Fix TUI support checks in gdb.tui tests.
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "gdbsupport/enum-flags.h"
41 #include "gdbsupport/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static bool use_coredump_filter = true;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static bool dump_excluded_mappings = false;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189 struct linux_info
190 {
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range {};
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p = 0;
202 };
203
204 /* Per-inferior data key. */
205 static const struct inferior_key<linux_info> linux_inferior_data;
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 linux_inferior_data.clear (inf);
214 }
215
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219 static struct linux_info *
220 get_linux_inferior_data (void)
221 {
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
225 info = linux_inferior_data.get (inf);
226 if (info == NULL)
227 info = linux_inferior_data.emplace (inf);
228
229 return info;
230 }
231
232 /* See linux-tdep.h. */
233
234 struct type *
235 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
237 {
238 struct linux_gdbarch_data *linux_gdbarch_data;
239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
261 sigval_type->set_name (xstrdup ("sigval_t"));
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type) = int_type;
269 TYPE_TARGET_STUB (pid_type) = 1;
270
271 /* __uid_t */
272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type) = uint_type;
275 TYPE_TARGET_STUB (uid_type) = 1;
276
277 /* __clock_t */
278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
281 TYPE_TARGET_TYPE (clock_type) = long_type;
282 TYPE_TARGET_STUB (clock_type) = 1;
283
284 /* _sifields */
285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
332 append_composite_type_field (type, "si_addr", void_ptr_type);
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 siginfo_type->set_name (xstrdup ("siginfo"));
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
365 return siginfo_type;
366 }
367
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371 static struct type *
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
373 {
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375 }
376
377 /* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380 int
381 linux_is_uclinux (void)
382 {
383 CORE_ADDR dummy;
384
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
387 }
388
389 static int
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
391 {
392 return linux_is_uclinux ();
393 }
394
395 /* This is how we want PTIDs from core files to be printed. */
396
397 static std::string
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399 {
400 if (ptid.lwp () != 0)
401 return string_printf ("LWP %ld", ptid.lwp ());
402
403 return normal_pid_to_str (ptid);
404 }
405
406 /* Service function for corefiles and info proc. */
407
408 static void
409 read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416 {
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
424 p = skip_spaces (p);
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
432 p = skip_spaces (p);
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
440 p = skip_spaces (p);
441 *filename = p;
442 }
443
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453 static void
454 decode_vmflags (char *p, struct smaps_vmflags *v)
455 {
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476 }
477
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481 struct mapping_regexes
482 {
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514 };
515
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526 static int
527 mapping_is_anonymous_p (const char *filename)
528 {
529 static gdb::optional<mapping_regexes> regexes;
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
538 regexes.emplace ();
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
563 return 1;
564
565 return 0;
566 }
567
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
614
615 static int
616 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
618 const char *filename, ULONGEST addr, ULONGEST offset)
619 {
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
628 int dump_p;
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings && v->exclude_coredump)
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
671 }
672 else if (mapping_anon_p)
673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
674 else
675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
686 }
687 else if (mapping_anon_p)
688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
689 else
690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
691 }
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Useful define specifying the size of the ELF magical
705 header. */
706 #ifndef SELFMAG
707 #define SELFMAG 4
708 #endif
709
710 /* Let's check if we have an ELF header. */
711 gdb_byte h[SELFMAG];
712 if (target_read_memory (addr, h, SELFMAG) == 0)
713 {
714 /* The EI_MAG* and ELFMAG* constants come from
715 <elf/common.h>. */
716 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
717 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
718 {
719 /* This mapping contains an ELF header, so we
720 should dump it. */
721 dump_p = 1;
722 }
723 }
724 }
725
726 return dump_p;
727 }
728
729 /* Implement the "info proc" command. */
730
731 static void
732 linux_info_proc (struct gdbarch *gdbarch, const char *args,
733 enum info_proc_what what)
734 {
735 /* A long is used for pid instead of an int to avoid a loss of precision
736 compiler warning from the output of strtoul. */
737 long pid;
738 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
739 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
740 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
741 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
742 int status_f = (what == IP_STATUS || what == IP_ALL);
743 int stat_f = (what == IP_STAT || what == IP_ALL);
744 char filename[100];
745 int target_errno;
746
747 if (args && isdigit (args[0]))
748 {
749 char *tem;
750
751 pid = strtoul (args, &tem, 10);
752 args = tem;
753 }
754 else
755 {
756 if (!target_has_execution)
757 error (_("No current process: you must name one."));
758 if (current_inferior ()->fake_pid_p)
759 error (_("Can't determine the current process's PID: you must name one."));
760
761 pid = current_inferior ()->pid;
762 }
763
764 args = skip_spaces (args);
765 if (args && args[0])
766 error (_("Too many parameters: %s"), args);
767
768 printf_filtered (_("process %ld\n"), pid);
769 if (cmdline_f)
770 {
771 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
772 gdb_byte *buffer;
773 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
774
775 if (len > 0)
776 {
777 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
778 ssize_t pos;
779
780 for (pos = 0; pos < len - 1; pos++)
781 {
782 if (buffer[pos] == '\0')
783 buffer[pos] = ' ';
784 }
785 buffer[len - 1] = '\0';
786 printf_filtered ("cmdline = '%s'\n", buffer);
787 }
788 else
789 warning (_("unable to open /proc file '%s'"), filename);
790 }
791 if (cwd_f)
792 {
793 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
794 gdb::optional<std::string> contents
795 = target_fileio_readlink (NULL, filename, &target_errno);
796 if (contents.has_value ())
797 printf_filtered ("cwd = '%s'\n", contents->c_str ());
798 else
799 warning (_("unable to read link '%s'"), filename);
800 }
801 if (exe_f)
802 {
803 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
804 gdb::optional<std::string> contents
805 = target_fileio_readlink (NULL, filename, &target_errno);
806 if (contents.has_value ())
807 printf_filtered ("exe = '%s'\n", contents->c_str ());
808 else
809 warning (_("unable to read link '%s'"), filename);
810 }
811 if (mappings_f)
812 {
813 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
