gdb/
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 static int linux_parent_pid;
274
275 struct simple_pid_list
276 {
277 int pid;
278 int status;
279 struct simple_pid_list *next;
280 };
281 struct simple_pid_list *stopped_pids;
282
283 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
284 can not be used, 1 if it can. */
285
286 static int linux_supports_tracefork_flag = -1;
287
288 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
289 can not be used, 1 if it can. */
290
291 static int linux_supports_tracesysgood_flag = -1;
292
293 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
294 PTRACE_O_TRACEVFORKDONE. */
295
296 static int linux_supports_tracevforkdone_flag = -1;
297
298 /* Async mode support */
299
300 /* Zero if the async mode, although enabled, is masked, which means
301 linux_nat_wait should behave as if async mode was off. */
302 static int linux_nat_async_mask_value = 1;
303
304 /* Stores the current used ptrace() options. */
305 static int current_ptrace_options = 0;
306
307 /* The read/write ends of the pipe registered as waitable file in the
308 event loop. */
309 static int linux_nat_event_pipe[2] = { -1, -1 };
310
311 /* Flush the event pipe. */
312
313 static void
314 async_file_flush (void)
315 {
316 int ret;
317 char buf;
318
319 do
320 {
321 ret = read (linux_nat_event_pipe[0], &buf, 1);
322 }
323 while (ret >= 0 || (ret == -1 && errno == EINTR));
324 }
325
326 /* Put something (anything, doesn't matter what, or how much) in event
327 pipe, so that the select/poll in the event-loop realizes we have
328 something to process. */
329
330 static void
331 async_file_mark (void)
332 {
333 int ret;
334
335 /* It doesn't really matter what the pipe contains, as long we end
336 up with something in it. Might as well flush the previous
337 left-overs. */
338 async_file_flush ();
339
340 do
341 {
342 ret = write (linux_nat_event_pipe[1], "+", 1);
343 }
344 while (ret == -1 && errno == EINTR);
345
346 /* Ignore EAGAIN. If the pipe is full, the event loop will already
347 be awakened anyway. */
348 }
349
350 static void linux_nat_async (void (*callback)
351 (enum inferior_event_type event_type, void *context),
352 void *context);
353 static int linux_nat_async_mask (int mask);
354 static int kill_lwp (int lwpid, int signo);
355
356 static int stop_callback (struct lwp_info *lp, void *data);
357
358 static void block_child_signals (sigset_t *prev_mask);
359 static void restore_child_signals_mask (sigset_t *prev_mask);
360
361 struct lwp_info;
362 static struct lwp_info *add_lwp (ptid_t ptid);
363 static void purge_lwp_list (int pid);
364 static struct lwp_info *find_lwp_pid (ptid_t ptid);
365
366 \f
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->pid = pid;
374 new_pid->status = status;
375 new_pid->next = *listp;
376 *listp = new_pid;
377 }
378
379 static int
380 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
381 {
382 struct simple_pid_list **p;
383
384 for (p = listp; *p != NULL; p = &(*p)->next)
385 if ((*p)->pid == pid)
386 {
387 struct simple_pid_list *next = (*p)->next;
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 int ret;
409
410 ptrace (PTRACE_TRACEME, 0, 0, 0);
411 kill (getpid (), SIGSTOP);
412 fork ();
413 _exit (0);
414 }
415
416 /* Wrapper function for waitpid which handles EINTR. */
417
418 static int
419 my_waitpid (int pid, int *status, int flags)
420 {
421 int ret;
422
423 do
424 {
425 ret = waitpid (pid, status, flags);
426 }
427 while (ret == -1 && errno == EINTR);
428
429 return ret;
430 }
431
432 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
433
434 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
435 we know that the feature is not available. This may change the tracing
436 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
437
438 However, if it succeeds, we don't know for sure that the feature is
439 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
440 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
441 fork tracing, and let it fork. If the process exits, we assume that we
442 can't use TRACEFORK; if we get the fork notification, and we can extract
443 the new child's PID, then we assume that we can. */
444
445 static void
446 linux_test_for_tracefork (int original_pid)
447 {
448 int child_pid, ret, status;
449 long second_pid;
450 sigset_t prev_mask;
451
452 /* We don't want those ptrace calls to be interrupted. */
453 block_child_signals (&prev_mask);
454
455 linux_supports_tracefork_flag = 0;
456 linux_supports_tracevforkdone_flag = 0;
457
458 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 if (ret != 0)
460 {
461 restore_child_signals_mask (&prev_mask);
462 return;
463 }
464
465 child_pid = fork ();
466 if (child_pid == -1)
467 perror_with_name (("fork"));
468
469 if (child_pid == 0)
470 linux_tracefork_child ();
471
472 ret = my_waitpid (child_pid, &status, 0);
473 if (ret == -1)
474 perror_with_name (("waitpid"));
475 else if (ret != child_pid)
476 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
477 if (! WIFSTOPPED (status))
478 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
479
480 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 if (ret != 0)
482 {
483 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 if (ret != 0)
485 {
486 warning (_("linux_test_for_tracefork: failed to kill child"));
487 restore_child_signals_mask (&prev_mask);
488 return;
489 }
490
491 ret = my_waitpid (child_pid, &status, 0);
492 if (ret != child_pid)
493 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
494 else if (!WIFSIGNALED (status))
495 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
496 "killed child"), status);
497
498 restore_child_signals_mask (&prev_mask);
499 return;
500 }
501
502 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
503 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
504 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
505 linux_supports_tracevforkdone_flag = (ret == 0);
506
507 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
508 if (ret != 0)
509 warning (_("linux_test_for_tracefork: failed to resume child"));
510
511 ret = my_waitpid (child_pid, &status, 0);
512
513 if (ret == child_pid && WIFSTOPPED (status)
514 && status >> 16 == PTRACE_EVENT_FORK)
515 {
516 second_pid = 0;
517 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
518 if (ret == 0 && second_pid != 0)
519 {
520 int second_status;
521
522 linux_supports_tracefork_flag = 1;
523 my_waitpid (second_pid, &second_status, 0);
524 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
525 if (ret != 0)
526 warning (_("linux_test_for_tracefork: failed to kill second child"));
527 my_waitpid (second_pid, &status, 0);
528 }
529 }
530 else
531 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
532 "(%d, status 0x%x)"), ret, status);
533
534 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
535 if (ret != 0)
536 warning (_("linux_test_for_tracefork: failed to kill child"));
537 my_waitpid (child_pid, &status, 0);
538
539 restore_child_signals_mask (&prev_mask);
540 }
541
542 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
543
544 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
545 we know that the feature is not available. This may change the tracing
546 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547
548 static void
549 linux_test_for_tracesysgood (int original_pid)
550 {
551 int ret;
552 sigset_t prev_mask;
553
554 /* We don't want those ptrace calls to be interrupted. */
555 block_child_signals (&prev_mask);
556
557 linux_supports_tracesysgood_flag = 0;
558
559 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
560 if (ret != 0)
561 goto out;
562
563 linux_supports_tracesysgood_flag = 1;
564 out:
565 restore_child_signals_mask (&prev_mask);
566 }
567
568 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
569 This function also sets linux_supports_tracesysgood_flag. */
570
571 static int
572 linux_supports_tracesysgood (int pid)
573 {
574 if (linux_supports_tracesysgood_flag == -1)
575 linux_test_for_tracesysgood (pid);
576 return linux_supports_tracesysgood_flag;
577 }
578
579 /* Return non-zero iff we have tracefork functionality available.
580 This function also sets linux_supports_tracefork_flag. */
581
582 static int
583 linux_supports_tracefork (int pid)
584 {
585 if (linux_supports_tracefork_flag == -1)
586 linux_test_for_tracefork (pid);
587 return linux_supports_tracefork_flag;
588 }
589
590 static int
591 linux_supports_tracevforkdone (int pid)
592 {
593 if (linux_supports_tracefork_flag == -1)
594 linux_test_for_tracefork (pid);
595 return linux_supports_tracevforkdone_flag;
596 }
597
598 static void
599 linux_enable_tracesysgood (ptid_t ptid)
600 {
601 int pid = ptid_get_lwp (ptid);
602
603 if (pid == 0)
604 pid = ptid_get_pid (ptid);
605
606 if (linux_supports_tracesysgood (pid) == 0)
607 return;
608
609 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
612 }
613
614 \f
615 void
616 linux_enable_event_reporting (ptid_t ptid)
617 {
618 int pid = ptid_get_lwp (ptid);
619
620 if (pid == 0)
621 pid = ptid_get_pid (ptid);
622
623 if (! linux_supports_tracefork (pid))
624 return;
625
626 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
627 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
628
629 if (linux_supports_tracevforkdone (pid))
630 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
631
632 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
633 read-only process state. */
634
635 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
636 }
637
638 static void
639 linux_child_post_attach (int pid)
640 {
641 linux_enable_event_reporting (pid_to_ptid (pid));
642 check_for_thread_db ();
643 linux_enable_tracesysgood (pid_to_ptid (pid));
644 }
645
646 static void
647 linux_child_post_startup_inferior (ptid_t ptid)
648 {
649 linux_enable_event_reporting (ptid);
650 check_for_thread_db ();
651 linux_enable_tracesysgood (ptid);
652 }
653
654 static int
655 linux_child_follow_fork (struct target_ops *ops, int follow_child)
656 {
657 sigset_t prev_mask;
658 int has_vforked;
659 int parent_pid, child_pid;
660
661 block_child_signals (&prev_mask);
662
663 has_vforked = (inferior_thread ()->pending_follow.kind
664 == TARGET_WAITKIND_VFORKED);
665 parent_pid = ptid_get_lwp (inferior_ptid);
666 if (parent_pid == 0)
667 parent_pid = ptid_get_pid (inferior_ptid);
668 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
669
670 if (!detach_fork)
671 linux_enable_event_reporting (pid_to_ptid (child_pid));
672
673 if (has_vforked
674 && !non_stop /* Non-stop always resumes both branches. */
675 && (!target_is_async_p () || sync_execution)
676 && !(follow_child || detach_fork || sched_multi))
677 {
678 /* The parent stays blocked inside the vfork syscall until the
679 child execs or exits. If we don't let the child run, then
680 the parent stays blocked. If we're telling the parent to run
681 in the foreground, the user will not be able to ctrl-c to get
682 back the terminal, effectively hanging the debug session. */
683 fprintf_filtered (gdb_stderr, _("\
684 Can not resume the parent process over vfork in the foreground while \n\
685 holding the child stopped. Try \"set detach-on-fork\" or \
686 \"set schedule-multiple\".\n"));
687 return 1;
688 }
689
690 if (! follow_child)
691 {
692 struct lwp_info *child_lp = NULL;
693
694 /* We're already attached to the parent, by default. */
695
696 /* Detach new forked process? */
697 if (detach_fork)
698 {
699 /* Before detaching from the child, remove all breakpoints
700 from it. If we forked, then this has already been taken
701 care of by infrun.c. If we vforked however, any
702 breakpoint inserted in the parent is visible in the
703 child, even those added while stopped in a vfork
704 catchpoint. This will remove the breakpoints from the
705 parent also, but they'll be reinserted below. */
706 if (has_vforked)
707 {
708 /* keep breakpoints list in sync. */
709 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 }
711
712 if (info_verbose || debug_linux_nat)
713 {
714 target_terminal_ours ();
715 fprintf_filtered (gdb_stdlog,
716 "Detaching after fork from child process %d.\n",
717 child_pid);
718 }
719
720 ptrace (PTRACE_DETACH, child_pid, 0, 0);
721 }
722 else
723 {
724 struct inferior *parent_inf, *child_inf;
725 struct cleanup *old_chain;
726
727 /* Add process to GDB's tables. */
728 child_inf = add_inferior (child_pid);
729
730 parent_inf = current_inferior ();
731 child_inf->attach_flag = parent_inf->attach_flag;
732 copy_terminal_info (child_inf, parent_inf);
733
734 old_chain = save_inferior_ptid ();
735 save_current_program_space ();
736
737 inferior_ptid = ptid_build (child_pid, child_pid, 0);
738 add_thread (inferior_ptid);
739 child_lp = add_lwp (inferior_ptid);
740 child_lp->stopped = 1;
741 child_lp->resumed = 1;
742
743 /* If this is a vfork child, then the address-space is
744 shared with the parent. */
745 if (has_vforked)
746 {
747 child_inf->pspace = parent_inf->pspace;
748 child_inf->aspace = parent_inf->aspace;
749
750 /* The parent will be frozen until the child is done
751 with the shared region. Keep track of the
752 parent. */
753 child_inf->vfork_parent = parent_inf;
754 child_inf->pending_detach = 0;
755 parent_inf->vfork_child = child_inf;
756 parent_inf->pending_detach = 0;
757 }
758 else
759 {
760 child_inf->aspace = new_address_space ();
761 child_inf->pspace = add_program_space (child_inf->aspace);
762 child_inf->removable = 1;
763 set_current_program_space (child_inf->pspace);
764 clone_program_space (child_inf->pspace, parent_inf->pspace);
765
766 /* Let the shared library layer (solib-svr4) learn about
767 this new process, relocate the cloned exec, pull in
768 shared libraries, and install the solib event
769 breakpoint. If a "cloned-VM" event was propagated
770 better throughout the core, this wouldn't be
771 required. */
772 solib_create_inferior_hook ();
773 }
774
775 /* Let the thread_db layer learn about this new process. */
776 check_for_thread_db ();
777
778 do_cleanups (old_chain);
779 }
780
781 if (has_vforked)
782 {
783 struct lwp_info *lp;
784 struct inferior *parent_inf;
785
786 parent_inf = current_inferior ();
787
788 /* If we detached from the child, then we have to be careful
789 to not insert breakpoints in the parent until the child
790 is done with the shared memory region. However, if we're
791 staying attached to the child, then we can and should
792 insert breakpoints, so that we can debug it. A
793 subsequent child exec or exit is enough to know when does
794 the child stops using the parent's address space. */
795 parent_inf->waiting_for_vfork_done = detach_fork;
796 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
797
798 lp = find_lwp_pid (pid_to_ptid (parent_pid));
799 gdb_assert (linux_supports_tracefork_flag >= 0);
800 if (linux_supports_tracevforkdone (0))
801 {
802 if (debug_linux_nat)
803 fprintf_unfiltered (gdb_stdlog,
804 "LCFF: waiting for VFORK_DONE on %d\n",
805 parent_pid);
806
807 lp->stopped = 1;
808 lp->resumed = 1;
809
810 /* We'll handle the VFORK_DONE event like any other
811 event, in target_wait. */
812 }
813 else
814 {
815 /* We can't insert breakpoints until the child has
816 finished with the shared memory region. We need to
817 wait until that happens. Ideal would be to just
818 call:
819 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
820 - waitpid (parent_pid, &status, __WALL);
821 However, most architectures can't handle a syscall
822 being traced on the way out if it wasn't traced on
823 the way in.
824
825 We might also think to loop, continuing the child
826 until it exits or gets a SIGTRAP. One problem is
827 that the child might call ptrace with PTRACE_TRACEME.
828
829 There's no simple and reliable way to figure out when
830 the vforked child will be done with its copy of the
831 shared memory. We could step it out of the syscall,
832 two instructions, let it go, and then single-step the
833 parent once. When we have hardware single-step, this
834 would work; with software single-step it could still
835 be made to work but we'd have to be able to insert
836 single-step breakpoints in the child, and we'd have
837 to insert -just- the single-step breakpoint in the
838 parent. Very awkward.
839
840 In the end, the best we can do is to make sure it
841 runs for a little while. Hopefully it will be out of
842 range of any breakpoints we reinsert. Usually this
843 is only the single-step breakpoint at vfork's return
844 point. */
845
846 if (debug_linux_nat)
847 fprintf_unfiltered (gdb_stdlog,
848 "LCFF: no VFORK_DONE support, sleeping a bit\n");
849
850 usleep (10000);
851
852 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
853 and leave it pending. The next linux_nat_resume call
854 will notice a pending event, and bypasses actually
855 resuming the inferior. */
856 lp->status = 0;
857 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
858 lp->stopped = 0;
859 lp->resumed = 1;
860
861 /* If we're in async mode, need to tell the event loop
862 there's something here to process. */
863 if (target_can_async_p ())
864 async_file_mark ();
865 }
866 }
867 }
868 else
869 {
870 struct thread_info *tp;
871 struct inferior *parent_inf, *child_inf;
872 struct lwp_info *lp;
873 struct program_space *parent_pspace;
874
875 if (info_verbose || debug_linux_nat)
876 {
877 target_terminal_ours ();
878 if (has_vforked)
879 fprintf_filtered (gdb_stdlog, _("\
880 Attaching after process %d vfork to child process %d.\n"),
881 parent_pid, child_pid);
882 else
883 fprintf_filtered (gdb_stdlog, _("\
884 Attaching after process %d fork to child process %d.\n"),
885 parent_pid, child_pid);
886 }
887
888 /* Add the new inferior first, so that the target_detach below
889 doesn't unpush the target. */
890
891 child_inf = add_inferior (child_pid);
892
893 parent_inf = current_inferior ();
894 child_inf->attach_flag = parent_inf->attach_flag;
895 copy_terminal_info (child_inf, parent_inf);
896
897 parent_pspace = parent_inf->pspace;
898
899 /* If we're vforking, we want to hold on to the parent until the
900 child exits or execs. At child exec or exit time we can
901 remove the old breakpoints from the parent and detach or
902 resume debugging it. Otherwise, detach the parent now; we'll
903 want to reuse it's program/address spaces, but we can't set
904 them to the child before removing breakpoints from the
905 parent, otherwise, the breakpoints module could decide to
906 remove breakpoints from the wrong process (since they'd be
907 assigned to the same address space). */
908
909 if (has_vforked)
910 {
911 gdb_assert (child_inf->vfork_parent == NULL);
912 gdb_assert (parent_inf->vfork_child == NULL);
913 child_inf->vfork_parent = parent_inf;
914 child_inf->pending_detach = 0;
915 parent_inf->vfork_child = child_inf;
916 parent_inf->pending_detach = detach_fork;
917 parent_inf->waiting_for_vfork_done = 0;
918 }
919 else if (detach_fork)
920 target_detach (NULL, 0);
921
922 /* Note that the detach above makes PARENT_INF dangling. */
923
924 /* Add the child thread to the appropriate lists, and switch to
925 this new thread, before cloning the program space, and
926 informing the solib layer about this new process. */
927
928 inferior_ptid = ptid_build (child_pid, child_pid, 0);
929 add_thread (inferior_ptid);
930 lp = add_lwp (inferior_ptid);
931 lp->stopped = 1;
932 lp->resumed = 1;
933
934 /* If this is a vfork child, then the address-space is shared
935 with the parent. If we detached from the parent, then we can
936 reuse the parent's program/address spaces. */
937 if (has_vforked || detach_fork)
938 {
939 child_inf->pspace = parent_pspace;
940 child_inf->aspace = child_inf->pspace->aspace;
941 }
942 else
943 {
944 child_inf->aspace = new_address_space ();
945 child_inf->pspace = add_program_space (child_inf->aspace);
946 child_inf->removable = 1;
947 set_current_program_space (child_inf->pspace);
948 clone_program_space (child_inf->pspace, parent_pspace);
949
950 /* Let the shared library layer (solib-svr4) learn about
951 this new process, relocate the cloned exec, pull in
952 shared libraries, and install the solib event breakpoint.
