent now; we'll
903 want to reuse it's program/address spaces, but we can't set
904 them to the child before removing breakpoints from the
905 parent, otherwise, the breakpoints module could decide to
906 remove breakpoints from the wrong process (since they'd be
907 assigned to the same address space). */
908
909 if (has_vforked)
910 {
911 gdb_assert (child_inf->vfork_parent == NULL);
912 gdb_assert (parent_inf->vfork_child == NULL);
913 child_inf->vfork_parent = parent_inf;
914 child_inf->pending_detach = 0;
915 parent_inf->vfork_child = child_inf;
916 parent_inf->pending_detach = detach_fork;
917 parent_inf->waiting_for_vfork_done = 0;
918 }
919 else if (detach_fork)
920 target_detach (NULL, 0);
921
922 /* Note that the detach above makes PARENT_INF dangling. */
923
924 /* Add the child thread to the appropriate lists, and switch to
925 this new thread, before cloning the program space, and
926 informing the solib layer about this new process. */
927
928 inferior_ptid = ptid_build (child_pid, child_pid, 0);
929 add_thread (inferior_ptid);
930 lp = add_lwp (inferior_ptid);
931 lp->stopped = 1;
932 lp->resumed = 1;
933
934 /* If this is a vfork child, then the address-space is shared
935 with the parent. If we detached from the parent, then we can
936 reuse the parent's program/address spaces. */
937 if (has_vforked || detach_fork)
938 {
939 child_inf->pspace = parent_pspace;
940 child_inf->aspace = child_inf->pspace->aspace;
941 }
942 else
943 {
944 child_inf->aspace = new_address_space ();
945 child_inf->pspace = add_program_space (child_inf->aspace);
946 child_inf->removable = 1;
947 set_current_program_space (child_inf->pspace);
948 clone_program_space (child_inf->pspace, parent_pspace);
949
950 /* Let the shared library layer (solib-svr4) learn about
951 this new process, relocate the cloned exec, pull in
952 shared libraries, and install the solib event breakpoint.
953 If a "cloned-VM" event was propagated better throughout
954 the core, this wouldn't be required. */
955 solib_create_inferior_hook (0);
956 }
957
958 /* Let the thread_db layer learn about this new process. */
959 check_for_thread_db ();
960 }
961
962 restore_child_signals_mask (&prev_mask);
963 return 0;
964 }
965
966 \f
967 static void
968 linux_child_insert_fork_catchpoint (int pid)
969 {
970 if (! linux_supports_tracefork (pid))
971 error (_("Your system does not support fork catchpoints."));
972 }
973
974 static void
975 linux_child_insert_vfork_catchpoint (int pid)
976 {
977 if (!linux_supports_tracefork (pid))
978 error (_("Your system does not support vfork catchpoints."));
979 }
980
981 static void
982 linux_child_insert_exec_catchpoint (int pid)
983 {
984 if (!linux_supports_tracefork (pid))
985 error (_("Your system does not support exec catchpoints."));
986 }
987
988 static int
989 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
990 int table_size, int *table)
991 {
992 if (! linux_supports_tracesysgood (pid))
993 error (_("Your system does not support syscall catchpoints."));
994 /* On GNU/Linux, we ignore the arguments. It means that we only
995 enable the syscall catchpoints, but do not disable them.
996
997 Also, we do not use the `table' information because we do not
998 filter system calls here. We let GDB do the logic for us. */
999 return 0;
1000 }
1001
1002 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1003 are processes sharing the same VM space. A multi-threaded process
1004 is basically a group of such processes. However, such a grouping
1005 is almost entirely a user-space issue; the kernel doesn't enforce
1006 such a grouping at all (this might change in the future). In
1007 general, we'll rely on the threads library (i.e. the GNU/Linux
1008 Threads library) to provide such a grouping.
1009
1010 It is perfectly well possible to write a multi-threaded application
1011 without the assistance of a threads library, by using the clone
1012 system call directly. This module should be able to give some
1013 rudimentary support for debugging such applications if developers
1014 specify the CLONE_PTRACE flag in the clone system call, and are
1015 using the Linux kernel 2.4 or above.
1016
1017 Note that there are some peculiarities in GNU/Linux that affect
1018 this code:
1019
1020 - In general one should specify the __WCLONE flag to waitpid in
1021 order to make it report events for any of the cloned processes
1022 (and leave it out for the initial process). However, if a cloned
1023 process has exited the exit status is only reported if the
1024 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1025 we cannot use it since GDB must work on older systems too.
1026
1027 - When a traced, cloned process exits and is waited for by the
1028 debugger, the kernel reassigns it to the original parent and
1029 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1030 library doesn't notice this, which leads to the "zombie problem":
1031 When debugged a multi-threaded process that spawns a lot of
1032 threads will run out of processes, even if the threads exit,
1033 because the "zombies" stay around. */
1034
1035 /* List of known LWPs. */
1036 struct lwp_info *lwp_list;
1037 \f
1038
1039 /* Original signal mask. */
1040 static sigset_t normal_mask;
1041
1042 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1043 _initialize_linux_nat. */
1044 static sigset_t suspend_mask;
1045
1046 /* Signals to block to make that sigsuspend work. */
1047 static sigset_t blocked_mask;
1048
1049 /* SIGCHLD action. */
1050 struct sigaction sigchld_action;
1051
1052 /* Block child signals (SIGCHLD and linux threads signals), and store
1053 the previous mask in PREV_MASK. */
1054
1055 static void
1056 block_child_signals (sigset_t *prev_mask)
1057 {
1058 /* Make sure SIGCHLD is blocked. */
1059 if (!sigismember (&blocked_mask, SIGCHLD))
1060 sigaddset (&blocked_mask, SIGCHLD);
1061
1062 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1063 }
1064
1065 /* Restore child signals mask, previously returned by
1066 block_child_signals. */
1067
1068 static void
1069 restore_child_signals_mask (sigset_t *prev_mask)
1070 {
1071 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072 }
1073 \f
1074
1075 /* Prototypes for local functions. */
1076 static int stop_wait_callback (struct lwp_info *lp, void *data);
1077 static int linux_thread_alive (ptid_t ptid);
1078 static char *linux_child_pid_to_exec_file (int pid);
1079 static int cancel_breakpoint (struct lwp_info *lp);
1080
1081 \f
1082 /* Convert wait status STATUS to a string. Used for printing debug
1083 messages only. */
1084
1085 static char *
1086 status_to_str (int status)
1087 {
1088 static char buf[64];
1089
1090 if (WIFSTOPPED (status))
1091 {
1092 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1093 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1094 strsignal (SIGTRAP));
1095 else
1096 snprintf (buf, sizeof (buf), "%s (stopped)",
1097 strsignal (WSTOPSIG (status)));
1098 }
1099 else if (WIFSIGNALED (status))
1100 snprintf (buf, sizeof (buf), "%s (terminated)",
1101 strsignal (WSTOPSIG (status)));
1102 else
1103 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1104
1105 return buf;
1106 }
1107
1108 /* Remove all LWPs belong to PID from the lwp list. */
1109
1110 static void
1111 purge_lwp_list (int pid)
1112 {
1113 struct lwp_info *lp, *lpprev, *lpnext;
1114
1115 lpprev = NULL;
1116
1117 for (lp = lwp_list; lp; lp = lpnext)
1118 {
1119 lpnext = lp->next;
1120
1121 if (ptid_get_pid (lp->ptid) == pid)
1122 {
1123 if (lp == lwp_list)
1124 lwp_list = lp->next;
1125 else
1126 lpprev->next = lp->next;
1127
1128 xfree (lp);
1129 }
1130 else
1131 lpprev = lp;
1132 }
1133 }
1134
1135 /* Return the number of known LWPs in the tgid given by PID. */
1136
1137 static int
1138 num_lwps (int pid)
1139 {
1140 int count = 0;
1141 struct lwp_info *lp;
1142
1143 for (lp = lwp_list; lp; lp = lp->next)
1144 if (ptid_get_pid (lp->ptid) == pid)
1145 count++;
1146
1147 return count;
1148 }
1149
1150 /* Add the LWP specified by PID to the list. Return a pointer to the
1151 structure describing the new LWP. The LWP should already be stopped
1152 (with an exception for the very first LWP). */
1153
1154 static struct lwp_info *
1155 add_lwp (ptid_t ptid)
1156 {
1157 struct lwp_info *lp;
1158
1159 gdb_assert (is_lwp (ptid));
1160
1161 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1162
1163 memset (lp, 0, sizeof (struct lwp_info));
1164
1165 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1166
1167 lp->ptid = ptid;
1168 lp->core = -1;
1169
1170 lp->next = lwp_list;
1171 lwp_list = lp;
1172
1173 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1174 linux_nat_new_thread (ptid);
1175
1176 return lp;
1177 }
1178
1179 /* Remove the LWP specified by PID from the list. */
1180
1181 static void
1182 delete_lwp (ptid_t ptid)
1183 {
1184 struct lwp_info *lp, *lpprev;
1185
1186 lpprev = NULL;
1187
1188 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1189 if (ptid_equal (lp->ptid, ptid))
1190 break;
1191
1192 if (!lp)
1193 return;
1194
1195 if (lpprev)
1196 lpprev->next = lp->next;
1197 else
1198 lwp_list = lp->next;
1199
1200 xfree (lp);
1201 }
1202
1203 /* Return a pointer to the structure describing the LWP corresponding
1204 to PID. If no corresponding LWP could be found, return NULL. */
1205
1206 static struct lwp_info *
1207 find_lwp_pid (ptid_t ptid)
1208 {
1209 struct lwp_info *lp;
1210 int lwp;
1211
1212 if (is_lwp (ptid))
1213 lwp = GET_LWP (ptid);
1214 else
1215 lwp = GET_PID (ptid);
1216
1217 for (lp = lwp_list; lp; lp = lp->next)
1218 if (lwp == GET_LWP (lp->ptid))
1219 return lp;
1220
1221 return NULL;
1222 }
1223
1224 /* Returns true if PTID matches filter FILTER. FILTER can be the wild
1225 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1226 a process (ptid_is_pid returns true), in which case, all lwps of
1227 that give process match, lwps of other process do not; or, it can
1228 represent a specific thread, in which case, only that thread will
1229 match true. PTID must represent an LWP, it can never be a wild
1230 card. */
1231
1232 static int
1233 ptid_match (ptid_t ptid, ptid_t filter)
1234 {
1235 /* Since both parameters have the same type, prevent easy mistakes
1236 from happening. */
1237 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1238 && !ptid_equal (ptid, null_ptid));
1239
1240 if (ptid_equal (filter, minus_one_ptid))
1241 return 1;
1242 if (ptid_is_pid (filter)
1243 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1244 return 1;
1245 else if (ptid_equal (ptid, filter))
1246 return 1;
1247
1248 return 0;
1249 }
1250
1251 /* Call CALLBACK with its second argument set to DATA for every LWP in
1252 the list. If CALLBACK returns 1 for a particular LWP, return a
1253 pointer to the structure describing that LWP immediately.
1254 Otherwise return NULL. */
1255
1256 struct lwp_info *
1257 iterate_over_lwps (ptid_t filter,
1258 int (*callback) (struct lwp_info *, void *),
1259 void *data)
1260 {
1261 struct lwp_info *lp, *lpnext;
1262
1263 for (lp = lwp_list; lp; lp = lpnext)
1264 {
1265 lpnext = lp->next;
1266
1267 if (ptid_match (lp->ptid, filter))
1268 {
1269 if ((*callback) (lp, data))
1270 return lp;
1271 }
1272 }
1273
1274 return NULL;
1275 }
1276
1277 /* Update our internal state when changing from one checkpoint to
1278 another indicated by NEW_PTID. We can only switch single-threaded
1279 applications, so we only create one new LWP, and the previous list
1280 is discarded. */
1281
1282 void
1283 linux_nat_switch_fork (ptid_t new_ptid)
1284 {
1285 struct lwp_info *lp;
1286
1287 purge_lwp_list (GET_PID (inferior_ptid));
1288
1289 lp = add_lwp (new_ptid);
1290 lp->stopped = 1;
1291
1292 /* This changes the thread's ptid while preserving the gdb thread
1293 num. Also changes the inferior pid, while preserving the
1294 inferior num. */
1295 thread_change_ptid (inferior_ptid, new_ptid);
1296
1297 /* We've just told GDB core that the thread changed target id, but,
1298 in fact, it really is a different thread, with different register
1299 contents. */
1300 registers_changed ();
1301 }
1302
1303 /* Handle the exit of a single thread LP. */
1304
1305 static void
1306 exit_lwp (struct lwp_info *lp)
1307 {
1308 struct thread_info *th = find_thread_ptid (lp->ptid);
1309
1310 if (th)
1311 {
1312 if (print_thread_events)
1313 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1314
1315 delete_thread (lp->ptid);
1316 }
1317
1318 delete_lwp (lp->ptid);
1319 }
1320
1321 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1322
1323 int
1324 linux_proc_get_tgid (int lwpid)
1325 {
1326 FILE *status_file;
1327 char buf[100];
1328 int tgid = -1;
1329
1330 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1331 status_file = fopen (buf, "r");
1332 if (status_file != NULL)
1333 {
1334 while (fgets (buf, sizeof (buf), status_file))
1335 {
1336 if (strncmp (buf, "Tgid:", 5) == 0)
1337 {
1338 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1339 break;
1340 }
1341 }
1342
1343 fclose (status_file);
1344 }
1345
1346 return tgid;
1347 }
1348
1349 /* Detect `T (stopped)' in `/proc/PID/status'.
1350 Other states including `T (tracing stop)' are reported as false. */
1351
1352 static int
1353 pid_is_stopped (pid_t pid)
1354 {
1355 FILE *status_file;
1356 char buf[100];
1357 int retval = 0;
1358
1359 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1360 status_file = fopen (buf, "r");
1361 if (status_file != NULL)
1362 {
1363 int have_state = 0;
1364
1365 while (fgets (buf, sizeof (buf), status_file))
1366 {
1367 if (strncmp (buf, "State:", 6) == 0)
1368 {
1369 have_state = 1;
1370 break;
1371 }
1372 }
1373 if (have_state && strstr (buf, "T (stopped)") != NULL)
1374 retval = 1;
1375 fclose (status_file);
1376 }
1377 return retval;
1378 }
1379
1380 /* Wait for the LWP specified by LP, which we have just attached to.
1381 Returns a wait status for that LWP, to cache. */
1382
1383 static int
1384 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1385 int *signalled)
1386 {
1387 pid_t new_pid, pid = GET_LWP (ptid);
1388 int status;
1389
1390 if (pid_is_stopped (pid))
1391 {
1392 if (debug_linux_nat)
1393 fprintf_unfiltered (gdb_stdlog,
1394 "LNPAW: Attaching to a stopped process\n");
1395
1396 /* The process is definitely stopped. It is in a job control
1397 stop, unless the kernel predates the TASK_STOPPED /
1398 TASK_TRACED distinction, in which case it might be in a
1399 ptrace stop. Make sure it is in a ptrace stop; from there we
1400 can kill it, signal it, et cetera.