814 gdb::unique_xmalloc_ptr<char> map
815 = target_fileio_read_stralloc (NULL, filename);
816 if (map != NULL)
817 {
818 char *line;
819
820 printf_filtered (_("Mapped address spaces:\n\n"));
821 if (gdbarch_addr_bit (gdbarch) == 32)
822 {
823 printf_filtered ("\t%10s %10s %10s %10s %s\n",
824 "Start Addr",
825 " End Addr",
826 " Size", " Offset", "objfile");
827 }
828 else
829 {
830 printf_filtered (" %18s %18s %10s %10s %s\n",
831 "Start Addr",
832 " End Addr",
833 " Size", " Offset", "objfile");
834 }
835
836 char *saveptr;
837 for (line = strtok_r (map.get (), "\n", &saveptr);
838 line;
839 line = strtok_r (NULL, "\n", &saveptr))
840 {
841 ULONGEST addr, endaddr, offset, inode;
842 const char *permissions, *device, *mapping_filename;
843 size_t permissions_len, device_len;
844
845 read_mapping (line, &addr, &endaddr,
846 &permissions, &permissions_len,
847 &offset, &device, &device_len,
848 &inode, &mapping_filename);
849
850 if (gdbarch_addr_bit (gdbarch) == 32)
851 {
852 printf_filtered ("\t%10s %10s %10s %10s %s\n",
853 paddress (gdbarch, addr),
854 paddress (gdbarch, endaddr),
855 hex_string (endaddr - addr),
856 hex_string (offset),
857 *mapping_filename ? mapping_filename : "");
858 }
859 else
860 {
861 printf_filtered (" %18s %18s %10s %10s %s\n",
862 paddress (gdbarch, addr),
863 paddress (gdbarch, endaddr),
864 hex_string (endaddr - addr),
865 hex_string (offset),
866 *mapping_filename ? mapping_filename : "");
867 }
868 }
869 }
870 else
871 warning (_("unable to open /proc file '%s'"), filename);
872 }
873 if (status_f)
874 {
875 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
876 gdb::unique_xmalloc_ptr<char> status
877 = target_fileio_read_stralloc (NULL, filename);
878 if (status)
879 puts_filtered (status.get ());
880 else
881 warning (_("unable to open /proc file '%s'"), filename);
882 }
883 if (stat_f)
884 {
885 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
886 gdb::unique_xmalloc_ptr<char> statstr
887 = target_fileio_read_stralloc (NULL, filename);
888 if (statstr)
889 {
890 const char *p = statstr.get ();
891
892 printf_filtered (_("Process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894
895 p = skip_spaces (p);
896 if (*p == '(')
897 {
898 /* ps command also relies on no trailing fields
899 ever contain ')'. */
900 const char *ep = strrchr (p, ')');
901 if (ep != NULL)
902 {
903 printf_filtered ("Exec file: %.*s\n",
904 (int) (ep - p - 1), p + 1);
905 p = ep + 1;
906 }
907 }
908
909 p = skip_spaces (p);
910 if (*p)
911 printf_filtered (_("State: %c\n"), *p++);
912
913 if (*p)
914 printf_filtered (_("Parent process: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Process group: %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Session id: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("TTY: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("TTY owner process group: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928
929 if (*p)
930 printf_filtered (_("Flags: %s\n"),
931 hex_string (strtoulst (p, &p, 10)));
932 if (*p)
933 printf_filtered (_("Minor faults (no memory page): %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("Minor faults, children: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Major faults (memory page faults): %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("Major faults, children: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("utime: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("stime: %s\n"),
949 pulongest (strtoulst (p, &p, 10)));
950 if (*p)
951 printf_filtered (_("utime, children: %s\n"),
952 pulongest (strtoulst (p, &p, 10)));
953 if (*p)
954 printf_filtered (_("stime, children: %s\n"),
955 pulongest (strtoulst (p, &p, 10)));
956 if (*p)
957 printf_filtered (_("jiffies remaining in current "
958 "time slice: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("'nice' value: %s\n"),
962 pulongest (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("jiffies until next timeout: %s\n"),
965 pulongest (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
968 pulongest (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("start time (jiffies since "
971 "system boot): %s\n"),
972 pulongest (strtoulst (p, &p, 10)));
973 if (*p)
974 printf_filtered (_("Virtual memory size: %s\n"),
975 pulongest (strtoulst (p, &p, 10)));
976 if (*p)
977 printf_filtered (_("Resident set size: %s\n"),
978 pulongest (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("rlim: %s\n"),
981 pulongest (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("Start of text: %s\n"),
984 hex_string (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("End of text: %s\n"),
987 hex_string (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("Start of stack: %s\n"),
990 hex_string (strtoulst (p, &p, 10)));
991 #if 0 /* Don't know how architecture-dependent the rest is...
992 Anyway the signal bitmap info is available from "status". */
993 if (*p)
994 printf_filtered (_("Kernel stack pointer: %s\n"),
995 hex_string (strtoulst (p, &p, 10)));
996 if (*p)
997 printf_filtered (_("Kernel instr pointer: %s\n"),
998 hex_string (strtoulst (p, &p, 10)));
999 if (*p)
1000 printf_filtered (_("Pending signals bitmap: %s\n"),
1001 hex_string (strtoulst (p, &p, 10)));
1002 if (*p)
1003 printf_filtered (_("Blocked signals bitmap: %s\n"),
1004 hex_string (strtoulst (p, &p, 10)));
1005 if (*p)
1006 printf_filtered (_("Ignored signals bitmap: %s\n"),
1007 hex_string (strtoulst (p, &p, 10)));
1008 if (*p)
1009 printf_filtered (_("Catched signals bitmap: %s\n"),
1010 hex_string (strtoulst (p, &p, 10)));
1011 if (*p)
1012 printf_filtered (_("wchan (system call): %s\n"),
1013 hex_string (strtoulst (p, &p, 10)));
1014 #endif
1015 }
1016 else
1017 warning (_("unable to open /proc file '%s'"), filename);
1018 }
1019 }
1020
1021 /* Implement "info proc mappings" for a corefile. */
1022
1023 static void
1024 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1025 {
1026 asection *section;
1027 ULONGEST count, page_size;
1028 unsigned char *descdata, *filenames, *descend;
1029 size_t note_size;
1030 unsigned int addr_size_bits, addr_size;
1031 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1032 /* We assume this for reading 64-bit core files. */
1033 gdb_static_assert (sizeof (ULONGEST) >= 8);
1034
1035 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1036 if (section == NULL)
1037 {
1038 warning (_("unable to find mappings in core file"));
1039 return;
1040 }
1041
1042 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1043 addr_size = addr_size_bits / 8;
1044 note_size = bfd_section_size (section);
1045
1046 if (note_size < 2 * addr_size)
1047 error (_("malformed core note - too short for header"));
1048
1049 gdb::def_vector<unsigned char> contents (note_size);
1050 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1051 0, note_size))
1052 error (_("could not get core note contents"));
1053
1054 descdata = contents.data ();
1055 descend = descdata + note_size;
1056
1057 if (descdata[note_size - 1] != '\0')
1058 error (_("malformed note - does not end with \\0"));
1059
1060 count = bfd_get (addr_size_bits, core_bfd, descdata);
1061 descdata += addr_size;
1062
1063 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1064 descdata += addr_size;
1065
1066 if (note_size < 2 * addr_size + count * 3 * addr_size)
1067 error (_("malformed note - too short for supplied file count"));
1068
1069 printf_filtered (_("Mapped address spaces:\n\n"));
1070 if (gdbarch_addr_bit (gdbarch) == 32)
1071 {
1072 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1073 "Start Addr",
1074 " End Addr",
1075 " Size", " Offset", "objfile");
1076 }
1077 else
1078 {
1079 printf_filtered (" %18s %18s %10s %10s %s\n",
1080 "Start Addr",
1081 " End Addr",
1082 " Size", " Offset", "objfile");
1083 }
1084
1085 filenames = descdata + count * 3 * addr_size;
1086 while (--count > 0)
1087 {
1088 ULONGEST start, end, file_ofs;