953 If a "cloned-VM" event was propagated better throughout
954 the core, this wouldn't be required. */
955 solib_create_inferior_hook ();
956 }
957
958 /* Let the thread_db layer learn about this new process. */
959 check_for_thread_db ();
960 }
961
962 restore_child_signals_mask (&prev_mask);
963 return 0;
964 }
965
966 \f
967 static void
968 linux_child_insert_fork_catchpoint (int pid)
969 {
970 if (! linux_supports_tracefork (pid))
971 error (_("Your system does not support fork catchpoints."));
972 }
973
974 static void
975 linux_child_insert_vfork_catchpoint (int pid)
976 {
977 if (!linux_supports_tracefork (pid))
978 error (_("Your system does not support vfork catchpoints."));
979 }
980
981 static void
982 linux_child_insert_exec_catchpoint (int pid)
983 {
984 if (!linux_supports_tracefork (pid))
985 error (_("Your system does not support exec catchpoints."));
986 }
987
988 static int
989 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
990 int table_size, int *table)
991 {
992 if (! linux_supports_tracesysgood (pid))
993 error (_("Your system does not support syscall catchpoints."));
994 /* On GNU/Linux, we ignore the arguments. It means that we only
995 enable the syscall catchpoints, but do not disable them.
996
997 Also, we do not use the `table' information because we do not
998 filter system calls here. We let GDB do the logic for us. */
999 return 0;
1000 }
1001
1002 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1003 are processes sharing the same VM space. A multi-threaded process
1004 is basically a group of such processes. However, such a grouping
1005 is almost entirely a user-space issue; the kernel doesn't enforce
1006 such a grouping at all (this might change in the future). In
1007 general, we'll rely on the threads library (i.e. the GNU/Linux
1008 Threads library) to provide such a grouping.
1009
1010 It is perfectly well possible to write a multi-threaded application
1011 without the assistance of a threads library, by using the clone
1012 system call directly. This module should be able to give some
1013 rudimentary support for debugging such applications if developers
1014 specify the CLONE_PTRACE flag in the clone system call, and are
1015 using the Linux kernel 2.4 or above.
1016
1017 Note that there are some peculiarities in GNU/Linux that affect
1018 this code:
1019
1020 - In general one should specify the __WCLONE flag to waitpid in
1021 order to make it report events for any of the cloned processes
1022 (and leave it out for the initial process). However, if a cloned
1023 process has exited the exit status is only reported if the
1024 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1025 we cannot use it since GDB must work on older systems too.
1026
1027 - When a traced, cloned process exits and is waited for by the
1028 debugger, the kernel reassigns it to the original parent and
1029 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1030 library doesn't notice this, which leads to the "zombie problem":
1031 When debugged a multi-threaded process that spawns a lot of
1032 threads will run out of processes, even if the threads exit,
1033 because the "zombies" stay around. */
1034
1035 /* List of known LWPs. */
1036 struct lwp_info *lwp_list;
1037 \f
1038
1039 /* Original signal mask. */
1040 static sigset_t normal_mask;
1041
1042 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1043 _initialize_linux_nat. */
1044 static sigset_t suspend_mask;
1045
1046 /* Signals to block to make that sigsuspend work. */
1047 static sigset_t blocked_mask;
1048
1049 /* SIGCHLD action. */
1050 struct sigaction sigchld_action;
1051
1052 /* Block child signals (SIGCHLD and linux threads signals), and store
1053 the previous mask in PREV_MASK. */
1054
1055 static void
1056 block_child_signals (sigset_t *prev_mask)
1057 {
1058 /* Make sure SIGCHLD is blocked. */
1059 if (!sigismember (&blocked_mask, SIGCHLD))
1060 sigaddset (&blocked_mask, SIGCHLD);
1061
1062 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1063 }
1064
1065 /* Restore child signals mask, previously returned by
1066 block_child_signals. */
1067
1068 static void
1069 restore_child_signals_mask (sigset_t *prev_mask)
1070 {
1071 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072 }
1073 \f
1074
1075 /* Prototypes for local functions. */
1076 static int stop_wait_callback (struct lwp_info *lp, void *data);
1077 static int linux_thread_alive (ptid_t ptid);
1078 static char *linux_child_pid_to_exec_file (int pid);
1079 static int cancel_breakpoint (struct lwp_info *lp);
1080
1081 \f
1082 /* Convert wait status STATUS to a string. Used for printing debug
1083 messages only. */
1084
1085 static char *
1086 status_to_str (int status)
1087 {
1088 static char buf[64];
1089
1090 if (WIFSTOPPED (status))
1091 {
1092 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1093 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1094 strsignal (SIGTRAP));
1095 else
1096 snprintf (buf, sizeof (buf), "%s (stopped)",
1097 strsignal (WSTOPSIG (status)));
1098 }
1099 else if (WIFSIGNALED (status))
1100 snprintf (buf, sizeof (buf), "%s (terminated)",
1101 strsignal (WSTOPSIG (status)));
1102 else
1103 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1104
1105 return buf;
1106 }
1107
1108 /* Initialize the list of LWPs. Note that this module, contrary to
1109 what GDB's generic threads layer does for its thread list,
1110 re-initializes the LWP lists whenever we mourn or detach (which
1111 doesn't involve mourning) the inferior. */
1112
1113 static void
1114 init_lwp_list (void)
1115 {
1116 struct lwp_info *lp, *lpnext;
1117
1118 for (lp = lwp_list; lp; lp = lpnext)
1119 {
1120 lpnext = lp->next;
1121 xfree (lp);
1122 }
1123
1124 lwp_list = NULL;
1125 }
1126
1127 /* Remove all LWPs belong to PID from the lwp list. */
1128
1129 static void
1130 purge_lwp_list (int pid)
1131 {
1132 struct lwp_info *lp, *lpprev, *lpnext;
1133
1134 lpprev = NULL;
1135
1136 for (lp = lwp_list; lp; lp = lpnext)
1137 {
1138 lpnext = lp->next;
1139
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 {
1142 if (lp == lwp_list)
1143 lwp_list = lp->next;
1144 else
1145 lpprev->next = lp->next;
1146
1147 xfree (lp);
1148 }
1149 else
1150 lpprev = lp;
1151 }
1152 }
1153
1154 /* Return the number of known LWPs in the tgid given by PID. */
1155
1156 static int
1157 num_lwps (int pid)
1158 {
1159 int count = 0;
1160 struct lwp_info *lp;
1161
1162 for (lp = lwp_list; lp; lp = lp->next)
1163 if (ptid_get_pid (lp->ptid) == pid)
1164 count++;
1165
1166 return count;
1167 }
1168
1169 /* Add the LWP specified by PID to the list. Return a pointer to the
1170 structure describing the new LWP. The LWP should already be stopped
1171 (with an exception for the very first LWP). */
1172
1173 static struct lwp_info *
1174 add_lwp (ptid_t ptid)
1175 {
1176 struct lwp_info *lp;
1177
1178 gdb_assert (is_lwp (ptid));
1179
1180 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1181
1182 memset (lp, 0, sizeof (struct lwp_info));
1183
1184 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1185
1186 lp->ptid = ptid;
1187
1188 lp->next = lwp_list;
1189 lwp_list = lp;
1190
1191 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1192 linux_nat_new_thread (ptid);
1193
1194 return lp;
1195 }
1196
1197 /* Remove the LWP specified by PID from the list. */
1198
1199 static void
1200 delete_lwp (ptid_t ptid)
1201 {
1202 struct lwp_info *lp, *lpprev;
1203
1204 lpprev = NULL;
1205
1206 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1207 if (ptid_equal (lp->ptid, ptid))
1208 break;
1209
1210 if (!lp)
1211 return;
1212
1213 if (lpprev)
1214 lpprev->next = lp->next;
1215 else
1216 lwp_list = lp->next;
1217
1218 xfree (lp);
1219 }
1220
1221 /* Return a pointer to the structure describing the LWP corresponding
1222 to PID. If no corresponding LWP could be found, return NULL. */
1223
1224 static struct lwp_info *
1225 find_lwp_pid (ptid_t ptid)
1226 {
1227 struct lwp_info *lp;
1228 int lwp;
1229
1230 if (is_lwp (ptid))
1231 lwp = GET_LWP (ptid);
1232 else
1233 lwp = GET_PID (ptid);
1234
1235 for (lp = lwp_list; lp; lp = lp->next)
1236 if (lwp == GET_LWP (lp->ptid))
1237 return lp;
1238
1239 return NULL;
1240 }
1241
1242 /* Returns true if PTID matches filter FILTER. FILTER can be the wild
1243 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1244 a process (ptid_is_pid returns true), in which case, all lwps of
1245 that give process match, lwps of other process do not; or, it can
1246 represent a specific thread, in which case, only that thread will
1247 match true. PTID must represent an LWP, it can never be a wild
1248 card. */
1249
1250 static int
1251 ptid_match (ptid_t ptid, ptid_t filter)
1252 {
1253 /* Since both parameters have the same type, prevent easy mistakes
1254 from happening. */
1255 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1256 && !ptid_equal (ptid, null_ptid));
1257
1258 if (ptid_equal (filter, minus_one_ptid))
1259 return 1;
1260 if (ptid_is_pid (filter)
1261 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1262 return 1;
1263 else if (ptid_equal (ptid, filter))
1264 return 1;
1265
1266 return 0;
1267 }
1268
1269 /* Call CALLBACK with its second argument set to DATA for every LWP in
1270 the list. If CALLBACK returns 1 for a particular LWP, return a
1271 pointer to the structure describing that LWP immediately.
1272 Otherwise return NULL. */
1273
1274 struct lwp_info *
1275 iterate_over_lwps (ptid_t filter,
1276 int (*callback) (struct lwp_info *, void *),
1277 void *data)
1278 {
1279 struct lwp_info *lp, *lpnext;
1280
1281 for (lp = lwp_list; lp; lp = lpnext)
1282 {
1283 lpnext = lp->next;
1284
1285 if (ptid_match (lp->ptid, filter))
1286 {
1287 if ((*callback) (lp, data))
1288 return lp;
1289 }
1290 }
1291
1292 return NULL;
1293 }
1294
1295 /* Update our internal state when changing from one checkpoint to
1296 another indicated by NEW_PTID. We can only switch single-threaded
1297 applications, so we only create one new LWP, and the previous list
1298 is discarded. */
1299
1300 void
1301 linux_nat_switch_fork (ptid_t new_ptid)
1302 {
1303 struct lwp_info *lp;
1304
1305 purge_lwp_list (GET_PID (inferior_ptid));
1306
1307 lp = add_lwp (new_ptid);
1308 lp->stopped = 1;
1309
1310 /* This changes the thread's ptid while preserving the gdb thread
1311 num. Also changes the inferior pid, while preserving the
1312 inferior num. */
1313 thread_change_ptid (inferior_ptid, new_ptid);
1314
1315 /* We've just told GDB core that the thread changed target id, but,
1316 in fact, it really is a different thread, with different register
1317 contents. */
1318 registers_changed ();
1319 }
1320
1321 /* Handle the exit of a single thread LP. */
1322
1323 static void
1324 exit_lwp (struct lwp_info *lp)
1325 {
1326 struct thread_info *th = find_thread_ptid (lp->ptid);
1327
1328 if (th)
1329 {
1330 if (print_thread_events)
1331 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1332
1333 delete_thread (lp->ptid);
1334 }
1335
1336 delete_lwp (lp->ptid);
1337 }
1338
1339 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1340
1341 int
1342 linux_proc_get_tgid (int lwpid)
1343 {
1344 FILE *status_file;
1345 char buf[100];
1346 int tgid = -1;
1347
1348 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1349 status_file = fopen (buf, "r");
1350 if (status_file != NULL)
1351 {
1352 while (fgets (buf, sizeof (buf), status_file))
1353 {
1354 if (strncmp (buf, "Tgid:", 5) == 0)
1355 {
1356 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1357 break;
1358 }
1359 }
1360
1361 fclose (status_file);
1362 }
1363
1364 return tgid;
1365 }
1366
1367 /* Detect `T (stopped)' in `/proc/PID/status'.
1368 Other states including `T (tracing stop)' are reported as false. */
1369
1370 static int
1371 pid_is_stopped (pid_t pid)
1372 {
1373 FILE *status_file;
1374 char buf[100];
1375 int retval = 0;
1376
1377 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1378 status_file = fopen (buf, "r");
1379 if (status_file != NULL)
1380 {
1381 int have_state = 0;
1382
1383 while (fgets (buf, sizeof (buf), status_file))
1384 {
1385 if (strncmp (buf, "State:", 6) == 0)
1386 {
1387 have_state = 1;
1388 break;
1389 }
1390 }
1391 if (have_state && strstr (buf, "T (stopped)") != NULL)
1392 retval = 1;
1393 fclose (status_file);
1394 }
1395 return retval;
1396 }
1397
1398 /* Wait for the LWP specified by LP, which we have just attached to.
1399 Returns a wait status for that LWP, to cache. */
1400
1401 static int
1402 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1403 int *signalled)
1404 {
1405 pid_t new_pid, pid = GET_LWP (ptid);
1406 int status;
1407
1408 if (pid_is_stopped (pid))
1409 {
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "LNPAW: Attaching to a stopped process\n");
1413
1414 /* The process is definitely stopped. It is in a job control
1415 stop, unless the kernel predates the TASK_STOPPED /
1416 TASK_TRACED distinction, in which case it might be in a
1417 ptrace stop. Make sure it is in a ptrace stop; from there we
1418 can kill it, signal it, et cetera.
1419
1420 First make sure there is a pending SIGSTOP. Since we are
1421 already attached, the process can not transition from stopped
1422 to running without a PTRACE_CONT; so we know this signal will
1423 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1424 probably already in the queue (unless this kernel is old
1425 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1426 is not an RT signal, it can only be queued once. */
1427 kill_lwp (pid, SIGSTOP);
1428
1429 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1430 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1431 ptrace (PTRACE_CONT, pid, 0, 0);
1432 }
1433
1434 /* Make sure the initial process is stopped. The user-level threads
1435 layer might want to poke around in the inferior, and that won't
1436 work if things haven't stabilized yet. */
1437 new_pid = my_waitpid (pid, &status, 0);
1438 if (new_pid == -1 && errno == ECHILD)
1439 {
1440 if (first)
1441 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1442
1443 /* Try again with __WCLONE to check cloned processes. */
1444 new_pid = my_waitpid (pid, &status, __WCLONE);
1445 *cloned = 1;
1446 }
1447
1448 gdb_assert (pid == new_pid);
1449
1450 if (!WIFSTOPPED (status))
1451 {
1452 /* The pid we tried to attach has apparently just exited. */
1453 if (debug_linux_nat)
1454 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1455 pid, status_to_str (status));
1456 return status;
1457 }
1458
1459 if (WSTOPSIG (status) != SIGSTOP)
1460 {
1461 *signalled = 1;
1462 if (debug_linux_nat)
1463 fprintf_unfiltered (gdb_stdlog,
1464 "LNPAW: Received %s after attaching\n",
1465 status_to_str (status));
1466 }
1467
1468 return status;
1469 }
1470
1471 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1472 if the new LWP could not be attached. */
1473
1474 int
1475 lin_lwp_attach_lwp (ptid_t ptid)
1476 {
1477 struct lwp_info *lp;
1478 sigset_t prev_mask;
1479
1480 gdb_assert (is_lwp (ptid));
1481
1482 block_child_signals (&prev_mask);
1483
1484 lp = find_lwp_pid (ptid);
1485
1486 /* We assume that we're already attached to any LWP that has an id
1487 equal to the overall process id, and to any LWP that is already
1488 in our list of LWPs. If we're not seeing exit events from threads
1489 and we've had PID wraparound since we last tried to stop all threads,
1490 this assumption might be wrong; fortunately, this is very unlikely
1491 to happen. */
1492 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1493 {
1494 int status, cloned = 0, signalled = 0;
1495
1496 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1497 {
1498 /* If we fail to attach to the thread, issue a warning,
1499 but continue. One way this can happen is if thread
1500 creation is interrupted; as of Linux kernel 2.6.19, a
1501 bug may place threads in the thread list and then fail
1502 to create them. */
1503 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1504 safe_strerror (errno));
1505 restore_child_signals_mask (&prev_mask);
1506 return -1;
1507 }
1508
1509 if (debug_linux_nat)
1510 fprintf_unfiltered (gdb_stdlog,
1511 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1512 target_pid_to_str (ptid));
1513
1514 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1515 if (!WIFSTOPPED (status))
1516 return -1;
1517
1518 lp = add_lwp (ptid);
1519 lp->stopped = 1;
1520 lp->cloned = cloned;
1521 lp->signalled = signalled;
1522 if (WSTOPSIG (status) != SIGSTOP)
1523 {
1524 lp->resumed = 1;
1525 lp->status = status;
1526 }
1527
1528 target_post_attach (GET_LWP (lp->ptid));
1529
1530 if (debug_linux_nat)
1531 {
1532 fprintf_unfiltered (gdb_stdlog,
1533 "LLAL: waitpid %s received %s\n",
1534 target_pid_to_str (ptid),
1535 status_to_str (status));
1536 }
1537 }
1538 else
1539 {
1540 /* We assume that the LWP representing the original process is
1541 already stopped. Mark it as stopped in the data structure
1542 that the GNU/linux ptrace layer uses to keep track of
1543 threads. Note that this won't have already been done since
1544 the main thread will have, we assume, been stopped by an
1545 attach from a different layer. */
1546 if (lp == NULL)
1547 lp = add_lwp (ptid);
1548 lp->stopped = 1;
1549 }
1550
1551 restore_child_signals_mask (&prev_mask);
1552 return 0;
1553 }
1554
1555 static void
1556 linux_nat_create_inferior (struct target_ops *ops,
1557 char *exec_file, char *allargs, char **env,
1558 int from_tty)
1559 {
1560 #ifdef HAVE_PERSONALITY
1561 int personality_orig = 0, personality_set = 0;
1562 #endif /* HAVE_PERSONALITY */
1563
1564 /* The fork_child mechanism is synchronous and calls target_wait, so
1565 we have to mask the async mode. */
1566
1567 #ifdef HAVE_PERSONALITY
1568 if (disable_randomization)
1569 {
1570 errno = 0;
1571 personality_orig = personality (0xffffffff);
1572 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1573 {
1574 personality_set = 1;
1575 personality (personality_orig | ADDR_NO_RANDOMIZE);
1576 }
1577 if (errno != 0 || (personality_set
1578 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1579 warning (_("Error disabling address space randomization: %s"),
1580 safe_strerror (errno));
1581 }
1582 #endif /* HAVE_PERSONALITY */
1583
1584 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1585
1586 #ifdef HAVE_PERSONALITY
1587 if (personality_set)
1588 {
1589 errno = 0;
1590 personality (personality_orig);
1591 if (errno != 0)
1592 warning (_("Error restoring address space randomization: %s"),
1593 safe_strerror (errno));
1594 }
1595 #endif /* HAVE_PERSONALITY */
1596 }
1597
1598 static void
1599 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1600 {
1601 struct lwp_info *lp;
1602 int status;
1603 ptid_t ptid;
1604
1605 linux_ops->to_attach (ops, args, from_tty);
1606
1607 /* The ptrace base target adds the main thread with (pid,0,0)
1608 format. Decorate it with lwp info. */
1609 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1610 thread_change_ptid (inferior_ptid, ptid);
1611
1612 /* Add the initial process as the first LWP to the list. */
1613 lp = add_lwp (ptid);
1614
1615 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1616 &lp->signalled);
1617 if (!WIFSTOPPED (status))
1618 {
1619 if (WIFEXITED (status))
1620 {
1621 int exit_code = WEXITSTATUS (status);
1622
1623 target_terminal_ours ();
1624 target_mourn_inferior ();
1625 if (exit_code == 0)
1626 error (_("Unable to attach: program exited normally."));
1627 else
1628 error (_("Unable to attach: program exited with code %d."),
1629 exit_code);
1630 }
1631 else if (WIFSIGNALED (status))
1632 {
1633 enum target_signal signo;
1634
1635 target_terminal_ours ();
1636 target_mourn_inferior ();
1637
1638 signo = target_signal_from_host (WTERMSIG (status));
1639 error (_("Unable to attach: program terminated with signal "
1640 "%s, %s."),
1641 target_signal_to_name (signo),
1642 target_signal_to_string (signo));
1643 }
1644
1645 internal_error (__FILE__, __LINE__,
1646 _("unexpected status %d for PID %ld"),
1647 status, (long) GET_LWP (ptid));
1648 }
1649
1650 lp->stopped = 1;
1651
1652 /* Save the wait status to report later. */
1653 lp->resumed = 1;
1654 if (debug_linux_nat)
1655 fprintf_unfiltered (gdb_stdlog,
1656 "LNA: waitpid %ld, saving status %s\n",
1657 (long) GET_PID (lp->ptid), status_to_str (status));
1658
1659 lp->status = status;
1660
1661 if (target_can_async_p ())
1662 target_async (inferior_event_handler, 0);
1663 }
1664
1665 /* Get pending status of LP. */
1666 static int
1667 get_pending_status (struct lwp_info *lp, int *status)
1668 {
1669 enum target_signal signo = TARGET_SIGNAL_0;
1670
1671 /* If we paused threads momentarily, we may have stored pending
1672 events in lp->status or lp->waitstatus (see stop_wait_callback),
1673 and GDB core hasn't seen any signal for those threads.
