Disable all warnings in gdb.rust/traits.rs
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "gdbsupport/enum-flags.h"
41 #include "gdbsupport/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static bool use_coredump_filter = true;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static bool dump_excluded_mappings = false;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189 struct linux_info
190 {
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range {};
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p = 0;
202 };
203
204 /* Per-inferior data key. */
205 static const struct inferior_key<linux_info> linux_inferior_data;
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 linux_inferior_data.clear (inf);
214 }
215
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219 static struct linux_info *
220 get_linux_inferior_data (void)
221 {
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
225 info = linux_inferior_data.get (inf);
226 if (info == NULL)
227 info = linux_inferior_data.emplace (inf);
228
229 return info;
230 }
231
232 /* See linux-tdep.h. */
233
234 struct type *
235 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
237 {
238 struct linux_gdbarch_data *linux_gdbarch_data;
239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
261 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type) = int_type;
269 TYPE_TARGET_STUB (pid_type) = 1;
270
271 /* __uid_t */
272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type) = uint_type;
275 TYPE_TARGET_STUB (uid_type) = 1;
276
277 /* __clock_t */
278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
281 TYPE_TARGET_TYPE (clock_type) = long_type;
282 TYPE_TARGET_STUB (clock_type) = 1;
283
284 /* _sifields */
285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
332 append_composite_type_field (type, "si_addr", void_ptr_type);
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
365 return siginfo_type;
366 }
367
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371 static struct type *
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
373 {
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375 }
376
377 /* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380 int
381 linux_is_uclinux (void)
382 {
383 CORE_ADDR dummy;
384
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
387 }
388
389 static int
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
391 {
392 return linux_is_uclinux ();
393 }
394
395 /* This is how we want PTIDs from core files to be printed. */
396
397 static std::string
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399 {
400 if (ptid.lwp () != 0)
401 return string_printf ("LWP %ld", ptid.lwp ());
402
403 return normal_pid_to_str (ptid);
404 }
405
406 /* Service function for corefiles and info proc. */
407
408 static void
409 read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416 {
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
424 p = skip_spaces (p);
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
432 p = skip_spaces (p);
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
440 p = skip_spaces (p);
441 *filename = p;
442 }
443
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453 static void
454 decode_vmflags (char *p, struct smaps_vmflags *v)
455 {
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476 }
477
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481 struct mapping_regexes
482 {
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514 };
515
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526 static int
527 mapping_is_anonymous_p (const char *filename)
528 {
529 static gdb::optional<mapping_regexes> regexes;
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
538 regexes.emplace ();
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
563 return 1;
564
565 return 0;
566 }
567
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
614
615 static int
616 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
618 const char *filename, ULONGEST addr, ULONGEST offset)
619 {
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
628 int dump_p;
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings && v->exclude_coredump)
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
671 }
672 else if (mapping_anon_p)
673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
674 else
675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
686 }
687 else if (mapping_anon_p)
688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
689 else
690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
691 }
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Let's check if we have an ELF header. */
705 gdb::unique_xmalloc_ptr<char> header;
706 int errcode;
707
708 /* Useful define specifying the size of the ELF magical
709 header. */
710 #ifndef SELFMAG
711 #define SELFMAG 4
712 #endif
713
714 /* Read the first SELFMAG bytes and check if it is ELFMAG. */
715 if (target_read_string (addr, &header, SELFMAG, &errcode) == SELFMAG
716 && errcode == 0)
717 {
718 const char *h = header.get ();
719
720 /* The EI_MAG* and ELFMAG* constants come from
721 <elf/common.h>. */
722 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
723 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
724 {
725 /* This mapping contains an ELF header, so we
726 should dump it. */
727 dump_p = 1;
728 }
729 }
730 }
731
732 return dump_p;
733 }
734
735 /* Implement the "info proc" command. */
736
737 static void
738 linux_info_proc (struct gdbarch *gdbarch, const char *args,
739 enum info_proc_what what)
740 {
741 /* A long is used for pid instead of an int to avoid a loss of precision
742 compiler warning from the output of strtoul. */
743 long pid;
744 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
745 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
746 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
747 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
748 int status_f = (what == IP_STATUS || what == IP_ALL);