1401
1402 First make sure there is a pending SIGSTOP. Since we are
1403 already attached, the process can not transition from stopped
1404 to running without a PTRACE_CONT; so we know this signal will
1405 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1406 probably already in the queue (unless this kernel is old
1407 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1408 is not an RT signal, it can only be queued once. */
1409 kill_lwp (pid, SIGSTOP);
1410
1411 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1412 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1413 ptrace (PTRACE_CONT, pid, 0, 0);
1414 }
1415
1416 /* Make sure the initial process is stopped. The user-level threads
1417 layer might want to poke around in the inferior, and that won't
1418 work if things haven't stabilized yet. */
1419 new_pid = my_waitpid (pid, &status, 0);
1420 if (new_pid == -1 && errno == ECHILD)
1421 {
1422 if (first)
1423 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1424
1425 /* Try again with __WCLONE to check cloned processes. */
1426 new_pid = my_waitpid (pid, &status, __WCLONE);
1427 *cloned = 1;
1428 }
1429
1430 gdb_assert (pid == new_pid);
1431
1432 if (!WIFSTOPPED (status))
1433 {
1434 /* The pid we tried to attach has apparently just exited. */
1435 if (debug_linux_nat)
1436 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1437 pid, status_to_str (status));
1438 return status;
1439 }
1440
1441 if (WSTOPSIG (status) != SIGSTOP)
1442 {
1443 *signalled = 1;
1444 if (debug_linux_nat)
1445 fprintf_unfiltered (gdb_stdlog,
1446 "LNPAW: Received %s after attaching\n",
1447 status_to_str (status));
1448 }
1449
1450 return status;
1451 }
1452
1453 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1454 if the new LWP could not be attached. */
1455
1456 int
1457 lin_lwp_attach_lwp (ptid_t ptid)
1458 {
1459 struct lwp_info *lp;
1460 sigset_t prev_mask;
1461
1462 gdb_assert (is_lwp (ptid));
1463
1464 block_child_signals (&prev_mask);
1465
1466 lp = find_lwp_pid (ptid);
1467
1468 /* We assume that we're already attached to any LWP that has an id
1469 equal to the overall process id, and to any LWP that is already
1470 in our list of LWPs. If we're not seeing exit events from threads
1471 and we've had PID wraparound since we last tried to stop all threads,
1472 this assumption might be wrong; fortunately, this is very unlikely
1473 to happen. */
1474 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1475 {
1476 int status, cloned = 0, signalled = 0;
1477
1478 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1479 {
1480 /* If we fail to attach to the thread, issue a warning,
1481 but continue. One way this can happen is if thread
1482 creation is interrupted; as of Linux kernel 2.6.19, a
1483 bug may place threads in the thread list and then fail
1484 to create them. */
1485 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1486 safe_strerror (errno));
1487 restore_child_signals_mask (&prev_mask);
1488 return -1;
1489 }
1490
1491 if (debug_linux_nat)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1494 target_pid_to_str (ptid));
1495
1496 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1497 if (!WIFSTOPPED (status))
1498 return -1;
1499
1500 lp = add_lwp (ptid);
1501 lp->stopped = 1;
1502 lp->cloned = cloned;
1503 lp->signalled = signalled;
1504 if (WSTOPSIG (status) != SIGSTOP)
1505 {
1506 lp->resumed = 1;
1507 lp->status = status;
1508 }
1509
1510 target_post_attach (GET_LWP (lp->ptid));
1511
1512 if (debug_linux_nat)
1513 {
1514 fprintf_unfiltered (gdb_stdlog,
1515 "LLAL: waitpid %s received %s\n",
1516 target_pid_to_str (ptid),
1517 status_to_str (status));
1518 }
1519 }
1520 else
1521 {
1522 /* We assume that the LWP representing the original process is
1523 already stopped. Mark it as stopped in the data structure
1524 that the GNU/linux ptrace layer uses to keep track of
1525 threads. Note that this won't have already been done since
1526 the main thread will have, we assume, been stopped by an
1527 attach from a different layer. */
1528 if (lp == NULL)
1529 lp = add_lwp (ptid);
1530 lp->stopped = 1;
1531 }
1532
1533 restore_child_signals_mask (&prev_mask);
1534 return 0;
1535 }
1536
1537 static void
1538 linux_nat_create_inferior (struct target_ops *ops,
1539 char *exec_file, char *allargs, char **env,
1540 int from_tty)
1541 {
1542 #ifdef HAVE_PERSONALITY
1543 int personality_orig = 0, personality_set = 0;
1544 #endif /* HAVE_PERSONALITY */
1545
1546 /* The fork_child mechanism is synchronous and calls target_wait, so
1547 we have to mask the async mode. */
1548
1549 #ifdef HAVE_PERSONALITY
1550 if (disable_randomization)
1551 {
1552 errno = 0;
1553 personality_orig = personality (0xffffffff);
1554 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1555 {
1556 personality_set = 1;
1557 personality (personality_orig | ADDR_NO_RANDOMIZE);
1558 }
1559 if (errno != 0 || (personality_set
1560 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1561 warning (_("Error disabling address space randomization: %s"),
1562 safe_strerror (errno));
1563 }
1564 #endif /* HAVE_PERSONALITY */
1565
1566 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1567
1568 #ifdef HAVE_PERSONALITY
1569 if (personality_set)
1570 {
1571 errno = 0;
1572 personality (personality_orig);
1573 if (errno != 0)
1574 warning (_("Error restoring address space randomization: %s"),
1575 safe_strerror (errno));
1576 }
1577 #endif /* HAVE_PERSONALITY */
1578 }
1579
1580 static void
1581 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1582 {
1583 struct lwp_info *lp;
1584 int status;
1585 ptid_t ptid;
1586
1587 linux_ops->to_attach (ops, args, from_tty);
1588
1589 /* The ptrace base target adds the main thread with (pid,0,0)
1590 format. Decorate it with lwp info. */
1591 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1592 thread_change_ptid (inferior_ptid, ptid);
1593
1594 /* Add the initial process as the first LWP to the list. */
1595 lp = add_lwp (ptid);
1596
1597 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1598 &lp->signalled);
1599 if (!WIFSTOPPED (status))
1600 {
1601 if (WIFEXITED (status))
1602 {
1603 int exit_code = WEXITSTATUS (status);
1604
1605 target_terminal_ours ();
1606 target_mourn_inferior ();
1607 if (exit_code == 0)
1608 error (_("Unable to attach: program exited normally."));
1609 else
1610 error (_("Unable to attach: program exited with code %d."),
1611 exit_code);
1612 }
1613 else if (WIFSIGNALED (status))
1614 {
1615 enum target_signal signo;
1616
1617 target_terminal_ours ();
1618 target_mourn_inferior ();
1619
1620 signo = target_signal_from_host (WTERMSIG (status));
1621 error (_("Unable to attach: program terminated with signal "
1622 "%s, %s."),
1623 target_signal_to_name (signo),
1624 target_signal_to_string (signo));
1625 }
1626
1627 internal_error (__FILE__, __LINE__,
1628 _("unexpected status %d for PID %ld"),
1629 status, (long) GET_LWP (ptid));
1630 }
1631
1632 lp->stopped = 1;
1633
1634 /* Save the wait status to report later. */
1635 lp->resumed = 1;
1636 if (debug_linux_nat)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "LNA: waitpid %ld, saving status %s\n",
1639 (long) GET_PID (lp->ptid), status_to_str (status));
1640
1641 lp->status = status;
1642
1643 if (target_can_async_p ())
1644 target_async (inferior_event_handler, 0);
1645 }
1646
1647 /* Get pending status of LP. */
1648 static int
1649 get_pending_status (struct lwp_info *lp, int *status)
1650 {
1651 enum target_signal signo = TARGET_SIGNAL_0;
1652
1653 /* If we paused threads momentarily, we may have stored pending
1654 events in lp->status or lp->waitstatus (see stop_wait_callback),
1655 and GDB core hasn't seen any signal for those threads.
1656 Otherwise, the last signal reported to the core is found in the
1657 thread object's stop_signal.
1658
1659 There's a corner case that isn't handled here at present. Only
1660 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1661 stop_signal make sense as a real signal to pass to the inferior.
1662 Some catchpoint related events, like
1663 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1664 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1665 those traps are debug API (ptrace in our case) related and
1666 induced; the inferior wouldn't see them if it wasn't being
1667 traced. Hence, we should never pass them to the inferior, even
1668 when set to pass state. Since this corner case isn't handled by
1669 infrun.c when proceeding with a signal, for consistency, neither
1670 do we handle it here (or elsewhere in the file we check for
1671 signal pass state). Normally SIGTRAP isn't set to pass state, so
1672 this is really a corner case. */
1673
1674 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1675 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1676 else if (lp->status)
1677 signo = target_signal_from_host (WSTOPSIG (lp->status));
1678 else if (non_stop && !is_executing (lp->ptid))
1679 {
1680 struct thread_info *tp = find_thread_ptid (lp->ptid);
1681 signo = tp->stop_signal;
1682 }
1683 else if (!non_stop)
1684 {
1685 struct target_waitstatus last;
1686 ptid_t last_ptid;
1687
1688 get_last_target_status (&last_ptid, &last);
1689
1690 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1691 {
1692 struct thread_info *tp = find_thread_ptid (lp->ptid);
1693 signo = tp->stop_signal;
1694 }
1695 }
1696
1697 *status = 0;
1698
1699 if (signo == TARGET_SIGNAL_0)
1700 {
1701 if (debug_linux_nat)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "GPT: lwp %s has no pending signal\n",
1704 target_pid_to_str (lp->ptid));
1705 }
1706 else if (!signal_pass_state (signo))
1707 {
1708 if (debug_linux_nat)
1709 fprintf_unfiltered (gdb_stdlog, "\
1710 GPT: lwp %s had signal %s, but it is in no pass state\n",
1711 target_pid_to_str (lp->ptid),
1712 target_signal_to_string (signo));
1713 }
1714 else
1715 {
1716 *status = W_STOPCODE (target_signal_to_host (signo));
1717
1718 if (debug_linux_nat)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "GPT: lwp %s has pending signal %s\n",
1721 target_pid_to_str (lp->ptid),
1722 target_signal_to_string (signo));
1723 }
1724
1725 return 0;
1726 }
1727
1728 static int
1729 detach_callback (struct lwp_info *lp, void *data)
1730 {
1731 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1732
1733 if (debug_linux_nat && lp->status)
1734 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1735 strsignal (WSTOPSIG (lp->status)),
1736 target_pid_to_str (lp->ptid));
1737
1738 /* If there is a pending SIGSTOP, get rid of it. */
1739 if (lp->signalled)
1740 {
1741 if (debug_linux_nat)
1742 fprintf_unfiltered (gdb_stdlog,
1743 "DC: Sending SIGCONT to %s\n",
1744 target_pid_to_str (lp->ptid));
1745
1746 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1747 lp->signalled = 0;
1748 }
1749
1750 /* We don't actually detach from the LWP that has an id equal to the
1751 overall process id just yet. */
1752 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1753 {
1754 int status = 0;
1755
1756 /* Pass on any pending signal for this LWP. */
1757 get_pending_status (lp, &status);
1758
1759 errno = 0;
1760 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1761 WSTOPSIG (status)) < 0)
1762 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1763 safe_strerror (errno));
1764
1765 if (debug_linux_nat)
1766 fprintf_unfiltered (gdb_stdlog,
1767 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1768 target_pid_to_str (lp->ptid),
1769 strsignal (WSTOPSIG (status)));
1770
1771 delete_lwp (lp->ptid);
1772 }
1773
1774 return 0;
1775 }
1776
1777 static void
1778 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1779 {
1780 int pid;
1781 int status;
1782 enum target_signal sig;
1783 struct lwp_info *main_lwp;
1784
1785 pid = GET_PID (inferior_ptid);
1786
1787 if (target_can_async_p ())
1788 linux_nat_async (NULL, 0);
1789
1790 /* Stop all threads before detaching. ptrace requires that the
1791 thread is stopped to sucessfully detach. */
1792 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1793 /* ... and wait until all of them have reported back that
1794 they're no longer running. */
1795 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1796
1797 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1798
1799 /* Only the initial process should be left right now. */
1800 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1801
1802 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1803
1804 /* Pass on any pending signal for the last LWP. */
1805 if ((args == NULL || *args == '\0')
1806 && get_pending_status (main_lwp, &status) != -1
1807 && WIFSTOPPED (status))
1808 {
1809 /* Put the signal number in ARGS so that inf_ptrace_detach will
1810 pass it along with PTRACE_DETACH. */
1811 args = alloca (8);
1812 sprintf (args, "%d", (int) WSTOPSIG (status));
1813 fprintf_unfiltered (gdb_stdlog,
1814 "LND: Sending signal %s to %s\n",
1815 args,
1816 target_pid_to_str (main_lwp->ptid));
1817 }
1818
1819 delete_lwp (main_lwp->ptid);
1820
1821 if (forks_exist_p ())
1822 {
1823 /* Multi-fork case. The current inferior_ptid is being detached
1824 from, but there are other viable forks to debug. Detach from
1825 the current fork, and context-switch to the first
1826 available. */
1827 linux_fork_detach (args, from_tty);
1828
1829 if (non_stop && target_can_async_p ())
1830 target_async (inferior_event_handler, 0);
1831 }
1832 else
1833 linux_ops->to_detach (ops, args, from_tty);
1834 }
1835
1836 /* Resume LP. */
1837
1838 static int
1839 resume_callback (struct lwp_info *lp, void *data)
1840 {
1841 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1842
1843 if (lp->stopped && inf->vfork_child != NULL)
1844 {
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming %s (vfork parent)\n",
1848 target_pid_to_str (lp->ptid));
1849 }
1850 else if (lp->stopped && lp->status == 0)
1851 {
1852 if (debug_linux_nat)
1853 fprintf_unfiltered (gdb_stdlog,
1854 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1855 target_pid_to_str (lp->ptid));
1856
1857 linux_ops->to_resume (linux_ops,
1858 pid_to_ptid (GET_LWP (lp->ptid)),
1859 0, TARGET_SIGNAL_0);
1860 if (debug_linux_nat)
1861 fprintf_unfiltered (gdb_stdlog,
1862 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1863 target_pid_to_str (lp->ptid));
1864 lp->stopped = 0;
1865 lp->step = 0;
1866 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1867 lp->stopped_by_watchpoint = 0;
1868 }
1869 else if (lp->stopped && debug_linux_nat)
1870 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1871 target_pid_to_str (lp->ptid));
1872 else if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1874 target_pid_to_str (lp->ptid));
1875
1876 return 0;
1877 }
1878
1879 static int
1880 resume_clear_callback (struct lwp_info *lp, void *data)
1881 {
1882 lp->resumed = 0;
1883 return 0;
1884 }
1885
1886 static int
1887 resume_set_callback (struct lwp_info *lp, void *data)
1888 {
1889 lp->resumed = 1;
1890 return 0;
1891 }
1892
1893 static void
1894 linux_nat_resume (struct target_ops *ops,
1895 ptid_t ptid, int step, enum target_signal signo)
1896 {
1897 sigset_t prev_mask;
1898 struct lwp_info *lp;
1899 int resume_many;
1900
1901 if (debug_linux_nat)
1902 fprintf_unfiltered (gdb_stdlog,
1903 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1904 step ? "step" : "resume",
1905 target_pid_to_str (ptid),
1906 signo ? strsignal (signo) : "0",
1907 target_pid_to_str (inferior_ptid));
1908
1909 block_child_signals (&prev_mask);
1910
1911 /* A specific PTID means `step only this process id'. */
1912 resume_many = (ptid_equal (minus_one_ptid, ptid)
1913 || ptid_is_pid (ptid));
1914
1915 /* Mark the lwps we're resuming as resumed. */
1916 iterate_over_lwps (ptid, resume_set_callback, NULL);
1917
1918 /* See if it's the current inferior that should be handled
1919 specially. */
1920 if (resume_many)
1921 lp = find_lwp_pid (inferior_ptid);
1922 else
1923 lp = find_lwp_pid (ptid);
1924 gdb_assert (lp != NULL);
1925
1926 /* Remember if we're stepping. */
1927 lp->step = step;
1928
1929 /* If we have a pending wait status for this thread, there is no
1930 point in resuming the process. But first make sure that
1931 linux_nat_wait won't preemptively handle the event - we
1932 should never take this short-circuit if we are going to
1933 leave LP running, since we have skipped resuming all the
1934 other threads. This bit of code needs to be synchronized
1935 with linux_nat_wait. */
1936
1937 if (lp->status && WIFSTOPPED (lp->status))
1938 {
1939 int saved_signo;
1940 struct inferior *inf;
1941
1942 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1943 gdb_assert (inf);
1944 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1945
1946 /* Defer to common code if we're gaining control of the
1947 inferior. */
1948 if (inf->stop_soon == NO_STOP_QUIETLY
1949 && signal_stop_state (saved_signo) == 0
1950 && signal_print_state (saved_signo) == 0
1951 && signal_pass_state (saved_signo) == 1)
1952 {
1953 if (debug_linux_nat)
1954 fprintf_unfiltered (gdb_stdlog,
1955 "LLR: Not short circuiting for ignored "
1956 "status 0x%x\n", lp->status);
1957
1958 /* FIXME: What should we do if we are supposed to continue
1959 this thread with a signal? */
1960 gdb_assert (signo == TARGET_SIGNAL_0);
1961 signo = saved_signo;
1962 lp->status = 0;
1963 }
1964 }
1965
1966 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1967 {
1968 /* FIXME: What should we do if we are supposed to continue
1969 this thread with a signal? */
1970 gdb_assert (signo == TARGET_SIGNAL_0);
1971
1972 if (debug_linux_nat)
1973 fprintf_unfiltered (gdb_stdlog,
1974 "LLR: Short circuiting for status 0x%x\n",
1975 lp->status);
1976
1977 restore_child_signals_mask (&prev_mask);
1978 if (target_can_async_p ())
1979 {
1980 target_async (inferior_event_handler, 0);
1981 /* Tell the event loop we have something to process. */
1982 async_file_mark ();
1983 }
1984 return;
1985 }
1986
1987 /* Mark LWP as not stopped to prevent it from being continued by
1988 resume_callback. */
1989 lp->stopped = 0;
1990
1991 if (resume_many)
1992 iterate_over_lwps (ptid, resume_callback, NULL);
1993
1994 /* Convert to something the lower layer understands. */
1995 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1996
1997 linux_ops->to_resume (linux_ops, ptid, step, signo);
1998 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1999 lp->stopped_by_watchpoint = 0;
2000
2001 if (debug_linux_nat)
2002 fprintf_unfiltered (gdb_stdlog,
2003 "LLR: %s %s, %s (resume event thread)\n",
2004 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2005 target_pid_to_str (ptid),
2006 signo ? strsignal (signo) : "0");
2007
2008 restore_child_signals_mask (&prev_mask);
2009 if (target_can_async_p ())
2010 target_async (inferior_event_handler, 0);
2011 }
2012
2013 /* Send a signal to an LWP. */
2014
2015 static int
2016 kill_lwp (int lwpid, int signo)
2017 {
2018 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2019 fails, then we are not using nptl threads and we should be using kill. */
2020
2021 #ifdef HAVE_TKILL_SYSCALL
2022 {
2023 static int tkill_failed;
2024
2025 if (!tkill_failed)
2026 {
2027 int ret;
2028
2029 errno = 0;
2030 ret = syscall (__NR_tkill, lwpid, signo);
2031 if (errno != ENOSYS)
2032 return ret;
2033 tkill_failed = 1;
2034 }
2035 }
2036 #endif
2037
2038 return kill (lwpid, signo);
2039 }
2040
2041 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2042 event, check if the core is interested in it: if not, ignore the
2043 event, and keep waiting; otherwise, we need to toggle the LWP's
2044 syscall entry/exit status, since the ptrace event itself doesn't
2045 indicate it, and report the trap to higher layers. */
2046
2047 static int
2048 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2049 {
2050 struct target_waitstatus *ourstatus = &lp->waitstatus;
2051 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2052 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2053
2054 if (stopping)
2055 {
2056 /* If we're stopping threads, there's a SIGSTOP pending, which
2057 makes it so that the LWP reports an immediate syscall return,
2058 followed by the SIGSTOP. Skip seeing that "return" using
2059 PTRACE_CONT directly, and let stop_wait_callback collect the
2060 SIGSTOP. Later when the thread is resumed, a new syscall
2061 entry event. If we didn't do this (and returned 0), we'd
2062 leave a syscall entry pending, and our caller, by using
2063 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2064 itself. Later, when the user re-resumes this LWP, we'd see
2065 another syscall entry event and we'd mistake it for a return.