1674 Otherwise, the last signal reported to the core is found in the
1675 thread object's stop_signal.
1676
1677 There's a corner case that isn't handled here at present. Only
1678 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1679 stop_signal make sense as a real signal to pass to the inferior.
1680 Some catchpoint related events, like
1681 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1682 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1683 those traps are debug API (ptrace in our case) related and
1684 induced; the inferior wouldn't see them if it wasn't being
1685 traced. Hence, we should never pass them to the inferior, even
1686 when set to pass state. Since this corner case isn't handled by
1687 infrun.c when proceeding with a signal, for consistency, neither
1688 do we handle it here (or elsewhere in the file we check for
1689 signal pass state). Normally SIGTRAP isn't set to pass state, so
1690 this is really a corner case. */
1691
1692 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1693 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1694 else if (lp->status)
1695 signo = target_signal_from_host (WSTOPSIG (lp->status));
1696 else if (non_stop && !is_executing (lp->ptid))
1697 {
1698 struct thread_info *tp = find_thread_ptid (lp->ptid);
1699 signo = tp->stop_signal;
1700 }
1701 else if (!non_stop)
1702 {
1703 struct target_waitstatus last;
1704 ptid_t last_ptid;
1705
1706 get_last_target_status (&last_ptid, &last);
1707
1708 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1709 {
1710 struct thread_info *tp = find_thread_ptid (lp->ptid);
1711 signo = tp->stop_signal;
1712 }
1713 }
1714
1715 *status = 0;
1716
1717 if (signo == TARGET_SIGNAL_0)
1718 {
1719 if (debug_linux_nat)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "GPT: lwp %s has no pending signal\n",
1722 target_pid_to_str (lp->ptid));
1723 }
1724 else if (!signal_pass_state (signo))
1725 {
1726 if (debug_linux_nat)
1727 fprintf_unfiltered (gdb_stdlog, "\
1728 GPT: lwp %s had signal %s, but it is in no pass state\n",
1729 target_pid_to_str (lp->ptid),
1730 target_signal_to_string (signo));
1731 }
1732 else
1733 {
1734 *status = W_STOPCODE (target_signal_to_host (signo));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "GPT: lwp %s has pending signal %s\n",
1739 target_pid_to_str (lp->ptid),
1740 target_signal_to_string (signo));
1741 }
1742
1743 return 0;
1744 }
1745
1746 static int
1747 detach_callback (struct lwp_info *lp, void *data)
1748 {
1749 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1750
1751 if (debug_linux_nat && lp->status)
1752 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1753 strsignal (WSTOPSIG (lp->status)),
1754 target_pid_to_str (lp->ptid));
1755
1756 /* If there is a pending SIGSTOP, get rid of it. */
1757 if (lp->signalled)
1758 {
1759 if (debug_linux_nat)
1760 fprintf_unfiltered (gdb_stdlog,
1761 "DC: Sending SIGCONT to %s\n",
1762 target_pid_to_str (lp->ptid));
1763
1764 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1765 lp->signalled = 0;
1766 }
1767
1768 /* We don't actually detach from the LWP that has an id equal to the
1769 overall process id just yet. */
1770 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1771 {
1772 int status = 0;
1773
1774 /* Pass on any pending signal for this LWP. */
1775 get_pending_status (lp, &status);
1776
1777 errno = 0;
1778 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1779 WSTOPSIG (status)) < 0)
1780 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1781 safe_strerror (errno));
1782
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1786 target_pid_to_str (lp->ptid),
1787 strsignal (WSTOPSIG (status)));
1788
1789 delete_lwp (lp->ptid);
1790 }
1791
1792 return 0;
1793 }
1794
1795 static void
1796 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1797 {
1798 int pid;
1799 int status;
1800 enum target_signal sig;
1801 struct lwp_info *main_lwp;
1802
1803 pid = GET_PID (inferior_ptid);
1804
1805 if (target_can_async_p ())
1806 linux_nat_async (NULL, 0);
1807
1808 /* Stop all threads before detaching. ptrace requires that the
1809 thread is stopped to sucessfully detach. */
1810 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1811 /* ... and wait until all of them have reported back that
1812 they're no longer running. */
1813 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1814
1815 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1816
1817 /* Only the initial process should be left right now. */
1818 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1819
1820 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1821
1822 /* Pass on any pending signal for the last LWP. */
1823 if ((args == NULL || *args == '\0')
1824 && get_pending_status (main_lwp, &status) != -1
1825 && WIFSTOPPED (status))
1826 {
1827 /* Put the signal number in ARGS so that inf_ptrace_detach will
1828 pass it along with PTRACE_DETACH. */
1829 args = alloca (8);
1830 sprintf (args, "%d", (int) WSTOPSIG (status));
1831 fprintf_unfiltered (gdb_stdlog,
1832 "LND: Sending signal %s to %s\n",
1833 args,
1834 target_pid_to_str (main_lwp->ptid));
1835 }
1836
1837 delete_lwp (main_lwp->ptid);
1838
1839 if (forks_exist_p ())
1840 {
1841 /* Multi-fork case. The current inferior_ptid is being detached
1842 from, but there are other viable forks to debug. Detach from
1843 the current fork, and context-switch to the first
1844 available. */
1845 linux_fork_detach (args, from_tty);
1846
1847 if (non_stop && target_can_async_p ())
1848 target_async (inferior_event_handler, 0);
1849 }
1850 else
1851 linux_ops->to_detach (ops, args, from_tty);
1852 }
1853
1854 /* Resume LP. */
1855
1856 static int
1857 resume_callback (struct lwp_info *lp, void *data)
1858 {
1859 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1860
1861 if (lp->stopped && inf->vfork_child != NULL)
1862 {
1863 if (debug_linux_nat)
1864 fprintf_unfiltered (gdb_stdlog,
1865 "RC: Not resuming %s (vfork parent)\n",
1866 target_pid_to_str (lp->ptid));
1867 }
1868 else if (lp->stopped && lp->status == 0)
1869 {
1870 if (debug_linux_nat)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1873 target_pid_to_str (lp->ptid));
1874
1875 linux_ops->to_resume (linux_ops,
1876 pid_to_ptid (GET_LWP (lp->ptid)),
1877 0, TARGET_SIGNAL_0);
1878 if (debug_linux_nat)
1879 fprintf_unfiltered (gdb_stdlog,
1880 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1881 target_pid_to_str (lp->ptid));
1882 lp->stopped = 0;
1883 lp->step = 0;
1884 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1885 lp->stopped_by_watchpoint = 0;
1886 }
1887 else if (lp->stopped && debug_linux_nat)
1888 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1889 target_pid_to_str (lp->ptid));
1890 else if (debug_linux_nat)
1891 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1892 target_pid_to_str (lp->ptid));
1893
1894 return 0;
1895 }
1896
1897 static int
1898 resume_clear_callback (struct lwp_info *lp, void *data)
1899 {
1900 lp->resumed = 0;
1901 return 0;
1902 }
1903
1904 static int
1905 resume_set_callback (struct lwp_info *lp, void *data)
1906 {
1907 lp->resumed = 1;
1908 return 0;
1909 }
1910
1911 static void
1912 linux_nat_resume (struct target_ops *ops,
1913 ptid_t ptid, int step, enum target_signal signo)
1914 {
1915 sigset_t prev_mask;
1916 struct lwp_info *lp;
1917 int resume_many;
1918
1919 if (debug_linux_nat)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1922 step ? "step" : "resume",
1923 target_pid_to_str (ptid),
1924 signo ? strsignal (signo) : "0",
1925 target_pid_to_str (inferior_ptid));
1926
1927 block_child_signals (&prev_mask);
1928
1929 /* A specific PTID means `step only this process id'. */
1930 resume_many = (ptid_equal (minus_one_ptid, ptid)
1931 || ptid_is_pid (ptid));
1932
1933 if (!non_stop)
1934 {
1935 /* Mark the lwps we're resuming as resumed. */
1936 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1937 iterate_over_lwps (ptid, resume_set_callback, NULL);
1938 }
1939 else
1940 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
1941
1942 /* See if it's the current inferior that should be handled
1943 specially. */
1944 if (resume_many)
1945 lp = find_lwp_pid (inferior_ptid);
1946 else
1947 lp = find_lwp_pid (ptid);
1948 gdb_assert (lp != NULL);
1949
1950 /* Remember if we're stepping. */
1951 lp->step = step;
1952
1953 /* If we have a pending wait status for this thread, there is no
1954 point in resuming the process. But first make sure that
1955 linux_nat_wait won't preemptively handle the event - we
1956 should never take this short-circuit if we are going to
1957 leave LP running, since we have skipped resuming all the
1958 other threads. This bit of code needs to be synchronized
1959 with linux_nat_wait. */
1960
1961 if (lp->status && WIFSTOPPED (lp->status))
1962 {
1963 int saved_signo;
1964 struct inferior *inf;
1965
1966 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1967 gdb_assert (inf);
1968 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1969
1970 /* Defer to common code if we're gaining control of the
1971 inferior. */
1972 if (inf->stop_soon == NO_STOP_QUIETLY
1973 && signal_stop_state (saved_signo) == 0
1974 && signal_print_state (saved_signo) == 0
1975 && signal_pass_state (saved_signo) == 1)
1976 {
1977 if (debug_linux_nat)
1978 fprintf_unfiltered (gdb_stdlog,
1979 "LLR: Not short circuiting for ignored "
1980 "status 0x%x\n", lp->status);
1981
1982 /* FIXME: What should we do if we are supposed to continue
1983 this thread with a signal? */
1984 gdb_assert (signo == TARGET_SIGNAL_0);
1985 signo = saved_signo;
1986 lp->status = 0;
1987 }
1988 }
1989
1990 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1991 {
1992 /* FIXME: What should we do if we are supposed to continue
1993 this thread with a signal? */
1994 gdb_assert (signo == TARGET_SIGNAL_0);
1995
1996 if (debug_linux_nat)
1997 fprintf_unfiltered (gdb_stdlog,
1998 "LLR: Short circuiting for status 0x%x\n",
1999 lp->status);
2000
2001 restore_child_signals_mask (&prev_mask);
2002 if (target_can_async_p ())
2003 {
2004 target_async (inferior_event_handler, 0);
2005 /* Tell the event loop we have something to process. */
2006 async_file_mark ();
2007 }
2008 return;
2009 }
2010
2011 /* Mark LWP as not stopped to prevent it from being continued by
2012 resume_callback. */
2013 lp->stopped = 0;
2014
2015 if (resume_many)
2016 iterate_over_lwps (ptid, resume_callback, NULL);
2017
2018 /* Convert to something the lower layer understands. */
2019 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2020
2021 linux_ops->to_resume (linux_ops, ptid, step, signo);
2022 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2023 lp->stopped_by_watchpoint = 0;
2024
2025 if (debug_linux_nat)
2026 fprintf_unfiltered (gdb_stdlog,
2027 "LLR: %s %s, %s (resume event thread)\n",
2028 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2029 target_pid_to_str (ptid),
2030 signo ? strsignal (signo) : "0");
2031
2032 restore_child_signals_mask (&prev_mask);
2033 if (target_can_async_p ())
2034 target_async (inferior_event_handler, 0);
2035 }
2036
2037 /* Issue kill to specified lwp. */
2038
2039 static int tkill_failed;
2040
2041 static int
2042 kill_lwp (int lwpid, int signo)
2043 {
2044 errno = 0;
2045
2046 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2047 fails, then we are not using nptl threads and we should be using kill. */
2048
2049 #ifdef HAVE_TKILL_SYSCALL
2050 if (!tkill_failed)
2051 {
2052 int ret = syscall (__NR_tkill, lwpid, signo);
2053 if (errno != ENOSYS)
2054 return ret;
2055 errno = 0;
2056 tkill_failed = 1;
2057 }
2058 #endif
2059
2060 return kill (lwpid, signo);
2061 }
2062
2063 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2064 event, check if the core is interested in it: if not, ignore the
2065 event, and keep waiting; otherwise, we need to toggle the LWP's
2066 syscall entry/exit status, since the ptrace event itself doesn't
2067 indicate it, and report the trap to higher layers. */
2068
2069 static int
2070 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2071 {
2072 struct target_waitstatus *ourstatus = &lp->waitstatus;
2073 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2074 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2075
2076 if (stopping)
2077 {
2078 /* If we're stopping threads, there's a SIGSTOP pending, which
2079 makes it so that the LWP reports an immediate syscall return,
2080 followed by the SIGSTOP. Skip seeing that "return" using
2081 PTRACE_CONT directly, and let stop_wait_callback collect the
2082 SIGSTOP. Later when the thread is resumed, a new syscall
2083 entry event. If we didn't do this (and returned 0), we'd
2084 leave a syscall entry pending, and our caller, by using
2085 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2086 itself. Later, when the user re-resumes this LWP, we'd see
2087 another syscall entry event and we'd mistake it for a return.
2088
2089 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2090 (leaving immediately with LWP->signalled set, without issuing
2091 a PTRACE_CONT), it would still be problematic to leave this
2092 syscall enter pending, as later when the thread is resumed,
2093 it would then see the same syscall exit mentioned above,
2094 followed by the delayed SIGSTOP, while the syscall didn't
2095 actually get to execute. It seems it would be even more
2096 confusing to the user. */
2097
2098 if (debug_linux_nat)
2099 fprintf_unfiltered (gdb_stdlog,
2100 "LHST: ignoring syscall %d "
2101 "for LWP %ld (stopping threads), "
2102 "resuming with PTRACE_CONT for SIGSTOP\n",
2103 syscall_number,
2104 GET_LWP (lp->ptid));
2105
2106 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2107 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2108 return 1;
2109 }
2110
2111 if (catch_syscall_enabled ())
2112 {
2113 /* Always update the entry/return state, even if this particular
2114 syscall isn't interesting to the core now. In async mode,
2115 the user could install a new catchpoint for this syscall
2116 between syscall enter/return, and we'll need to know to
2117 report a syscall return if that happens. */
2118 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2119 ? TARGET_WAITKIND_SYSCALL_RETURN
2120 : TARGET_WAITKIND_SYSCALL_ENTRY);
2121
2122 if (catching_syscall_number (syscall_number))
2123 {
2124 /* Alright, an event to report. */
2125 ourstatus->kind = lp->syscall_state;
2126 ourstatus->value.syscall_number = syscall_number;
2127
2128 if (debug_linux_nat)
2129 fprintf_unfiltered (gdb_stdlog,
2130 "LHST: stopping for %s of syscall %d"
2131 " for LWP %ld\n",
2132 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2133 ? "entry" : "return",
2134 syscall_number,
2135 GET_LWP (lp->ptid));
2136 return 0;
2137 }
2138
2139 if (debug_linux_nat)
2140 fprintf_unfiltered (gdb_stdlog,
2141 "LHST: ignoring %s of syscall %d "
2142 "for LWP %ld\n",
2143 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2144 ? "entry" : "return",
2145 syscall_number,
2146 GET_LWP (lp->ptid));
2147 }
2148 else
2149 {
2150 /* If we had been syscall tracing, and hence used PT_SYSCALL
2151 before on this LWP, it could happen that the user removes all
2152 syscall catchpoints before we get to process this event.
2153 There are two noteworthy issues here:
2154
2155 - When stopped at a syscall entry event, resuming with
2156 PT_STEP still resumes executing the syscall and reports a
2157 syscall return.
2158
2159 - Only PT_SYSCALL catches syscall enters. If we last
2160 single-stepped this thread, then this event can't be a
2161 syscall enter. If we last single-stepped this thread, this
2162 has to be a syscall exit.
2163
2164 The points above mean that the next resume, be it PT_STEP or
2165 PT_CONTINUE, can not trigger a syscall trace event. */
2166 if (debug_linux_nat)
2167 fprintf_unfiltered (gdb_stdlog,
2168 "LHST: caught syscall event with no syscall catchpoints."
2169 " %d for LWP %ld, ignoring\n",
2170 syscall_number,
2171 GET_LWP (lp->ptid));
2172 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2173 }
2174
2175 /* The core isn't interested in this event. For efficiency, avoid
2176 stopping all threads only to have the core resume them all again.
2177 Since we're not stopping threads, if we're still syscall tracing
2178 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2179 subsequent syscall. Simply resume using the inf-ptrace layer,
2180 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2181
2182 /* Note that gdbarch_get_syscall_number may access registers, hence
2183 fill a regcache. */
2184 registers_changed ();
2185 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2186 lp->step, TARGET_SIGNAL_0);
2187 return 1;
2188 }
2189
2190 /* Handle a GNU/Linux extended wait response. If we see a clone
2191 event, we need to add the new LWP to our list (and not report the
2192 trap to higher layers). This function returns non-zero if the
2193 event should be ignored and we should wait again. If STOPPING is
2194 true, the new LWP remains stopped, otherwise it is continued. */
2195
2196 static int
2197 linux_handle_extended_wait (struct lwp_info *lp, int status,
2198 int stopping)
2199 {
2200 int pid = GET_LWP (lp->ptid);
2201 struct target_waitstatus *ourstatus = &lp->waitstatus;
2202 struct lwp_info *new_lp = NULL;
2203 int event = status >> 16;
2204
2205 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2206 || event == PTRACE_EVENT_CLONE)
2207 {
2208 unsigned long new_pid;
2209 int ret;
2210
2211 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2212
2213 /* If we haven't already seen the new PID stop, wait for it now. */
2214 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2215 {
2216 /* The new child has a pending SIGSTOP. We can't affect it until it
2217 hits the SIGSTOP, but we're already attached. */
2218 ret = my_waitpid (new_pid, &status,
2219 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2220 if (ret == -1)
2221 perror_with_name (_("waiting for new child"));
2222 else if (ret != new_pid)
2223 internal_error (__FILE__, __LINE__,
2224 _("wait returned unexpected PID %d"), ret);
2225 else if (!WIFSTOPPED (status))
2226 internal_error (__FILE__, __LINE__,
2227 _("wait returned unexpected status 0x%x"), status);
2228 }
2229
2230 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2231
2232 if (event == PTRACE_EVENT_FORK
2233 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2234 {
2235 struct fork_info *fp;
2236
2237 /* Handle checkpointing by linux-fork.c here as a special
2238 case. We don't want the follow-fork-mode or 'catch fork'
2239 to interfere with this. */
2240
2241 /* This won't actually modify the breakpoint list, but will
2242 physically remove the breakpoints from the child. */
2243 detach_breakpoints (new_pid);
2244
2245 /* Retain child fork in ptrace (stopped) state. */
2246 fp = find_fork_pid (new_pid);
2247 if (!fp)
2248 fp = add_fork (new_pid);
2249
2250 /* Report as spurious, so that infrun doesn't want to follow
2251 this fork. We're actually doing an infcall in
2252 linux-fork.c. */
2253 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2254 linux_enable_event_reporting (pid_to_ptid (new_pid));
2255
2256 /* Report the stop to the core. */
2257 return 0;
2258 }
2259
2260 if (event == PTRACE_EVENT_FORK)
2261 ourstatus->kind = TARGET_WAITKIND_FORKED;
2262 else if (event == PTRACE_EVENT_VFORK)
2263 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2264 else
2265 {
2266 struct cleanup *old_chain;
2267
2268 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2269 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2270 new_lp->cloned = 1;
2271 new_lp->stopped = 1;
2272
2273 if (WSTOPSIG (status) != SIGSTOP)
2274 {
2275 /* This can happen if someone starts sending signals to
2276 the new thread before it gets a chance to run, which
2277 have a lower number than SIGSTOP (e.g. SIGUSR1).