1089
1090 if (filenames == descend)
1091 error (_("malformed note - filenames end too early"));
1092
1093 start = bfd_get (addr_size_bits, core_bfd, descdata);
1094 descdata += addr_size;
1095 end = bfd_get (addr_size_bits, core_bfd, descdata);
1096 descdata += addr_size;
1097 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1098 descdata += addr_size;
1099
1100 file_ofs *= page_size;
1101
1102 if (gdbarch_addr_bit (gdbarch) == 32)
1103 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1104 paddress (gdbarch, start),
1105 paddress (gdbarch, end),
1106 hex_string (end - start),
1107 hex_string (file_ofs),
1108 filenames);
1109 else
1110 printf_filtered (" %18s %18s %10s %10s %s\n",
1111 paddress (gdbarch, start),
1112 paddress (gdbarch, end),
1113 hex_string (end - start),
1114 hex_string (file_ofs),
1115 filenames);
1116
1117 filenames += 1 + strlen ((char *) filenames);
1118 }
1119 }
1120
1121 /* Implement "info proc" for a corefile. */
1122
1123 static void
1124 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1125 enum info_proc_what what)
1126 {
1127 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1128 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1129
1130 if (exe_f)
1131 {
1132 const char *exe;
1133
1134 exe = bfd_core_file_failing_command (core_bfd);
1135 if (exe != NULL)
1136 printf_filtered ("exe = '%s'\n", exe);
1137 else
1138 warning (_("unable to find command name in core file"));
1139 }
1140
1141 if (mappings_f)
1142 linux_core_info_proc_mappings (gdbarch, args);
1143
1144 if (!exe_f && !mappings_f)
1145 error (_("unable to handle request"));
1146 }
1147
1148 /* Read siginfo data from the core, if possible. Returns -1 on
1149 failure. Otherwise, returns the number of bytes read. READBUF,
1150 OFFSET, and LEN are all as specified by the to_xfer_partial
1151 interface. */
1152
1153 static LONGEST
1154 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1155 ULONGEST offset, ULONGEST len)
1156 {
1157 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1158 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1159 if (section == NULL)
1160 return -1;
1161
1162 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1163 return -1;
1164
1165 return len;
1166 }
1167
1168 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1169 ULONGEST offset, ULONGEST inode,
1170 int read, int write,
1171 int exec, int modified,
1172 const char *filename,
1173 void *data);
1174
1175 /* List memory regions in the inferior for a corefile. */
1176
1177 static int
1178 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1179 linux_find_memory_region_ftype *func,
1180 void *obfd)
1181 {
1182 char mapsfilename[100];
1183 char coredumpfilter_name[100];
1184 pid_t pid;
1185 /* Default dump behavior of coredump_filter (0x33), according to
1186 Documentation/filesystems/proc.txt from the Linux kernel
1187 tree. */
1188 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1189 | COREFILTER_ANON_SHARED
1190 | COREFILTER_ELF_HEADERS
1191 | COREFILTER_HUGETLB_PRIVATE);
1192
1193 /* We need to know the real target PID to access /proc. */
1194 if (current_inferior ()->fake_pid_p)
1195 return 1;
1196
1197 pid = current_inferior ()->pid;
1198
1199 if (use_coredump_filter)
1200 {
1201 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1202 "/proc/%d/coredump_filter", pid);
1203 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1204 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1205 if (coredumpfilterdata != NULL)
1206 {
1207 unsigned int flags;
1208
1209 sscanf (coredumpfilterdata.get (), "%x", &flags);
1210 filterflags = (enum filter_flag) flags;
1211 }
1212 }
1213
1214 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1215 gdb::unique_xmalloc_ptr<char> data
1216 = target_fileio_read_stralloc (NULL, mapsfilename);
1217 if (data == NULL)
1218 {
1219 /* Older Linux kernels did not support /proc/PID/smaps. */
1220 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1221 data = target_fileio_read_stralloc (NULL, mapsfilename);
1222 }
1223
1224 if (data != NULL)
1225 {
1226 char *line, *t;
1227
1228 line = strtok_r (data.get (), "\n", &t);
1229 while (line != NULL)
1230 {
1231 ULONGEST addr, endaddr, offset, inode;
1232 const char *permissions, *device, *filename;
1233 struct smaps_vmflags v;
1234 size_t permissions_len, device_len;
1235 int read, write, exec, priv;
1236 int has_anonymous = 0;
1237 int should_dump_p = 0;
1238 int mapping_anon_p;
1239 int mapping_file_p;
1240
1241 memset (&v, 0, sizeof (v));
1242 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1243 &offset, &device, &device_len, &inode, &filename);
1244 mapping_anon_p = mapping_is_anonymous_p (filename);
1245 /* If the mapping is not anonymous, then we can consider it
1246 to be file-backed. These two states (anonymous or
1247 file-backed) seem to be exclusive, but they can actually
1248 coexist. For example, if a file-backed mapping has
1249 "Anonymous:" pages (see more below), then the Linux
1250 kernel will dump this mapping when the user specified
1251 that she only wants anonymous mappings in the corefile
1252 (*even* when she explicitly disabled the dumping of
1253 file-backed mappings). */
1254 mapping_file_p = !mapping_anon_p;
1255
1256 /* Decode permissions. */
1257 read = (memchr (permissions, 'r', permissions_len) != 0);
1258 write = (memchr (permissions, 'w', permissions_len) != 0);
1259 exec = (memchr (permissions, 'x', permissions_len) != 0);
1260 /* 'private' here actually means VM_MAYSHARE, and not
1261 VM_SHARED. In order to know if a mapping is really
1262 private or not, we must check the flag "sh" in the
1263 VmFlags field. This is done by decode_vmflags. However,
1264 if we are using a Linux kernel released before the commit
1265 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1266 not have the VmFlags there. In this case, there is
1267 really no way to know if we are dealing with VM_SHARED,
1268 so we just assume that VM_MAYSHARE is enough. */
1269 priv = memchr (permissions, 'p', permissions_len) != 0;
1270
1271 /* Try to detect if region should be dumped by parsing smaps
1272 counters. */
1273 for (line = strtok_r (NULL, "\n", &t);
1274 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1275 line = strtok_r (NULL, "\n", &t))
1276 {
1277 char keyword[64 + 1];
1278
1279 if (sscanf (line, "%64s", keyword) != 1)
1280 {
1281 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1282 break;
1283 }
1284
1285 if (strcmp (keyword, "Anonymous:") == 0)
1286 {
1287 /* Older Linux kernels did not support the
1288 "Anonymous:" counter. Check it here. */
1289 has_anonymous = 1;
1290 }
1291 else if (strcmp (keyword, "VmFlags:") == 0)
1292 decode_vmflags (line, &v);
1293
1294 if (strcmp (keyword, "AnonHugePages:") == 0
1295 || strcmp (keyword, "Anonymous:") == 0)
1296 {
1297 unsigned long number;
1298
1299 if (sscanf (line, "%*s%lu", &number) != 1)
1300 {
1301 warning (_("Error parsing {s,}maps file '%s' number"),
1302 mapsfilename);
1303 break;
1304 }
1305 if (number > 0)
1306 {
1307 /* Even if we are dealing with a file-backed
1308 mapping, if it contains anonymous pages we
1309 consider it to be *also* an anonymous
1310 mapping, because this is what the Linux
1311 kernel does:
1312
1313 // Dump segments that have been written to.
1314 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1315 goto whole;
1316
1317 Note that if the mapping is already marked as
1318 file-backed (i.e., mapping_file_p is
1319 non-zero), then this is a special case, and
1320 this mapping will be dumped either when the
1321 user wants to dump file-backed *or* anonymous
1322 mappings. */
1323 mapping_anon_p = 1;
1324 }
1325 }
1326 }
1327
1328 if (has_anonymous)
1329 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1330 mapping_anon_p, mapping_file_p,
1331 filename, addr, offset);
1332 else
1333 {
1334 /* Older Linux kernels did not support the "Anonymous:" counter.