2066
2067 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2068 (leaving immediately with LWP->signalled set, without issuing
2069 a PTRACE_CONT), it would still be problematic to leave this
2070 syscall enter pending, as later when the thread is resumed,
2071 it would then see the same syscall exit mentioned above,
2072 followed by the delayed SIGSTOP, while the syscall didn't
2073 actually get to execute. It seems it would be even more
2074 confusing to the user. */
2075
2076 if (debug_linux_nat)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "LHST: ignoring syscall %d "
2079 "for LWP %ld (stopping threads), "
2080 "resuming with PTRACE_CONT for SIGSTOP\n",
2081 syscall_number,
2082 GET_LWP (lp->ptid));
2083
2084 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2085 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2086 return 1;
2087 }
2088
2089 if (catch_syscall_enabled ())
2090 {
2091 /* Always update the entry/return state, even if this particular
2092 syscall isn't interesting to the core now. In async mode,
2093 the user could install a new catchpoint for this syscall
2094 between syscall enter/return, and we'll need to know to
2095 report a syscall return if that happens. */
2096 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2097 ? TARGET_WAITKIND_SYSCALL_RETURN
2098 : TARGET_WAITKIND_SYSCALL_ENTRY);
2099
2100 if (catching_syscall_number (syscall_number))
2101 {
2102 /* Alright, an event to report. */
2103 ourstatus->kind = lp->syscall_state;
2104 ourstatus->value.syscall_number = syscall_number;
2105
2106 if (debug_linux_nat)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "LHST: stopping for %s of syscall %d"
2109 " for LWP %ld\n",
2110 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2111 ? "entry" : "return",
2112 syscall_number,
2113 GET_LWP (lp->ptid));
2114 return 0;
2115 }
2116
2117 if (debug_linux_nat)
2118 fprintf_unfiltered (gdb_stdlog,
2119 "LHST: ignoring %s of syscall %d "
2120 "for LWP %ld\n",
2121 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2122 ? "entry" : "return",
2123 syscall_number,
2124 GET_LWP (lp->ptid));
2125 }
2126 else
2127 {
2128 /* If we had been syscall tracing, and hence used PT_SYSCALL
2129 before on this LWP, it could happen that the user removes all
2130 syscall catchpoints before we get to process this event.
2131 There are two noteworthy issues here:
2132
2133 - When stopped at a syscall entry event, resuming with
2134 PT_STEP still resumes executing the syscall and reports a
2135 syscall return.
2136
2137 - Only PT_SYSCALL catches syscall enters. If we last
2138 single-stepped this thread, then this event can't be a
2139 syscall enter. If we last single-stepped this thread, this
2140 has to be a syscall exit.
2141
2142 The points above mean that the next resume, be it PT_STEP or
2143 PT_CONTINUE, can not trigger a syscall trace event. */
2144 if (debug_linux_nat)
2145 fprintf_unfiltered (gdb_stdlog,
2146 "LHST: caught syscall event with no syscall catchpoints."
2147 " %d for LWP %ld, ignoring\n",
2148 syscall_number,
2149 GET_LWP (lp->ptid));
2150 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2151 }
2152
2153 /* The core isn't interested in this event. For efficiency, avoid
2154 stopping all threads only to have the core resume them all again.
2155 Since we're not stopping threads, if we're still syscall tracing
2156 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2157 subsequent syscall. Simply resume using the inf-ptrace layer,
2158 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2159
2160 /* Note that gdbarch_get_syscall_number may access registers, hence
2161 fill a regcache. */
2162 registers_changed ();
2163 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2164 lp->step, TARGET_SIGNAL_0);
2165 return 1;
2166 }
2167
2168 /* Handle a GNU/Linux extended wait response. If we see a clone
2169 event, we need to add the new LWP to our list (and not report the
2170 trap to higher layers). This function returns non-zero if the
2171 event should be ignored and we should wait again. If STOPPING is
2172 true, the new LWP remains stopped, otherwise it is continued. */
2173
2174 static int
2175 linux_handle_extended_wait (struct lwp_info *lp, int status,
2176 int stopping)
2177 {
2178 int pid = GET_LWP (lp->ptid);
2179 struct target_waitstatus *ourstatus = &lp->waitstatus;
2180 struct lwp_info *new_lp = NULL;
2181 int event = status >> 16;
2182
2183 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2184 || event == PTRACE_EVENT_CLONE)
2185 {
2186 unsigned long new_pid;
2187 int ret;
2188
2189 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2190
2191 /* If we haven't already seen the new PID stop, wait for it now. */
2192 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2193 {
2194 /* The new child has a pending SIGSTOP. We can't affect it until it
2195 hits the SIGSTOP, but we're already attached. */
2196 ret = my_waitpid (new_pid, &status,
2197 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2198 if (ret == -1)
2199 perror_with_name (_("waiting for new child"));
2200 else if (ret != new_pid)
2201 internal_error (__FILE__, __LINE__,
2202 _("wait returned unexpected PID %d"), ret);
2203 else if (!WIFSTOPPED (status))
2204 internal_error (__FILE__, __LINE__,
2205 _("wait returned unexpected status 0x%x"), status);
2206 }
2207
2208 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2209
2210 if (event == PTRACE_EVENT_FORK
2211 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2212 {
2213 struct fork_info *fp;
2214
2215 /* Handle checkpointing by linux-fork.c here as a special
2216 case. We don't want the follow-fork-mode or 'catch fork'
2217 to interfere with this. */
2218
2219 /* This won't actually modify the breakpoint list, but will
2220 physically remove the breakpoints from the child. */
2221 detach_breakpoints (new_pid);
2222
2223 /* Retain child fork in ptrace (stopped) state. */
2224 fp = find_fork_pid (new_pid);
2225 if (!fp)
2226 fp = add_fork (new_pid);
2227
2228 /* Report as spurious, so that infrun doesn't want to follow
2229 this fork. We're actually doing an infcall in
2230 linux-fork.c. */
2231 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2232 linux_enable_event_reporting (pid_to_ptid (new_pid));
2233
2234 /* Report the stop to the core. */
2235 return 0;
2236 }
2237
2238 if (event == PTRACE_EVENT_FORK)
2239 ourstatus->kind = TARGET_WAITKIND_FORKED;
2240 else if (event == PTRACE_EVENT_VFORK)
2241 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2242 else
2243 {
2244 struct cleanup *old_chain;
2245
2246 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2247 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2248 new_lp->cloned = 1;
2249 new_lp->stopped = 1;
2250
2251 if (WSTOPSIG (status) != SIGSTOP)
2252 {
2253 /* This can happen if someone starts sending signals to
2254 the new thread before it gets a chance to run, which
2255 have a lower number than SIGSTOP (e.g. SIGUSR1).
2256 This is an unlikely case, and harder to handle for
2257 fork / vfork than for clone, so we do not try - but
2258 we handle it for clone events here. We'll send
2259 the other signal on to the thread below. */
2260
2261 new_lp->signalled = 1;
2262 }
2263 else
2264 status = 0;
2265
2266 if (non_stop)
2267 {
2268 /* Add the new thread to GDB's lists as soon as possible
2269 so that:
2270
2271 1) the frontend doesn't have to wait for a stop to
2272 display them, and,
2273
2274 2) we tag it with the correct running state. */
2275
2276 /* If the thread_db layer is active, let it know about
2277 this new thread, and add it to GDB's list. */
2278 if (!thread_db_attach_lwp (new_lp->ptid))
2279 {
2280 /* We're not using thread_db. Add it to GDB's
2281 list. */
2282 target_post_attach (GET_LWP (new_lp->ptid));
2283 add_thread (new_lp->ptid);
2284 }
2285
2286 if (!stopping)
2287 {
2288 set_running (new_lp->ptid, 1);
2289 set_executing (new_lp->ptid, 1);
2290 }
2291 }
2292
2293 /* Note the need to use the low target ops to resume, to
2294 handle resuming with PT_SYSCALL if we have syscall
2295 catchpoints. */
2296 if (!stopping)
2297 {
2298 int signo;
2299
2300 new_lp->stopped = 0;
2301 new_lp->resumed = 1;
2302
2303 signo = (status
2304 ? target_signal_from_host (WSTOPSIG (status))
2305 : TARGET_SIGNAL_0);
2306
2307 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2308 0, signo);
2309 }
2310
2311 if (debug_linux_nat)
2312 fprintf_unfiltered (gdb_stdlog,
2313 "LHEW: Got clone event from LWP %ld, resuming\n",
2314 GET_LWP (lp->ptid));
2315 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2316 0, TARGET_SIGNAL_0);
2317
2318 return 1;
2319 }
2320
2321 return 0;
2322 }
2323
2324 if (event == PTRACE_EVENT_EXEC)
2325 {
2326 if (debug_linux_nat)
2327 fprintf_unfiltered (gdb_stdlog,
2328 "LHEW: Got exec event from LWP %ld\n",
2329 GET_LWP (lp->ptid));
2330
2331 ourstatus->kind = TARGET_WAITKIND_EXECD;
2332 ourstatus->value.execd_pathname
2333 = xstrdup (linux_child_pid_to_exec_file (pid));
2334
2335 return 0;
2336 }
2337
2338 if (event == PTRACE_EVENT_VFORK_DONE)
2339 {
2340 if (current_inferior ()->waiting_for_vfork_done)
2341 {
2342 if (debug_linux_nat)
2343 fprintf_unfiltered (gdb_stdlog, "\
2344 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2345 GET_LWP (lp->ptid));
2346
2347 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2348 return 0;
2349 }
2350
2351 if (debug_linux_nat)
2352 fprintf_unfiltered (gdb_stdlog, "\
2353 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2354 GET_LWP (lp->ptid));
2355 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2356 return 1;
2357 }
2358
2359 internal_error (__FILE__, __LINE__,
2360 _("unknown ptrace event %d"), event);
2361 }
2362
2363 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2364 exited. */
2365
2366 static int
2367 wait_lwp (struct lwp_info *lp)
2368 {
2369 pid_t pid;
2370 int status;
2371 int thread_dead = 0;
2372
2373 gdb_assert (!lp->stopped);
2374 gdb_assert (lp->status == 0);
2375
2376 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2377 if (pid == -1 && errno == ECHILD)
2378 {
2379 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2380 if (pid == -1 && errno == ECHILD)
2381 {
2382 /* The thread has previously exited. We need to delete it
2383 now because, for some vendor 2.4 kernels with NPTL
2384 support backported, there won't be an exit event unless
2385 it is the main thread. 2.6 kernels will report an exit
2386 event for each thread that exits, as expected. */
2387 thread_dead = 1;
2388 if (debug_linux_nat)
2389 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2390 target_pid_to_str (lp->ptid));
2391 }
2392 }
2393
2394 if (!thread_dead)
2395 {
2396 gdb_assert (pid == GET_LWP (lp->ptid));
2397
2398 if (debug_linux_nat)
2399 {
2400 fprintf_unfiltered (gdb_stdlog,
2401 "WL: waitpid %s received %s\n",
2402 target_pid_to_str (lp->ptid),
2403 status_to_str (status));
2404 }
2405 }
2406
2407 /* Check if the thread has exited. */
2408 if (WIFEXITED (status) || WIFSIGNALED (status))
2409 {
2410 thread_dead = 1;
2411 if (debug_linux_nat)
2412 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2413 target_pid_to_str (lp->ptid));
2414 }
2415
2416 if (thread_dead)
2417 {
2418 exit_lwp (lp);
2419 return 0;
2420 }
2421
2422 gdb_assert (WIFSTOPPED (status));
2423
2424 /* Handle GNU/Linux's syscall SIGTRAPs. */
2425 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2426 {
2427 /* No longer need the sysgood bit. The ptrace event ends up
2428 recorded in lp->waitstatus if we care for it. We can carry
2429 on handling the event like a regular SIGTRAP from here
2430 on. */
2431 status = W_STOPCODE (SIGTRAP);
2432 if (linux_handle_syscall_trap (lp, 1))
2433 return wait_lwp (lp);
2434 }
2435
2436 /* Handle GNU/Linux's extended waitstatus for trace events. */
2437 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2438 {
2439 if (debug_linux_nat)
2440 fprintf_unfiltered (gdb_stdlog,
2441 "WL: Handling extended status 0x%06x\n",
2442 status);
2443 if (linux_handle_extended_wait (lp, status, 1))
2444 return wait_lwp (lp);
2445 }
2446
2447 return status;
2448 }
2449
2450 /* Save the most recent siginfo for LP. This is currently only called
2451 for SIGTRAP; some ports use the si_addr field for
2452 target_stopped_data_address. In the future, it may also be used to
2453 restore the siginfo of requeued signals. */
2454
2455 static void
2456 save_siginfo (struct lwp_info *lp)
2457 {
2458 errno = 0;
2459 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2460 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2461
2462 if (errno != 0)
2463 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2464 }
2465
2466 /* Send a SIGSTOP to LP. */
2467
2468 static int
2469 stop_callback (struct lwp_info *lp, void *data)
2470 {
2471 if (!lp->stopped && !lp->signalled)
2472 {
2473 int ret;
2474
2475 if (debug_linux_nat)
2476 {
2477 fprintf_unfiltered (gdb_stdlog,
2478 "SC: kill %s **<SIGSTOP>**\n",
2479 target_pid_to_str (lp->ptid));
2480 }
2481 errno = 0;
2482 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2483 if (debug_linux_nat)
2484 {
2485 fprintf_unfiltered (gdb_stdlog,
2486 "SC: lwp kill %d %s\n",
2487 ret,
2488 errno ? safe_strerror (errno) : "ERRNO-OK");
2489 }
2490
2491 lp->signalled = 1;
2492 gdb_assert (lp->status == 0);
2493 }
2494
2495 return 0;
2496 }
2497
2498 /* Return non-zero if LWP PID has a pending SIGINT. */
2499
2500 static int
2501 linux_nat_has_pending_sigint (int pid)
2502 {
2503 sigset_t pending, blocked, ignored;
2504 int i;
2505
2506 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2507
2508 if (sigismember (&pending, SIGINT)
2509 && !sigismember (&ignored, SIGINT))
2510 return 1;
2511
2512 return 0;
2513 }
2514
2515 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2516
2517 static int
2518 set_ignore_sigint (struct lwp_info *lp, void *data)
2519 {
2520 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2521 flag to consume the next one. */
2522 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2523 && WSTOPSIG (lp->status) == SIGINT)
2524 lp->status = 0;
2525 else
2526 lp->ignore_sigint = 1;
2527
2528 return 0;
2529 }
2530
2531 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2532 This function is called after we know the LWP has stopped; if the LWP
2533 stopped before the expected SIGINT was delivered, then it will never have
2534 arrived. Also, if the signal was delivered to a shared queue and consumed
2535 by a different thread, it will never be delivered to this LWP. */
2536
2537 static void
2538 maybe_clear_ignore_sigint (struct lwp_info *lp)
2539 {
2540 if (!lp->ignore_sigint)
2541 return;
2542
2543 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2544 {
2545 if (debug_linux_nat)
2546 fprintf_unfiltered (gdb_stdlog,
2547 "MCIS: Clearing bogus flag for %s\n",
2548 target_pid_to_str (lp->ptid));
2549 lp->ignore_sigint = 0;
2550 }
2551 }
2552
2553 /* Fetch the possible triggered data watchpoint info and store it in
2554 LP.
2555
2556 On some archs, like x86, that use debug registers to set
2557 watchpoints, it's possible that the way to know which watched
2558 address trapped, is to check the register that is used to select
2559 which address to watch. Problem is, between setting the watchpoint
2560 and reading back which data address trapped, the user may change
2561 the set of watchpoints, and, as a consequence, GDB changes the
2562 debug registers in the inferior. To avoid reading back a stale
2563 stopped-data-address when that happens, we cache in LP the fact
2564 that a watchpoint trapped, and the corresponding data address, as
2565 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2566 registers meanwhile, we have the cached data we can rely on. */
2567
2568 static void
2569 save_sigtrap (struct lwp_info *lp)
2570 {
2571 struct cleanup *old_chain;
2572
2573 if (linux_ops->to_stopped_by_watchpoint == NULL)
2574 {
2575 lp->stopped_by_watchpoint = 0;
2576 return;
2577 }
2578
2579 old_chain = save_inferior_ptid ();
2580 inferior_ptid = lp->ptid;
2581
2582 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2583
2584 if (lp->stopped_by_watchpoint)
2585 {
2586 if (linux_ops->to_stopped_data_address != NULL)
2587 lp->stopped_data_address_p =
2588 linux_ops->to_stopped_data_address (&current_target,
2589 &lp->stopped_data_address);
2590 else
2591 lp->stopped_data_address_p = 0;
2592 }
2593
2594 do_cleanups (old_chain);
2595 }
2596
2597 /* See save_sigtrap. */
2598
2599 static int
2600 linux_nat_stopped_by_watchpoint (void)
2601 {
2602 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2603
2604 gdb_assert (lp != NULL);
2605
2606 return lp->stopped_by_watchpoint;
2607 }
2608
2609 static int
2610 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2611 {
2612 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2613
2614 gdb_assert (lp != NULL);
2615
2616 *addr_p = lp->stopped_data_address;
2617
2618 return lp->stopped_data_address_p;
2619 }
2620
2621 /* Wait until LP is stopped. */
2622
2623 static int
2624 stop_wait_callback (struct lwp_info *lp, void *data)
2625 {
2626 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2627
2628 /* If this is a vfork parent, bail out, it is not going to report
2629 any SIGSTOP until the vfork is done with. */
2630 if (inf->vfork_child != NULL)
2631 return 0;
2632
2633 if (!lp->stopped)
2634 {
2635 int status;
2636
2637 status = wait_lwp (lp);
2638 if (status == 0)
2639 return 0;
2640
2641 if (lp->ignore_sigint && WIFSTOPPED (status)
2642 && WSTOPSIG (status) == SIGINT)
2643 {
2644 lp->ignore_sigint = 0;
2645
2646 errno = 0;
2647 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2648 if (debug_linux_nat)
2649 fprintf_unfiltered (gdb_stdlog,
2650 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2651 target_pid_to_str (lp->ptid),
2652 errno ? safe_strerror (errno) : "OK");
2653
2654 return stop_wait_callback (lp, NULL);
2655 }
2656
2657 maybe_clear_ignore_sigint (lp);
2658
2659 if (WSTOPSIG (status) != SIGSTOP)
2660 {
2661 if (WSTOPSIG (status) == SIGTRAP)
2662 {
2663 /* If a LWP other than the LWP that we're reporting an
2664 event for has hit a GDB breakpoint (as opposed to
2665 some random trap signal), then just arrange for it to
2666 hit it again later. We don't keep the SIGTRAP status
2667 and don't forward the SIGTRAP signal to the LWP. We
2668 will handle the current event, eventually we will
2669 resume all LWPs, and this one will get its breakpoint
2670 trap again.