2278 This is an unlikely case, and harder to handle for
2279 fork / vfork than for clone, so we do not try - but
2280 we handle it for clone events here. We'll send
2281 the other signal on to the thread below. */
2282
2283 new_lp->signalled = 1;
2284 }
2285 else
2286 status = 0;
2287
2288 if (non_stop)
2289 {
2290 /* Add the new thread to GDB's lists as soon as possible
2291 so that:
2292
2293 1) the frontend doesn't have to wait for a stop to
2294 display them, and,
2295
2296 2) we tag it with the correct running state. */
2297
2298 /* If the thread_db layer is active, let it know about
2299 this new thread, and add it to GDB's list. */
2300 if (!thread_db_attach_lwp (new_lp->ptid))
2301 {
2302 /* We're not using thread_db. Add it to GDB's
2303 list. */
2304 target_post_attach (GET_LWP (new_lp->ptid));
2305 add_thread (new_lp->ptid);
2306 }
2307
2308 if (!stopping)
2309 {
2310 set_running (new_lp->ptid, 1);
2311 set_executing (new_lp->ptid, 1);
2312 }
2313 }
2314
2315 /* Note the need to use the low target ops to resume, to
2316 handle resuming with PT_SYSCALL if we have syscall
2317 catchpoints. */
2318 if (!stopping)
2319 {
2320 int signo;
2321
2322 new_lp->stopped = 0;
2323 new_lp->resumed = 1;
2324
2325 signo = (status
2326 ? target_signal_from_host (WSTOPSIG (status))
2327 : TARGET_SIGNAL_0);
2328
2329 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2330 0, signo);
2331 }
2332
2333 if (debug_linux_nat)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "LHEW: Got clone event from LWP %ld, resuming\n",
2336 GET_LWP (lp->ptid));
2337 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2338 0, TARGET_SIGNAL_0);
2339
2340 return 1;
2341 }
2342
2343 return 0;
2344 }
2345
2346 if (event == PTRACE_EVENT_EXEC)
2347 {
2348 if (debug_linux_nat)
2349 fprintf_unfiltered (gdb_stdlog,
2350 "LHEW: Got exec event from LWP %ld\n",
2351 GET_LWP (lp->ptid));
2352
2353 ourstatus->kind = TARGET_WAITKIND_EXECD;
2354 ourstatus->value.execd_pathname
2355 = xstrdup (linux_child_pid_to_exec_file (pid));
2356
2357 return 0;
2358 }
2359
2360 if (event == PTRACE_EVENT_VFORK_DONE)
2361 {
2362 if (current_inferior ()->waiting_for_vfork_done)
2363 {
2364 if (debug_linux_nat)
2365 fprintf_unfiltered (gdb_stdlog, "\
2366 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2367 GET_LWP (lp->ptid));
2368
2369 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2370 return 0;
2371 }
2372
2373 if (debug_linux_nat)
2374 fprintf_unfiltered (gdb_stdlog, "\
2375 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2376 GET_LWP (lp->ptid));
2377 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2378 return 1;
2379 }
2380
2381 internal_error (__FILE__, __LINE__,
2382 _("unknown ptrace event %d"), event);
2383 }
2384
2385 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2386 exited. */
2387
2388 static int
2389 wait_lwp (struct lwp_info *lp)
2390 {
2391 pid_t pid;
2392 int status;
2393 int thread_dead = 0;
2394
2395 gdb_assert (!lp->stopped);
2396 gdb_assert (lp->status == 0);
2397
2398 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2399 if (pid == -1 && errno == ECHILD)
2400 {
2401 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2402 if (pid == -1 && errno == ECHILD)
2403 {
2404 /* The thread has previously exited. We need to delete it
2405 now because, for some vendor 2.4 kernels with NPTL
2406 support backported, there won't be an exit event unless
2407 it is the main thread. 2.6 kernels will report an exit
2408 event for each thread that exits, as expected. */
2409 thread_dead = 1;
2410 if (debug_linux_nat)
2411 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2412 target_pid_to_str (lp->ptid));
2413 }
2414 }
2415
2416 if (!thread_dead)
2417 {
2418 gdb_assert (pid == GET_LWP (lp->ptid));
2419
2420 if (debug_linux_nat)
2421 {
2422 fprintf_unfiltered (gdb_stdlog,
2423 "WL: waitpid %s received %s\n",
2424 target_pid_to_str (lp->ptid),
2425 status_to_str (status));
2426 }
2427 }
2428
2429 /* Check if the thread has exited. */
2430 if (WIFEXITED (status) || WIFSIGNALED (status))
2431 {
2432 thread_dead = 1;
2433 if (debug_linux_nat)
2434 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2435 target_pid_to_str (lp->ptid));
2436 }
2437
2438 if (thread_dead)
2439 {
2440 exit_lwp (lp);
2441 return 0;
2442 }
2443
2444 gdb_assert (WIFSTOPPED (status));
2445
2446 /* Handle GNU/Linux's syscall SIGTRAPs. */
2447 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2448 {
2449 /* No longer need the sysgood bit. The ptrace event ends up
2450 recorded in lp->waitstatus if we care for it. We can carry
2451 on handling the event like a regular SIGTRAP from here
2452 on. */
2453 status = W_STOPCODE (SIGTRAP);
2454 if (linux_handle_syscall_trap (lp, 1))
2455 return wait_lwp (lp);
2456 }
2457
2458 /* Handle GNU/Linux's extended waitstatus for trace events. */
2459 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2460 {
2461 if (debug_linux_nat)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "WL: Handling extended status 0x%06x\n",
2464 status);
2465 if (linux_handle_extended_wait (lp, status, 1))
2466 return wait_lwp (lp);
2467 }
2468
2469 return status;
2470 }
2471
2472 /* Save the most recent siginfo for LP. This is currently only called
2473 for SIGTRAP; some ports use the si_addr field for
2474 target_stopped_data_address. In the future, it may also be used to
2475 restore the siginfo of requeued signals. */
2476
2477 static void
2478 save_siginfo (struct lwp_info *lp)
2479 {
2480 errno = 0;
2481 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2482 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2483
2484 if (errno != 0)
2485 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2486 }
2487
2488 /* Send a SIGSTOP to LP. */
2489
2490 static int
2491 stop_callback (struct lwp_info *lp, void *data)
2492 {
2493 if (!lp->stopped && !lp->signalled)
2494 {
2495 int ret;
2496
2497 if (debug_linux_nat)
2498 {
2499 fprintf_unfiltered (gdb_stdlog,
2500 "SC: kill %s **<SIGSTOP>**\n",
2501 target_pid_to_str (lp->ptid));
2502 }
2503 errno = 0;
2504 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2505 if (debug_linux_nat)
2506 {
2507 fprintf_unfiltered (gdb_stdlog,
2508 "SC: lwp kill %d %s\n",
2509 ret,
2510 errno ? safe_strerror (errno) : "ERRNO-OK");
2511 }
2512
2513 lp->signalled = 1;
2514 gdb_assert (lp->status == 0);
2515 }
2516
2517 return 0;
2518 }
2519
2520 /* Return non-zero if LWP PID has a pending SIGINT. */
2521
2522 static int
2523 linux_nat_has_pending_sigint (int pid)
2524 {
2525 sigset_t pending, blocked, ignored;
2526 int i;
2527
2528 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2529
2530 if (sigismember (&pending, SIGINT)
2531 && !sigismember (&ignored, SIGINT))
2532 return 1;
2533
2534 return 0;
2535 }
2536
2537 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2538
2539 static int
2540 set_ignore_sigint (struct lwp_info *lp, void *data)
2541 {
2542 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2543 flag to consume the next one. */
2544 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2545 && WSTOPSIG (lp->status) == SIGINT)
2546 lp->status = 0;
2547 else
2548 lp->ignore_sigint = 1;
2549
2550 return 0;
2551 }
2552
2553 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2554 This function is called after we know the LWP has stopped; if the LWP
2555 stopped before the expected SIGINT was delivered, then it will never have
2556 arrived. Also, if the signal was delivered to a shared queue and consumed
2557 by a different thread, it will never be delivered to this LWP. */
2558
2559 static void
2560 maybe_clear_ignore_sigint (struct lwp_info *lp)
2561 {
2562 if (!lp->ignore_sigint)
2563 return;
2564
2565 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2566 {
2567 if (debug_linux_nat)
2568 fprintf_unfiltered (gdb_stdlog,
2569 "MCIS: Clearing bogus flag for %s\n",
2570 target_pid_to_str (lp->ptid));
2571 lp->ignore_sigint = 0;
2572 }
2573 }
2574
2575 /* Fetch the possible triggered data watchpoint info and store it in
2576 LP.
2577
2578 On some archs, like x86, that use debug registers to set
2579 watchpoints, it's possible that the way to know which watched
2580 address trapped, is to check the register that is used to select
2581 which address to watch. Problem is, between setting the watchpoint
2582 and reading back which data address trapped, the user may change
2583 the set of watchpoints, and, as a consequence, GDB changes the
2584 debug registers in the inferior. To avoid reading back a stale
2585 stopped-data-address when that happens, we cache in LP the fact
2586 that a watchpoint trapped, and the corresponding data address, as
2587 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2588 registers meanwhile, we have the cached data we can rely on. */
2589
2590 static void
2591 save_sigtrap (struct lwp_info *lp)
2592 {
2593 struct cleanup *old_chain;
2594
2595 if (linux_ops->to_stopped_by_watchpoint == NULL)
2596 {
2597 lp->stopped_by_watchpoint = 0;
2598 return;
2599 }
2600
2601 old_chain = save_inferior_ptid ();
2602 inferior_ptid = lp->ptid;
2603
2604 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2605
2606 if (lp->stopped_by_watchpoint)
2607 {
2608 if (linux_ops->to_stopped_data_address != NULL)
2609 lp->stopped_data_address_p =
2610 linux_ops->to_stopped_data_address (&current_target,
2611 &lp->stopped_data_address);
2612 else
2613 lp->stopped_data_address_p = 0;
2614 }
2615
2616 do_cleanups (old_chain);
2617 }
2618
2619 /* See save_sigtrap. */
2620
2621 static int
2622 linux_nat_stopped_by_watchpoint (void)
2623 {
2624 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2625
2626 gdb_assert (lp != NULL);
2627
2628 return lp->stopped_by_watchpoint;
2629 }
2630
2631 static int
2632 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2633 {
2634 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2635
2636 gdb_assert (lp != NULL);
2637
2638 *addr_p = lp->stopped_data_address;
2639
2640 return lp->stopped_data_address_p;
2641 }
2642
2643 /* Wait until LP is stopped. */
2644
2645 static int
2646 stop_wait_callback (struct lwp_info *lp, void *data)
2647 {
2648 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2649
2650 /* If this is a vfork parent, bail out, it is not going to report
2651 any SIGSTOP until the vfork is done with. */
2652 if (inf->vfork_child != NULL)
2653 return 0;
2654
2655 if (!lp->stopped)
2656 {
2657 int status;
2658
2659 status = wait_lwp (lp);
2660 if (status == 0)
2661 return 0;
2662
2663 if (lp->ignore_sigint && WIFSTOPPED (status)
2664 && WSTOPSIG (status) == SIGINT)
2665 {
2666 lp->ignore_sigint = 0;
2667
2668 errno = 0;
2669 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2670 if (debug_linux_nat)
2671 fprintf_unfiltered (gdb_stdlog,
2672 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2673 target_pid_to_str (lp->ptid),
2674 errno ? safe_strerror (errno) : "OK");
2675
2676 return stop_wait_callback (lp, NULL);
2677 }
2678
2679 maybe_clear_ignore_sigint (lp);
2680
2681 if (WSTOPSIG (status) != SIGSTOP)
2682 {
2683 if (WSTOPSIG (status) == SIGTRAP)
2684 {
2685 /* If a LWP other than the LWP that we're reporting an
2686 event for has hit a GDB breakpoint (as opposed to
2687 some random trap signal), then just arrange for it to
2688 hit it again later. We don't keep the SIGTRAP status
2689 and don't forward the SIGTRAP signal to the LWP. We
2690 will handle the current event, eventually we will
2691 resume all LWPs, and this one will get its breakpoint
2692 trap again.
2693
2694 If we do not do this, then we run the risk that the
2695 user will delete or disable the breakpoint, but the
2696 thread will have already tripped on it. */
2697
2698 /* Save the trap's siginfo in case we need it later. */
2699 save_siginfo (lp);
2700
2701 save_sigtrap (lp);
2702
2703 /* Now resume this LWP and get the SIGSTOP event. */
2704 errno = 0;
2705 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2706 if (debug_linux_nat)
2707 {
2708 fprintf_unfiltered (gdb_stdlog,
2709 "PTRACE_CONT %s, 0, 0 (%s)\n",
2710 target_pid_to_str (lp->ptid),
2711 errno ? safe_strerror (errno) : "OK");
2712
2713 fprintf_unfiltered (gdb_stdlog,
2714 "SWC: Candidate SIGTRAP event in %s\n",
2715 target_pid_to_str (lp->ptid));
2716 }
2717 /* Hold this event/waitstatus while we check to see if
2718 there are any more (we still want to get that SIGSTOP). */
2719 stop_wait_callback (lp, NULL);
2720
2721 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2722 there's another event, throw it back into the
2723 queue. */
2724 if (lp->status)
2725 {
2726 if (debug_linux_nat)
2727 fprintf_unfiltered (gdb_stdlog,
2728 "SWC: kill %s, %s\n",
2729 target_pid_to_str (lp->ptid),
2730 status_to_str ((int) status));
2731 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2732 }
2733
2734 /* Save the sigtrap event. */
2735 lp->status = status;
2736 return 0;
2737 }
2738 else
2739 {
2740 /* The thread was stopped with a signal other than
2741 SIGSTOP, and didn't accidentally trip a breakpoint. */
2742
2743 if (debug_linux_nat)
2744 {
2745 fprintf_unfiltered (gdb_stdlog,
2746 "SWC: Pending event %s in %s\n",
2747 status_to_str ((int) status),
2748 target_pid_to_str (lp->ptid));
2749 }
2750 /* Now resume this LWP and get the SIGSTOP event. */
2751 errno = 0;
2752 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2753 if (debug_linux_nat)
2754 fprintf_unfiltered (gdb_stdlog,
2755 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2756 target_pid_to_str (lp->ptid),
2757 errno ? safe_strerror (errno) : "OK");
2758
2759 /* Hold this event/waitstatus while we check to see if
2760 there are any more (we still want to get that SIGSTOP). */
2761 stop_wait_callback (lp, NULL);
2762
2763 /* If the lp->status field is still empty, use it to
2764 hold this event. If not, then this event must be
2765 returned to the event queue of the LWP. */
2766 if (lp->status)
2767 {
2768 if (debug_linux_nat)
2769 {
2770 fprintf_unfiltered (gdb_stdlog,
2771 "SWC: kill %s, %s\n",
2772 target_pid_to_str (lp->ptid),
2773 status_to_str ((int) status));
2774 }
2775 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2776 }
2777 else
2778 lp->status = status;
2779 return 0;
2780 }
2781 }
2782 else
2783 {
2784 /* We caught the SIGSTOP that we intended to catch, so
2785 there's no SIGSTOP pending. */
2786 lp->stopped = 1;
2787 lp->signalled = 0;
2788 }
2789 }
2790
2791 return 0;
2792 }
2793
2794 /* Return non-zero if LP has a wait status pending. */
2795
2796 static int
2797 status_callback (struct lwp_info *lp, void *data)
2798 {
2799 /* Only report a pending wait status if we pretend that this has
2800 indeed been resumed. */
2801 if (!lp->resumed)
2802 return 0;
2803
2804 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2805 {
2806 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2807 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2808 0', so a clean process exit can not be stored pending in
2809 lp->status, it is indistinguishable from
2810 no-pending-status. */
2811 return 1;
2812 }
2813
2814 if (lp->status != 0)
2815 return 1;
2816
2817 return 0;
2818 }
2819
2820 /* Return non-zero if LP isn't stopped. */
2821
2822 static int
2823 running_callback (struct lwp_info *lp, void *data)
2824 {
2825 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2826 }
2827
2828 /* Count the LWP's that have had events. */
2829
2830 static int
2831 count_events_callback (struct lwp_info *lp, void *data)
2832 {
2833 int *count = data;
2834
2835 gdb_assert (count != NULL);
2836
2837 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2838 if (lp->status != 0 && lp->resumed
2839 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2840 (*count)++;
2841
2842 return 0;
2843 }
2844
2845 /* Select the LWP (if any) that is currently being single-stepped. */
2846
2847 static int
2848 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2849 {
2850 if (lp->step && lp->status != 0)
2851 return 1;
2852 else
2853 return 0;
2854 }
2855
2856 /* Select the Nth LWP that has had a SIGTRAP event. */
2857
2858 static int
2859 select_event_lwp_callback (struct lwp_info *lp, void *data)
2860 {
2861 int *selector = data;
2862
2863 gdb_assert (selector != NULL);
2864
2865 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2866 if (lp->status != 0 && lp->resumed
2867 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2868 if ((*selector)-- == 0)
2869 return 1;
2870
2871 return 0;
2872 }
2873
2874 static int
2875 cancel_breakpoint (struct lwp_info *lp)
2876 {
2877 /* Arrange for a breakpoint to be hit again later. We don't keep
2878 the SIGTRAP status and don't forward the SIGTRAP signal to the
2879 LWP. We will handle the current event, eventually we will resume
2880 this LWP, and this breakpoint will trap again.
2881
2882 If we do not do this, then we run the risk that the user will
2883 delete or disable the breakpoint, but the LWP will have already
2884 tripped on it. */
2885
2886 struct regcache *regcache = get_thread_regcache (lp->ptid);
2887 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2888 CORE_ADDR pc;
2889
2890 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2891 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2892 {
2893 if (debug_linux_nat)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "CB: Push back breakpoint for %s\n",
2896 target_pid_to_str (lp->ptid));
2897
2898 /* Back up the PC if necessary. */
2899 if (gdbarch_decr_pc_after_break (gdbarch))
2900 regcache_write_pc (regcache, pc);
2901
2902 return 1;
2903 }
2904 return 0;
2905 }
2906
2907 static int
2908 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2909 {
2910 struct lwp_info *event_lp = data;
2911
2912 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2913 if (lp == event_lp)
2914 return 0;
2915
2916 /* If a LWP other than the LWP that we're reporting an event for has
2917 hit a GDB breakpoint (as opposed to some random trap signal),
2918 then just arrange for it to hit it again later. We don't keep
2919 the SIGTRAP status and don't forward the SIGTRAP signal to the
2920 LWP. We will handle the current event, eventually we will resume
2921 all LWPs, and this one will get its breakpoint trap again.