1335 If it is missing, we can't be sure - dump all the pages. */
1336 should_dump_p = 1;
1337 }
1338
1339 /* Invoke the callback function to create the corefile segment. */
1340 if (should_dump_p)
1341 func (addr, endaddr - addr, offset, inode,
1342 read, write, exec, 1, /* MODIFIED is true because we
1343 want to dump the mapping. */
1344 filename, obfd);
1345 }
1346
1347 return 0;
1348 }
1349
1350 return 1;
1351 }
1352
1353 /* A structure for passing information through
1354 linux_find_memory_regions_full. */
1355
1356 struct linux_find_memory_regions_data
1357 {
1358 /* The original callback. */
1359
1360 find_memory_region_ftype func;
1361
1362 /* The original datum. */
1363
1364 void *obfd;
1365 };
1366
1367 /* A callback for linux_find_memory_regions that converts between the
1368 "full"-style callback and find_memory_region_ftype. */
1369
1370 static int
1371 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1372 ULONGEST offset, ULONGEST inode,
1373 int read, int write, int exec, int modified,
1374 const char *filename, void *arg)
1375 {
1376 struct linux_find_memory_regions_data *data
1377 = (struct linux_find_memory_regions_data *) arg;
1378
1379 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1380 }
1381
1382 /* A variant of linux_find_memory_regions_full that is suitable as the
1383 gdbarch find_memory_regions method. */
1384
1385 static int
1386 linux_find_memory_regions (struct gdbarch *gdbarch,
1387 find_memory_region_ftype func, void *obfd)
1388 {
1389 struct linux_find_memory_regions_data data;
1390
1391 data.func = func;
1392 data.obfd = obfd;
1393
1394 return linux_find_memory_regions_full (gdbarch,
1395 linux_find_memory_regions_thunk,
1396 &data);
1397 }
1398
1399 /* Determine which signal stopped execution. */
1400
1401 static int
1402 find_signalled_thread (struct thread_info *info, void *data)
1403 {
1404 if (info->suspend.stop_signal != GDB_SIGNAL_0
1405 && info->ptid.pid () == inferior_ptid.pid ())
1406 return 1;
1407
1408 return 0;
1409 }
1410
1411 /* This is used to pass information from
1412 linux_make_mappings_corefile_notes through
1413 linux_find_memory_regions_full. */
1414
1415 struct linux_make_mappings_data
1416 {
1417 /* Number of files mapped. */
1418 ULONGEST file_count;
1419
1420 /* The obstack for the main part of the data. */
1421 struct obstack *data_obstack;
1422
1423 /* The filename obstack. */
1424 struct obstack *filename_obstack;
1425
1426 /* The architecture's "long" type. */
1427 struct type *long_type;
1428 };
1429
1430 static linux_find_memory_region_ftype linux_make_mappings_callback;
1431
1432 /* A callback for linux_find_memory_regions_full that updates the
1433 mappings data for linux_make_mappings_corefile_notes. */
1434
1435 static int
1436 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1437 ULONGEST offset, ULONGEST inode,
1438 int read, int write, int exec, int modified,
1439 const char *filename, void *data)
1440 {
1441 struct linux_make_mappings_data *map_data
1442 = (struct linux_make_mappings_data *) data;
1443 gdb_byte buf[sizeof (ULONGEST)];
1444
1445 if (*filename == '\0' || inode == 0)
1446 return 0;
1447
1448 ++map_data->file_count;
1449
1450 pack_long (buf, map_data->long_type, vaddr);
1451 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1452 pack_long (buf, map_data->long_type, vaddr + size);
1453 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1454 pack_long (buf, map_data->long_type, offset);
1455 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1456
1457 obstack_grow_str0 (map_data->filename_obstack, filename);
1458
1459 return 0;
1460 }
1461
1462 /* Write the file mapping data to the core file, if possible. OBFD is
1463 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1464 is a pointer to the note size. Returns the new NOTE_DATA and
1465 updates NOTE_SIZE. */
1466
1467 static char *
1468 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1469 char *note_data, int *note_size)
1470 {
1471 struct linux_make_mappings_data mapping_data;
1472 struct type *long_type
1473 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1474 gdb_byte buf[sizeof (ULONGEST)];
1475
1476 auto_obstack data_obstack, filename_obstack;
1477
1478 mapping_data.file_count = 0;
1479 mapping_data.data_obstack = &data_obstack;
1480 mapping_data.filename_obstack = &filename_obstack;
1481 mapping_data.long_type = long_type;
1482
1483 /* Reserve space for the count. */
1484 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1485 /* We always write the page size as 1 since we have no good way to
1486 determine the correct value. */
1487 pack_long (buf, long_type, 1);
1488 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1489
1490 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1491 &mapping_data);
1492
1493 if (mapping_data.file_count != 0)
1494 {
1495 /* Write the count to the obstack. */
1496 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1497 long_type, mapping_data.file_count);
1498
1499 /* Copy the filenames to the data obstack. */
1500 int size = obstack_object_size (&filename_obstack);
1501 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1502 size);
1503
1504 note_data = elfcore_write_note (obfd, note_data, note_size,
1505 "CORE", NT_FILE,
1506 obstack_base (&data_obstack),
1507 obstack_object_size (&data_obstack));
1508 }
1509
1510 return note_data;
1511 }
1512
1513 /* Structure for passing information from
1514 linux_collect_thread_registers via an iterator to
1515 linux_collect_regset_section_cb. */
1516
1517 struct linux_collect_regset_section_cb_data
1518 {
1519 struct gdbarch *gdbarch;
1520 const struct regcache *regcache;
1521 bfd *obfd;
1522 char *note_data;
1523 int *note_size;
1524 unsigned long lwp;
1525 enum gdb_signal stop_signal;
1526 int abort_iteration;
1527 };
1528
1529 /* Callback for iterate_over_regset_sections that records a single
1530 regset in the corefile note section. */
1531
1532 static void
1533 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1534 int collect_size, const struct regset *regset,
1535 const char *human_name, void *cb_data)
1536 {
1537 struct linux_collect_regset_section_cb_data *data
1538 = (struct linux_collect_regset_section_cb_data *) cb_data;
1539 bool variable_size_section = (regset != NULL
1540 && regset->flags & REGSET_VARIABLE_SIZE);
1541
1542 if (!variable_size_section)
1543 gdb_assert (supply_size == collect_size);
1544
1545 if (data->abort_iteration)
1546 return;
1547
1548 gdb_assert (regset && regset->collect_regset);
1549
1550 /* This is intentionally zero-initialized by using std::vector, so
1551 that any padding bytes in the core file will show as 0. */
1552 std::vector<gdb_byte> buf (collect_size);
1553