2671
2672 If we do not do this, then we run the risk that the
2673 user will delete or disable the breakpoint, but the
2674 thread will have already tripped on it. */
2675
2676 /* Save the trap's siginfo in case we need it later. */
2677 save_siginfo (lp);
2678
2679 save_sigtrap (lp);
2680
2681 /* Now resume this LWP and get the SIGSTOP event. */
2682 errno = 0;
2683 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2684 if (debug_linux_nat)
2685 {
2686 fprintf_unfiltered (gdb_stdlog,
2687 "PTRACE_CONT %s, 0, 0 (%s)\n",
2688 target_pid_to_str (lp->ptid),
2689 errno ? safe_strerror (errno) : "OK");
2690
2691 fprintf_unfiltered (gdb_stdlog,
2692 "SWC: Candidate SIGTRAP event in %s\n",
2693 target_pid_to_str (lp->ptid));
2694 }
2695 /* Hold this event/waitstatus while we check to see if
2696 there are any more (we still want to get that SIGSTOP). */
2697 stop_wait_callback (lp, NULL);
2698
2699 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2700 there's another event, throw it back into the
2701 queue. */
2702 if (lp->status)
2703 {
2704 if (debug_linux_nat)
2705 fprintf_unfiltered (gdb_stdlog,
2706 "SWC: kill %s, %s\n",
2707 target_pid_to_str (lp->ptid),
2708 status_to_str ((int) status));
2709 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2710 }
2711
2712 /* Save the sigtrap event. */
2713 lp->status = status;
2714 return 0;
2715 }
2716 else
2717 {
2718 /* The thread was stopped with a signal other than
2719 SIGSTOP, and didn't accidentally trip a breakpoint. */
2720
2721 if (debug_linux_nat)
2722 {
2723 fprintf_unfiltered (gdb_stdlog,
2724 "SWC: Pending event %s in %s\n",
2725 status_to_str ((int) status),
2726 target_pid_to_str (lp->ptid));
2727 }
2728 /* Now resume this LWP and get the SIGSTOP event. */
2729 errno = 0;
2730 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2731 if (debug_linux_nat)
2732 fprintf_unfiltered (gdb_stdlog,
2733 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2734 target_pid_to_str (lp->ptid),
2735 errno ? safe_strerror (errno) : "OK");
2736
2737 /* Hold this event/waitstatus while we check to see if
2738 there are any more (we still want to get that SIGSTOP). */
2739 stop_wait_callback (lp, NULL);
2740
2741 /* If the lp->status field is still empty, use it to
2742 hold this event. If not, then this event must be
2743 returned to the event queue of the LWP. */
2744 if (lp->status)
2745 {
2746 if (debug_linux_nat)
2747 {
2748 fprintf_unfiltered (gdb_stdlog,
2749 "SWC: kill %s, %s\n",
2750 target_pid_to_str (lp->ptid),
2751 status_to_str ((int) status));
2752 }
2753 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2754 }
2755 else
2756 lp->status = status;
2757 return 0;
2758 }
2759 }
2760 else
2761 {
2762 /* We caught the SIGSTOP that we intended to catch, so
2763 there's no SIGSTOP pending. */
2764 lp->stopped = 1;
2765 lp->signalled = 0;
2766 }
2767 }
2768
2769 return 0;
2770 }
2771
2772 /* Return non-zero if LP has a wait status pending. */
2773
2774 static int
2775 status_callback (struct lwp_info *lp, void *data)
2776 {
2777 /* Only report a pending wait status if we pretend that this has
2778 indeed been resumed. */
2779 if (!lp->resumed)
2780 return 0;
2781
2782 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2783 {
2784 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2785 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2786 0', so a clean process exit can not be stored pending in
2787 lp->status, it is indistinguishable from
2788 no-pending-status. */
2789 return 1;
2790 }
2791
2792 if (lp->status != 0)
2793 return 1;
2794
2795 return 0;
2796 }
2797
2798 /* Return non-zero if LP isn't stopped. */
2799
2800 static int
2801 running_callback (struct lwp_info *lp, void *data)
2802 {
2803 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2804 }
2805
2806 /* Count the LWP's that have had events. */
2807
2808 static int
2809 count_events_callback (struct lwp_info *lp, void *data)
2810 {
2811 int *count = data;
2812
2813 gdb_assert (count != NULL);
2814
2815 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2816 if (lp->status != 0 && lp->resumed
2817 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2818 (*count)++;
2819
2820 return 0;
2821 }
2822
2823 /* Select the LWP (if any) that is currently being single-stepped. */
2824
2825 static int
2826 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2827 {
2828 if (lp->step && lp->status != 0)
2829 return 1;
2830 else
2831 return 0;
2832 }
2833
2834 /* Select the Nth LWP that has had a SIGTRAP event. */
2835
2836 static int
2837 select_event_lwp_callback (struct lwp_info *lp, void *data)
2838 {
2839 int *selector = data;
2840
2841 gdb_assert (selector != NULL);
2842
2843 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2844 if (lp->status != 0 && lp->resumed
2845 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2846 if ((*selector)-- == 0)
2847 return 1;
2848
2849 return 0;
2850 }
2851
2852 static int
2853 cancel_breakpoint (struct lwp_info *lp)
2854 {
2855 /* Arrange for a breakpoint to be hit again later. We don't keep
2856 the SIGTRAP status and don't forward the SIGTRAP signal to the
2857 LWP. We will handle the current event, eventually we will resume
2858 this LWP, and this breakpoint will trap again.
2859
2860 If we do not do this, then we run the risk that the user will
2861 delete or disable the breakpoint, but the LWP will have already
2862 tripped on it. */
2863
2864 struct regcache *regcache = get_thread_regcache (lp->ptid);
2865 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2866 CORE_ADDR pc;
2867
2868 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2869 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2870 {
2871 if (debug_linux_nat)
2872 fprintf_unfiltered (gdb_stdlog,
2873 "CB: Push back breakpoint for %s\n",
2874 target_pid_to_str (lp->ptid));
2875
2876 /* Back up the PC if necessary. */
2877 if (gdbarch_decr_pc_after_break (gdbarch))
2878 regcache_write_pc (regcache, pc);
2879
2880 return 1;
2881 }
2882 return 0;
2883 }
2884
2885 static int
2886 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2887 {
2888 struct lwp_info *event_lp = data;
2889
2890 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2891 if (lp == event_lp)
2892 return 0;
2893
2894 /* If a LWP other than the LWP that we're reporting an event for has
2895 hit a GDB breakpoint (as opposed to some random trap signal),
2896 then just arrange for it to hit it again later. We don't keep
2897 the SIGTRAP status and don't forward the SIGTRAP signal to the
2898 LWP. We will handle the current event, eventually we will resume
2899 all LWPs, and this one will get its breakpoint trap again.
2900
2901 If we do not do this, then we run the risk that the user will
2902 delete or disable the breakpoint, but the LWP will have already
2903 tripped on it. */
2904
2905 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2906 && lp->status != 0
2907 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2908 && cancel_breakpoint (lp))
2909 /* Throw away the SIGTRAP. */
2910 lp->status = 0;
2911
2912 return 0;
2913 }
2914
2915 /* Select one LWP out of those that have events pending. */
2916
2917 static void
2918 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2919 {
2920 int num_events = 0;
2921 int random_selector;
2922 struct lwp_info *event_lp;
2923
2924 /* Record the wait status for the original LWP. */
2925 (*orig_lp)->status = *status;
2926
2927 /* Give preference to any LWP that is being single-stepped. */
2928 event_lp = iterate_over_lwps (filter,
2929 select_singlestep_lwp_callback, NULL);
2930 if (event_lp != NULL)
2931 {
2932 if (debug_linux_nat)
2933 fprintf_unfiltered (gdb_stdlog,
2934 "SEL: Select single-step %s\n",
2935 target_pid_to_str (event_lp->ptid));
2936 }
2937 else
2938 {
2939 /* No single-stepping LWP. Select one at random, out of those
2940 which have had SIGTRAP events. */
2941
2942 /* First see how many SIGTRAP events we have. */
2943 iterate_over_lwps (filter, count_events_callback, &num_events);
2944
2945 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2946 random_selector = (int)
2947 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2948
2949 if (debug_linux_nat && num_events > 1)
2950 fprintf_unfiltered (gdb_stdlog,
2951 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2952 num_events, random_selector);
2953
2954 event_lp = iterate_over_lwps (filter,
2955 select_event_lwp_callback,
2956 &random_selector);
2957 }
2958
2959 if (event_lp != NULL)
2960 {
2961 /* Switch the event LWP. */
2962 *orig_lp = event_lp;
2963 *status = event_lp->status;
2964 }
2965
2966 /* Flush the wait status for the event LWP. */
2967 (*orig_lp)->status = 0;
2968 }
2969
2970 /* Return non-zero if LP has been resumed. */
2971
2972 static int
2973 resumed_callback (struct lwp_info *lp, void *data)
2974 {
2975 return lp->resumed;
2976 }
2977
2978 /* Stop an active thread, verify it still exists, then resume it. */
2979
2980 static int
2981 stop_and_resume_callback (struct lwp_info *lp, void *data)
2982 {
2983 struct lwp_info *ptr;
2984
2985 if (!lp->stopped && !lp->signalled)
2986 {
2987 stop_callback (lp, NULL);
2988 stop_wait_callback (lp, NULL);
2989 /* Resume if the lwp still exists. */
2990 for (ptr = lwp_list; ptr; ptr = ptr->next)
2991 if (lp == ptr)
2992 {
2993 resume_callback (lp, NULL);
2994 resume_set_callback (lp, NULL);
2995 }
2996 }
2997 return 0;
2998 }
2999
3000 /* Check if we should go on and pass this event to common code.
3001 Return the affected lwp if we are, or NULL otherwise. */
3002 static struct lwp_info *
3003 linux_nat_filter_event (int lwpid, int status, int options)
3004 {
3005 struct lwp_info *lp;
3006
3007 lp = find_lwp_pid (pid_to_ptid (lwpid));
3008
3009 /* Check for stop events reported by a process we didn't already
3010 know about - anything not already in our LWP list.
3011
3012 If we're expecting to receive stopped processes after
3013 fork, vfork, and clone events, then we'll just add the
3014 new one to our list and go back to waiting for the event
3015 to be reported - the stopped process might be returned
3016 from waitpid before or after the event is. */
3017 if (WIFSTOPPED (status) && !lp)
3018 {
3019 linux_record_stopped_pid (lwpid, status);
3020 return NULL;
3021 }
3022
3023 /* Make sure we don't report an event for the exit of an LWP not in
3024 our list, i.e. not part of the current process. This can happen
3025 if we detach from a program we original forked and then it
3026 exits. */
3027 if (!WIFSTOPPED (status) && !lp)
3028 return NULL;
3029
3030 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3031 CLONE_PTRACE processes which do not use the thread library -
3032 otherwise we wouldn't find the new LWP this way. That doesn't
3033 currently work, and the following code is currently unreachable
3034 due to the two blocks above. If it's fixed some day, this code
3035 should be broken out into a function so that we can also pick up
3036 LWPs from the new interface. */
3037 if (!lp)
3038 {
3039 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3040 if (options & __WCLONE)
3041 lp->cloned = 1;
3042
3043 gdb_assert (WIFSTOPPED (status)
3044 && WSTOPSIG (status) == SIGSTOP);
3045 lp->signalled = 1;
3046
3047 if (!in_thread_list (inferior_ptid))
3048 {
3049 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3050 GET_PID (inferior_ptid));
3051 add_thread (inferior_ptid);
3052 }
3053
3054 add_thread (lp->ptid);
3055 }
3056
3057 /* Handle GNU/Linux's syscall SIGTRAPs. */
3058 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3059 {
3060 /* No longer need the sysgood bit. The ptrace event ends up
3061 recorded in lp->waitstatus if we care for it. We can carry
3062 on handling the event like a regular SIGTRAP from here
3063 on. */
3064 status = W_STOPCODE (SIGTRAP);
3065 if (linux_handle_syscall_trap (lp, 0))
3066 return NULL;
3067 }
3068
3069 /* Handle GNU/Linux's extended waitstatus for trace events. */
3070 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3071 {
3072 if (debug_linux_nat)
3073 fprintf_unfiltered (gdb_stdlog,
3074 "LLW: Handling extended status 0x%06x\n",
3075 status);
3076 if (linux_handle_extended_wait (lp, status, 0))
3077 return NULL;
3078 }
3079
3080 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3081 {
3082 /* Save the trap's siginfo in case we need it later. */
3083 save_siginfo (lp);
3084
3085 save_sigtrap (lp);
3086 }
3087
3088 /* Check if the thread has exited. */
3089 if ((WIFEXITED (status) || WIFSIGNALED (status))
3090 && num_lwps (GET_PID (lp->ptid)) > 1)
3091 {
3092 /* If this is the main thread, we must stop all threads and verify
3093 if they are still alive. This is because in the nptl thread model
3094 on Linux 2.4, there is no signal issued for exiting LWPs
3095 other than the main thread. We only get the main thread exit
3096 signal once all child threads have already exited. If we
3097 stop all the threads and use the stop_wait_callback to check
3098 if they have exited we can determine whether this signal
3099 should be ignored or whether it means the end of the debugged
3100 application, regardless of which threading model is being
3101 used. */
3102 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3103 {
3104 lp->stopped = 1;
3105 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3106 stop_and_resume_callback, NULL);
3107 }
3108
3109 if (debug_linux_nat)
3110 fprintf_unfiltered (gdb_stdlog,
3111 "LLW: %s exited.\n",
3112 target_pid_to_str (lp->ptid));
3113
3114 if (num_lwps (GET_PID (lp->ptid)) > 1)
3115 {
3116 /* If there is at least one more LWP, then the exit signal
3117 was not the end of the debugged application and should be
3118 ignored. */
3119 exit_lwp (lp);
3120 return NULL;
3121 }
3122 }
3123
3124 /* Check if the current LWP has previously exited. In the nptl
3125 thread model, LWPs other than the main thread do not issue
3126 signals when they exit so we must check whenever the thread has
3127 stopped. A similar check is made in stop_wait_callback(). */
3128 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3129 {
3130 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3131
3132 if (debug_linux_nat)
3133 fprintf_unfiltered (gdb_stdlog,
3134 "LLW: %s exited.\n",
3135 target_pid_to_str (lp->ptid));
3136
3137 exit_lwp (lp);
3138
3139 /* Make sure there is at least one thread running. */
3140 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3141
3142 /* Discard the event. */
3143 return NULL;
3144 }
3145
3146 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3147 an attempt to stop an LWP. */
3148 if (lp->signalled
3149 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3150 {
3151 if (debug_linux_nat)
3152 fprintf_unfiltered (gdb_stdlog,
3153 "LLW: Delayed SIGSTOP caught for %s.\n",
3154 target_pid_to_str (lp->ptid));
3155
3156 /* This is a delayed SIGSTOP. */
3157 lp->signalled = 0;
3158
3159 registers_changed ();
3160
3161 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3162 lp->step, TARGET_SIGNAL_0);
3163 if (debug_linux_nat)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3166 lp->step ?
3167 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3168 target_pid_to_str (lp->ptid));
3169
3170 lp->stopped = 0;
3171 gdb_assert (lp->resumed);
3172
3173 /* Discard the event. */
3174 return NULL;
3175 }
3176
3177 /* Make sure we don't report a SIGINT that we have already displayed
3178 for another thread. */
3179 if (lp->ignore_sigint
3180 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3181 {
3182 if (debug_linux_nat)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "LLW: Delayed SIGINT caught for %s.\n",
3185 target_pid_to_str (lp->ptid));
3186
3187 /* This is a delayed SIGINT. */
3188 lp->ignore_sigint = 0;
3189
3190 registers_changed ();
3191 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3192 lp->step, TARGET_SIGNAL_0);
3193 if (debug_linux_nat)
3194 fprintf_unfiltered (gdb_stdlog,
3195 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3196 lp->step ?