2922
2923 If we do not do this, then we run the risk that the user will
2924 delete or disable the breakpoint, but the LWP will have already
2925 tripped on it. */
2926
2927 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2928 && lp->status != 0
2929 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2930 && cancel_breakpoint (lp))
2931 /* Throw away the SIGTRAP. */
2932 lp->status = 0;
2933
2934 return 0;
2935 }
2936
2937 /* Select one LWP out of those that have events pending. */
2938
2939 static void
2940 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2941 {
2942 int num_events = 0;
2943 int random_selector;
2944 struct lwp_info *event_lp;
2945
2946 /* Record the wait status for the original LWP. */
2947 (*orig_lp)->status = *status;
2948
2949 /* Give preference to any LWP that is being single-stepped. */
2950 event_lp = iterate_over_lwps (filter,
2951 select_singlestep_lwp_callback, NULL);
2952 if (event_lp != NULL)
2953 {
2954 if (debug_linux_nat)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "SEL: Select single-step %s\n",
2957 target_pid_to_str (event_lp->ptid));
2958 }
2959 else
2960 {
2961 /* No single-stepping LWP. Select one at random, out of those
2962 which have had SIGTRAP events. */
2963
2964 /* First see how many SIGTRAP events we have. */
2965 iterate_over_lwps (filter, count_events_callback, &num_events);
2966
2967 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2968 random_selector = (int)
2969 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2970
2971 if (debug_linux_nat && num_events > 1)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2974 num_events, random_selector);
2975
2976 event_lp = iterate_over_lwps (filter,
2977 select_event_lwp_callback,
2978 &random_selector);
2979 }
2980
2981 if (event_lp != NULL)
2982 {
2983 /* Switch the event LWP. */
2984 *orig_lp = event_lp;
2985 *status = event_lp->status;
2986 }
2987
2988 /* Flush the wait status for the event LWP. */
2989 (*orig_lp)->status = 0;
2990 }
2991
2992 /* Return non-zero if LP has been resumed. */
2993
2994 static int
2995 resumed_callback (struct lwp_info *lp, void *data)
2996 {
2997 return lp->resumed;
2998 }
2999
3000 /* Stop an active thread, verify it still exists, then resume it. */
3001
3002 static int
3003 stop_and_resume_callback (struct lwp_info *lp, void *data)
3004 {
3005 struct lwp_info *ptr;
3006
3007 if (!lp->stopped && !lp->signalled)
3008 {
3009 stop_callback (lp, NULL);
3010 stop_wait_callback (lp, NULL);
3011 /* Resume if the lwp still exists. */
3012 for (ptr = lwp_list; ptr; ptr = ptr->next)
3013 if (lp == ptr)
3014 {
3015 resume_callback (lp, NULL);
3016 resume_set_callback (lp, NULL);
3017 }
3018 }
3019 return 0;
3020 }
3021
3022 /* Check if we should go on and pass this event to common code.
3023 Return the affected lwp if we are, or NULL otherwise. */
3024 static struct lwp_info *
3025 linux_nat_filter_event (int lwpid, int status, int options)
3026 {
3027 struct lwp_info *lp;
3028
3029 lp = find_lwp_pid (pid_to_ptid (lwpid));
3030
3031 /* Check for stop events reported by a process we didn't already
3032 know about - anything not already in our LWP list.
3033
3034 If we're expecting to receive stopped processes after
3035 fork, vfork, and clone events, then we'll just add the
3036 new one to our list and go back to waiting for the event
3037 to be reported - the stopped process might be returned
3038 from waitpid before or after the event is. */
3039 if (WIFSTOPPED (status) && !lp)
3040 {
3041 linux_record_stopped_pid (lwpid, status);
3042 return NULL;
3043 }
3044
3045 /* Make sure we don't report an event for the exit of an LWP not in
3046 our list, i.e. not part of the current process. This can happen
3047 if we detach from a program we original forked and then it
3048 exits. */
3049 if (!WIFSTOPPED (status) && !lp)
3050 return NULL;
3051
3052 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3053 CLONE_PTRACE processes which do not use the thread library -
3054 otherwise we wouldn't find the new LWP this way. That doesn't
3055 currently work, and the following code is currently unreachable
3056 due to the two blocks above. If it's fixed some day, this code
3057 should be broken out into a function so that we can also pick up
3058 LWPs from the new interface. */
3059 if (!lp)
3060 {
3061 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3062 if (options & __WCLONE)
3063 lp->cloned = 1;
3064
3065 gdb_assert (WIFSTOPPED (status)
3066 && WSTOPSIG (status) == SIGSTOP);
3067 lp->signalled = 1;
3068
3069 if (!in_thread_list (inferior_ptid))
3070 {
3071 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3072 GET_PID (inferior_ptid));
3073 add_thread (inferior_ptid);
3074 }
3075
3076 add_thread (lp->ptid);
3077 }
3078
3079 /* Handle GNU/Linux's syscall SIGTRAPs. */
3080 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3081 {
3082 /* No longer need the sysgood bit. The ptrace event ends up
3083 recorded in lp->waitstatus if we care for it. We can carry
3084 on handling the event like a regular SIGTRAP from here
3085 on. */
3086 status = W_STOPCODE (SIGTRAP);
3087 if (linux_handle_syscall_trap (lp, 0))
3088 return NULL;
3089 }
3090
3091 /* Handle GNU/Linux's extended waitstatus for trace events. */
3092 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3093 {
3094 if (debug_linux_nat)
3095 fprintf_unfiltered (gdb_stdlog,
3096 "LLW: Handling extended status 0x%06x\n",
3097 status);
3098 if (linux_handle_extended_wait (lp, status, 0))
3099 return NULL;
3100 }
3101
3102 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3103 {
3104 /* Save the trap's siginfo in case we need it later. */
3105 save_siginfo (lp);
3106
3107 save_sigtrap (lp);
3108 }
3109
3110 /* Check if the thread has exited. */
3111 if ((WIFEXITED (status) || WIFSIGNALED (status))
3112 && num_lwps (GET_PID (lp->ptid)) > 1)
3113 {
3114 /* If this is the main thread, we must stop all threads and verify
3115 if they are still alive. This is because in the nptl thread model
3116 on Linux 2.4, there is no signal issued for exiting LWPs
3117 other than the main thread. We only get the main thread exit
3118 signal once all child threads have already exited. If we
3119 stop all the threads and use the stop_wait_callback to check
3120 if they have exited we can determine whether this signal
3121 should be ignored or whether it means the end of the debugged
3122 application, regardless of which threading model is being
3123 used. */
3124 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3125 {
3126 lp->stopped = 1;
3127 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3128 stop_and_resume_callback, NULL);
3129 }
3130
3131 if (debug_linux_nat)
3132 fprintf_unfiltered (gdb_stdlog,
3133 "LLW: %s exited.\n",
3134 target_pid_to_str (lp->ptid));
3135
3136 if (num_lwps (GET_PID (lp->ptid)) > 1)
3137 {
3138 /* If there is at least one more LWP, then the exit signal
3139 was not the end of the debugged application and should be
3140 ignored. */
3141 exit_lwp (lp);
3142 return NULL;
3143 }
3144 }
3145
3146 /* Check if the current LWP has previously exited. In the nptl
3147 thread model, LWPs other than the main thread do not issue
3148 signals when they exit so we must check whenever the thread has
3149 stopped. A similar check is made in stop_wait_callback(). */
3150 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3151 {
3152 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3153
3154 if (debug_linux_nat)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "LLW: %s exited.\n",
3157 target_pid_to_str (lp->ptid));
3158
3159 exit_lwp (lp);
3160
3161 /* Make sure there is at least one thread running. */
3162 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3163
3164 /* Discard the event. */
3165 return NULL;
3166 }
3167
3168 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3169 an attempt to stop an LWP. */
3170 if (lp->signalled
3171 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3172 {
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "LLW: Delayed SIGSTOP caught for %s.\n",
3176 target_pid_to_str (lp->ptid));
3177
3178 /* This is a delayed SIGSTOP. */
3179 lp->signalled = 0;
3180
3181 registers_changed ();
3182
3183 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3184 lp->step, TARGET_SIGNAL_0);
3185 if (debug_linux_nat)
3186 fprintf_unfiltered (gdb_stdlog,
3187 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3188 lp->step ?
3189 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3190 target_pid_to_str (lp->ptid));
3191
3192 lp->stopped = 0;
3193 gdb_assert (lp->resumed);
3194
3195 /* Discard the event. */
3196 return NULL;
3197 }
3198
3199 /* Make sure we don't report a SIGINT that we have already displayed
3200 for another thread. */
3201 if (lp->ignore_sigint
3202 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3203 {
3204 if (debug_linux_nat)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "LLW: Delayed SIGINT caught for %s.\n",
3207 target_pid_to_str (lp->ptid));
3208
3209 /* This is a delayed SIGINT. */
3210 lp->ignore_sigint = 0;
3211
3212 registers_changed ();
3213 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3214 lp->step, TARGET_SIGNAL_0);
3215 if (debug_linux_nat)
3216 fprintf_unfiltered (gdb_stdlog,
3217 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3218 lp->step ?
3219 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3220 target_pid_to_str (lp->ptid));
3221
3222 lp->stopped = 0;
3223 gdb_assert (lp->resumed);
3224
3225 /* Discard the event. */
3226 return NULL;
3227 }
3228
3229 /* An interesting event. */
3230 gdb_assert (lp);
3231 lp->status = status;
3232 return lp;
3233 }
3234
3235 static ptid_t
3236 linux_nat_wait_1 (struct target_ops *ops,
3237 ptid_t ptid, struct target_waitstatus *ourstatus,
3238 int target_options)
3239 {
3240 static sigset_t prev_mask;
3241 struct lwp_info *lp = NULL;
3242 int options = 0;
3243 int status = 0;
3244 pid_t pid;
3245
3246 if (debug_linux_nat_async)
3247 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3248
3249 /* The first time we get here after starting a new inferior, we may
3250 not have added it to the LWP list yet - this is the earliest
3251 moment at which we know its PID. */
3252 if (ptid_is_pid (inferior_ptid))
3253 {
3254 /* Upgrade the main thread's ptid. */
3255 thread_change_ptid (inferior_ptid,
3256 BUILD_LWP (GET_PID (inferior_ptid),
3257 GET_PID (inferior_ptid)));
3258
3259 lp = add_lwp (inferior_ptid);
3260 lp->resumed = 1;
3261 }
3262
3263 /* Make sure SIGCHLD is blocked. */
3264 block_child_signals (&prev_mask);
3265
3266 if (ptid_equal (ptid, minus_one_ptid))
3267 pid = -1;
3268 else if (ptid_is_pid (ptid))
3269 /* A request to wait for a specific tgid. This is not possible
3270 with waitpid, so instead, we wait for any child, and leave
3271 children we're not interested in right now with a pending
3272 status to report later. */
3273 pid = -1;
3274 else
3275 pid = GET_LWP (ptid);
3276
3277 retry:
3278 lp = NULL;
3279 status = 0;
3280
3281 /* Make sure there is at least one LWP that has been resumed. */
3282 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
3283
3284 /* First check if there is a LWP with a wait status pending. */
3285 if (pid == -1)
3286 {
3287 /* Any LWP that's been resumed will do. */
3288 lp = iterate_over_lwps (ptid, status_callback, NULL);
3289 if (lp)
3290 {
3291 if (debug_linux_nat && lp->status)
3292 fprintf_unfiltered (gdb_stdlog,
3293 "LLW: Using pending wait status %s for %s.\n",
3294 status_to_str (lp->status),
3295 target_pid_to_str (lp->ptid));
3296 }
3297
3298 /* But if we don't find one, we'll have to wait, and check both
3299 cloned and uncloned processes. We start with the cloned
3300 processes. */
3301 options = __WCLONE | WNOHANG;
3302 }
3303 else if (is_lwp (ptid))
3304 {
3305 if (debug_linux_nat)
3306 fprintf_unfiltered (gdb_stdlog,
3307 "LLW: Waiting for specific LWP %s.\n",
3308 target_pid_to_str (ptid));
3309
3310 /* We have a specific LWP to check. */
3311 lp = find_lwp_pid (ptid);
3312 gdb_assert (lp);
3313
3314 if (debug_linux_nat && lp->status)
3315 fprintf_unfiltered (gdb_stdlog,
3316 "LLW: Using pending wait status %s for %s.\n",
3317 status_to_str (lp->status),
3318 target_pid_to_str (lp->ptid));
3319
3320 /* If we have to wait, take into account whether PID is a cloned
3321 process or not. And we have to convert it to something that
3322 the layer beneath us can understand. */
3323 options = lp->cloned ? __WCLONE : 0;
3324 pid = GET_LWP (ptid);
3325
3326 /* We check for lp->waitstatus in addition to lp->status,
3327 because we can have pending process exits recorded in
3328 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3329 an additional lp->status_p flag. */
3330 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3331 lp = NULL;
3332 }
3333
3334 if (lp && lp->signalled)
3335 {
3336 /* A pending SIGSTOP may interfere with the normal stream of
3337 events. In a typical case where interference is a problem,
3338 we have a SIGSTOP signal pending for LWP A while
3339 single-stepping it, encounter an event in LWP B, and take the
3340 pending SIGSTOP while trying to stop LWP A. After processing
3341 the event in LWP B, LWP A is continued, and we'll never see
3342 the SIGTRAP associated with the last time we were
3343 single-stepping LWP A. */
3344
3345 /* Resume the thread. It should halt immediately returning the
3346 pending SIGSTOP. */
3347 registers_changed ();
3348 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3349 lp->step, TARGET_SIGNAL_0);
3350 if (debug_linux_nat)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3353 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3354 target_pid_to_str (lp->ptid));
3355 lp->stopped = 0;
3356 gdb_assert (lp->resumed);
3357
3358 /* Catch the pending SIGSTOP. */
3359 status = lp->status;
3360 lp->status = 0;
3361
3362 stop_wait_callback (lp, NULL);
3363
3364 /* If the lp->status field isn't empty, we caught another signal
3365 while flushing the SIGSTOP. Return it back to the event
3366 queue of the LWP, as we already have an event to handle. */
3367 if (lp->status)
3368 {
3369 if (debug_linux_nat)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "LLW: kill %s, %s\n",
3372 target_pid_to_str (lp->ptid),
3373 status_to_str (lp->status));
3374 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3375 }
3376
3377 lp->status = status;
3378 }
3379
3380 if (!target_can_async_p ())
3381 {
3382 /* Causes SIGINT to be passed on to the attached process. */
3383 set_sigint_trap ();
3384 }
3385
3386 /* Translate generic target_wait options into waitpid options. */
3387 if (target_options & TARGET_WNOHANG)
3388 options |= WNOHANG;
3389
3390 while (lp == NULL)
3391 {
3392 pid_t lwpid;
3393
3394 lwpid = my_waitpid (pid, &status, options);
3395
3396 if (lwpid > 0)
3397 {
3398 gdb_assert (pid == -1 || lwpid == pid);
3399
3400 if (debug_linux_nat)
3401 {
3402 fprintf_unfiltered (gdb_stdlog,
3403 "LLW: waitpid %ld received %s\n",
3404 (long) lwpid, status_to_str (status));
3405 }
3406
3407 lp = linux_nat_filter_event (lwpid, status, options);
3408
3409 if (lp
3410 && ptid_is_pid (ptid)
3411 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3412 {
3413 if (debug_linux_nat)
3414 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3415 ptid_get_lwp (lp->ptid), status);
3416
3417 if (WIFSTOPPED (lp->status))
3418 {
3419 if (WSTOPSIG (lp->status) != SIGSTOP)
3420 {
3421 stop_callback (lp, NULL);
3422
3423 /* Resume in order to collect the sigstop. */
3424 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
3425
3426 stop_wait_callback (lp, NULL);
3427 }
3428 else
3429 {
3430 lp->stopped = 1;
3431 lp->signalled = 0;
3432 }
3433 }
3434 else if (WIFEXITED (status) || WIFSIGNALED (status))
3435 {
3436 if (debug_linux_nat)
3437 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3438 ptid_get_lwp (lp->ptid));
3439
3440 /* This was the last lwp in the process. Since
3441 events are serialized to GDB core, and we can't
3442 report this one right now, but GDB core and the
3443 other target layers will want to be notified
3444 about the exit code/signal, leave the status
3445 pending for the next time we're able to report
3446 it. */
3447
3448 /* Prevent trying to stop this thread again. We'll
3449 never try to resume it because it has a pending
3450 status. */
3451 lp->stopped = 1;
3452
3453 /* Dead LWP's aren't expected to reported a pending
3454 sigstop. */
3455 lp->signalled = 0;
3456
3457 /* Store the pending event in the waitstatus as
3458 well, because W_EXITCODE(0,0) == 0. */
3459 store_waitstatus (&lp->waitstatus, lp->status);
3460 }
3461
3462 /* Keep looking. */
3463 lp = NULL;
3464 continue;
3465 }
3466
3467 if (lp)
3468 break;
3469 else
3470 {
3471 if (pid == -1)
3472 {
3473 /* waitpid did return something. Restart over. */
3474 options |= __WCLONE;
3475 }
3476 continue;
3477 }
3478 }
3479
3480 if (pid == -1)
3481 {
3482 /* Alternate between checking cloned and uncloned processes. */
3483 options ^= __WCLONE;
3484
3485 /* And every time we have checked both:
3486 In async mode, return to event loop;
3487 In sync mode, suspend waiting for a SIGCHLD signal. */
3488 if (options & __WCLONE)
3489 {
3490 if (target_options & TARGET_WNOHANG)
3491 {
3492 /* No interesting event. */
3493 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3494
3495 if (debug_linux_nat_async)
3496 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3497
3498 restore_child_signals_mask (&prev_mask);
3499 return minus_one_ptid;
3500 }
3501
3502 sigsuspend (&suspend_mask);
3503 }
3504 }
3505 else if (target_options & TARGET_WNOHANG)
3506 {
3507 /* No interesting event for PID yet. */
3508 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3509
3510 if (debug_linux_nat_async)
3511 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3512
3513 restore_child_signals_mask (&prev_mask);
3514 return minus_one_ptid;
3515 }
3516
3517 /* We shouldn't end up here unless we want to try again. */
3518 gdb_assert (lp == NULL);
3519 }
3520
3521 if (!target_can_async_p ())
3522 clear_sigint_trap ();
3523
3524 gdb_assert (lp);
3525
3526 status = lp->status;
3527 lp->status = 0;
3528
3529 /* Don't report signals that GDB isn't interested in, such as
3530 signals that are neither printed nor stopped upon. Stopping all
3531 threads can be a bit time-consuming so if we want decent
3532 performance with heavily multi-threaded programs, especially when
3533 they're using a high frequency timer, we'd better avoid it if we
3534 can. */
3535
3536 if (WIFSTOPPED (status))
3537 {
3538 int signo = target_signal_from_host (WSTOPSIG (status));
3539 struct inferior *inf;
3540
3541 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3542 gdb_assert (inf);
3543
3544 /* Defer to common code if we get a signal while
3545 single-stepping, since that may need special care, e.g. to
3546 skip the signal handler, or, if we're gaining control of the
3547 inferior. */
3548 if (!lp->step
3549 && inf->stop_soon == NO_STOP_QUIETLY
3550 && signal_stop_state (signo) == 0
3551 && signal_print_state (signo) == 0
3552 && signal_pass_state (signo) == 1)
3553 {
3554 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3555 here? It is not clear we should. GDB may not expect
3556 other threads to run. On the other hand, not resuming
3557 newly attached threads may cause an unwanted delay in
3558 getting them running. */
3559 registers_changed ();
3560 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3561 lp->step, signo);
3562 if (debug_linux_nat)
3563 fprintf_unfiltered (gdb_stdlog,
3564 "LLW: %s %s, %s (preempt 'handle')\n",
3565 lp->step ?