1554 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1555 collect_size);
1556
1557 /* PRSTATUS still needs to be treated specially. */
1558 if (strcmp (sect_name, ".reg") == 0)
1559 data->note_data = (char *) elfcore_write_prstatus
1560 (data->obfd, data->note_data, data->note_size, data->lwp,
1561 gdb_signal_to_host (data->stop_signal), buf.data ());
1562 else
1563 data->note_data = (char *) elfcore_write_register_note
1564 (data->obfd, data->note_data, data->note_size,
1565 sect_name, buf.data (), collect_size);
1566
1567 if (data->note_data == NULL)
1568 data->abort_iteration = 1;
1569 }
1570
1571 /* Records the thread's register state for the corefile note
1572 section. */
1573
1574 static char *
1575 linux_collect_thread_registers (const struct regcache *regcache,
1576 ptid_t ptid, bfd *obfd,
1577 char *note_data, int *note_size,
1578 enum gdb_signal stop_signal)
1579 {
1580 struct gdbarch *gdbarch = regcache->arch ();
1581 struct linux_collect_regset_section_cb_data data;
1582
1583 data.gdbarch = gdbarch;
1584 data.regcache = regcache;
1585 data.obfd = obfd;
1586 data.note_data = note_data;
1587 data.note_size = note_size;
1588 data.stop_signal = stop_signal;
1589 data.abort_iteration = 0;
1590
1591 /* For remote targets the LWP may not be available, so use the TID. */
1592 data.lwp = ptid.lwp ();
1593 if (!data.lwp)
1594 data.lwp = ptid.tid ();
1595
1596 gdbarch_iterate_over_regset_sections (gdbarch,
1597 linux_collect_regset_section_cb,
1598 &data, regcache);
1599 return data.note_data;
1600 }
1601
1602 /* Fetch the siginfo data for the specified thread, if it exists. If
1603 there is no data, or we could not read it, return an empty
1604 buffer. */
1605
1606 static gdb::byte_vector
1607 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1608 {
1609 struct type *siginfo_type;
1610 LONGEST bytes_read;
1611
1612 if (!gdbarch_get_siginfo_type_p (gdbarch))
1613 return gdb::byte_vector ();
1614
1615 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1616 inferior_ptid = thread->ptid;
1617
1618 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1619
1620 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1621
1622 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1623 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1624 if (bytes_read != TYPE_LENGTH (siginfo_type))
1625 buf.clear ();
1626
1627 return buf;
1628 }
1629
1630 struct linux_corefile_thread_data
1631 {
1632 struct gdbarch *gdbarch;
1633 bfd *obfd;
1634 char *note_data;
1635 int *note_size;
1636 enum gdb_signal stop_signal;
1637 };
1638
1639 /* Records the thread's register state for the corefile note
1640 section. */
1641
1642 static void
1643 linux_corefile_thread (struct thread_info *info,
1644 struct linux_corefile_thread_data *args)
1645 {
1646 struct regcache *regcache;
1647
1648 regcache = get_thread_arch_regcache (info->inf->process_target (),
1649 info->ptid, args->gdbarch);
1650
1651 target_fetch_registers (regcache, -1);
1652 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1653
1654 args->note_data = linux_collect_thread_registers
1655 (regcache, info->ptid, args->obfd, args->note_data,
1656 args->note_size, args->stop_signal);
1657
1658 /* Don't return anything if we got no register information above,
1659 such a core file is useless. */
1660 if (args->note_data != NULL)
1661 if (!siginfo_data.empty ())
1662 args->note_data = elfcore_write_note (args->obfd,
1663 args->note_data,
1664 args->note_size,
1665 "CORE", NT_SIGINFO,
1666 siginfo_data.data (),
1667 siginfo_data.size ());
1668 }
1669
1670 /* Fill the PRPSINFO structure with information about the process being
1671 debugged. Returns 1 in case of success, 0 for failures. Please note that
1672 even if the structure cannot be entirely filled (e.g., GDB was unable to
1673 gather information about the process UID/GID), this function will still
1674 return 1 since some information was already recorded. It will only return
1675 0 iff nothing can be gathered. */
1676
1677 static int
1678 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1679 {
1680 /* The filename which we will use to obtain some info about the process.
1681 We will basically use this to store the `/proc/PID/FILENAME' file. */
1682 char filename[100];
1683 /* The basename of the executable. */
1684 const char *basename;
1685 const char *infargs;
1686 /* Temporary buffer. */
1687 char *tmpstr;
1688 /* The valid states of a process, according to the Linux kernel. */
1689 const char valid_states[] = "RSDTZW";
1690 /* The program state. */
1691 const char *prog_state;
1692 /* The state of the process. */
1693 char pr_sname;
1694 /* The PID of the program which generated the corefile. */
1695 pid_t pid;
1696 /* Process flags. */
1697 unsigned int pr_flag;
1698 /* Process nice value. */
1699 long pr_nice;
1700 /* The number of fields read by `sscanf'. */
1701 int n_fields = 0;
1702
1703 gdb_assert (p != NULL);
1704
1705 /* Obtaining PID and filename. */
1706 pid = inferior_ptid.pid ();
1707 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1708 /* The full name of the program which generated the corefile. */
1709 gdb::unique_xmalloc_ptr<char> fname
1710 = target_fileio_read_stralloc (NULL, filename);
1711
1712 if (fname == NULL || fname.get ()[0] == '\0')
1713 {
1714 /* No program name was read, so we won't be able to retrieve more
1715 information about the process. */
1716 return 0;
1717 }
1718
1719 memset (p, 0, sizeof (*p));
1720
1721 /* Defining the PID. */
1722 p->pr_pid = pid;
1723
1724 /* Copying the program name. Only the basename matters. */
1725 basename = lbasename (fname.get ());
1726 strncpy (p->pr_fname, basename, sizeof (p->pr_fname) - 1);
1727 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1728
1729 infargs = get_inferior_args ();
1730
1731 /* The arguments of the program. */
1732 std::string psargs = fname.get ();
1733 if (infargs != NULL)
1734 psargs = psargs + " " + infargs;
1735
1736 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs) - 1);
1737 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1738
1739 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1740 /* The contents of `/proc/PID/stat'. */
1741 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1742 = target_fileio_read_stralloc (NULL, filename);
1743 char *proc_stat = proc_stat_contents.get ();
1744
1745 if (proc_stat == NULL || *proc_stat == '\0')
1746 {
1747 /* Despite being unable to read more information about the
1748 process, we return 1 here because at least we have its
1749 command line, PID and arguments. */
1750 return 1;
1751 }
1752
1753 /* Ok, we have the stats. It's time to do a little parsing of the
1754 contents of the buffer, so that we end up reading what we want.