3197 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3198 target_pid_to_str (lp->ptid));
3199
3200 lp->stopped = 0;
3201 gdb_assert (lp->resumed);
3202
3203 /* Discard the event. */
3204 return NULL;
3205 }
3206
3207 /* An interesting event. */
3208 gdb_assert (lp);
3209 lp->status = status;
3210 return lp;
3211 }
3212
3213 static ptid_t
3214 linux_nat_wait_1 (struct target_ops *ops,
3215 ptid_t ptid, struct target_waitstatus *ourstatus,
3216 int target_options)
3217 {
3218 static sigset_t prev_mask;
3219 struct lwp_info *lp = NULL;
3220 int options = 0;
3221 int status = 0;
3222 pid_t pid;
3223
3224 if (debug_linux_nat_async)
3225 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3226
3227 /* The first time we get here after starting a new inferior, we may
3228 not have added it to the LWP list yet - this is the earliest
3229 moment at which we know its PID. */
3230 if (ptid_is_pid (inferior_ptid))
3231 {
3232 /* Upgrade the main thread's ptid. */
3233 thread_change_ptid (inferior_ptid,
3234 BUILD_LWP (GET_PID (inferior_ptid),
3235 GET_PID (inferior_ptid)));
3236
3237 lp = add_lwp (inferior_ptid);
3238 lp->resumed = 1;
3239 }
3240
3241 /* Make sure SIGCHLD is blocked. */
3242 block_child_signals (&prev_mask);
3243
3244 if (ptid_equal (ptid, minus_one_ptid))
3245 pid = -1;
3246 else if (ptid_is_pid (ptid))
3247 /* A request to wait for a specific tgid. This is not possible
3248 with waitpid, so instead, we wait for any child, and leave
3249 children we're not interested in right now with a pending
3250 status to report later. */
3251 pid = -1;
3252 else
3253 pid = GET_LWP (ptid);
3254
3255 retry:
3256 lp = NULL;
3257 status = 0;
3258
3259 /* Make sure that of those LWPs we want to get an event from, there
3260 is at least one LWP that has been resumed. If there's none, just
3261 bail out. The core may just be flushing asynchronously all
3262 events. */
3263 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3264 {
3265 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3266
3267 if (debug_linux_nat_async)
3268 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3269
3270 restore_child_signals_mask (&prev_mask);
3271 return minus_one_ptid;
3272 }
3273
3274 /* First check if there is a LWP with a wait status pending. */
3275 if (pid == -1)
3276 {
3277 /* Any LWP that's been resumed will do. */
3278 lp = iterate_over_lwps (ptid, status_callback, NULL);
3279 if (lp)
3280 {
3281 if (debug_linux_nat && lp->status)
3282 fprintf_unfiltered (gdb_stdlog,
3283 "LLW: Using pending wait status %s for %s.\n",
3284 status_to_str (lp->status),
3285 target_pid_to_str (lp->ptid));
3286 }
3287
3288 /* But if we don't find one, we'll have to wait, and check both
3289 cloned and uncloned processes. We start with the cloned
3290 processes. */
3291 options = __WCLONE | WNOHANG;
3292 }
3293 else if (is_lwp (ptid))
3294 {
3295 if (debug_linux_nat)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "LLW: Waiting for specific LWP %s.\n",
3298 target_pid_to_str (ptid));
3299
3300 /* We have a specific LWP to check. */
3301 lp = find_lwp_pid (ptid);
3302 gdb_assert (lp);
3303
3304 if (debug_linux_nat && lp->status)
3305 fprintf_unfiltered (gdb_stdlog,
3306 "LLW: Using pending wait status %s for %s.\n",
3307 status_to_str (lp->status),
3308 target_pid_to_str (lp->ptid));
3309
3310 /* If we have to wait, take into account whether PID is a cloned
3311 process or not. And we have to convert it to something that
3312 the layer beneath us can understand. */
3313 options = lp->cloned ? __WCLONE : 0;
3314 pid = GET_LWP (ptid);
3315
3316 /* We check for lp->waitstatus in addition to lp->status,
3317 because we can have pending process exits recorded in
3318 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3319 an additional lp->status_p flag. */
3320 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3321 lp = NULL;
3322 }
3323
3324 if (lp && lp->signalled)
3325 {
3326 /* A pending SIGSTOP may interfere with the normal stream of
3327 events. In a typical case where interference is a problem,
3328 we have a SIGSTOP signal pending for LWP A while
3329 single-stepping it, encounter an event in LWP B, and take the
3330 pending SIGSTOP while trying to stop LWP A. After processing
3331 the event in LWP B, LWP A is continued, and we'll never see
3332 the SIGTRAP associated with the last time we were
3333 single-stepping LWP A. */
3334
3335 /* Resume the thread. It should halt immediately returning the
3336 pending SIGSTOP. */
3337 registers_changed ();
3338 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3339 lp->step, TARGET_SIGNAL_0);
3340 if (debug_linux_nat)
3341 fprintf_unfiltered (gdb_stdlog,
3342 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3343 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3344 target_pid_to_str (lp->ptid));
3345 lp->stopped = 0;
3346 gdb_assert (lp->resumed);
3347
3348 /* Catch the pending SIGSTOP. */
3349 status = lp->status;
3350 lp->status = 0;
3351
3352 stop_wait_callback (lp, NULL);
3353
3354 /* If the lp->status field isn't empty, we caught another signal
3355 while flushing the SIGSTOP. Return it back to the event
3356 queue of the LWP, as we already have an event to handle. */
3357 if (lp->status)
3358 {
3359 if (debug_linux_nat)
3360 fprintf_unfiltered (gdb_stdlog,
3361 "LLW: kill %s, %s\n",
3362 target_pid_to_str (lp->ptid),
3363 status_to_str (lp->status));
3364 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3365 }
3366
3367 lp->status = status;
3368 }
3369
3370 if (!target_can_async_p ())
3371 {
3372 /* Causes SIGINT to be passed on to the attached process. */
3373 set_sigint_trap ();
3374 }
3375
3376 /* Translate generic target_wait options into waitpid options. */
3377 if (target_options & TARGET_WNOHANG)
3378 options |= WNOHANG;
3379
3380 while (lp == NULL)
3381 {
3382 pid_t lwpid;
3383
3384 lwpid = my_waitpid (pid, &status, options);
3385
3386 if (lwpid > 0)
3387 {
3388 gdb_assert (pid == -1 || lwpid == pid);
3389
3390 if (debug_linux_nat)
3391 {
3392 fprintf_unfiltered (gdb_stdlog,
3393 "LLW: waitpid %ld received %s\n",
3394 (long) lwpid, status_to_str (status));
3395 }
3396
3397 lp = linux_nat_filter_event (lwpid, status, options);
3398
3399 if (lp
3400 && ptid_is_pid (ptid)
3401 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3402 {
3403 gdb_assert (lp->resumed);
3404
3405 if (debug_linux_nat)
3406 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3407 ptid_get_lwp (lp->ptid), status);
3408
3409 if (WIFSTOPPED (lp->status))
3410 {
3411 if (WSTOPSIG (lp->status) != SIGSTOP)
3412 {
3413 /* Cancel breakpoint hits. The breakpoint may
3414 be removed before we fetch events from this
3415 process to report to the core. It is best
3416 not to assume the moribund breakpoints
3417 heuristic always handles these cases --- it
3418 could be too many events go through to the
3419 core before this one is handled. All-stop
3420 always cancels breakpoint hits in all
3421 threads. */
3422 if (non_stop
3423 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3424 && WSTOPSIG (lp->status) == SIGTRAP
3425 && cancel_breakpoint (lp))
3426 {
3427 /* Throw away the SIGTRAP. */
3428 lp->status = 0;
3429
3430 if (debug_linux_nat)
3431 fprintf (stderr,
3432 "LLW: LWP %ld hit a breakpoint while waiting "
3433 "for another process; cancelled it\n",
3434 ptid_get_lwp (lp->ptid));
3435 }
3436 lp->stopped = 1;
3437 }
3438 else
3439 {
3440 lp->stopped = 1;
3441 lp->signalled = 0;
3442 }
3443 }
3444 else if (WIFEXITED (status) || WIFSIGNALED (status))
3445 {
3446 if (debug_linux_nat)
3447 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3448 ptid_get_lwp (lp->ptid));
3449
3450 /* This was the last lwp in the process. Since
3451 events are serialized to GDB core, and we can't
3452 report this one right now, but GDB core and the
3453 other target layers will want to be notified
3454 about the exit code/signal, leave the status
3455 pending for the next time we're able to report
3456 it. */
3457
3458 /* Prevent trying to stop this thread again. We'll
3459 never try to resume it because it has a pending
3460 status. */
3461 lp->stopped = 1;
3462
3463 /* Dead LWP's aren't expected to reported a pending
3464 sigstop. */
3465 lp->signalled = 0;
3466
3467 /* Store the pending event in the waitstatus as
3468 well, because W_EXITCODE(0,0) == 0. */
3469 store_waitstatus (&lp->waitstatus, lp->status);
3470 }
3471
3472 /* Keep looking. */
3473 lp = NULL;
3474 continue;
3475 }
3476
3477 if (lp)
3478 break;
3479 else
3480 {
3481 if (pid == -1)
3482 {
3483 /* waitpid did return something. Restart over. */
3484 options |= __WCLONE;
3485 }
3486 continue;
3487 }
3488 }
3489
3490 if (pid == -1)
3491 {
3492 /* Alternate between checking cloned and uncloned processes. */
3493 options ^= __WCLONE;
3494
3495 /* And every time we have checked both:
3496 In async mode, return to event loop;
3497 In sync mode, suspend waiting for a SIGCHLD signal. */
3498 if (options & __WCLONE)
3499 {
3500 if (target_options & TARGET_WNOHANG)
3501 {
3502 /* No interesting event. */
3503 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3504
3505 if (debug_linux_nat_async)
3506 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3507
3508 restore_child_signals_mask (&prev_mask);
3509 return minus_one_ptid;
3510 }
3511
3512 sigsuspend (&suspend_mask);
3513 }
3514 }
3515 else if (target_options & TARGET_WNOHANG)
3516 {
3517 /* No interesting event for PID yet. */
3518 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3519
3520 if (debug_linux_nat_async)
3521 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3522
3523 restore_child_signals_mask (&prev_mask);
3524 return minus_one_ptid;
3525 }
3526
3527 /* We shouldn't end up here unless we want to try again. */
3528 gdb_assert (lp == NULL);
3529 }
3530
3531 if (!target_can_async_p ())
3532 clear_sigint_trap ();
3533
3534 gdb_assert (lp);
3535
3536 status = lp->status;
3537 lp->status = 0;
3538
3539 /* Don't report signals that GDB isn't interested in, such as
3540 signals that are neither printed nor stopped upon. Stopping all
3541 threads can be a bit time-consuming so if we want decent
3542 performance with heavily multi-threaded programs, especially when
3543 they're using a high frequency timer, we'd better avoid it if we
3544 can. */
3545
3546 if (WIFSTOPPED (status))
3547 {
3548 int signo = target_signal_from_host (WSTOPSIG (status));
3549 struct inferior *inf;
3550
3551 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3552 gdb_assert (inf);
3553
3554 /* Defer to common code if we get a signal while
3555 single-stepping, since that may need special care, e.g. to
3556 skip the signal handler, or, if we're gaining control of the
3557 inferior. */
3558 if (!lp->step
3559 && inf->stop_soon == NO_STOP_QUIETLY
3560 && signal_stop_state (signo) == 0
3561 && signal_print_state (signo) == 0
3562 && signal_pass_state (signo) == 1)
3563 {
3564 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3565 here? It is not clear we should. GDB may not expect
3566 other threads to run. On the other hand, not resuming
3567 newly attached threads may cause an unwanted delay in
3568 getting them running. */
3569 registers_changed ();
3570 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3571 lp->step, signo);
3572 if (debug_linux_nat)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "LLW: %s %s, %s (preempt 'handle')\n",
3575 lp->step ?
3576 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3577 target_pid_to_str (lp->ptid),
3578 signo ? strsignal (signo) : "0");
3579 lp->stopped = 0;
3580 goto retry;
3581 }
3582
3583 if (!non_stop)
3584 {
3585 /* Only do the below in all-stop, as we currently use SIGINT
3586 to implement target_stop (see linux_nat_stop) in
3587 non-stop. */
3588 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3589 {
3590 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3591 forwarded to the entire process group, that is, all LWPs
3592 will receive it - unless they're using CLONE_THREAD to
3593 share signals. Since we only want to report it once, we
3594 mark it as ignored for all LWPs except this one. */
3595 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3596 set_ignore_sigint, NULL);
3597 lp->ignore_sigint = 0;
3598 }
3599 else
3600 maybe_clear_ignore_sigint (lp);
3601 }
3602 }
3603
3604 /* This LWP is stopped now. */
3605 lp->stopped = 1;
3606
3607 if (debug_linux_nat)
3608 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3609 status_to_str (status), target_pid_to_str (lp->ptid));
3610
3611 if (!non_stop)
3612 {
3613 /* Now stop all other LWP's ... */
3614 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3615
3616 /* ... and wait until all of them have reported back that
3617 they're no longer running. */
3618 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3619
3620 /* If we're not waiting for a specific LWP, choose an event LWP
3621 from among those that have had events. Giving equal priority
3622 to all LWPs that have had events helps prevent
3623 starvation. */
3624 if (pid == -1)
3625 select_event_lwp (ptid, &lp, &status);
3626
3627 /* Now that we've selected our final event LWP, cancel any
3628 breakpoints in other LWPs that have hit a GDB breakpoint.
3629 See the comment in cancel_breakpoints_callback to find out
3630 why. */
3631 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3632
3633 /* In all-stop, from the core's perspective, all LWPs are now
3634 stopped until a new resume action is sent over. */
3635 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3636 }
3637 else
3638 lp->resumed = 0;
3639
3640 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3641 {
3642 if (debug_linux_nat)
3643 fprintf_unfiltered (gdb_stdlog,
3644 "LLW: trap ptid is %s.\n",
3645 target_pid_to_str (lp->ptid));
3646 }
3647
3648 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3649 {
3650 *ourstatus = lp->waitstatus;
3651 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3652 }
3653 else
3654 store_waitstatus (ourstatus, status);
3655
3656 if (debug_linux_nat_async)
3657 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3658
3659 restore_child_signals_mask (&prev_mask);
3660 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3661 return lp->ptid;
3662 }
3663
3664 /* Resume LWPs that are currently stopped without any pending status
3665 to report, but are resumed from the core's perspective. */
3666
3667 static int
3668 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3669 {
3670 ptid_t *wait_ptid_p = data;
3671
3672 if (lp->stopped
3673 && lp->resumed
3674 && lp->status == 0
3675 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3676 {
3677 gdb_assert (is_executing (lp->ptid));
3678
3679 /* Don't bother if there's a breakpoint at PC that we'd hit
3680 immediately, and we're not waiting for this LWP. */
3681 if (!ptid_match (lp->ptid, *wait_ptid_p))
3682 {
3683 struct regcache *regcache = get_thread_regcache (lp->ptid);
3684 CORE_ADDR pc = regcache_read_pc (regcache);
3685
3686 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3687 return 0;
3688 }
3689
3690 if (debug_linux_nat)
3691 fprintf_unfiltered (gdb_stdlog,
3692 "RSRL: resuming stopped-resumed LWP %s\n",
3693 target_pid_to_str (lp->ptid));
3694
3695 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3696 lp->step, TARGET_SIGNAL_0);
3697 lp->stopped = 0;
3698 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3699 lp->stopped_by_watchpoint = 0;
3700 }
3701
3702 return 0;
3703 }
3704
3705 static ptid_t
3706 linux_nat_wait (struct target_ops *ops,
3707 ptid_t ptid, struct target_waitstatus *ourstatus,
3708 int target_options)
3709 {
3710 ptid_t event_ptid;
3711
3712 if (debug_linux_nat)
3713 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3714
3715 /* Flush the async file first. */
3716 if (target_can_async_p ())
3717 async_file_flush ();
3718
3719 /* Resume LWPs that are currently stopped without any pending status
3720 to report, but are resumed from the core's perspective. LWPs get
3721 in this state if we find them stopping at a time we're not
3722 interested in reporting the event (target_wait on a
3723 specific_process, for example, see linux_nat_wait_1), and
3724 meanwhile the event became uninteresting. Don't bother resuming
3725 LWPs we're not going to wait for if they'd stop immediately. */
3726 if (non_stop)
3727 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3728
3729 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3730
3731 /* If we requested any event, and something came out, assume there
3732 may be more. If we requested a specific lwp or process, also
3733 assume there may be more. */
3734 if (target_can_async_p ()
3735 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3736 || !ptid_equal (ptid, minus_one_ptid)))
3737 async_file_mark ();
3738
3739 /* Get ready for the next event. */
3740 if (target_can_async_p ())
3741 target_async (inferior_event_handler, 0);
3742
3743 return event_ptid;
3744 }
3745
3746 static int
3747 kill_callback (struct lwp_info *lp, void *data)
3748 {
3749 errno = 0;
3750 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3751 if (debug_linux_nat)
3752 fprintf_unfiltered (gdb_stdlog,
3753 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3754 target_pid_to_str (lp->ptid),
3755 errno ? safe_strerror (errno) : "OK");
3756
3757 return 0;
3758 }
3759
3760 static int
3761 kill_wait_callback (struct lwp_info *lp, void *data)
3762 {
3763 pid_t pid;
3764
3765 /* We must make sure that there are no pending events (delayed
3766 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3767 program doesn't interfere with any following debugging session. */
3768
3769 /* For cloned processes we must check both with __WCLONE and
3770 without, since the exit status of a cloned process isn't reported
3771 with __WCLONE. */
3772 if (lp->cloned)
3773 {
3774 do
3775 {
3776 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3777 if (pid != (pid_t) -1)
3778 {
3779 if (debug_linux_nat)
3780 fprintf_unfiltered (gdb_stdlog,
3781 "KWC: wait %s received unknown.\n",
3782 target_pid_to_str (lp->ptid));
3783 /* The Linux kernel sometimes fails to kill a thread
3784 completely after PTRACE_KILL; that goes from the stop
3785 point in do_fork out to the one in
3786 get_signal_to_deliever and waits again. So kill it
3787 again. */
3788 kill_callback (lp, NULL);
3789 }
3790 }
3791 while (pid == GET_LWP (lp->ptid));
3792
3793 gdb_assert (pid == -1 && errno == ECHILD);
3794 }
3795
3796 do
3797 {
3798 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3799 if (pid != (pid_t) -1)
3800 {
3801 if (debug_linux_nat)
3802 fprintf_unfiltered (gdb_stdlog,
3803 "KWC: wait %s received unk.\n",
3804 target_pid_to_str (lp->ptid));
3805 /* See the call to kill_callback above. */
3806 kill_callback (lp, NULL);
3807 }
3808 }
3809 while (pid == GET_LWP (lp->ptid));
3810
3811 gdb_assert (pid == -1 && errno == ECHILD);
3812 return 0;
3813 }
3814
3815 static void
3816 linux_nat_kill (struct target_ops *ops)
3817 {
3818 struct target_waitstatus last;
3819 ptid_t last_ptid;
3820 int status;
3821
3822 /* If we're stopped while forking and we haven't followed yet,
3823 kill the other task. We need to do this first because the
3824 parent will be sleeping if this is a vfork. */
3825
3826 get_last_target_status (&last_ptid, &last);
3827
3828 if (last.kind == TARGET_WAITKIND_FORKED
3829 || last.kind == TARGET_WAITKIND_VFORKED)
3830 {
3831 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3832 wait (&status);
3833 }
3834
3835 if (forks_exist_p ())
3836 linux_fork_killall ();
3837 else
3838 {
3839 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3840 /* Stop all threads before killing them, since ptrace requires
3841 that the thread is stopped to sucessfully PTRACE_KILL. */
3842 iterate_over_lwps (ptid, stop_callback, NULL);
3843 /* ... and wait until all of them have reported back that
3844 they're no longer running. */
3845 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3846
3847 /* Kill all LWP's ... */
3848 iterate_over_lwps (ptid, kill_callback, NULL);
3849
3850 /* ... and wait until we've flushed all events. */
3851 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3852 }
3853
3854 target_mourn_inferior ();
3855 }
3856
3857 static void
3858 linux_nat_mourn_inferior (struct target_ops *ops)
3859 {
3860 purge_lwp_list (ptid_get_pid (inferior_ptid));
3861
3862 if (! forks_exist_p ())
3863 /* Normal case, no other forks available. */
3864 linux_ops->to_mourn_inferior (ops);
3865 else
3866 /* Multi-fork case. The current inferior_ptid has exited, but
3867 there are other viable forks to debug. Delete the exiting
3868 one and context-switch to the first available. */
3869 linux_fork_mourn_inferior ();
3870 }
3871
3872 /* Convert a native/host siginfo object, into/from the siginfo in the
3873 layout of the inferiors' architecture. */
3874
3875 static void
3876 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3877 {
3878 int done = 0;
3879
3880 if (linux_nat_siginfo_fixup != NULL)
3881 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3882
3883 /* If there was no callback, or the callback didn't do anything,
3884 then just do a straight memcpy. */
3885 if (!done)
3886 {
3887 if (direction == 1)
3888 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3889 else
3890 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3891 }
3892 }
3893
3894 static LONGEST
3895 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3896 const char *annex, gdb_byte *readbuf,
3897 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3898 {
3899 int pid;
3900 struct siginfo siginfo;
3901 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3902
3903 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3904 gdb_assert (readbuf || writebuf);
3905
3906 pid = GET_LWP (inferior_ptid);
3907 if (pid == 0)
3908 pid = GET_PID (inferior_ptid);
3909
3910 if (offset > sizeof (siginfo))
3911 return -1;
3912
3913 errno = 0;
3914 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3915 if (errno != 0)
3916 return -1;
3917
3918 /* When GDB is built as a 64-bit application, ptrace writes into
3919 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3920 inferior with a 64-bit GDB should look the same as debugging it
3921 with a 32-bit GDB, we need to convert it. GDB core always sees
3922 the converted layout, so any read/write will have to be done
3923 post-conversion. */
3924 siginfo_fixup (&siginfo, inf_siginfo, 0);
3925
3926 if (offset + len > sizeof (siginfo))
3927 len = sizeof (siginfo) - offset;
3928
3929 if (readbuf != NULL)
3930 memcpy (readbuf, inf_siginfo + offset, len);
3931 else
3932 {
3933 memcpy (inf_siginfo + offset, writebuf, len);
3934
3935 /* Convert back to ptrace layout before flushing it out. */
3936 siginfo_fixup (&siginfo, inf_siginfo, 1);
3937
3938 errno = 0;
3939 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3940 if (errno != 0)
3941 return -1;
3942 }
3943
3944 return len;
3945 }
3946
3947 static LONGEST
3948 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3949 const char *annex, gdb_byte *readbuf,
3950 const gdb_byte *writebuf,
3951 ULONGEST offset, LONGEST len)
3952 {
3953 struct cleanup *old_chain;
3954 LONGEST xfer;
3955
3956 if (object == TARGET_OBJECT_SIGNAL_INFO)
3957 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3958 offset, len);
3959
3960 /* The target is connected but no live inferior is selected. Pass
3961 this request down to a lower stratum (e.g., the executable
3962 file). */
3963 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3964 return 0;
3965
3966 old_chain = save_inferior_ptid ();
3967
3968 if (is_lwp (inferior_ptid))
3969 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3970
3971 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3972 offset, len);
3973
3974 do_cleanups (old_chain);
3975 return xfer;
3976 }
3977
3978 static int
3979 linux_thread_alive (ptid_t ptid)
3980 {
3981 int err;
3982
3983 gdb_assert (is_lwp (ptid));
3984
3985 /* Send signal 0 instead of anything ptrace, because ptracing a
3986 running thread errors out claiming that the thread doesn't
3987 exist. */
3988 err = kill_lwp (GET_LWP (ptid), 0);
3989
3990 if (debug_linux_nat)
3991 fprintf_unfiltered (gdb_stdlog,
3992 "LLTA: KILL(SIG0) %s (%s)\n",
3993 target_pid_to_str (ptid),
3994 err ? safe_strerror (err) : "OK");
3995
3996 if (err != 0)
3997 return 0;
3998
3999 return 1;
4000 }
4001
4002 static int
4003 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4004 {
4005 return linux_thread_alive (ptid);
4006 }
4007
4008 static char *
4009 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4010 {
4011 static char buf[64];
4012
4013 if (is_lwp (ptid)
4014 && (GET_PID (ptid) != GET_LWP (ptid)
4015 || num_lwps (GET_PID (ptid)) > 1))
4016 {
4017 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4018 return buf;
4019 }
4020
4021 return normal_pid_to_str (ptid);
4022 }
4023
4024 /* Accepts an integer PID; Returns a string representing a file that
4025 can be opened to get the symbols for the child process. */
4026
4027 static char *
4028 linux_child_pid_to_exec_file (int pid)
4029 {
4030 char *name1, *name2;
4031
4032 name1 = xmalloc (MAXPATHLEN);
4033 name2 = xmalloc (MAXPATHLEN);
4034 make_cleanup (xfree, name1);
4035 make_cleanup (xfree, name2);
4036 memset (name2, 0, MAXPATHLEN);
4037
4038 sprintf (name1, "/proc/%d/exe", pid);
4039 if (readlink (name1, name2, MAXPATHLEN) > 0)
4040 return name2;
4041 else
4042 return name1;
4043 }
4044
4045 /* Service function for corefiles and info proc. */
4046
4047 static int
4048 read_mapping (FILE *mapfile,
4049 long long *addr,
4050 long long *endaddr,
4051 char *permissions,
4052 long long *offset,
4053 char *device, long long *inode, char *filename)
4054 {
4055 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4056 addr, endaddr, permissions, offset, device, inode);
4057
4058 filename[0] = '\0';
4059 if (ret > 0 && ret != EOF)
4060 {
4061 /* Eat everything up to EOL for the filename. This will prevent
4062 weird filenames (such as one with embedded whitespace) from
4063 confusing this code. It also makes this code more robust in
4064 respect to annotations the kernel may add after the filename.