3566 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3567 target_pid_to_str (lp->ptid),
3568 signo ? strsignal (signo) : "0");
3569 lp->stopped = 0;
3570 goto retry;
3571 }
3572
3573 if (!non_stop)
3574 {
3575 /* Only do the below in all-stop, as we currently use SIGINT
3576 to implement target_stop (see linux_nat_stop) in
3577 non-stop. */
3578 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3579 {
3580 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3581 forwarded to the entire process group, that is, all LWPs
3582 will receive it - unless they're using CLONE_THREAD to
3583 share signals. Since we only want to report it once, we
3584 mark it as ignored for all LWPs except this one. */
3585 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3586 set_ignore_sigint, NULL);
3587 lp->ignore_sigint = 0;
3588 }
3589 else
3590 maybe_clear_ignore_sigint (lp);
3591 }
3592 }
3593
3594 /* This LWP is stopped now. */
3595 lp->stopped = 1;
3596
3597 if (debug_linux_nat)
3598 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3599 status_to_str (status), target_pid_to_str (lp->ptid));
3600
3601 if (!non_stop)
3602 {
3603 /* Now stop all other LWP's ... */
3604 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3605
3606 /* ... and wait until all of them have reported back that
3607 they're no longer running. */
3608 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3609
3610 /* If we're not waiting for a specific LWP, choose an event LWP
3611 from among those that have had events. Giving equal priority
3612 to all LWPs that have had events helps prevent
3613 starvation. */
3614 if (pid == -1)
3615 select_event_lwp (ptid, &lp, &status);
3616 }
3617
3618 /* Now that we've selected our final event LWP, cancel any
3619 breakpoints in other LWPs that have hit a GDB breakpoint. See
3620 the comment in cancel_breakpoints_callback to find out why. */
3621 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3622
3623 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3624 {
3625 if (debug_linux_nat)
3626 fprintf_unfiltered (gdb_stdlog,
3627 "LLW: trap ptid is %s.\n",
3628 target_pid_to_str (lp->ptid));
3629 }
3630
3631 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3632 {
3633 *ourstatus = lp->waitstatus;
3634 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3635 }
3636 else
3637 store_waitstatus (ourstatus, status);
3638
3639 if (debug_linux_nat_async)
3640 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3641
3642 restore_child_signals_mask (&prev_mask);
3643 return lp->ptid;
3644 }
3645
3646 static ptid_t
3647 linux_nat_wait (struct target_ops *ops,
3648 ptid_t ptid, struct target_waitstatus *ourstatus,
3649 int target_options)
3650 {
3651 ptid_t event_ptid;
3652
3653 if (debug_linux_nat)
3654 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3655
3656 /* Flush the async file first. */
3657 if (target_can_async_p ())
3658 async_file_flush ();
3659
3660 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3661
3662 /* If we requested any event, and something came out, assume there
3663 may be more. If we requested a specific lwp or process, also
3664 assume there may be more. */
3665 if (target_can_async_p ()
3666 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3667 || !ptid_equal (ptid, minus_one_ptid)))
3668 async_file_mark ();
3669
3670 /* Get ready for the next event. */
3671 if (target_can_async_p ())
3672 target_async (inferior_event_handler, 0);
3673
3674 return event_ptid;
3675 }
3676
3677 static int
3678 kill_callback (struct lwp_info *lp, void *data)
3679 {
3680 errno = 0;
3681 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3682 if (debug_linux_nat)
3683 fprintf_unfiltered (gdb_stdlog,
3684 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3685 target_pid_to_str (lp->ptid),
3686 errno ? safe_strerror (errno) : "OK");
3687
3688 return 0;
3689 }
3690
3691 static int
3692 kill_wait_callback (struct lwp_info *lp, void *data)
3693 {
3694 pid_t pid;
3695
3696 /* We must make sure that there are no pending events (delayed
3697 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3698 program doesn't interfere with any following debugging session. */
3699
3700 /* For cloned processes we must check both with __WCLONE and
3701 without, since the exit status of a cloned process isn't reported
3702 with __WCLONE. */
3703 if (lp->cloned)
3704 {
3705 do
3706 {
3707 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3708 if (pid != (pid_t) -1)
3709 {
3710 if (debug_linux_nat)
3711 fprintf_unfiltered (gdb_stdlog,
3712 "KWC: wait %s received unknown.\n",
3713 target_pid_to_str (lp->ptid));
3714 /* The Linux kernel sometimes fails to kill a thread
3715 completely after PTRACE_KILL; that goes from the stop
3716 point in do_fork out to the one in
3717 get_signal_to_deliever and waits again. So kill it
3718 again. */
3719 kill_callback (lp, NULL);
3720 }
3721 }
3722 while (pid == GET_LWP (lp->ptid));
3723
3724 gdb_assert (pid == -1 && errno == ECHILD);
3725 }
3726
3727 do
3728 {
3729 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3730 if (pid != (pid_t) -1)
3731 {
3732 if (debug_linux_nat)
3733 fprintf_unfiltered (gdb_stdlog,
3734 "KWC: wait %s received unk.\n",
3735 target_pid_to_str (lp->ptid));
3736 /* See the call to kill_callback above. */
3737 kill_callback (lp, NULL);
3738 }
3739 }
3740 while (pid == GET_LWP (lp->ptid));
3741
3742 gdb_assert (pid == -1 && errno == ECHILD);
3743 return 0;
3744 }
3745
3746 static void
3747 linux_nat_kill (struct target_ops *ops)
3748 {
3749 struct target_waitstatus last;
3750 ptid_t last_ptid;
3751 int status;
3752
3753 /* If we're stopped while forking and we haven't followed yet,
3754 kill the other task. We need to do this first because the
3755 parent will be sleeping if this is a vfork. */
3756
3757 get_last_target_status (&last_ptid, &last);
3758
3759 if (last.kind == TARGET_WAITKIND_FORKED
3760 || last.kind == TARGET_WAITKIND_VFORKED)
3761 {
3762 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3763 wait (&status);
3764 }
3765
3766 if (forks_exist_p ())
3767 linux_fork_killall ();
3768 else
3769 {
3770 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3771 /* Stop all threads before killing them, since ptrace requires
3772 that the thread is stopped to sucessfully PTRACE_KILL. */
3773 iterate_over_lwps (ptid, stop_callback, NULL);
3774 /* ... and wait until all of them have reported back that
3775 they're no longer running. */
3776 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3777
3778 /* Kill all LWP's ... */
3779 iterate_over_lwps (ptid, kill_callback, NULL);
3780
3781 /* ... and wait until we've flushed all events. */
3782 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3783 }
3784
3785 target_mourn_inferior ();
3786 }
3787
3788 static void
3789 linux_nat_mourn_inferior (struct target_ops *ops)
3790 {
3791 purge_lwp_list (ptid_get_pid (inferior_ptid));
3792
3793 if (! forks_exist_p ())
3794 /* Normal case, no other forks available. */
3795 linux_ops->to_mourn_inferior (ops);
3796 else
3797 /* Multi-fork case. The current inferior_ptid has exited, but
3798 there are other viable forks to debug. Delete the exiting
3799 one and context-switch to the first available. */
3800 linux_fork_mourn_inferior ();
3801 }
3802
3803 /* Convert a native/host siginfo object, into/from the siginfo in the
3804 layout of the inferiors' architecture. */
3805
3806 static void
3807 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3808 {
3809 int done = 0;
3810
3811 if (linux_nat_siginfo_fixup != NULL)
3812 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3813
3814 /* If there was no callback, or the callback didn't do anything,
3815 then just do a straight memcpy. */
3816 if (!done)
3817 {
3818 if (direction == 1)
3819 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3820 else
3821 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3822 }
3823 }
3824
3825 static LONGEST
3826 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3827 const char *annex, gdb_byte *readbuf,
3828 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3829 {
3830 int pid;
3831 struct siginfo siginfo;
3832 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3833
3834 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3835 gdb_assert (readbuf || writebuf);
3836
3837 pid = GET_LWP (inferior_ptid);
3838 if (pid == 0)
3839 pid = GET_PID (inferior_ptid);
3840
3841 if (offset > sizeof (siginfo))
3842 return -1;
3843
3844 errno = 0;
3845 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3846 if (errno != 0)
3847 return -1;
3848
3849 /* When GDB is built as a 64-bit application, ptrace writes into
3850 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3851 inferior with a 64-bit GDB should look the same as debugging it
3852 with a 32-bit GDB, we need to convert it. GDB core always sees
3853 the converted layout, so any read/write will have to be done
3854 post-conversion. */
3855 siginfo_fixup (&siginfo, inf_siginfo, 0);
3856
3857 if (offset + len > sizeof (siginfo))
3858 len = sizeof (siginfo) - offset;
3859
3860 if (readbuf != NULL)
3861 memcpy (readbuf, inf_siginfo + offset, len);
3862 else
3863 {
3864 memcpy (inf_siginfo + offset, writebuf, len);
3865
3866 /* Convert back to ptrace layout before flushing it out. */
3867 siginfo_fixup (&siginfo, inf_siginfo, 1);
3868
3869 errno = 0;
3870 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3871 if (errno != 0)
3872 return -1;
3873 }
3874
3875 return len;
3876 }
3877
3878 static LONGEST
3879 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3880 const char *annex, gdb_byte *readbuf,
3881 const gdb_byte *writebuf,
3882 ULONGEST offset, LONGEST len)
3883 {
3884 struct cleanup *old_chain;
3885 LONGEST xfer;
3886
3887 if (object == TARGET_OBJECT_SIGNAL_INFO)
3888 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3889 offset, len);
3890
3891 /* The target is connected but no live inferior is selected. Pass
3892 this request down to a lower stratum (e.g., the executable
3893 file). */
3894 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3895 return 0;
3896
3897 old_chain = save_inferior_ptid ();
3898
3899 if (is_lwp (inferior_ptid))
3900 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3901
3902 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3903 offset, len);
3904
3905 do_cleanups (old_chain);
3906 return xfer;
3907 }
3908
3909 static int
3910 linux_thread_alive (ptid_t ptid)
3911 {
3912 int err;
3913
3914 gdb_assert (is_lwp (ptid));
3915
3916 /* Send signal 0 instead of anything ptrace, because ptracing a
3917 running thread errors out claiming that the thread doesn't
3918 exist. */
3919 err = kill_lwp (GET_LWP (ptid), 0);
3920
3921 if (debug_linux_nat)
3922 fprintf_unfiltered (gdb_stdlog,
3923 "LLTA: KILL(SIG0) %s (%s)\n",
3924 target_pid_to_str (ptid),
3925 err ? safe_strerror (err) : "OK");
3926
3927 if (err != 0)
3928 return 0;
3929
3930 return 1;
3931 }
3932
3933 static int
3934 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3935 {
3936 return linux_thread_alive (ptid);
3937 }
3938
3939 static char *
3940 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3941 {
3942 static char buf[64];
3943
3944 if (is_lwp (ptid)
3945 && (GET_PID (ptid) != GET_LWP (ptid)
3946 || num_lwps (GET_PID (ptid)) > 1))
3947 {
3948 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3949 return buf;
3950 }
3951
3952 return normal_pid_to_str (ptid);
3953 }
3954
3955 /* Accepts an integer PID; Returns a string representing a file that
3956 can be opened to get the symbols for the child process. */
3957
3958 static char *
3959 linux_child_pid_to_exec_file (int pid)
3960 {
3961 char *name1, *name2;
3962
3963 name1 = xmalloc (MAXPATHLEN);
3964 name2 = xmalloc (MAXPATHLEN);
3965 make_cleanup (xfree, name1);
3966 make_cleanup (xfree, name2);
3967 memset (name2, 0, MAXPATHLEN);
3968
3969 sprintf (name1, "/proc/%d/exe", pid);
3970 if (readlink (name1, name2, MAXPATHLEN) > 0)
3971 return name2;
3972 else
3973 return name1;
3974 }
3975
3976 /* Service function for corefiles and info proc. */
3977
3978 static int
3979 read_mapping (FILE *mapfile,
3980 long long *addr,
3981 long long *endaddr,
3982 char *permissions,
3983 long long *offset,
3984 char *device, long long *inode, char *filename)
3985 {
3986 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3987 addr, endaddr, permissions, offset, device, inode);
3988
3989 filename[0] = '\0';
3990 if (ret > 0 && ret != EOF)
3991 {
3992 /* Eat everything up to EOL for the filename. This will prevent
3993 weird filenames (such as one with embedded whitespace) from
3994 confusing this code. It also makes this code more robust in
3995 respect to annotations the kernel may add after the filename.
3996
3997 Note the filename is used for informational purposes
3998 only. */
3999 ret += fscanf (mapfile, "%[^\n]\n", filename);
4000 }
4001
4002 return (ret != 0 && ret != EOF);
4003 }
4004
4005 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4006 regions in the inferior for a corefile. */
4007
4008 static int
4009 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4010 unsigned long,
4011 int, int, int, void *), void *obfd)
4012 {
4013 int pid = PIDGET (inferior_ptid);
4014 char mapsfilename[MAXPATHLEN];
4015 FILE *mapsfile;
4016 long long addr, endaddr, size, offset, inode;
4017 char permissions[8], device[8], filename[MAXPATHLEN];
4018 int read, write, exec;
4019 int ret;
4020 struct cleanup *cleanup;
4021
4022 /* Compose the filename for the /proc memory map, and open it. */
4023 sprintf (mapsfilename, "/proc/%d/maps", pid);
4024 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4025 error (_("Could not open %s."), mapsfilename);
4026 cleanup = make_cleanup_fclose (mapsfile);
4027
4028 if (info_verbose)
4029 fprintf_filtered (gdb_stdout,
4030 "Reading memory regions from %s\n", mapsfilename);
4031
4032 /* Now iterate until end-of-file. */
4033 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4034 &offset, &device[0], &inode, &filename[0]))
4035 {
4036 size = endaddr - addr;
4037
4038 /* Get the segment's permissions. */
4039 read = (strchr (permissions, 'r') != 0);
4040 write = (strchr (permissions, 'w') != 0);
4041 exec = (strchr (permissions, 'x') != 0);
4042
4043 if (info_verbose)
4044 {
4045 fprintf_filtered (gdb_stdout,
4046 "Save segment, %lld bytes at %s (%c%c%c)",
4047 size, paddress (target_gdbarch, addr),
4048 read ? 'r' : ' ',
4049 write ? 'w' : ' ', exec ? 'x' : ' ');
4050 if (filename[0])
4051 fprintf_filtered (gdb_stdout, " for %s", filename);
4052 fprintf_filtered (gdb_stdout, "\n");
4053 }
4054
4055 /* Invoke the callback function to create the corefile
4056 segment. */
4057 func (addr, size, read, write, exec, obfd);
4058 }
4059 do_cleanups (cleanup);
4060 return 0;
4061 }
4062
4063 static int
4064 find_signalled_thread (struct thread_info *info, void *data)
4065 {
4066 if (info->stop_signal != TARGET_SIGNAL_0
4067 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4068 return 1;
4069
4070 return 0;
4071 }
4072
4073 static enum target_signal
4074 find_stop_signal (void)
4075 {
4076 struct thread_info *info =
4077 iterate_over_threads (find_signalled_thread, NULL);
4078
4079 if (info)
4080 return info->stop_signal;
4081 else
4082 return TARGET_SIGNAL_0;
4083 }
4084
4085 /* Records the thread's register state for the corefile note
4086 section. */
4087
4088 static char *
4089 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4090 char *note_data, int *note_size,
4091 enum target_signal stop_signal)
4092 {
4093 gdb_gregset_t gregs;
4094 gdb_fpregset_t fpregs;
4095 unsigned long lwp = ptid_get_lwp (ptid);
4096 struct gdbarch *gdbarch = target_gdbarch;
4097 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4098 const struct regset *regset;
4099 int core_regset_p;
4100 struct cleanup *old_chain;
4101 struct core_regset_section *sect_list;
4102 char *gdb_regset;
4103
4104 old_chain = save_inferior_ptid ();
4105 inferior_ptid = ptid;
4106 target_fetch_registers (regcache, -1);
4107 do_cleanups (old_chain);
4108
4109 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4110 sect_list = gdbarch_core_regset_sections (gdbarch);
4111
4112 if (core_regset_p
4113 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4114 sizeof (gregs))) != NULL
4115 && regset->collect_regset != NULL)
4116 regset->collect_regset (regset, regcache, -1,
4117 &gregs, sizeof (gregs));
4118 else
4119 fill_gregset (regcache, &gregs, -1);
4120
4121 note_data = (char *) elfcore_write_prstatus (obfd,
4122 note_data,
4123 note_size,
4124 lwp,
4125 stop_signal, &gregs);
4126
4127 /* The loop below uses the new struct core_regset_section, which stores
4128 the supported section names and sizes for the core file. Note that
4129 note PRSTATUS needs to be treated specially. But the other notes are
4130 structurally the same, so they can benefit from the new struct. */
4131 if (core_regset_p && sect_list != NULL)
4132 while (sect_list->sect_name != NULL)
4133 {
4134 /* .reg was already handled above. */
4135 if (strcmp (sect_list->sect_name, ".reg") == 0)
4136 {
4137 sect_list++;
4138 continue;
4139 }
4140 regset = gdbarch_regset_from_core_section (gdbarch,
4141 sect_list->sect_name,
4142 sect_list->size);
4143 gdb_assert (regset && regset->collect_regset);
4144 gdb_regset = xmalloc (sect_list->size);
4145 regset->collect_regset (regset, regcache, -1,
4146 gdb_regset, sect_list->size);
4147 note_data = (char *) elfcore_write_register_note (obfd,
4148 note_data,
4149 note_size,
4150 sect_list->sect_name,
4151 gdb_regset,
4152 sect_list->size);
4153 xfree (gdb_regset);
4154 sect_list++;
4155 }
4156
4157 /* For architectures that does not have the struct core_regset_section
4158 implemented, we use the old method. When all the architectures have
4159 the new support, the code below should be deleted. */
4160 else
4161 {
4162 if (core_regset_p
4163 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4164 sizeof (fpregs))) != NULL
4165 && regset->collect_regset != NULL)
4166 regset->collect_regset (regset, regcache, -1,
4167 &fpregs, sizeof (fpregs));
4168 else
4169 fill_fpregset (regcache, &fpregs, -1);
4170
4171 note_data = (char *) elfcore_write_prfpreg (obfd,
4172 note_data,
4173 note_size,
4174 &fpregs, sizeof (fpregs));
4175 }
4176
4177 return note_data;
4178 }
4179
4180 struct linux_nat_corefile_thread_data
4181 {
4182 bfd *obfd;
4183 char *note_data;
4184 int *note_size;
4185 int num_notes;
4186 enum target_signal stop_signal;
4187 };
4188
4189 /* Called by gdbthread.c once per thread. Records the thread's
4190 register state for the corefile note section. */
4191
4192 static int
4193 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4194 {
4195 struct linux_nat_corefile_thread_data *args = data;
4196
4197 args->note_data = linux_nat_do_thread_registers (args->obfd,
4198 ti->ptid,
4199 args->note_data,
4200 args->note_size,
4201 args->stop_signal);
4202 args->num_notes++;
4203
4204 return 0;
4205 }
4206
4207 /* Enumerate spufs IDs for process PID. */
4208
4209 static void
4210 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4211 {
4212 char path[128];
4213 DIR *dir;
4214 struct dirent *entry;
4215
4216 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4217 dir = opendir (path);
4218 if (!dir)
4219 return;
4220
4221 rewinddir (dir);
4222 while ((entry = readdir (dir)) != NULL)
4223 {
4224 struct stat st;
4225 struct statfs stfs;
4226 int fd;
4227
4228 fd = atoi (entry->d_name);
4229 if (!fd)
4230 continue;
4231
4232 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4233 if (stat (path, &st) != 0)
4234 continue;
4235 if (!S_ISDIR (st.st_mode))
4236 continue;
4237
4238 if (statfs (path, &stfs) != 0)
4239 continue;
4240 if (stfs.f_type != SPUFS_MAGIC)
4241 continue;
4242
4243 callback (data, fd);
4244 }
4245
4246 closedir (dir);
4247 }
4248
4249 /* Generate corefile notes for SPU contexts. */
4250
4251 struct linux_spu_corefile_data
4252 {
4253 bfd *obfd;
4254 char *note_data;
4255 int *note_size;
4256 };
4257
4258 static void
4259 linux_spu_corefile_callback (void *data, int fd)
4260 {
4261 struct linux_spu_corefile_data *args = data;
4262 int i;
4263
4264 static const char *spu_files[] =
4265 {
4266 "object-id",
4267 "mem",
4268 "regs",
4269 "fpcr",
4270 "lslr",
4271 "decr",
4272 "decr_status",
4273 "signal1",
4274 "signal1_type",
4275 "signal2",
4276 "signal2_type",
4277 "event_mask",
4278 "event_status",
4279 "mbox_info",
4280 "ibox_info",
4281 "wbox_info",
4282 "dma_info",
4283 "proxydma_info",
4284 };
4285
4286 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4287 {
4288 char annex[32], note_name[32];
4289 gdb_byte *spu_data;
4290 LONGEST spu_len;
4291
4292 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4293 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4294 annex, &spu_data);
4295 if (spu_len > 0)
4296 {
4297 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4298 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4299 args->note_size, note_name,
4300 NT_SPU, spu_data, spu_len);
4301 xfree (spu_data);
4302 }
4303 }
4304 }
4305
4306 static char *
4307 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4308 {
4309 struct linux_spu_corefile_data args;
4310 args.obfd = obfd;