1755
1756 The following parsing mechanism is strongly based on the
1757 information generated by the `fs/proc/array.c' file, present in
1758 the Linux kernel tree. More details about how the information is
1759 displayed can be obtained by seeing the manpage of proc(5),
1760 specifically under the entry of `/proc/[pid]/stat'. */
1761
1762 /* Getting rid of the PID, since we already have it. */
1763 while (isdigit (*proc_stat))
1764 ++proc_stat;
1765
1766 proc_stat = skip_spaces (proc_stat);
1767
1768 /* ps command also relies on no trailing fields ever contain ')'. */
1769 proc_stat = strrchr (proc_stat, ')');
1770 if (proc_stat == NULL)
1771 return 1;
1772 proc_stat++;
1773
1774 proc_stat = skip_spaces (proc_stat);
1775
1776 n_fields = sscanf (proc_stat,
1777 "%c" /* Process state. */
1778 "%d%d%d" /* Parent PID, group ID, session ID. */
1779 "%*d%*d" /* tty_nr, tpgid (not used). */
1780 "%u" /* Flags. */
1781 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1782 cmajflt (not used). */
1783 "%*s%*s%*s%*s" /* utime, stime, cutime,
1784 cstime (not used). */
1785 "%*s" /* Priority (not used). */
1786 "%ld", /* Nice. */
1787 &pr_sname,
1788 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1789 &pr_flag,
1790 &pr_nice);
1791
1792 if (n_fields != 6)
1793 {
1794 /* Again, we couldn't read the complementary information about
1795 the process state. However, we already have minimal
1796 information, so we just return 1 here. */
1797 return 1;
1798 }
1799
1800 /* Filling the structure fields. */
1801 prog_state = strchr (valid_states, pr_sname);
1802 if (prog_state != NULL)
1803 p->pr_state = prog_state - valid_states;
1804 else
1805 {
1806 /* Zero means "Running". */
1807 p->pr_state = 0;
1808 }
1809
1810 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1811 p->pr_zomb = p->pr_sname == 'Z';
1812 p->pr_nice = pr_nice;
1813 p->pr_flag = pr_flag;
1814
1815 /* Finally, obtaining the UID and GID. For that, we read and parse the
1816 contents of the `/proc/PID/status' file. */
1817 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1818 /* The contents of `/proc/PID/status'. */
1819 gdb::unique_xmalloc_ptr<char> proc_status_contents
1820 = target_fileio_read_stralloc (NULL, filename);
1821 char *proc_status = proc_status_contents.get ();
1822
1823 if (proc_status == NULL || *proc_status == '\0')
1824 {
1825 /* Returning 1 since we already have a bunch of information. */
1826 return 1;
1827 }
1828
1829 /* Extracting the UID. */
1830 tmpstr = strstr (proc_status, "Uid:");
1831 if (tmpstr != NULL)
1832 {
1833 /* Advancing the pointer to the beginning of the UID. */
1834 tmpstr += sizeof ("Uid:");
1835 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1836 ++tmpstr;
1837
1838 if (isdigit (*tmpstr))
1839 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1840 }
1841
1842 /* Extracting the GID. */
1843 tmpstr = strstr (proc_status, "Gid:");
1844 if (tmpstr != NULL)
1845 {
1846 /* Advancing the pointer to the beginning of the GID. */
1847 tmpstr += sizeof ("Gid:");
1848 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1849 ++tmpstr;
1850
1851 if (isdigit (*tmpstr))
1852 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1853 }
1854
1855 return 1;
1856 }
1857
1858 /* Build the note section for a corefile, and return it in a malloc
1859 buffer. */
1860
1861 static char *
1862 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1863 {
1864 struct linux_corefile_thread_data thread_args;
1865 struct elf_internal_linux_prpsinfo prpsinfo;
1866 char *note_data = NULL;
1867 struct thread_info *curr_thr, *signalled_thr;
1868
1869 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1870 return NULL;
1871
1872 if (linux_fill_prpsinfo (&prpsinfo))
1873 {
1874 if (gdbarch_ptr_bit (gdbarch) == 64)
1875 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1876 note_data, note_size,
1877 &prpsinfo);
1878 else
1879 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1880 note_data, note_size,
1881 &prpsinfo);
1882 }
1883
1884 /* Thread register information. */
1885 try
1886 {
1887 update_thread_list ();
1888 }
1889 catch (const gdb_exception_error &e)
1890 {
1891 exception_print (gdb_stderr, e);
1892 }
1893
1894 /* Like the kernel, prefer dumping the signalled thread first.
1895 "First thread" is what tools use to infer the signalled thread.
1896 In case there's more than one signalled thread, prefer the
1897 current thread, if it is signalled. */
1898 curr_thr = inferior_thread ();
1899 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1900 signalled_thr = curr_thr;
1901 else
1902 {
1903 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1904 if (signalled_thr == NULL)
1905 signalled_thr = curr_thr;
1906 }
1907
1908 thread_args.gdbarch = gdbarch;
1909 thread_args.obfd = obfd;
1910 thread_args.note_data = note_data;
1911 thread_args.note_size = note_size;
1912 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1913
1914 linux_corefile_thread (signalled_thr, &thread_args);
1915 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1916 {
1917 if (thr == signalled_thr)
1918 continue;
1919
1920 linux_corefile_thread (thr, &thread_args);
1921 }
1922
1923 note_data = thread_args.note_data;
1924 if (!note_data)
1925 return NULL;
1926
1927 /* Auxillary vector. */
1928 gdb::optional<gdb::byte_vector> auxv =
1929 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
1930 if (auxv && !auxv->empty ())
1931 {
1932 note_data = elfcore_write_note (obfd, note_data, note_size,
1933 "CORE", NT_AUXV, auxv->data (),
1934 auxv->size ());
1935
1936 if (!note_data)
1937 return NULL;
1938 }
1939
1940 /* File mappings. */
1941 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1942 note_data, note_size);
1943
1944 return note_data;
1945 }
1946
1947 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1948 gdbarch.h. This function is not static because it is exported to
1949 other -tdep files. */
1950
1951 enum gdb_signal
1952 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1953 {
1954 switch (signal)
1955 {
1956 case 0:
1957 return GDB_SIGNAL_0;
1958
1959 case LINUX_SIGHUP:
1960 return GDB_SIGNAL_HUP;
1961
1962 case LINUX_SIGINT:
1963 return GDB_SIGNAL_INT;
1964
1965 case LINUX_SIGQUIT:
1966 return GDB_SIGNAL_QUIT;
1967
1968 case LINUX_SIGILL:
1969 return GDB_SIGNAL_ILL;
1970
1971 case LINUX_SIGTRAP:
1972 return GDB_SIGNAL_TRAP;
1973
1974 case LINUX_SIGABRT:
1975 return GDB_SIGNAL_ABRT;
1976
1977 case LINUX_SIGBUS:
1978 return GDB_SIGNAL_BUS;
1979
1980 case LINUX_SIGFPE:
1981 return GDB_SIGNAL_FPE;
1982
1983 case LINUX_SIGKILL:
1984 return GDB_SIGNAL_KILL;
1985
1986 case LINUX_SIGUSR1:
1987 return GDB_SIGNAL_USR1;
1988
1989 case LINUX_SIGSEGV:
1990 return GDB_SIGNAL_SEGV;
1991
1992 case LINUX_SIGUSR2:
1993 return GDB_SIGNAL_USR2;
1994
1995 case LINUX_SIGPIPE:
1996 return GDB_SIGNAL_PIPE;
1997
1998 case LINUX_SIGALRM:
1999 return GDB_SIGNAL_ALRM;
2000
2001 case LINUX_SIGTERM:
2002 return GDB_SIGNAL_TERM;
2003
2004 case LINUX_SIGCHLD:
2005 return GDB_SIGNAL_CHLD;
2006
2007 case LINUX_SIGCONT:
2008 return GDB_SIGNAL_CONT;
2009
2010 case LINUX_SIGSTOP:
2011 return GDB_SIGNAL_STOP;
2012
2013 case LINUX_SIGTSTP:
2014 return GDB_SIGNAL_TSTP;
2015
2016 case LINUX_SIGTTIN:
2017 return GDB_SIGNAL_TTIN;
2018
2019 case LINUX_SIGTTOU:
2020 return GDB_SIGNAL_TTOU;
2021
2022 case LINUX_SIGURG:
2023 return GDB_SIGNAL_URG;
2024
2025 case LINUX_SIGXCPU:
2026 return GDB_SIGNAL_XCPU;
2027
2028 case LINUX_SIGXFSZ:
2029 return GDB_SIGNAL_XFSZ;
2030
2031 case LINUX_SIGVTALRM:
2032 return GDB_SIGNAL_VTALRM;
2033
2034 case LINUX_SIGPROF:
2035 return GDB_SIGNAL_PROF;
2036
2037 case LINUX_SIGWINCH:
2038 return GDB_SIGNAL_WINCH;
2039
2040 /* No way to differentiate between SIGIO and SIGPOLL.