4065
4066 Note the filename is used for informational purposes
4067 only. */
4068 ret += fscanf (mapfile, "%[^\n]\n", filename);
4069 }
4070
4071 return (ret != 0 && ret != EOF);
4072 }
4073
4074 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4075 regions in the inferior for a corefile. */
4076
4077 static int
4078 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4079 unsigned long,
4080 int, int, int, void *), void *obfd)
4081 {
4082 int pid = PIDGET (inferior_ptid);
4083 char mapsfilename[MAXPATHLEN];
4084 FILE *mapsfile;
4085 long long addr, endaddr, size, offset, inode;
4086 char permissions[8], device[8], filename[MAXPATHLEN];
4087 int read, write, exec;
4088 int ret;
4089 struct cleanup *cleanup;
4090
4091 /* Compose the filename for the /proc memory map, and open it. */
4092 sprintf (mapsfilename, "/proc/%d/maps", pid);
4093 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4094 error (_("Could not open %s."), mapsfilename);
4095 cleanup = make_cleanup_fclose (mapsfile);
4096
4097 if (info_verbose)
4098 fprintf_filtered (gdb_stdout,
4099 "Reading memory regions from %s\n", mapsfilename);
4100
4101 /* Now iterate until end-of-file. */
4102 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4103 &offset, &device[0], &inode, &filename[0]))
4104 {
4105 size = endaddr - addr;
4106
4107 /* Get the segment's permissions. */
4108 read = (strchr (permissions, 'r') != 0);
4109 write = (strchr (permissions, 'w') != 0);
4110 exec = (strchr (permissions, 'x') != 0);
4111
4112 if (info_verbose)
4113 {
4114 fprintf_filtered (gdb_stdout,
4115 "Save segment, %lld bytes at %s (%c%c%c)",
4116 size, paddress (target_gdbarch, addr),
4117 read ? 'r' : ' ',
4118 write ? 'w' : ' ', exec ? 'x' : ' ');
4119 if (filename[0])
4120 fprintf_filtered (gdb_stdout, " for %s", filename);
4121 fprintf_filtered (gdb_stdout, "\n");
4122 }
4123
4124 /* Invoke the callback function to create the corefile
4125 segment. */
4126 func (addr, size, read, write, exec, obfd);
4127 }
4128 do_cleanups (cleanup);
4129 return 0;
4130 }
4131
4132 static int
4133 find_signalled_thread (struct thread_info *info, void *data)
4134 {
4135 if (info->stop_signal != TARGET_SIGNAL_0
4136 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4137 return 1;
4138
4139 return 0;
4140 }
4141
4142 static enum target_signal
4143 find_stop_signal (void)
4144 {
4145 struct thread_info *info =
4146 iterate_over_threads (find_signalled_thread, NULL);
4147
4148 if (info)
4149 return info->stop_signal;
4150 else
4151 return TARGET_SIGNAL_0;
4152 }
4153
4154 /* Records the thread's register state for the corefile note
4155 section. */
4156
4157 static char *
4158 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4159 char *note_data, int *note_size,
4160 enum target_signal stop_signal)
4161 {
4162 gdb_gregset_t gregs;
4163 gdb_fpregset_t fpregs;
4164 unsigned long lwp = ptid_get_lwp (ptid);
4165 struct gdbarch *gdbarch = target_gdbarch;
4166 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4167 const struct regset *regset;
4168 int core_regset_p;
4169 struct cleanup *old_chain;
4170 struct core_regset_section *sect_list;
4171 char *gdb_regset;
4172
4173 old_chain = save_inferior_ptid ();
4174 inferior_ptid = ptid;
4175 target_fetch_registers (regcache, -1);
4176 do_cleanups (old_chain);
4177
4178 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4179 sect_list = gdbarch_core_regset_sections (gdbarch);
4180
4181 if (core_regset_p
4182 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4183 sizeof (gregs))) != NULL
4184 && regset->collect_regset != NULL)
4185 regset->collect_regset (regset, regcache, -1,
4186 &gregs, sizeof (gregs));
4187 else
4188 fill_gregset (regcache, &gregs, -1);
4189
4190 note_data = (char *) elfcore_write_prstatus (obfd,
4191 note_data,
4192 note_size,
4193 lwp,
4194 stop_signal, &gregs);
4195
4196 /* The loop below uses the new struct core_regset_section, which stores
4197 the supported section names and sizes for the core file. Note that
4198 note PRSTATUS needs to be treated specially. But the other notes are
4199 structurally the same, so they can benefit from the new struct. */
4200 if (core_regset_p && sect_list != NULL)
4201 while (sect_list->sect_name != NULL)
4202 {
4203 /* .reg was already handled above. */
4204 if (strcmp (sect_list->sect_name, ".reg") == 0)
4205 {
4206 sect_list++;
4207 continue;
4208 }
4209 regset = gdbarch_regset_from_core_section (gdbarch,
4210 sect_list->sect_name,
4211 sect_list->size);
4212 gdb_assert (regset && regset->collect_regset);
4213 gdb_regset = xmalloc (sect_list->size);
4214 regset->collect_regset (regset, regcache, -1,
4215 gdb_regset, sect_list->size);
4216 note_data = (char *) elfcore_write_register_note (obfd,
4217 note_data,
4218 note_size,
4219 sect_list->sect_name,
4220 gdb_regset,
4221 sect_list->size);
4222 xfree (gdb_regset);
4223 sect_list++;
4224 }
4225
4226 /* For architectures that does not have the struct core_regset_section
4227 implemented, we use the old method. When all the architectures have
4228 the new support, the code below should be deleted. */
4229 else
4230 {
4231 if (core_regset_p
4232 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4233 sizeof (fpregs))) != NULL
4234 && regset->collect_regset != NULL)
4235 regset->collect_regset (regset, regcache, -1,
4236 &fpregs, sizeof (fpregs));
4237 else
4238 fill_fpregset (regcache, &fpregs, -1);
4239
4240 note_data = (char *) elfcore_write_prfpreg (obfd,
4241 note_data,
4242 note_size,
4243 &fpregs, sizeof (fpregs));
4244 }
4245
4246 return note_data;
4247 }
4248
4249 struct linux_nat_corefile_thread_data
4250 {
4251 bfd *obfd;
4252 char *note_data;
4253 int *note_size;
4254 int num_notes;
4255 enum target_signal stop_signal;
4256 };
4257
4258 /* Called by gdbthread.c once per thread. Records the thread's
4259 register state for the corefile note section. */
4260
4261 static int
4262 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4263 {
4264 struct linux_nat_corefile_thread_data *args = data;
4265
4266 args->note_data = linux_nat_do_thread_registers (args->obfd,
4267 ti->ptid,
4268 args->note_data,
4269 args->note_size,
4270 args->stop_signal);
4271 args->num_notes++;
4272
4273 return 0;
4274 }
4275
4276 /* Enumerate spufs IDs for process PID. */
4277
4278 static void
4279 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4280 {
4281 char path[128];
4282 DIR *dir;
4283 struct dirent *entry;
4284
4285 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4286 dir = opendir (path);
4287 if (!dir)
4288 return;
4289
4290 rewinddir (dir);
4291 while ((entry = readdir (dir)) != NULL)
4292 {
4293 struct stat st;
4294 struct statfs stfs;
4295 int fd;
4296
4297 fd = atoi (entry->d_name);
4298 if (!fd)
4299 continue;
4300
4301 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4302 if (stat (path, &st) != 0)
4303 continue;
4304 if (!S_ISDIR (st.st_mode))
4305 continue;
4306
4307 if (statfs (path, &stfs) != 0)
4308 continue;
4309 if (stfs.f_type != SPUFS_MAGIC)
4310 continue;
4311
4312 callback (data, fd);
4313 }
4314
4315 closedir (dir);
4316 }
4317
4318 /* Generate corefile notes for SPU contexts. */
4319
4320 struct linux_spu_corefile_data
4321 {
4322 bfd *obfd;
4323 char *note_data;
4324 int *note_size;
4325 };
4326
4327 static void
4328 linux_spu_corefile_callback (void *data, int fd)
4329 {
4330 struct linux_spu_corefile_data *args = data;
4331 int i;
4332
4333 static const char *spu_files[] =
4334 {
4335 "object-id",
4336 "mem",
4337 "regs",
4338 "fpcr",
4339 "lslr",
4340 "decr",
4341 "decr_status",
4342 "signal1",
4343 "signal1_type",
4344 "signal2",
4345 "signal2_type",
4346 "event_mask",
4347 "event_status",
4348 "mbox_info",
4349 "ibox_info",
4350 "wbox_info",
4351 "dma_info",
4352 "proxydma_info",
4353 };
4354
4355 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4356 {
4357 char annex[32], note_name[32];
4358 gdb_byte *spu_data;
4359 LONGEST spu_len;
4360
4361 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4362 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4363 annex, &spu_data);
4364 if (spu_len > 0)
4365 {
4366 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4367 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4368 args->note_size, note_name,
4369 NT_SPU, spu_data, spu_len);
4370 xfree (spu_data);
4371 }
4372 }
4373 }
4374
4375 static char *
4376 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4377 {
4378 struct linux_spu_corefile_data args;
4379 args.obfd = obfd;
4380 args.note_data = note_data;
4381 args.note_size = note_size;
4382
4383 iterate_over_spus (PIDGET (inferior_ptid),
4384 linux_spu_corefile_callback, &args);
4385
4386 return args.note_data;
4387 }
4388
4389 /* Fills the "to_make_corefile_note" target vector. Builds the note
4390 section for a corefile, and returns it in a malloc buffer. */
4391
4392 static char *
4393 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4394 {
4395 struct linux_nat_corefile_thread_data thread_args;
4396 struct cleanup *old_chain;
4397 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4398 char fname[16] = { '\0' };
4399 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4400 char psargs[80] = { '\0' };
4401 char *note_data = NULL;
4402 ptid_t current_ptid = inferior_ptid;
4403 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4404 gdb_byte *auxv;
4405 int auxv_len;
4406
4407 if (get_exec_file (0))
4408 {
4409 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4410 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4411 if (get_inferior_args ())
4412 {
4413 char *string_end;
4414 char *psargs_end = psargs + sizeof (psargs);
4415
4416 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4417 strings fine. */
4418 string_end = memchr (psargs, 0, sizeof (psargs));
4419 if (string_end != NULL)
4420 {
4421 *string_end++ = ' ';
4422 strncpy (string_end, get_inferior_args (),
4423 psargs_end - string_end);
4424 }
4425 }
4426 note_data = (char *) elfcore_write_prpsinfo (obfd,
4427 note_data,
4428 note_size, fname, psargs);
4429 }
4430
4431 /* Dump information for threads. */
4432 thread_args.obfd = obfd;
4433 thread_args.note_data = note_data;
4434 thread_args.note_size = note_size;
4435 thread_args.num_notes = 0;
4436 thread_args.stop_signal = find_stop_signal ();
4437 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4438 gdb_assert (thread_args.num_notes != 0);
4439 note_data = thread_args.note_data;
4440
4441 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4442 NULL, &auxv);
4443 if (auxv_len > 0)
4444 {
4445 note_data = elfcore_write_note (obfd, note_data, note_size,
4446 "CORE", NT_AUXV, auxv, auxv_len);
4447 xfree (auxv);
4448 }
4449
4450 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4451
4452 make_cleanup (xfree, note_data);
4453 return note_data;
4454 }
4455
4456 /* Implement the "info proc" command. */
4457
4458 static void
4459 linux_nat_info_proc_cmd (char *args, int from_tty)
4460 {
4461 /* A long is used for pid instead of an int to avoid a loss of precision
4462 compiler warning from the output of strtoul. */
4463 long pid = PIDGET (inferior_ptid);
4464 FILE *procfile;
4465 char **argv = NULL;
4466 char buffer[MAXPATHLEN];
4467 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4468 int cmdline_f = 1;
4469 int cwd_f = 1;
4470 int exe_f = 1;
4471 int mappings_f = 0;
4472 int environ_f = 0;
4473 int status_f = 0;
4474 int stat_f = 0;
4475 int all = 0;
4476 struct stat dummy;
4477
4478 if (args)
4479 {
4480 /* Break up 'args' into an argv array. */
4481 argv = gdb_buildargv (args);
4482 make_cleanup_freeargv (argv);
4483 }
4484 while (argv != NULL && *argv != NULL)
4485 {
4486 if (isdigit (argv[0][0]))
4487 {
4488 pid = strtoul (argv[0], NULL, 10);
4489 }
4490 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4491 {
4492 mappings_f = 1;
4493 }
4494 else if (strcmp (argv[0], "status") == 0)
4495 {
4496 status_f = 1;
4497 }
4498 else if (strcmp (argv[0], "stat") == 0)
4499 {
4500 stat_f = 1;
4501 }
4502 else if (strcmp (argv[0], "cmd") == 0)
4503 {
4504 cmdline_f = 1;
4505 }
4506 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4507 {
4508 exe_f = 1;
4509 }
4510 else if (strcmp (argv[0], "cwd") == 0)
4511 {
4512 cwd_f = 1;
4513 }
4514 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4515 {
4516 all = 1;
4517 }
4518 else
4519 {
4520 /* [...] (future options here) */
4521 }
4522 argv++;
4523 }
4524 if (pid == 0)
4525 error (_("No current process: you must name one."));
4526
4527 sprintf (fname1, "/proc/%ld", pid);
4528 if (stat (fname1, &dummy) != 0)
4529 error (_("No /proc directory: '%s'"), fname1);
4530
4531 printf_filtered (_("process %ld\n"), pid);
4532 if (cmdline_f || all)
4533 {
4534 sprintf (fname1, "/proc/%ld/cmdline", pid);
4535 if ((procfile = fopen (fname1, "r")) != NULL)
4536 {
4537 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4538 if (fgets (buffer, sizeof (buffer), procfile))
4539 printf_filtered ("cmdline = '%s'\n", buffer);
4540 else
4541 warning (_("unable to read '%s'"), fname1);
4542 do_cleanups (cleanup);
4543 }
4544 else
4545 warning (_("unable to open /proc file '%s'"), fname1);
4546 }
4547 if (cwd_f || all)
4548 {
4549 sprintf (fname1, "/proc/%ld/cwd", pid);
4550 memset (fname2, 0, sizeof (fname2));
4551 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4552 printf_filtered ("cwd = '%s'\n", fname2);
4553 else
4554 warning (_("unable to read link '%s'"), fname1);
4555 }
4556 if (exe_f || all)
4557 {
4558 sprintf (fname1, "/proc/%ld/exe", pid);
4559 memset (fname2, 0, sizeof (fname2));
4560 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4561 printf_filtered ("exe = '%s'\n", fname2);
4562 else
4563 warning (_("unable to read link '%s'"), fname1);
4564 }
4565 if (mappings_f || all)
4566 {
4567 sprintf (fname1, "/proc/%ld/maps", pid);
4568 if ((procfile = fopen (fname1, "r")) != NULL)
4569 {
4570 long long addr, endaddr, size, offset, inode;
4571 char permissions[8], device[8], filename[MAXPATHLEN];
4572 struct cleanup *cleanup;
4573
4574 cleanup = make_cleanup_fclose (procfile);
4575 printf_filtered (_("Mapped address spaces:\n\n"));
4576 if (gdbarch_addr_bit (target_gdbarch) == 32)
4577 {
4578 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4579 "Start Addr",
4580 " End Addr",
4581 " Size", " Offset", "objfile");
4582 }
4583 else
4584 {
4585 printf_filtered (" %18s %18s %10s %10s %7s\n",
4586 "Start Addr",
4587 " End Addr",
4588 " Size", " Offset", "objfile");
4589 }
4590
4591 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4592 &offset, &device[0], &inode, &filename[0]))
4593 {
4594 size = endaddr - addr;
4595
4596 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4597 calls here (and possibly above) should be abstracted
4598 out into their own functions? Andrew suggests using
4599 a generic local_address_string instead to print out
4600 the addresses; that makes sense to me, too. */
4601
4602 if (gdbarch_addr_bit (target_gdbarch) == 32)
4603 {
4604 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4605 (unsigned long) addr, /* FIXME: pr_addr */
4606 (unsigned long) endaddr,
4607 (int) size,
4608 (unsigned int) offset,
4609 filename[0] ? filename : "");
4610 }
4611 else
4612 {
4613 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4614 (unsigned long) addr, /* FIXME: pr_addr */
4615 (unsigned long) endaddr,
4616 (int) size,
4617 (unsigned int) offset,
4618 filename[0] ? filename : "");
4619 }
4620 }
4621
4622 do_cleanups (cleanup);
4623 }
4624 else
4625 warning (_("unable to open /proc file '%s'"), fname1);
4626 }
4627 if (status_f || all)
4628 {
4629 sprintf (fname1, "/proc/%ld/status", pid);
4630 if ((procfile = fopen (fname1, "r")) != NULL)
4631 {
4632 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4633 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4634 puts_filtered (buffer);
4635 do_cleanups (cleanup);
4636 }
4637 else
4638 warning (_("unable to open /proc file '%s'"), fname1);
4639 }
4640 if (stat_f || all)
4641 {
4642 sprintf (fname1, "/proc/%ld/stat", pid);
4643 if ((procfile = fopen (fname1, "r")) != NULL)
4644 {
4645 int itmp;
4646 char ctmp;
4647 long ltmp;
4648 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4649