4311 args.note_data = note_data;
4312 args.note_size = note_size;
4313
4314 iterate_over_spus (PIDGET (inferior_ptid),
4315 linux_spu_corefile_callback, &args);
4316
4317 return args.note_data;
4318 }
4319
4320 /* Fills the "to_make_corefile_note" target vector. Builds the note
4321 section for a corefile, and returns it in a malloc buffer. */
4322
4323 static char *
4324 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4325 {
4326 struct linux_nat_corefile_thread_data thread_args;
4327 struct cleanup *old_chain;
4328 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4329 char fname[16] = { '\0' };
4330 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4331 char psargs[80] = { '\0' };
4332 char *note_data = NULL;
4333 ptid_t current_ptid = inferior_ptid;
4334 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4335 gdb_byte *auxv;
4336 int auxv_len;
4337
4338 if (get_exec_file (0))
4339 {
4340 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4341 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4342 if (get_inferior_args ())
4343 {
4344 char *string_end;
4345 char *psargs_end = psargs + sizeof (psargs);
4346
4347 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4348 strings fine. */
4349 string_end = memchr (psargs, 0, sizeof (psargs));
4350 if (string_end != NULL)
4351 {
4352 *string_end++ = ' ';
4353 strncpy (string_end, get_inferior_args (),
4354 psargs_end - string_end);
4355 }
4356 }
4357 note_data = (char *) elfcore_write_prpsinfo (obfd,
4358 note_data,
4359 note_size, fname, psargs);
4360 }
4361
4362 /* Dump information for threads. */
4363 thread_args.obfd = obfd;
4364 thread_args.note_data = note_data;
4365 thread_args.note_size = note_size;
4366 thread_args.num_notes = 0;
4367 thread_args.stop_signal = find_stop_signal ();
4368 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4369 gdb_assert (thread_args.num_notes != 0);
4370 note_data = thread_args.note_data;
4371
4372 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4373 NULL, &auxv);
4374 if (auxv_len > 0)
4375 {
4376 note_data = elfcore_write_note (obfd, note_data, note_size,
4377 "CORE", NT_AUXV, auxv, auxv_len);
4378 xfree (auxv);
4379 }
4380
4381 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4382
4383 make_cleanup (xfree, note_data);
4384 return note_data;
4385 }
4386
4387 /* Implement the "info proc" command. */
4388
4389 static void
4390 linux_nat_info_proc_cmd (char *args, int from_tty)
4391 {
4392 /* A long is used for pid instead of an int to avoid a loss of precision
4393 compiler warning from the output of strtoul. */
4394 long pid = PIDGET (inferior_ptid);
4395 FILE *procfile;
4396 char **argv = NULL;
4397 char buffer[MAXPATHLEN];
4398 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4399 int cmdline_f = 1;
4400 int cwd_f = 1;
4401 int exe_f = 1;
4402 int mappings_f = 0;
4403 int environ_f = 0;
4404 int status_f = 0;
4405 int stat_f = 0;
4406 int all = 0;
4407 struct stat dummy;
4408
4409 if (args)
4410 {
4411 /* Break up 'args' into an argv array. */
4412 argv = gdb_buildargv (args);
4413 make_cleanup_freeargv (argv);
4414 }
4415 while (argv != NULL && *argv != NULL)
4416 {
4417 if (isdigit (argv[0][0]))
4418 {
4419 pid = strtoul (argv[0], NULL, 10);
4420 }
4421 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4422 {
4423 mappings_f = 1;
4424 }
4425 else if (strcmp (argv[0], "status") == 0)
4426 {
4427 status_f = 1;
4428 }
4429 else if (strcmp (argv[0], "stat") == 0)
4430 {
4431 stat_f = 1;
4432 }
4433 else if (strcmp (argv[0], "cmd") == 0)
4434 {
4435 cmdline_f = 1;
4436 }
4437 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4438 {
4439 exe_f = 1;
4440 }
4441 else if (strcmp (argv[0], "cwd") == 0)
4442 {
4443 cwd_f = 1;
4444 }
4445 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4446 {
4447 all = 1;
4448 }
4449 else
4450 {
4451 /* [...] (future options here) */
4452 }
4453 argv++;
4454 }
4455 if (pid == 0)
4456 error (_("No current process: you must name one."));
4457
4458 sprintf (fname1, "/proc/%ld", pid);
4459 if (stat (fname1, &dummy) != 0)
4460 error (_("No /proc directory: '%s'"), fname1);
4461
4462 printf_filtered (_("process %ld\n"), pid);
4463 if (cmdline_f || all)
4464 {
4465 sprintf (fname1, "/proc/%ld/cmdline", pid);
4466 if ((procfile = fopen (fname1, "r")) != NULL)
4467 {
4468 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4469 if (fgets (buffer, sizeof (buffer), procfile))
4470 printf_filtered ("cmdline = '%s'\n", buffer);
4471 else
4472 warning (_("unable to read '%s'"), fname1);
4473 do_cleanups (cleanup);
4474 }
4475 else
4476 warning (_("unable to open /proc file '%s'"), fname1);
4477 }
4478 if (cwd_f || all)
4479 {
4480 sprintf (fname1, "/proc/%ld/cwd", pid);
4481 memset (fname2, 0, sizeof (fname2));
4482 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4483 printf_filtered ("cwd = '%s'\n", fname2);
4484 else
4485 warning (_("unable to read link '%s'"), fname1);
4486 }
4487 if (exe_f || all)
4488 {
4489 sprintf (fname1, "/proc/%ld/exe", pid);
4490 memset (fname2, 0, sizeof (fname2));
4491 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4492 printf_filtered ("exe = '%s'\n", fname2);
4493 else
4494 warning (_("unable to read link '%s'"), fname1);
4495 }
4496 if (mappings_f || all)
4497 {
4498 sprintf (fname1, "/proc/%ld/maps", pid);
4499 if ((procfile = fopen (fname1, "r")) != NULL)
4500 {
4501 long long addr, endaddr, size, offset, inode;
4502 char permissions[8], device[8], filename[MAXPATHLEN];
4503 struct cleanup *cleanup;
4504
4505 cleanup = make_cleanup_fclose (procfile);
4506 printf_filtered (_("Mapped address spaces:\n\n"));
4507 if (gdbarch_addr_bit (target_gdbarch) == 32)
4508 {
4509 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4510 "Start Addr",
4511 " End Addr",
4512 " Size", " Offset", "objfile");
4513 }
4514 else
4515 {
4516 printf_filtered (" %18s %18s %10s %10s %7s\n",
4517 "Start Addr",
4518 " End Addr",
4519 " Size", " Offset", "objfile");
4520 }
4521
4522 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4523 &offset, &device[0], &inode, &filename[0]))
4524 {
4525 size = endaddr - addr;
4526
4527 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4528 calls here (and possibly above) should be abstracted
4529 out into their own functions? Andrew suggests using
4530 a generic local_address_string instead to print out
4531 the addresses; that makes sense to me, too. */
4532
4533 if (gdbarch_addr_bit (target_gdbarch) == 32)
4534 {
4535 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4536 (unsigned long) addr, /* FIXME: pr_addr */
4537 (unsigned long) endaddr,
4538 (int) size,
4539 (unsigned int) offset,
4540 filename[0] ? filename : "");
4541 }
4542 else
4543 {
4544 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4545 (unsigned long) addr, /* FIXME: pr_addr */
4546 (unsigned long) endaddr,
4547 (int) size,
4548 (unsigned int) offset,
4549 filename[0] ? filename : "");
4550 }
4551 }
4552
4553 do_cleanups (cleanup);
4554 }
4555 else
4556 warning (_("unable to open /proc file '%s'"), fname1);
4557 }
4558 if (status_f || all)
4559 {
4560 sprintf (fname1, "/proc/%ld/status", pid);
4561 if ((procfile = fopen (fname1, "r")) != NULL)
4562 {
4563 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4564 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4565 puts_filtered (buffer);
4566 do_cleanups (cleanup);
4567 }
4568 else
4569 warning (_("unable to open /proc file '%s'"), fname1);
4570 }
4571 if (stat_f || all)
4572 {
4573 sprintf (fname1, "/proc/%ld/stat", pid);
4574 if ((procfile = fopen (fname1, "r")) != NULL)
4575 {
4576 int itmp;
4577 char ctmp;
4578 long ltmp;
4579 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4580
4581 if (fscanf (procfile, "%d ", &itmp) > 0)
4582 printf_filtered (_("Process: %d\n"), itmp);
4583 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4584 printf_filtered (_("Exec file: %s\n"), buffer);
4585 if (fscanf (procfile, "%c ", &ctmp) > 0)
4586 printf_filtered (_("State: %c\n"), ctmp);
4587 if (fscanf (procfile, "%d ", &itmp) > 0)
4588 printf_filtered (_("Parent process: %d\n"), itmp);
4589 if (fscanf (procfile, "%d ", &itmp) > 0)
4590 printf_filtered (_("Process group: %d\n"), itmp);
4591 if (fscanf (procfile, "%d ", &itmp) > 0)
4592 printf_filtered (_("Session id: %d\n"), itmp);
4593 if (fscanf (procfile, "%d ", &itmp) > 0)
4594 printf_filtered (_("TTY: %d\n"), itmp);
4595 if (fscanf (procfile, "%d ", &itmp) > 0)
4596 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4597 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4598 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4599 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4600 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4601 (unsigned long) ltmp);
4602 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4603 printf_filtered (_("Minor faults, children: %lu\n"),
4604 (unsigned long) ltmp);
4605 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4606 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4607 (unsigned long) ltmp);
4608 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4609 printf_filtered (_("Major faults, children: %lu\n"),
4610 (unsigned long) ltmp);
4611 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4612 printf_filtered (_("utime: %ld\n"), ltmp);
4613 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4614 printf_filtered (_("stime: %ld\n"), ltmp);
4615 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4616 printf_filtered (_("utime, children: %ld\n"), ltmp);
4617 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4618 printf_filtered (_("stime, children: %ld\n"), ltmp);
4619 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4620 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4621 ltmp);
4622 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4623 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4624 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4625 printf_filtered (_("jiffies until next timeout: %lu\n"),
4626 (unsigned long) ltmp);
4627 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4628 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4629 (unsigned long) ltmp);
4630 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4631 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4632 ltmp);
4633 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4634 printf_filtered (_("Virtual memory size: %lu\n"),
4635 (unsigned long) ltmp);
4636 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4637 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4638 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4639 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4640 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4641 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4642 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4643 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4644 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4645 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4646 #if 0 /* Don't know how architecture-dependent the rest is...
4647 Anyway the signal bitmap info is available from "status". */
4648 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4649 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4650 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4651 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4652 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4653 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4654 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4655 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4656 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4657 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4658 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4659 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4660 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4661 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4662 #endif
4663 do_cleanups (cleanup);
4664 }
4665 else
4666 warning (_("unable to open /proc file '%s'"), fname1);
4667 }
4668 }
4669
4670 /* Implement the to_xfer_partial interface for memory reads using the /proc
4671 filesystem. Because we can use a single read() call for /proc, this
4672 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4673 but it doesn't support writes. */
4674
4675 static LONGEST
4676 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4677 const char *annex, gdb_byte *readbuf,
4678 const gdb_byte *writebuf,
4679 ULONGEST offset, LONGEST len)
4680 {
4681 LONGEST ret;
4682 int fd;
4683 char filename[64];
4684
4685 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4686 return 0;
4687
4688 /* Don't bother for one word. */
4689 if (len < 3 * sizeof (long))
4690 return 0;
4691
4692 /* We could keep this file open and cache it - possibly one per
4693 thread. That requires some juggling, but is even faster. */
4694 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4695 fd = open (filename, O_RDONLY | O_LARGEFILE);
4696 if (fd == -1)
4697 return 0;
4698
4699 /* If pread64 is available, use it. It's faster if the kernel
4700 supports it (only one syscall), and it's 64-bit safe even on
4701 32-bit platforms (for instance, SPARC debugging a SPARC64
4702 application). */
4703 #ifdef HAVE_PREAD64
4704 if (pread64 (fd, readbuf, len, offset) != len)
4705 #else
4706 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4707 #endif
4708 ret = 0;
4709 else
4710 ret = len;
4711
4712 close (fd);
4713 return ret;
4714 }
4715
4716
4717 /* Enumerate spufs IDs for process PID. */
4718 static LONGEST
4719 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4720 {
4721 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4722 LONGEST pos = 0;
4723 LONGEST written = 0;
4724 char path[128];
4725 DIR *dir;
4726 struct dirent *entry;
4727
4728 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4729 dir = opendir (path);
4730 if (!dir)
4731 return -1;
4732
4733 rewinddir (dir);
4734 while ((entry = readdir (dir)) != NULL)
4735 {
4736 struct stat st;
4737 struct statfs stfs;
4738 int fd;
4739
4740 fd = atoi (entry->d_name);
4741 if (!fd)
4742 continue;
4743
4744 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4745 if (stat (path, &st) != 0)
4746 continue;
4747 if (!S_ISDIR (st.st_mode))
4748 continue;
4749
4750 if (statfs (path, &stfs) != 0)
4751 continue;
4752 if (stfs.f_type != SPUFS_MAGIC)
4753 continue;
4754
4755 if (pos >= offset && pos + 4 <= offset + len)
4756 {
4757 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4758 written += 4;
4759 }
4760 pos += 4;
4761 }
4762
4763 closedir (dir);
4764 return written;
4765 }
4766
4767 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4768 object type, using the /proc file system. */
4769 static LONGEST
4770 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4771 const char *annex, gdb_byte *readbuf,
4772 const gdb_byte *writebuf,
4773 ULONGEST offset, LONGEST len)
4774 {
4775 char buf[128];
4776 int fd = 0;
4777 int ret = -1;
4778 int pid = PIDGET (inferior_ptid);
4779
4780 if (!annex)
4781 {
4782 if (!readbuf)
4783 return -1;
4784 else
4785 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4786 }
4787
4788 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4789 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4790 if (fd <= 0)
4791 return -1;
4792
4793 if (offset != 0
4794 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4795 {
4796 close (fd);
4797 return 0;
4798 }
4799
4800 if (writebuf)
4801 ret = write (fd, writebuf, (size_t) len);
4802 else if (readbuf)
4803 ret = read (fd, readbuf, (size_t) len);
4804
4805 close (fd);
4806 return ret;
4807 }
4808
4809
4810 /* Parse LINE as a signal set and add its set bits to SIGS. */
4811
4812 static void
4813 add_line_to_sigset (const char *line, sigset_t *sigs)
4814 {
4815 int len = strlen (line) - 1;
4816 const char *p;
4817 int signum;
4818
4819 if (line[len] != '\n')
4820 error (_("Could not parse signal set: %s"), line);
4821
4822 p = line;
4823 signum = len * 4;
4824 while (len-- > 0)
4825 {
4826 int digit;
4827
4828 if (*p >= '0' && *p <= '9')
4829 digit = *p - '0';
4830 else if (*p >= 'a' && *p <= 'f')
4831 digit = *p - 'a' + 10;
4832 else
4833 error (_("Could not parse signal set: %s"), line);
4834
4835 signum -= 4;
4836
4837 if (digit & 1)
4838 sigaddset (sigs, signum + 1);
4839 if (digit & 2)
4840 sigaddset (sigs, signum + 2);
4841 if (digit & 4)
4842 sigaddset (sigs, signum + 3);
4843 if (digit & 8)
4844 sigaddset (sigs, signum + 4);
4845
4846 p++;
4847 }
4848 }
4849
4850 /* Find process PID's pending signals from /proc/pid/status and set
4851 SIGS to match. */
4852
4853 void
4854 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4855 {
4856 FILE *procfile;
4857 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4858 int signum;
4859 struct cleanup *cleanup;
4860
4861 sigemptyset (pending);
4862 sigemptyset (blocked);
4863 sigemptyset (ignored);
4864 sprintf (fname, "/proc/%d/status", pid);
4865 procfile = fopen (fname, "r");
4866 if (procfile == NULL)
4867 error (_("Could not open %s"), fname);
4868 cleanup = make_cleanup_fclose (procfile);
4869
4870 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4871 {
4872 /* Normal queued signals are on the SigPnd line in the status
4873 file. However, 2.6 kernels also have a "shared" pending
4874 queue for delivering signals to a thread group, so check for
4875 a ShdPnd line also.
4876
4877 Unfortunately some Red Hat kernels include the shared pending
4878 queue but not the ShdPnd status field. */
4879
4880 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4881 add_line_to_sigset (buffer + 8, pending);
4882 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4883 add_line_to_sigset (buffer + 8, pending);
4884 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4885 add_line_to_sigset (buffer + 8, blocked);
4886 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4887 add_line_to_sigset (buffer + 8, ignored);
4888 }
4889
4890 do_cleanups (cleanup);
4891 }
4892
4893 static LONGEST
4894 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4895 const char *annex, gdb_byte *readbuf,
4896 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4897 {
4898 /* We make the process list snapshot when the object starts to be
4899 read. */
4900 static const char *buf;
4901 static LONGEST len_avail = -1;
4902 static struct obstack obstack;
4903
4904 DIR *dirp;
4905
4906 gdb_assert (object == TARGET_OBJECT_OSDATA);
4907
4908 if (strcmp (annex, "processes") != 0)
4909 return 0;
4910
4911 gdb_assert (readbuf && !writebuf);
4912
4913 if (offset == 0)
4914 {
4915 if (len_avail != -1 && len_avail != 0)
4916 obstack_free (&obstack, NULL);
4917 len_avail = 0;
4918 buf = NULL;
4919 obstack_init (&obstack);
4920 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4921
4922 dirp = opendir ("/proc");
4923 if (dirp)
4924 {
4925 struct dirent *dp;
4926 while ((dp = readdir (dirp)) != NULL)
4927 {
4928 struct stat statbuf;
4929 char procentry[sizeof ("/proc/4294967295")];
4930
4931 if (!isdigit (dp->d_name[0])
4932 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4933 continue;
4934
4935 sprintf (procentry, "/proc/%s", dp->d_name);
4936 if (stat (procentry, &statbuf) == 0
4937 && S_ISDIR (statbuf.st_mode))
4938 {
4939 char *pathname;
4940 FILE *f;
4941 char cmd[MAXPATHLEN + 1];
4942 struct passwd *entry;
4943
4944 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4945 entry = getpwuid (statbuf.st_uid);
4946
4947 if ((f = fopen (pathname, "r")) != NULL)
4948 {
4949 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4950 if (len > 0)
4951 {
4952 int i;
4953 for (i = 0; i < len; i++)
4954 if (cmd[i] == '\0')
4955 cmd[i] = ' ';
4956 cmd[len] = '\0';
4957
4958 obstack_xml_printf (
4959 &obstack,
4960 "<item>"
4961 "<column name=\"pid\">%s</column>"
4962 "<column name=\"user\">%s</column>"
4963 "<column name=\"command\">%s</column>"
4964 "</item>",
4965 dp->d_name,
4966 entry ? entry->pw_name : "?",
4967 cmd);
4968 }
4969 fclose (f);
4970 }
4971
4972 xfree (pathname);
4973 }
4974 }
4975
4976 closedir (dirp);
4977 }
4978
4979 obstack_grow_str0 (&obstack, "</osdata>\n");
4980 buf = obstack_finish (&obstack);
4981 len_avail = strlen (buf);
4982 }
4983
4984 if (offset >= len_avail)
4985 {
4986 /* Done. Get rid of the obstack. */
4987 obstack_free (&obstack, NULL);
4988 buf = NULL;
4989 len_avail = 0;
4990 return 0;
4991 }
4992
4993 if (len > len_avail - offset)
4994 len = len_avail - offset;
4995 memcpy (readbuf, buf + offset, len);
4996
4997 return len;
4998 }
4999
5000 static LONGEST
5001 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5002 const char *annex, gdb_byte *readbuf,
5003 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5004 {
5005 LONGEST xfer;
5006
5007 if (object == TARGET_OBJECT_AUXV)
5008 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
5009 offset, len);
5010
5011 if (object == TARGET_OBJECT_OSDATA)
5012 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5013 offset, len);
5014
5015 if (object == TARGET_OBJECT_SPU)
5016 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5017 offset, len);
5018
5019 /* GDB calculates all the addresses in possibly larget width of the address.