2041 Therefore, we just handle the first one. */
2042 case LINUX_SIGIO:
2043 return GDB_SIGNAL_IO;
2044
2045 case LINUX_SIGPWR:
2046 return GDB_SIGNAL_PWR;
2047
2048 case LINUX_SIGSYS:
2049 return GDB_SIGNAL_SYS;
2050
2051 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2052 therefore we have to handle them here. */
2053 case LINUX_SIGRTMIN:
2054 return GDB_SIGNAL_REALTIME_32;
2055
2056 case LINUX_SIGRTMAX:
2057 return GDB_SIGNAL_REALTIME_64;
2058 }
2059
2060 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2061 {
2062 int offset = signal - LINUX_SIGRTMIN + 1;
2063
2064 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2065 }
2066
2067 return GDB_SIGNAL_UNKNOWN;
2068 }
2069
2070 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2071 gdbarch.h. This function is not static because it is exported to
2072 other -tdep files. */
2073
2074 int
2075 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2076 enum gdb_signal signal)
2077 {
2078 switch (signal)
2079 {
2080 case GDB_SIGNAL_0:
2081 return 0;
2082
2083 case GDB_SIGNAL_HUP:
2084 return LINUX_SIGHUP;
2085
2086 case GDB_SIGNAL_INT:
2087 return LINUX_SIGINT;
2088
2089 case GDB_SIGNAL_QUIT:
2090 return LINUX_SIGQUIT;
2091
2092 case GDB_SIGNAL_ILL:
2093 return LINUX_SIGILL;
2094
2095 case GDB_SIGNAL_TRAP:
2096 return LINUX_SIGTRAP;
2097
2098 case GDB_SIGNAL_ABRT:
2099 return LINUX_SIGABRT;
2100
2101 case GDB_SIGNAL_FPE:
2102 return LINUX_SIGFPE;
2103
2104 case GDB_SIGNAL_KILL:
2105 return LINUX_SIGKILL;
2106
2107 case GDB_SIGNAL_BUS:
2108 return LINUX_SIGBUS;
2109
2110 case GDB_SIGNAL_SEGV:
2111 return LINUX_SIGSEGV;
2112
2113 case GDB_SIGNAL_SYS:
2114 return LINUX_SIGSYS;
2115
2116 case GDB_SIGNAL_PIPE:
2117 return LINUX_SIGPIPE;
2118
2119 case GDB_SIGNAL_ALRM:
2120 return LINUX_SIGALRM;
2121
2122 case GDB_SIGNAL_TERM:
2123 return LINUX_SIGTERM;
2124
2125 case GDB_SIGNAL_URG:
2126 return LINUX_SIGURG;
2127
2128 case GDB_SIGNAL_STOP:
2129 return LINUX_SIGSTOP;
2130
2131 case GDB_SIGNAL_TSTP:
2132 return LINUX_SIGTSTP;
2133
2134 case GDB_SIGNAL_CONT:
2135 return LINUX_SIGCONT;
2136
2137 case GDB_SIGNAL_CHLD:
2138 return LINUX_SIGCHLD;
2139
2140 case GDB_SIGNAL_TTIN:
2141 return LINUX_SIGTTIN;
2142
2143 case GDB_SIGNAL_TTOU:
2144 return LINUX_SIGTTOU;
2145
2146 case GDB_SIGNAL_IO:
2147 return LINUX_SIGIO;
2148
2149 case GDB_SIGNAL_XCPU:
2150 return LINUX_SIGXCPU;
2151
2152 case GDB_SIGNAL_XFSZ:
2153 return LINUX_SIGXFSZ;
2154
2155 case GDB_SIGNAL_VTALRM:
2156 return LINUX_SIGVTALRM;
2157
2158 case GDB_SIGNAL_PROF:
2159 return LINUX_SIGPROF;
2160
2161 case GDB_SIGNAL_WINCH:
2162 return LINUX_SIGWINCH;
2163
2164 case GDB_SIGNAL_USR1:
2165 return LINUX_SIGUSR1;
2166
2167 case GDB_SIGNAL_USR2:
2168 return LINUX_SIGUSR2;
2169
2170 case GDB_SIGNAL_PWR:
2171 return LINUX_SIGPWR;
2172
2173 case GDB_SIGNAL_POLL:
2174 return LINUX_SIGPOLL;
2175
2176 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2177 therefore we have to handle it here. */
2178 case GDB_SIGNAL_REALTIME_32:
2179 return LINUX_SIGRTMIN;
2180
2181 /* Same comment applies to _64. */
2182 case GDB_SIGNAL_REALTIME_64:
2183 return LINUX_SIGRTMAX;
2184 }
2185
2186 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2187 if (signal >= GDB_SIGNAL_REALTIME_33
2188 && signal <= GDB_SIGNAL_REALTIME_63)
2189 {
2190 int offset = signal - GDB_SIGNAL_REALTIME_33;
2191
2192 return LINUX_SIGRTMIN + 1 + offset;
2193 }
2194
2195 return -1;
2196 }
2197
2198 /* Helper for linux_vsyscall_range that does the real work of finding
2199 the vsyscall's address range. */
2200
2201 static int
2202 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2203 {
2204 char filename[100];
2205 long pid;
2206
2207 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2208 return 0;
2209
2210 /* It doesn't make sense to access the host's /proc when debugging a
2211 core file. Instead, look for the PT_LOAD segment that matches
2212 the vDSO. */
2213 if (!target_has_execution)
2214 {
2215 long phdrs_size;
2216 int num_phdrs, i;
2217
2218 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2219 if (phdrs_size == -1)
2220 return 0;
2221
2222 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2223 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2224 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2225 if (num_phdrs == -1)
2226 return 0;
2227
2228 for (i = 0; i < num_phdrs; i++)
2229 if (phdrs.get ()[i].p_type == PT_LOAD
2230 && phdrs.get ()[i].p_vaddr == range->start)
2231 {
2232 range->length = phdrs.get ()[i].p_memsz;
2233 return 1;
2234 }
2235
2236 return 0;
2237 }
2238
2239 /* We need to know the real target PID to access /proc. */
2240 if (current_inferior ()->fake_pid_p)
2241 return 0;
2242
2243 pid = current_inferior ()->pid;
2244
2245 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2246 reading /proc/PID/maps (2). The later identifies thread stacks
2247 in the output, which requires scanning every thread in the thread
2248 group to check whether a VMA is actually a thread's stack. With
2249 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2250 a few thousand threads, (1) takes a few miliseconds, while (2)
2251 takes several seconds. Also note that "smaps", what we read for
2252 determining core dump mappings, is even slower than "maps". */
2253 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2254 gdb::unique_xmalloc_ptr<char> data
2255 = target_fileio_read_stralloc (NULL, filename);
2256 if (data != NULL)
2257 {
2258 char *line;
2259 char *saveptr = NULL;
2260
2261 for (line = strtok_r (data.get (), "\n", &saveptr);
2262 line != NULL;
2263 line = strtok_r (NULL, "\n", &saveptr))
2264 {
2265 ULONGEST addr, endaddr;
2266 const char *p = line;
2267
2268 addr = strtoulst (p, &p, 16);
2269 if (addr == range->start)
2270 {
2271 if (*p == '-')
2272 p++;
2273 endaddr = strtoulst (p, &p, 16);
2274 range->length = endaddr - addr;
2275 return 1;
2276 }
2277 }
2278 }
2279 else
2280 warning (_("unable to open /proc file '%s'"), filename);
2281
2282 return 0;
2283 }
2284
2285 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2286 caching, and defers the real work to linux_vsyscall_range_raw. */
2287
2288 static int
2289 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2290 {
2291 struct linux_info *info = get_linux_inferior_data ();
2292
2293 if (info->vsyscall_range_p == 0)
2294 {
2295 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2296 info->vsyscall_range_p = 1;
2297 else
2298 info->vsyscall_range_p = -1;
2299 }
2300
2301 if (info->vsyscall_range_p < 0)
2302 return 0;
2303
2304 *range = info->vsyscall_range;
2305 return 1;
2306 }
2307
2308 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2309 definitions would be dependent on compilation host. */
2310 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2311 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2312
2313 /* See gdbarch.sh 'infcall_mmap'. */
2314
2315 static CORE_ADDR
2316 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2317 {
2318 struct objfile *objf;
2319 /* Do there still exist any Linux systems without "mmap64"?