4650 if (fscanf (procfile, "%d ", &itmp) > 0)
4651 printf_filtered (_("Process: %d\n"), itmp);
4652 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4653 printf_filtered (_("Exec file: %s\n"), buffer);
4654 if (fscanf (procfile, "%c ", &ctmp) > 0)
4655 printf_filtered (_("State: %c\n"), ctmp);
4656 if (fscanf (procfile, "%d ", &itmp) > 0)
4657 printf_filtered (_("Parent process: %d\n"), itmp);
4658 if (fscanf (procfile, "%d ", &itmp) > 0)
4659 printf_filtered (_("Process group: %d\n"), itmp);
4660 if (fscanf (procfile, "%d ", &itmp) > 0)
4661 printf_filtered (_("Session id: %d\n"), itmp);
4662 if (fscanf (procfile, "%d ", &itmp) > 0)
4663 printf_filtered (_("TTY: %d\n"), itmp);
4664 if (fscanf (procfile, "%d ", &itmp) > 0)
4665 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4666 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4667 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4668 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4669 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4670 (unsigned long) ltmp);
4671 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4672 printf_filtered (_("Minor faults, children: %lu\n"),
4673 (unsigned long) ltmp);
4674 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4675 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4676 (unsigned long) ltmp);
4677 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4678 printf_filtered (_("Major faults, children: %lu\n"),
4679 (unsigned long) ltmp);
4680 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4681 printf_filtered (_("utime: %ld\n"), ltmp);
4682 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4683 printf_filtered (_("stime: %ld\n"), ltmp);
4684 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4685 printf_filtered (_("utime, children: %ld\n"), ltmp);
4686 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4687 printf_filtered (_("stime, children: %ld\n"), ltmp);
4688 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4689 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4690 ltmp);
4691 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4692 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4693 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4694 printf_filtered (_("jiffies until next timeout: %lu\n"),
4695 (unsigned long) ltmp);
4696 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4697 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4698 (unsigned long) ltmp);
4699 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4700 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4701 ltmp);
4702 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4703 printf_filtered (_("Virtual memory size: %lu\n"),
4704 (unsigned long) ltmp);
4705 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4706 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4707 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4708 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4709 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4710 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4711 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4712 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4713 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4714 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4715 #if 0 /* Don't know how architecture-dependent the rest is...
4716 Anyway the signal bitmap info is available from "status". */
4717 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4718 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4719 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4720 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4721 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4722 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4723 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4724 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4725 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4726 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4727 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4728 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4729 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4730 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4731 #endif
4732 do_cleanups (cleanup);
4733 }
4734 else
4735 warning (_("unable to open /proc file '%s'"), fname1);
4736 }
4737 }
4738
4739 /* Implement the to_xfer_partial interface for memory reads using the /proc
4740 filesystem. Because we can use a single read() call for /proc, this
4741 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4742 but it doesn't support writes. */
4743
4744 static LONGEST
4745 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4746 const char *annex, gdb_byte *readbuf,
4747 const gdb_byte *writebuf,
4748 ULONGEST offset, LONGEST len)
4749 {
4750 LONGEST ret;
4751 int fd;
4752 char filename[64];
4753
4754 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4755 return 0;
4756
4757 /* Don't bother for one word. */
4758 if (len < 3 * sizeof (long))
4759 return 0;
4760
4761 /* We could keep this file open and cache it - possibly one per
4762 thread. That requires some juggling, but is even faster. */
4763 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4764 fd = open (filename, O_RDONLY | O_LARGEFILE);
4765 if (fd == -1)
4766 return 0;
4767
4768 /* If pread64 is available, use it. It's faster if the kernel
4769 supports it (only one syscall), and it's 64-bit safe even on
4770 32-bit platforms (for instance, SPARC debugging a SPARC64
4771 application). */
4772 #ifdef HAVE_PREAD64
4773 if (pread64 (fd, readbuf, len, offset) != len)
4774 #else
4775 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4776 #endif
4777 ret = 0;
4778 else
4779 ret = len;
4780
4781 close (fd);
4782 return ret;
4783 }
4784
4785
4786 /* Enumerate spufs IDs for process PID. */
4787 static LONGEST
4788 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4789 {
4790 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4791 LONGEST pos = 0;
4792 LONGEST written = 0;
4793 char path[128];
4794 DIR *dir;
4795 struct dirent *entry;
4796
4797 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4798 dir = opendir (path);
4799 if (!dir)
4800 return -1;
4801
4802 rewinddir (dir);
4803 while ((entry = readdir (dir)) != NULL)
4804 {
4805 struct stat st;
4806 struct statfs stfs;
4807 int fd;
4808
4809 fd = atoi (entry->d_name);
4810 if (!fd)
4811 continue;
4812
4813 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4814 if (stat (path, &st) != 0)
4815 continue;
4816 if (!S_ISDIR (st.st_mode))
4817 continue;
4818
4819 if (statfs (path, &stfs) != 0)
4820 continue;
4821 if (stfs.f_type != SPUFS_MAGIC)
4822 continue;
4823
4824 if (pos >= offset && pos + 4 <= offset + len)
4825 {
4826 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4827 written += 4;
4828 }
4829 pos += 4;
4830 }
4831
4832 closedir (dir);
4833 return written;
4834 }
4835
4836 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4837 object type, using the /proc file system. */
4838 static LONGEST
4839 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4840 const char *annex, gdb_byte *readbuf,
4841 const gdb_byte *writebuf,
4842 ULONGEST offset, LONGEST len)
4843 {
4844 char buf[128];
4845 int fd = 0;
4846 int ret = -1;
4847 int pid = PIDGET (inferior_ptid);
4848
4849 if (!annex)
4850 {
4851 if (!readbuf)
4852 return -1;
4853 else
4854 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4855 }
4856
4857 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4858 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4859 if (fd <= 0)
4860 return -1;
4861
4862 if (offset != 0
4863 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4864 {
4865 close (fd);
4866 return 0;
4867 }
4868
4869 if (writebuf)
4870 ret = write (fd, writebuf, (size_t) len);
4871 else if (readbuf)
4872 ret = read (fd, readbuf, (size_t) len);
4873
4874 close (fd);
4875 return ret;
4876 }
4877
4878
4879 /* Parse LINE as a signal set and add its set bits to SIGS. */
4880
4881 static void
4882 add_line_to_sigset (const char *line, sigset_t *sigs)
4883 {
4884 int len = strlen (line) - 1;
4885 const char *p;
4886 int signum;
4887
4888 if (line[len] != '\n')
4889 error (_("Could not parse signal set: %s"), line);
4890
4891 p = line;
4892 signum = len * 4;
4893 while (len-- > 0)
4894 {
4895 int digit;
4896
4897 if (*p >= '0' && *p <= '9')
4898 digit = *p - '0';
4899 else if (*p >= 'a' && *p <= 'f')
4900 digit = *p - 'a' + 10;
4901 else
4902 error (_("Could not parse signal set: %s"), line);
4903
4904 signum -= 4;
4905
4906 if (digit & 1)
4907 sigaddset (sigs, signum + 1);
4908 if (digit & 2)
4909 sigaddset (sigs, signum + 2);
4910 if (digit & 4)
4911 sigaddset (sigs, signum + 3);
4912 if (digit & 8)
4913 sigaddset (sigs, signum + 4);
4914
4915 p++;
4916 }
4917 }
4918
4919 /* Find process PID's pending signals from /proc/pid/status and set
4920 SIGS to match. */
4921
4922 void
4923 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4924 {
4925 FILE *procfile;
4926 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4927 int signum;
4928 struct cleanup *cleanup;
4929
4930 sigemptyset (pending);
4931 sigemptyset (blocked);
4932 sigemptyset (ignored);
4933 sprintf (fname, "/proc/%d/status", pid);
4934 procfile = fopen (fname, "r");
4935 if (procfile == NULL)
4936 error (_("Could not open %s"), fname);
4937 cleanup = make_cleanup_fclose (procfile);
4938
4939 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4940 {
4941 /* Normal queued signals are on the SigPnd line in the status
4942 file. However, 2.6 kernels also have a "shared" pending
4943 queue for delivering signals to a thread group, so check for
4944 a ShdPnd line also.
4945
4946 Unfortunately some Red Hat kernels include the shared pending
4947 queue but not the ShdPnd status field. */
4948
4949 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4950 add_line_to_sigset (buffer + 8, pending);
4951 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4952 add_line_to_sigset (buffer + 8, pending);
4953 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4954 add_line_to_sigset (buffer + 8, blocked);
4955 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4956 add_line_to_sigset (buffer + 8, ignored);
4957 }
4958
4959 do_cleanups (cleanup);
4960 }
4961
4962 static LONGEST
4963 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4964 const char *annex, gdb_byte *readbuf,
4965 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4966 {
4967 /* We make the process list snapshot when the object starts to be
4968 read. */
4969 static const char *buf;
4970 static LONGEST len_avail = -1;
4971 static struct obstack obstack;
4972
4973 DIR *dirp;
4974
4975 gdb_assert (object == TARGET_OBJECT_OSDATA);
4976
4977 if (strcmp (annex, "processes") != 0)
4978 return 0;
4979
4980 gdb_assert (readbuf && !writebuf);
4981
4982 if (offset == 0)
4983 {
4984 if (len_avail != -1 && len_avail != 0)
4985 obstack_free (&obstack, NULL);
4986 len_avail = 0;
4987 buf = NULL;
4988 obstack_init (&obstack);
4989 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4990
4991 dirp = opendir ("/proc");
4992 if (dirp)
4993 {
4994 struct dirent *dp;
4995 while ((dp = readdir (dirp)) != NULL)
4996 {
4997 struct stat statbuf;
4998 char procentry[sizeof ("/proc/4294967295")];
4999
5000 if (!isdigit (dp->d_name[0])
5001 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5002 continue;
5003
5004 sprintf (procentry, "/proc/%s", dp->d_name);
5005 if (stat (procentry, &statbuf) == 0
5006 && S_ISDIR (statbuf.st_mode))
5007 {
5008 char *pathname;
5009 FILE *f;
5010 char cmd[MAXPATHLEN + 1];
5011 struct passwd *entry;
5012
5013 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5014 entry = getpwuid (statbuf.st_uid);
5015
5016 if ((f = fopen (pathname, "r")) != NULL)
5017 {
5018 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5019 if (len > 0)
5020 {
5021 int i;
5022 for (i = 0; i < len; i++)
5023 if (cmd[i] == '\0')
5024 cmd[i] = ' ';
5025 cmd[len] = '\0';
5026
5027 obstack_xml_printf (
5028 &obstack,
5029 "<item>"
5030 "<column name=\"pid\">%s</column>"
5031 "<column name=\"user\">%s</column>"
5032 "<column name=\"command\">%s</column>"
5033 "</item>",
5034 dp->d_name,
5035 entry ? entry->pw_name : "?",
5036 cmd);
5037 }
5038 fclose (f);
5039 }
5040
5041 xfree (pathname);
5042 }
5043 }
5044
5045 closedir (dirp);
5046 }
5047
5048 obstack_grow_str0 (&obstack, "</osdata>\n");
5049 buf = obstack_finish (&obstack);
5050 len_avail = strlen (buf);
5051 }
5052
5053 if (offset >= len_avail)
5054 {
5055 /* Done. Get rid of the obstack. */
5056 obstack_free (&obstack, NULL);
5057 buf = NULL;
5058 len_avail = 0;
5059 return 0;
5060 }
5061
5062 if (len > len_avail - offset)
5063 len = len_avail - offset;
5064 memcpy (readbuf, buf + offset, len);
5065
5066 return len;
5067 }
5068
5069 static LONGEST
5070 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5071 const char *annex, gdb_byte *readbuf,
5072 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5073 {
5074 LONGEST xfer;
5075
5076 if (object == TARGET_OBJECT_AUXV)
5077 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5078 offset, len);
5079
5080 if (object == TARGET_OBJECT_OSDATA)
5081 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5082 offset, len);
5083
5084 if (object == TARGET_OBJECT_SPU)
5085 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5086 offset, len);
5087
5088 /* GDB calculates all the addresses in possibly larget width of the address.
5089 Address width needs to be masked before its final use - either by
5090 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5091
5092 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5093
5094 if (object == TARGET_OBJECT_MEMORY)
5095 {
5096 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5097
5098 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5099 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5100 }
5101
5102 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5103 offset, len);
5104 if (xfer != 0)
5105 return xfer;
5106
5107 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5108 offset, len);
5109 }
5110
5111 /* Create a prototype generic GNU/Linux target. The client can override
5112 it with local methods. */
5113
5114 static void
5115 linux_target_install_ops (struct target_ops *t)
5116 {
5117 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5118 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5119 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5120 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5121 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5122 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5123 t->to_post_attach = linux_child_post_attach;
5124 t->to_follow_fork = linux_child_follow_fork;
5125 t->to_find_memory_regions = linux_nat_find_memory_regions;
5126 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5127
5128 super_xfer_partial = t->to_xfer_partial;
5129 t->to_xfer_partial = linux_xfer_partial;
5130 }
5131
5132 struct target_ops *
5133 linux_target (void)
5134 {
5135 struct target_ops *t;
5136
5137 t = inf_ptrace_target ();
5138 linux_target_install_ops (t);
5139
5140 return t;
5141 }
5142
5143 struct target_ops *
5144 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5145 {
5146 struct target_ops *t;
5147
5148 t = inf_ptrace_trad_target (register_u_offset);
5149 linux_target_install_ops (t);
5150
5151 return t;
5152 }
5153
5154 /* target_is_async_p implementation. */
5155
5156 static int
5157 linux_nat_is_async_p (void)
5158 {
5159 /* NOTE: palves 2008-03-21: We're only async when the user requests
5160 it explicitly with the "set target-async" command.
5161 Someday, linux will always be async. */
5162 if (!target_async_permitted)
5163 return 0;
5164
5165 /* See target.h/target_async_mask. */
5166 return linux_nat_async_mask_value;
5167 }
5168
5169 /* target_can_async_p implementation. */
5170
5171 static int
5172 linux_nat_can_async_p (void)
5173 {
5174 /* NOTE: palves 2008-03-21: We're only async when the user requests
5175 it explicitly with the "set target-async" command.