5020 Address width needs to be masked before its final use - either by
5021 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5022
5023 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5024
5025 if (object == TARGET_OBJECT_MEMORY)
5026 {
5027 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5028
5029 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5030 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5031 }
5032
5033 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5034 offset, len);
5035 if (xfer != 0)
5036 return xfer;
5037
5038 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5039 offset, len);
5040 }
5041
5042 /* Create a prototype generic GNU/Linux target. The client can override
5043 it with local methods. */
5044
5045 static void
5046 linux_target_install_ops (struct target_ops *t)
5047 {
5048 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5049 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5050 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5051 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5052 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5053 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5054 t->to_post_attach = linux_child_post_attach;
5055 t->to_follow_fork = linux_child_follow_fork;
5056 t->to_find_memory_regions = linux_nat_find_memory_regions;
5057 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5058
5059 super_xfer_partial = t->to_xfer_partial;
5060 t->to_xfer_partial = linux_xfer_partial;
5061 }
5062
5063 struct target_ops *
5064 linux_target (void)
5065 {
5066 struct target_ops *t;
5067
5068 t = inf_ptrace_target ();
5069 linux_target_install_ops (t);
5070
5071 return t;
5072 }
5073
5074 struct target_ops *
5075 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5076 {
5077 struct target_ops *t;
5078
5079 t = inf_ptrace_trad_target (register_u_offset);
5080 linux_target_install_ops (t);
5081
5082 return t;
5083 }
5084
5085 /* target_is_async_p implementation. */
5086
5087 static int
5088 linux_nat_is_async_p (void)
5089 {
5090 /* NOTE: palves 2008-03-21: We're only async when the user requests
5091 it explicitly with the "set target-async" command.
5092 Someday, linux will always be async. */
5093 if (!target_async_permitted)
5094 return 0;
5095
5096 /* See target.h/target_async_mask. */
5097 return linux_nat_async_mask_value;
5098 }
5099
5100 /* target_can_async_p implementation. */
5101
5102 static int
5103 linux_nat_can_async_p (void)
5104 {
5105 /* NOTE: palves 2008-03-21: We're only async when the user requests
5106 it explicitly with the "set target-async" command.
5107 Someday, linux will always be async. */
5108 if (!target_async_permitted)
5109 return 0;
5110
5111 /* See target.h/target_async_mask. */
5112 return linux_nat_async_mask_value;
5113 }
5114
5115 static int
5116 linux_nat_supports_non_stop (void)
5117 {
5118 return 1;
5119 }
5120
5121 /* True if we want to support multi-process. To be removed when GDB
5122 supports multi-exec. */
5123
5124 int linux_multi_process = 1;
5125
5126 static int
5127 linux_nat_supports_multi_process (void)
5128 {
5129 return linux_multi_process;
5130 }
5131
5132 /* target_async_mask implementation. */
5133
5134 static int
5135 linux_nat_async_mask (int new_mask)
5136 {
5137 int curr_mask = linux_nat_async_mask_value;
5138
5139 if (curr_mask != new_mask)
5140 {
5141 if (new_mask == 0)
5142 {
5143 linux_nat_async (NULL, 0);
5144 linux_nat_async_mask_value = new_mask;
5145 }
5146 else
5147 {
5148 linux_nat_async_mask_value = new_mask;
5149
5150 /* If we're going out of async-mask in all-stop, then the
5151 inferior is stopped. The next resume will call
5152 target_async. In non-stop, the target event source
5153 should be always registered in the event loop. Do so
5154 now. */
5155 if (non_stop)
5156 linux_nat_async (inferior_event_handler, 0);
5157 }
5158 }
5159
5160 return curr_mask;
5161 }
5162
5163 static int async_terminal_is_ours = 1;
5164
5165 /* target_terminal_inferior implementation. */
5166
5167 static void
5168 linux_nat_terminal_inferior (void)
5169 {
5170 if (!target_is_async_p ())
5171 {
5172 /* Async mode is disabled. */
5173 terminal_inferior ();
5174 return;
5175 }
5176
5177 terminal_inferior ();
5178
5179 /* Calls to target_terminal_*() are meant to be idempotent. */
5180 if (!async_terminal_is_ours)
5181 return;
5182
5183 delete_file_handler (input_fd);
5184 async_terminal_is_ours = 0;
5185 set_sigint_trap ();
5186 }
5187
5188 /* target_terminal_ours implementation. */
5189
5190 static void
5191 linux_nat_terminal_ours (void)
5192 {
5193 if (!target_is_async_p ())
5194 {
5195 /* Async mode is disabled. */
5196 terminal_ours ();
5197 return;
5198 }
5199
5200 /* GDB should never give the terminal to the inferior if the
5201 inferior is running in the background (run&, continue&, etc.),
5202 but claiming it sure should. */
5203 terminal_ours ();
5204
5205 if (async_terminal_is_ours)
5206 return;
5207
5208 clear_sigint_trap ();
5209 add_file_handler (input_fd, stdin_event_handler, 0);
5210 async_terminal_is_ours = 1;
5211 }
5212
5213 static void (*async_client_callback) (enum inferior_event_type event_type,
5214 void *context);
5215 static void *async_client_context;
5216
5217 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5218 so we notice when any child changes state, and notify the
5219 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5220 above to wait for the arrival of a SIGCHLD. */
5221
5222 static void
5223 sigchld_handler (int signo)
5224 {
5225 int old_errno = errno;
5226
5227 if (debug_linux_nat_async)
5228 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5229
5230 if (signo == SIGCHLD
5231 && linux_nat_event_pipe[0] != -1)
5232 async_file_mark (); /* Let the event loop know that there are
5233 events to handle. */
5234
5235 errno = old_errno;
5236 }
5237
5238 /* Callback registered with the target events file descriptor. */
5239
5240 static void
5241 handle_target_event (int error, gdb_client_data client_data)
5242 {
5243 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5244 }
5245
5246 /* Create/destroy the target events pipe. Returns previous state. */
5247
5248 static int
5249 linux_async_pipe (int enable)
5250 {
5251 int previous = (linux_nat_event_pipe[0] != -1);
5252
5253 if (previous != enable)
5254 {
5255 sigset_t prev_mask;
5256
5257 block_child_signals (&prev_mask);
5258
5259 if (enable)
5260 {
5261 if (pipe (linux_nat_event_pipe) == -1)
5262 internal_error (__FILE__, __LINE__,
5263 "creating event pipe failed.");
5264
5265 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5266 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5267 }
5268 else
5269 {
5270 close (linux_nat_event_pipe[0]);
5271 close (linux_nat_event_pipe[1]);
5272 linux_nat_event_pipe[0] = -1;
5273 linux_nat_event_pipe[1] = -1;
5274 }
5275
5276 restore_child_signals_mask (&prev_mask);
5277 }
5278
5279 return previous;
5280 }
5281
5282 /* target_async implementation. */
5283
5284 static void
5285 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5286 void *context), void *context)
5287 {
5288 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5289 internal_error (__FILE__, __LINE__,
5290 "Calling target_async when async is masked");
5291
5292 if (callback != NULL)
5293 {
5294 async_client_callback = callback;
5295 async_client_context = context;
5296 if (!linux_async_pipe (1))
5297 {
5298 add_file_handler (linux_nat_event_pipe[0],
5299 handle_target_event, NULL);
5300 /* There may be pending events to handle. Tell the event loop
5301 to poll them. */
5302 async_file_mark ();
5303 }
5304 }
5305 else
5306 {
5307 async_client_callback = callback;
5308 async_client_context = context;
5309 delete_file_handler (linux_nat_event_pipe[0]);
5310 linux_async_pipe (0);
5311 }
5312 return;
5313 }
5314
5315 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5316 event came out. */
5317
5318 static int
5319 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5320 {
5321 if (!lwp->stopped)
5322 {
5323 int pid, status;
5324 ptid_t ptid = lwp->ptid;
5325
5326 if (debug_linux_nat)
5327 fprintf_unfiltered (gdb_stdlog,
5328 "LNSL: running -> suspending %s\n",
5329 target_pid_to_str (lwp->ptid));
5330
5331
5332 stop_callback (lwp, NULL);
5333 stop_wait_callback (lwp, NULL);
5334
5335 /* If the lwp exits while we try to stop it, there's nothing
5336 else to do. */
5337 lwp = find_lwp_pid (ptid);
5338 if (lwp == NULL)
5339 return 0;
5340
5341 /* If we didn't collect any signal other than SIGSTOP while
5342 stopping the LWP, push a SIGNAL_0 event. In either case, the
5343 event-loop will end up calling target_wait which will collect
5344 these. */
5345 if (lwp->status == 0)
5346 lwp->status = W_STOPCODE (0);
5347 async_file_mark ();
5348 }
5349 else
5350 {
5351 /* Already known to be stopped; do nothing. */
5352
5353 if (debug_linux_nat)
5354 {
5355 if (find_thread_ptid (lwp->ptid)->stop_requested)
5356 fprintf_unfiltered (gdb_stdlog, "\
5357 LNSL: already stopped/stop_requested %s\n",
5358 target_pid_to_str (lwp->ptid));
5359 else
5360 fprintf_unfiltered (gdb_stdlog, "\
5361 LNSL: already stopped/no stop_requested yet %s\n",
5362 target_pid_to_str (lwp->ptid));
5363 }
5364 }
5365 return 0;
5366 }
5367
5368 static void
5369 linux_nat_stop (ptid_t ptid)
5370 {
5371 if (non_stop)
5372 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5373 else
5374 linux_ops->to_stop (ptid);
5375 }
5376
5377 static void
5378 linux_nat_close (int quitting)
5379 {
5380 /* Unregister from the event loop. */
5381 if (target_is_async_p ())
5382 target_async (NULL, 0);
5383
5384 /* Reset the async_masking. */
5385 linux_nat_async_mask_value = 1;
5386
5387 if (linux_ops->to_close)
5388 linux_ops->to_close (quitting);
5389 }
5390
5391 /* When requests are passed down from the linux-nat layer to the
5392 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5393 used. The address space pointer is stored in the inferior object,
5394 but the common code that is passed such ptid can't tell whether
5395 lwpid is a "main" process id or not (it assumes so). We reverse
5396 look up the "main" process id from the lwp here. */
5397
5398 struct address_space *
5399 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5400 {
5401 struct lwp_info *lwp;
5402 struct inferior *inf;
5403 int pid;
5404
5405 pid = GET_LWP (ptid);
5406 if (GET_LWP (ptid) == 0)
5407 {
5408 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5409 tgid. */
5410 lwp = find_lwp_pid (ptid);
5411 pid = GET_PID (lwp->ptid);
5412 }
5413 else
5414 {
5415 /* A (pid,lwpid,0) ptid. */
5416 pid = GET_PID (ptid);
5417 }
5418
5419 inf = find_inferior_pid (pid);
5420 gdb_assert (inf != NULL);
5421 return inf->aspace;
5422 }
5423
5424 void
5425 linux_nat_add_target (struct target_ops *t)
5426 {
5427 /* Save the provided single-threaded target. We save this in a separate
5428 variable because another target we've inherited from (e.g. inf-ptrace)
5429 may have saved a pointer to T; we want to use it for the final
5430 process stratum target. */
5431 linux_ops_saved = *t;
5432 linux_ops = &linux_ops_saved;
5433
5434 /* Override some methods for multithreading. */
5435 t->to_create_inferior = linux_nat_create_inferior;
5436 t->to_attach = linux_nat_attach;
5437 t->to_detach = linux_nat_detach;
5438 t->to_resume = linux_nat_resume;
5439 t->to_wait = linux_nat_wait;
5440 t->to_xfer_partial = linux_nat_xfer_partial;
5441 t->to_kill = linux_nat_kill;
5442 t->to_mourn_inferior = linux_nat_mourn_inferior;
5443 t->to_thread_alive = linux_nat_thread_alive;
5444 t->to_pid_to_str = linux_nat_pid_to_str;
5445 t->to_has_thread_control = tc_schedlock;
5446 t->to_thread_address_space = linux_nat_thread_address_space;
5447 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5448 t->to_stopped_data_address = linux_nat_stopped_data_address;
5449
5450 t->to_can_async_p = linux_nat_can_async_p;
5451 t->to_is_async_p = linux_nat_is_async_p;
5452 t->to_supports_non_stop = linux_nat_supports_non_stop;
5453 t->to_async = linux_nat_async;
5454 t->to_async_mask = linux_nat_async_mask;
5455 t->to_terminal_inferior = linux_nat_terminal_inferior;
5456 t->to_terminal_ours = linux_nat_terminal_ours;
5457 t->to_close = linux_nat_close;
5458
5459 /* Methods for non-stop support. */
5460 t->to_stop = linux_nat_stop;
5461
5462 t->to_supports_multi_process = linux_nat_supports_multi_process;
5463
5464 /* We don't change the stratum; this target will sit at
5465 process_stratum and thread_db will set at thread_stratum. This
5466 is a little strange, since this is a multi-threaded-capable
5467 target, but we want to be on the stack below thread_db, and we
5468 also want to be used for single-threaded processes. */
5469
5470 add_target (t);
5471 }
5472
5473 /* Register a method to call whenever a new thread is attached. */
5474 void
5475 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5476 {
5477 /* Save the pointer. We only support a single registered instance
5478 of the GNU/Linux native target, so we do not need to map this to
5479 T. */
5480 linux_nat_new_thread = new_thread;
5481 }
5482
5483 /* Register a method that converts a siginfo object between the layout
5484 that ptrace returns, and the layout in the architecture of the
5485 inferior. */
5486 void
5487 linux_nat_set_siginfo_fixup (struct target_ops *t,
5488 int (*siginfo_fixup) (struct siginfo *,
5489 gdb_byte *,
5490 int))
5491 {
5492 /* Save the pointer. */
5493 linux_nat_siginfo_fixup = siginfo_fixup;
5494 }
5495
5496 /* Return the saved siginfo associated with PTID. */
5497 struct siginfo *
5498 linux_nat_get_siginfo (ptid_t ptid)
5499 {
5500 struct lwp_info *lp = find_lwp_pid (ptid);
5501
5502 gdb_assert (lp != NULL);
5503
5504 return &lp->siginfo;
5505 }
5506
5507 /* Provide a prototype to silence -Wmissing-prototypes. */
5508 extern initialize_file_ftype _initialize_linux_nat;
5509
5510 void
5511 _initialize_linux_nat (void)
5512 {
5513 sigset_t mask;
5514
5515 add_info ("proc", linux_nat_info_proc_cmd, _("\
5516 Show /proc process information about any running process.\n\
5517 Specify any process id, or use the program being debugged by default.\n\
5518 Specify any of the following keywords for detailed info:\n\
5519 mappings -- list of mapped memory regions.\n\
5520 stat -- list a bunch of random process info.\n\
5521 status -- list a different bunch of random process info.\n\
5522 all -- list all available /proc info."));
5523
5524 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5525 &debug_linux_nat, _("\
5526 Set debugging of GNU/Linux lwp module."), _("\
5527 Show debugging of GNU/Linux lwp module."), _("\
5528 Enables printf debugging output."),
5529 NULL,
5530 show_debug_linux_nat,
5531 &setdebuglist, &showdebuglist);
5532
5533 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5534 &debug_linux_nat_async, _("\
5535 Set debugging of GNU/Linux async lwp module."), _("\
5536 Show debugging of GNU/Linux async lwp module."), _("\
5537 Enables printf debugging output."),
5538 NULL,
5539 show_debug_linux_nat_async,
5540 &setdebuglist, &showdebuglist);
5541
5542 /* Save this mask as the default. */
5543 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5544
5545 /* Install a SIGCHLD handler. */
5546 sigchld_action.sa_handler = sigchld_handler;
5547 sigemptyset (&sigchld_action.sa_mask);
5548 sigchld_action.sa_flags = SA_RESTART;
5549
5550 /* Make it the default. */
5551 sigaction (SIGCHLD, &sigchld_action, NULL);
5552
5553 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5554 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5555 sigdelset (&suspend_mask, SIGCHLD);
5556
5557 sigemptyset (&blocked_mask);
5558
5559 add_setshow_boolean_cmd ("disable-randomization", class_support,
5560 &disable_randomization, _("\
5561 Set disabling of debuggee's virtual address space randomization."), _("\
5562 Show disabling of debuggee's virtual address space randomization."), _("\
5563 When this mode is on (which is the default), randomization of the virtual\n\
5564 address space is disabled. Standalone programs run with the randomization\n\
5565 enabled by default on some platforms."),
5566 &set_disable_randomization,
5567 &show_disable_randomization,
5568 &setlist, &showlist);
5569 }
5570 \f
5571
5572 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5573 the GNU/Linux Threads library and therefore doesn't really belong
5574 here. */
5575
5576 /* Read variable NAME in the target and return its value if found.
5577 Otherwise return zero. It is assumed that the type of the variable
5578 is `int'. */
5579
5580 static int
5581 get_signo (const char *name)
5582 {
5583 struct minimal_symbol *ms;
5584 int signo;
5585
5586 ms = lookup_minimal_symbol (name, NULL, NULL);
5587 if (ms == NULL)
5588 return 0;
5589
5590 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5591 sizeof (signo)) != 0)
5592 return 0;
5593
5594 return signo;
5595 }
5596
5597 /* Return the set of signals used by the threads library in *SET. */
5598
5599 void
5600 lin_thread_get_thread_signals (sigset_t *set)
5601 {
5602 struct sigaction action;
5603 int restart, cancel;
5604
5605 sigemptyset (&blocked_mask);
5606 sigemptyset (set);
5607
5608 restart = get_signo ("__pthread_sig_restart");
5609 cancel = get_signo ("__pthread_sig_cancel");
5610
5611 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5612 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5613 not provide any way for the debugger to query the signal numbers -
5614 fortunately they don't change! */
5615
5616 if (restart == 0)
5617 restart = __SIGRTMIN;
5618
5619 if (cancel == 0)
5620 cancel = __SIGRTMIN + 1;
5621
5622 sigaddset (set, restart);
5623 sigaddset (set, cancel);
5624
5625 /* The GNU/Linux Threads library makes terminating threads send a
5626 special "cancel" signal instead of SIGCHLD. Make sure we catch
5627 those (to prevent them from terminating GDB itself, which is
5628 likely to be their default action) and treat them the same way as
5629 SIGCHLD. */
5630
5631 action.sa_handler = sigchld_handler;
5632 sigemptyset (&action.sa_mask);
5633 action.sa_flags = SA_RESTART;
5634 sigaction (cancel, &action, NULL);
5635
5636 /* We block the "cancel" signal throughout this code ... */
5637 sigaddset (&blocked_mask, cancel);
5638 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5639
5640 /* ... except during a sigsuspend. */
5641 sigdelset (&suspend_mask, cancel);
5642 }
This page took 0.176867 seconds and 5 git commands to generate.