2320 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2321 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2322 struct value *addr_val;
2323 struct gdbarch *gdbarch = objf->arch ();
2324 CORE_ADDR retval;
2325 enum
2326 {
2327 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2328 };
2329 struct value *arg[ARG_LAST];
2330
2331 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2332 0);
2333 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2334 arg[ARG_LENGTH] = value_from_ulongest
2335 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2336 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2337 | GDB_MMAP_PROT_EXEC))
2338 == 0);
2339 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2340 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2341 GDB_MMAP_MAP_PRIVATE
2342 | GDB_MMAP_MAP_ANONYMOUS);
2343 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2344 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2345 0);
2346 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2347 retval = value_as_address (addr_val);
2348 if (retval == (CORE_ADDR) -1)
2349 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2350 pulongest (size));
2351 return retval;
2352 }
2353
2354 /* See gdbarch.sh 'infcall_munmap'. */
2355
2356 static void
2357 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2358 {
2359 struct objfile *objf;
2360 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2361 struct value *retval_val;
2362 struct gdbarch *gdbarch = objf->arch ();
2363 LONGEST retval;
2364 enum
2365 {
2366 ARG_ADDR, ARG_LENGTH, ARG_LAST
2367 };
2368 struct value *arg[ARG_LAST];
2369
2370 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2371 addr);
2372 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2373 arg[ARG_LENGTH] = value_from_ulongest
2374 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2375 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2376 retval = value_as_long (retval_val);
2377 if (retval != 0)
2378 warning (_("Failed inferior munmap call at %s for %s bytes, "
2379 "errno is changed."),
2380 hex_string (addr), pulongest (size));
2381 }
2382
2383 /* See linux-tdep.h. */
2384
2385 CORE_ADDR
2386 linux_displaced_step_location (struct gdbarch *gdbarch)
2387 {
2388 CORE_ADDR addr;
2389 int bp_len;
2390
2391 /* Determine entry point from target auxiliary vector. This avoids
2392 the need for symbols. Also, when debugging a stand-alone SPU
2393 executable, entry_point_address () will point to an SPU
2394 local-store address and is thus not usable as displaced stepping
2395 location. The auxiliary vector gets us the PowerPC-side entry
2396 point address instead. */
2397 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2398 throw_error (NOT_SUPPORTED_ERROR,
2399 _("Cannot find AT_ENTRY auxiliary vector entry."));
2400
2401 /* Make certain that the address points at real code, and not a
2402 function descriptor. */
2403 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2404 current_top_target ());
2405
2406 /* Inferior calls also use the entry point as a breakpoint location.
2407 We don't want displaced stepping to interfere with those
2408 breakpoints, so leave space. */
2409 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2410 addr += bp_len * 2;
2411
2412 return addr;
2413 }
2414
2415 /* See linux-tdep.h. */
2416
2417 CORE_ADDR
2418 linux_get_hwcap (struct target_ops *target)
2419 {
2420 CORE_ADDR field;
2421 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2422 return 0;
2423 return field;
2424 }
2425
2426 /* See linux-tdep.h. */
2427
2428 CORE_ADDR
2429 linux_get_hwcap2 (struct target_ops *target)
2430 {
2431 CORE_ADDR field;
2432 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2433 return 0;
2434 return field;
2435 }
2436
2437 /* Display whether the gcore command is using the
2438 /proc/PID/coredump_filter file. */
2439
2440 static void
2441 show_use_coredump_filter (struct ui_file *file, int from_tty,
2442 struct cmd_list_element *c, const char *value)
2443 {
2444 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2445 " corefiles is %s.\n"), value);
2446 }
2447
2448 /* Display whether the gcore command is dumping mappings marked with
2449 the VM_DONTDUMP flag. */
2450
2451 static void
2452 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2453 struct cmd_list_element *c, const char *value)
2454 {
2455 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2456 " flag is %s.\n"), value);
2457 }
2458
2459 /* To be called from the various GDB_OSABI_LINUX handlers for the
2460 various GNU/Linux architectures and machine types. */
2461
2462 void
2463 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2464 {
2465 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2466 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2467 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2468 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2469 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2470 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2471 set_gdbarch_has_shared_address_space (gdbarch,
2472 linux_has_shared_address_space);
2473 set_gdbarch_gdb_signal_from_target (gdbarch,
2474 linux_gdb_signal_from_target);
2475 set_gdbarch_gdb_signal_to_target (gdbarch,
2476 linux_gdb_signal_to_target);
2477 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2478 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2479 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2480 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2481 }
2482
2483 void _initialize_linux_tdep ();
2484 void
2485 _initialize_linux_tdep ()
2486 {
2487 linux_gdbarch_data_handle =
2488 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2489
2490 /* Observers used to invalidate the cache when needed. */
2491 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2492 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2493
2494 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2495 &use_coredump_filter, _("\
2496 Set whether gcore should consider /proc/PID/coredump_filter."),
2497 _("\
2498 Show whether gcore should consider /proc/PID/coredump_filter."),
2499 _("\
2500 Use this command to set whether gcore should consider the contents\n\
2501 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2502 about this file, refer to the manpage of core(5)."),
2503 NULL, show_use_coredump_filter,
2504 &setlist, &showlist);
2505
2506 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2507 &dump_excluded_mappings, _("\
2508 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2509 _("\
2510 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2511 _("\
2512 Use this command to set whether gcore should dump mappings marked with the\n\
2513 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2514 more information about this file, refer to the manpage of proc(5) and core(5)."),
2515 NULL, show_dump_excluded_mappings,
2516 &setlist, &showlist);
2517 }
This page took 0.102086 seconds and 4 git commands to generate.