5176 Someday, linux will always be async. */
5177 if (!target_async_permitted)
5178 return 0;
5179
5180 /* See target.h/target_async_mask. */
5181 return linux_nat_async_mask_value;
5182 }
5183
5184 static int
5185 linux_nat_supports_non_stop (void)
5186 {
5187 return 1;
5188 }
5189
5190 /* True if we want to support multi-process. To be removed when GDB
5191 supports multi-exec. */
5192
5193 int linux_multi_process = 1;
5194
5195 static int
5196 linux_nat_supports_multi_process (void)
5197 {
5198 return linux_multi_process;
5199 }
5200
5201 /* target_async_mask implementation. */
5202
5203 static int
5204 linux_nat_async_mask (int new_mask)
5205 {
5206 int curr_mask = linux_nat_async_mask_value;
5207
5208 if (curr_mask != new_mask)
5209 {
5210 if (new_mask == 0)
5211 {
5212 linux_nat_async (NULL, 0);
5213 linux_nat_async_mask_value = new_mask;
5214 }
5215 else
5216 {
5217 linux_nat_async_mask_value = new_mask;
5218
5219 /* If we're going out of async-mask in all-stop, then the
5220 inferior is stopped. The next resume will call
5221 target_async. In non-stop, the target event source
5222 should be always registered in the event loop. Do so
5223 now. */
5224 if (non_stop)
5225 linux_nat_async (inferior_event_handler, 0);
5226 }
5227 }
5228
5229 return curr_mask;
5230 }
5231
5232 static int async_terminal_is_ours = 1;
5233
5234 /* target_terminal_inferior implementation. */
5235
5236 static void
5237 linux_nat_terminal_inferior (void)
5238 {
5239 if (!target_is_async_p ())
5240 {
5241 /* Async mode is disabled. */
5242 terminal_inferior ();
5243 return;
5244 }
5245
5246 terminal_inferior ();
5247
5248 /* Calls to target_terminal_*() are meant to be idempotent. */
5249 if (!async_terminal_is_ours)
5250 return;
5251
5252 delete_file_handler (input_fd);
5253 async_terminal_is_ours = 0;
5254 set_sigint_trap ();
5255 }
5256
5257 /* target_terminal_ours implementation. */
5258
5259 static void
5260 linux_nat_terminal_ours (void)
5261 {
5262 if (!target_is_async_p ())
5263 {
5264 /* Async mode is disabled. */
5265 terminal_ours ();
5266 return;
5267 }
5268
5269 /* GDB should never give the terminal to the inferior if the
5270 inferior is running in the background (run&, continue&, etc.),
5271 but claiming it sure should. */
5272 terminal_ours ();
5273
5274 if (async_terminal_is_ours)
5275 return;
5276
5277 clear_sigint_trap ();
5278 add_file_handler (input_fd, stdin_event_handler, 0);
5279 async_terminal_is_ours = 1;
5280 }
5281
5282 static void (*async_client_callback) (enum inferior_event_type event_type,
5283 void *context);
5284 static void *async_client_context;
5285
5286 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5287 so we notice when any child changes state, and notify the
5288 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5289 above to wait for the arrival of a SIGCHLD. */
5290
5291 static void
5292 sigchld_handler (int signo)
5293 {
5294 int old_errno = errno;
5295
5296 if (debug_linux_nat_async)
5297 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5298
5299 if (signo == SIGCHLD
5300 && linux_nat_event_pipe[0] != -1)
5301 async_file_mark (); /* Let the event loop know that there are
5302 events to handle. */
5303
5304 errno = old_errno;
5305 }
5306
5307 /* Callback registered with the target events file descriptor. */
5308
5309 static void
5310 handle_target_event (int error, gdb_client_data client_data)
5311 {
5312 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5313 }
5314
5315 /* Create/destroy the target events pipe. Returns previous state. */
5316
5317 static int
5318 linux_async_pipe (int enable)
5319 {
5320 int previous = (linux_nat_event_pipe[0] != -1);
5321
5322 if (previous != enable)
5323 {
5324 sigset_t prev_mask;
5325
5326 block_child_signals (&prev_mask);
5327
5328 if (enable)
5329 {
5330 if (pipe (linux_nat_event_pipe) == -1)
5331 internal_error (__FILE__, __LINE__,
5332 "creating event pipe failed.");
5333
5334 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5335 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5336 }
5337 else
5338 {
5339 close (linux_nat_event_pipe[0]);
5340 close (linux_nat_event_pipe[1]);
5341 linux_nat_event_pipe[0] = -1;
5342 linux_nat_event_pipe[1] = -1;
5343 }
5344
5345 restore_child_signals_mask (&prev_mask);
5346 }
5347
5348 return previous;
5349 }
5350
5351 /* target_async implementation. */
5352
5353 static void
5354 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5355 void *context), void *context)
5356 {
5357 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5358 internal_error (__FILE__, __LINE__,
5359 "Calling target_async when async is masked");
5360
5361 if (callback != NULL)
5362 {
5363 async_client_callback = callback;
5364 async_client_context = context;
5365 if (!linux_async_pipe (1))
5366 {
5367 add_file_handler (linux_nat_event_pipe[0],
5368 handle_target_event, NULL);
5369 /* There may be pending events to handle. Tell the event loop
5370 to poll them. */
5371 async_file_mark ();
5372 }
5373 }
5374 else
5375 {
5376 async_client_callback = callback;
5377 async_client_context = context;
5378 delete_file_handler (linux_nat_event_pipe[0]);
5379 linux_async_pipe (0);
5380 }
5381 return;
5382 }
5383
5384 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5385 event came out. */
5386
5387 static int
5388 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5389 {
5390 if (!lwp->stopped)
5391 {
5392 int pid, status;
5393 ptid_t ptid = lwp->ptid;
5394
5395 if (debug_linux_nat)
5396 fprintf_unfiltered (gdb_stdlog,
5397 "LNSL: running -> suspending %s\n",
5398 target_pid_to_str (lwp->ptid));
5399
5400
5401 stop_callback (lwp, NULL);
5402 stop_wait_callback (lwp, NULL);
5403
5404 /* If the lwp exits while we try to stop it, there's nothing
5405 else to do. */
5406 lwp = find_lwp_pid (ptid);
5407 if (lwp == NULL)
5408 return 0;
5409
5410 /* If we didn't collect any signal other than SIGSTOP while
5411 stopping the LWP, push a SIGNAL_0 event. In either case, the
5412 event-loop will end up calling target_wait which will collect
5413 these. */
5414 if (lwp->status == 0)
5415 lwp->status = W_STOPCODE (0);
5416 async_file_mark ();
5417 }
5418 else
5419 {
5420 /* Already known to be stopped; do nothing. */
5421
5422 if (debug_linux_nat)
5423 {
5424 if (find_thread_ptid (lwp->ptid)->stop_requested)
5425 fprintf_unfiltered (gdb_stdlog, "\
5426 LNSL: already stopped/stop_requested %s\n",
5427 target_pid_to_str (lwp->ptid));
5428 else
5429 fprintf_unfiltered (gdb_stdlog, "\
5430 LNSL: already stopped/no stop_requested yet %s\n",
5431 target_pid_to_str (lwp->ptid));
5432 }
5433 }
5434 return 0;
5435 }
5436
5437 static void
5438 linux_nat_stop (ptid_t ptid)
5439 {
5440 if (non_stop)
5441 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5442 else
5443 linux_ops->to_stop (ptid);
5444 }
5445
5446 static void
5447 linux_nat_close (int quitting)
5448 {
5449 /* Unregister from the event loop. */
5450 if (target_is_async_p ())
5451 target_async (NULL, 0);
5452
5453 /* Reset the async_masking. */
5454 linux_nat_async_mask_value = 1;
5455
5456 if (linux_ops->to_close)
5457 linux_ops->to_close (quitting);
5458 }
5459
5460 /* When requests are passed down from the linux-nat layer to the
5461 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5462 used. The address space pointer is stored in the inferior object,
5463 but the common code that is passed such ptid can't tell whether
5464 lwpid is a "main" process id or not (it assumes so). We reverse
5465 look up the "main" process id from the lwp here. */
5466
5467 struct address_space *
5468 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5469 {
5470 struct lwp_info *lwp;
5471 struct inferior *inf;
5472 int pid;
5473
5474 pid = GET_LWP (ptid);
5475 if (GET_LWP (ptid) == 0)
5476 {
5477 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5478 tgid. */
5479 lwp = find_lwp_pid (ptid);
5480 pid = GET_PID (lwp->ptid);
5481 }
5482 else
5483 {
5484 /* A (pid,lwpid,0) ptid. */
5485 pid = GET_PID (ptid);
5486 }
5487
5488 inf = find_inferior_pid (pid);
5489 gdb_assert (inf != NULL);
5490 return inf->aspace;
5491 }
5492
5493 int
5494 linux_nat_core_of_thread_1 (ptid_t ptid)
5495 {
5496 struct cleanup *back_to;
5497 char *filename;
5498 FILE *f;
5499 char *content = NULL;
5500 char *p;
5501 char *ts = 0;
5502 int content_read = 0;
5503 int i;
5504 int core;
5505
5506 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5507 GET_PID (ptid), GET_LWP (ptid));
5508 back_to = make_cleanup (xfree, filename);
5509
5510 f = fopen (filename, "r");
5511 if (!f)
5512 {
5513 do_cleanups (back_to);
5514 return -1;
5515 }
5516
5517 make_cleanup_fclose (f);
5518
5519 for (;;)
5520 {
5521 int n;
5522 content = xrealloc (content, content_read + 1024);
5523 n = fread (content + content_read, 1, 1024, f);
5524 content_read += n;
5525 if (n < 1024)
5526 {
5527 content[content_read] = '\0';
5528 break;
5529 }
5530 }
5531
5532 make_cleanup (xfree, content);
5533
5534 p = strchr (content, '(');
5535 p = strchr (p, ')') + 2; /* skip ")" and a whitespace. */
5536
5537 /* If the first field after program name has index 0, then core number is
5538 the field with index 36. There's no constant for that anywhere. */
5539 p = strtok_r (p, " ", &ts);
5540 for (i = 0; i != 36; ++i)
5541 p = strtok_r (NULL, " ", &ts);
5542
5543 if (sscanf (p, "%d", &core) == 0)
5544 core = -1;
5545
5546 do_cleanups (back_to);
5547
5548 return core;
5549 }
5550
5551 /* Return the cached value of the processor core for thread PTID. */
5552
5553 int
5554 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5555 {
5556 struct lwp_info *info = find_lwp_pid (ptid);
5557 if (info)
5558 return info->core;
5559 return -1;
5560 }
5561
5562 void
5563 linux_nat_add_target (struct target_ops *t)
5564 {
5565 /* Save the provided single-threaded target. We save this in a separate
5566 variable because another target we've inherited from (e.g. inf-ptrace)
5567 may have saved a pointer to T; we want to use it for the final
5568 process stratum target. */
5569 linux_ops_saved = *t;
5570 linux_ops = &linux_ops_saved;
5571
5572 /* Override some methods for multithreading. */
5573 t->to_create_inferior = linux_nat_create_inferior;
5574 t->to_attach = linux_nat_attach;
5575 t->to_detach = linux_nat_detach;
5576 t->to_resume = linux_nat_resume;
5577 t->to_wait = linux_nat_wait;
5578 t->to_xfer_partial = linux_nat_xfer_partial;
5579 t->to_kill = linux_nat_kill;
5580 t->to_mourn_inferior = linux_nat_mourn_inferior;
5581 t->to_thread_alive = linux_nat_thread_alive;
5582 t->to_pid_to_str = linux_nat_pid_to_str;
5583 t->to_has_thread_control = tc_schedlock;
5584 t->to_thread_address_space = linux_nat_thread_address_space;
5585 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5586 t->to_stopped_data_address = linux_nat_stopped_data_address;
5587
5588 t->to_can_async_p = linux_nat_can_async_p;
5589 t->to_is_async_p = linux_nat_is_async_p;
5590 t->to_supports_non_stop = linux_nat_supports_non_stop;
5591 t->to_async = linux_nat_async;
5592 t->to_async_mask = linux_nat_async_mask;
5593 t->to_terminal_inferior = linux_nat_terminal_inferior;
5594 t->to_terminal_ours = linux_nat_terminal_ours;
5595 t->to_close = linux_nat_close;
5596
5597 /* Methods for non-stop support. */
5598 t->to_stop = linux_nat_stop;
5599
5600 t->to_supports_multi_process = linux_nat_supports_multi_process;
5601
5602 t->to_core_of_thread = linux_nat_core_of_thread;
5603
5604 /* We don't change the stratum; this target will sit at
5605 process_stratum and thread_db will set at thread_stratum. This
5606 is a little strange, since this is a multi-threaded-capable
5607 target, but we want to be on the stack below thread_db, and we
5608 also want to be used for single-threaded processes. */
5609
5610 add_target (t);
5611 }
5612
5613 /* Register a method to call whenever a new thread is attached. */
5614 void
5615 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5616 {
5617 /* Save the pointer. We only support a single registered instance
5618 of the GNU/Linux native target, so we do not need to map this to
5619 T. */
5620 linux_nat_new_thread = new_thread;
5621 }
5622
5623 /* Register a method that converts a siginfo object between the layout
5624 that ptrace returns, and the layout in the architecture of the
5625 inferior. */
5626 void
5627 linux_nat_set_siginfo_fixup (struct target_ops *t,
5628 int (*siginfo_fixup) (struct siginfo *,
5629 gdb_byte *,
5630 int))
5631 {
5632 /* Save the pointer. */
5633 linux_nat_siginfo_fixup = siginfo_fixup;
5634 }
5635
5636 /* Return the saved siginfo associated with PTID. */
5637 struct siginfo *
5638 linux_nat_get_siginfo (ptid_t ptid)
5639 {
5640 struct lwp_info *lp = find_lwp_pid (ptid);
5641
5642 gdb_assert (lp != NULL);
5643
5644 return &lp->siginfo;
5645 }
5646
5647 /* Provide a prototype to silence -Wmissing-prototypes. */
5648 extern initialize_file_ftype _initialize_linux_nat;
5649
5650 void
5651 _initialize_linux_nat (void)
5652 {
5653 sigset_t mask;
5654
5655 add_info ("proc", linux_nat_info_proc_cmd, _("\
5656 Show /proc process information about any running process.\n\
5657 Specify any process id, or use the program being debugged by default.\n\
5658 Specify any of the following keywords for detailed info:\n\
5659 mappings -- list of mapped memory regions.\n\
5660 stat -- list a bunch of random process info.\n\
5661 status -- list a different bunch of random process info.\n\
5662 all -- list all available /proc info."));
5663
5664 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5665 &debug_linux_nat, _("\
5666 Set debugging of GNU/Linux lwp module."), _("\
5667 Show debugging of GNU/Linux lwp module."), _("\
5668 Enables printf debugging output."),
5669 NULL,
5670 show_debug_linux_nat,
5671 &setdebuglist, &showdebuglist);
5672
5673 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5674 &debug_linux_nat_async, _("\
5675 Set debugging of GNU/Linux async lwp module."), _("\
5676 Show debugging of GNU/Linux async lwp module."), _("\
5677 Enables printf debugging output."),
5678 NULL,
5679 show_debug_linux_nat_async,
5680 &setdebuglist, &showdebuglist);
5681
5682 /* Save this mask as the default. */
5683 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5684
5685 /* Install a SIGCHLD handler. */
5686 sigchld_action.sa_handler = sigchld_handler;
5687 sigemptyset (&sigchld_action.sa_mask);
5688 sigchld_action.sa_flags = SA_RESTART;
5689
5690 /* Make it the default. */
5691 sigaction (SIGCHLD, &sigchld_action, NULL);
5692
5693 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5694 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5695 sigdelset (&suspend_mask, SIGCHLD);
5696
5697 sigemptyset (&blocked_mask);
5698
5699 add_setshow_boolean_cmd ("disable-randomization", class_support,
5700 &disable_randomization, _("\
5701 Set disabling of debuggee's virtual address space randomization."), _("\
5702 Show disabling of debuggee's virtual address space randomization."), _("\
5703 When this mode is on (which is the default), randomization of the virtual\n\
5704 address space is disabled. Standalone programs run with the randomization\n\
5705 enabled by default on some platforms."),
5706 &set_disable_randomization,
5707 &show_disable_randomization,
5708 &setlist, &showlist);
5709 }
5710 \f
5711
5712 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5713 the GNU/Linux Threads library and therefore doesn't really belong
5714 here. */
5715
5716 /* Read variable NAME in the target and return its value if found.
5717 Otherwise return zero. It is assumed that the type of the variable
5718 is `int'. */
5719
5720 static int
5721 get_signo (const char *name)
5722 {
5723 struct minimal_symbol *ms;
5724 int signo;
5725
5726 ms = lookup_minimal_symbol (name, NULL, NULL);
5727 if (ms == NULL)
5728 return 0;
5729
5730 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5731 sizeof (signo)) != 0)
5732 return 0;
5733
5734 return signo;
5735 }
5736
5737 /* Return the set of signals used by the threads library in *SET. */
5738
5739 void
5740 lin_thread_get_thread_signals (sigset_t *set)
5741 {
5742 struct sigaction action;
5743 int restart, cancel;
5744
5745 sigemptyset (&blocked_mask);
5746 sigemptyset (set);
5747
5748 restart = get_signo ("__pthread_sig_restart");
5749 cancel = get_signo ("__pthread_sig_cancel");
5750
5751 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5752 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5753 not provide any way for the debugger to query the signal numbers -
5754 fortunately they don't change! */
5755
5756 if (restart == 0)
5757 restart = __SIGRTMIN;
5758
5759 if (cancel == 0)
5760 cancel = __SIGRTMIN + 1;
5761
5762 sigaddset (set, restart);
5763 sigaddset (set, cancel);
5764
5765 /* The GNU/Linux Threads library makes terminating threads send a
5766 special "cancel" signal instead of SIGCHLD. Make sure we catch
5767 those (to prevent them from terminating GDB itself, which is
5768 likely to be their default action) and treat them the same way as
5769 SIGCHLD. */
5770
5771 action.sa_handler = sigchld_handler;
5772 sigemptyset (&action.sa_mask);
5773 action.sa_flags = SA_RESTART;
5774 sigaction (cancel, &action, NULL);
5775
5776 /* We block the "cancel" signal throughout this code ... */
5777 sigaddset (&blocked_mask, cancel);
5778 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5779
5780 /* ... except during a sigsuspend. */
5781 sigdelset (&suspend_mask, cancel);
5782 }
This page took 0.150946 seconds and 5 git commands to generate.