749 int stat_f = (what == IP_STAT || what == IP_ALL);
750 char filename[100];
751 int target_errno;
752
753 if (args && isdigit (args[0]))
754 {
755 char *tem;
756
757 pid = strtoul (args, &tem, 10);
758 args = tem;
759 }
760 else
761 {
762 if (!target_has_execution)
763 error (_("No current process: you must name one."));
764 if (current_inferior ()->fake_pid_p)
765 error (_("Can't determine the current process's PID: you must name one."));
766
767 pid = current_inferior ()->pid;
768 }
769
770 args = skip_spaces (args);
771 if (args && args[0])
772 error (_("Too many parameters: %s"), args);
773
774 printf_filtered (_("process %ld\n"), pid);
775 if (cmdline_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
778 gdb_byte *buffer;
779 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
780
781 if (len > 0)
782 {
783 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
784 ssize_t pos;
785
786 for (pos = 0; pos < len - 1; pos++)
787 {
788 if (buffer[pos] == '\0')
789 buffer[pos] = ' ';
790 }
791 buffer[len - 1] = '\0';
792 printf_filtered ("cmdline = '%s'\n", buffer);
793 }
794 else
795 warning (_("unable to open /proc file '%s'"), filename);
796 }
797 if (cwd_f)
798 {
799 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
800 gdb::optional<std::string> contents
801 = target_fileio_readlink (NULL, filename, &target_errno);
802 if (contents.has_value ())
803 printf_filtered ("cwd = '%s'\n", contents->c_str ());
804 else
805 warning (_("unable to read link '%s'"), filename);
806 }
807 if (exe_f)
808 {
809 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
810 gdb::optional<std::string> contents
811 = target_fileio_readlink (NULL, filename, &target_errno);
812 if (contents.has_value ())
813 printf_filtered ("exe = '%s'\n", contents->c_str ());
814 else
815 warning (_("unable to read link '%s'"), filename);
816 }
817 if (mappings_f)
818 {
819 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
820 gdb::unique_xmalloc_ptr<char> map
821 = target_fileio_read_stralloc (NULL, filename);
822 if (map != NULL)
823 {
824 char *line;
825
826 printf_filtered (_("Mapped address spaces:\n\n"));
827 if (gdbarch_addr_bit (gdbarch) == 32)
828 {
829 printf_filtered ("\t%10s %10s %10s %10s %s\n",
830 "Start Addr",
831 " End Addr",
832 " Size", " Offset", "objfile");
833 }
834 else
835 {
836 printf_filtered (" %18s %18s %10s %10s %s\n",
837 "Start Addr",
838 " End Addr",
839 " Size", " Offset", "objfile");
840 }
841
842 for (line = strtok (map.get (), "\n");
843 line;
844 line = strtok (NULL, "\n"))
845 {
846 ULONGEST addr, endaddr, offset, inode;
847 const char *permissions, *device, *mapping_filename;
848 size_t permissions_len, device_len;
849
850 read_mapping (line, &addr, &endaddr,
851 &permissions, &permissions_len,
852 &offset, &device, &device_len,
853 &inode, &mapping_filename);
854
855 if (gdbarch_addr_bit (gdbarch) == 32)
856 {
857 printf_filtered ("\t%10s %10s %10s %10s %s\n",
858 paddress (gdbarch, addr),
859 paddress (gdbarch, endaddr),
860 hex_string (endaddr - addr),
861 hex_string (offset),
862 *mapping_filename ? mapping_filename : "");
863 }
864 else
865 {
866 printf_filtered (" %18s %18s %10s %10s %s\n",
867 paddress (gdbarch, addr),
868 paddress (gdbarch, endaddr),
869 hex_string (endaddr - addr),
870 hex_string (offset),
871 *mapping_filename ? mapping_filename : "");
872 }
873 }
874 }
875 else
876 warning (_("unable to open /proc file '%s'"), filename);
877 }
878 if (status_f)
879 {
880 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
881 gdb::unique_xmalloc_ptr<char> status
882 = target_fileio_read_stralloc (NULL, filename);
883 if (status)
884 puts_filtered (status.get ());
885 else
886 warning (_("unable to open /proc file '%s'"), filename);
887 }
888 if (stat_f)
889 {
890 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
891 gdb::unique_xmalloc_ptr<char> statstr
892 = target_fileio_read_stralloc (NULL, filename);
893 if (statstr)
894 {
895 const char *p = statstr.get ();
896
897 printf_filtered (_("Process: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899
900 p = skip_spaces (p);
901 if (*p == '(')
902 {
903 /* ps command also relies on no trailing fields
904 ever contain ')'. */
905 const char *ep = strrchr (p, ')');
906 if (ep != NULL)
907 {
908 printf_filtered ("Exec file: %.*s\n",
909 (int) (ep - p - 1), p + 1);
910 p = ep + 1;
911 }
912 }
913
914 p = skip_spaces (p);
915 if (*p)
916 printf_filtered (_("State: %c\n"), *p++);
917
918 if (*p)
919 printf_filtered (_("Parent process: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
921 if (*p)
922 printf_filtered (_("Process group: %s\n"),
923 pulongest (strtoulst (p, &p, 10)));
924 if (*p)
925 printf_filtered (_("Session id: %s\n"),
926 pulongest (strtoulst (p, &p, 10)));
927 if (*p)
928 printf_filtered (_("TTY: %s\n"),
929 pulongest (strtoulst (p, &p, 10)));
930 if (*p)
931 printf_filtered (_("TTY owner process group: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
933
934 if (*p)
935 printf_filtered (_("Flags: %s\n"),
936 hex_string (strtoulst (p, &p, 10)));
937 if (*p)
938 printf_filtered (_("Minor faults (no memory page): %s\n"),
939 pulongest (strtoulst (p, &p, 10)));
940 if (*p)
941 printf_filtered (_("Minor faults, children: %s\n"),
942 pulongest (strtoulst (p, &p, 10)));
943 if (*p)
944 printf_filtered (_("Major faults (memory page faults): %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
946 if (*p)
947 printf_filtered (_("Major faults, children: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
949 if (*p)
950 printf_filtered (_("utime: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("stime: %s\n"),
954 pulongest (strtoulst (p, &p, 10)));
955 if (*p)
956 printf_filtered (_("utime, children: %s\n"),
957 pulongest (strtoulst (p, &p, 10)));
958 if (*p)
959 printf_filtered (_("stime, children: %s\n"),
960 pulongest (strtoulst (p, &p, 10)));
961 if (*p)
962 printf_filtered (_("jiffies remaining in current "
963 "time slice: %s\n"),
964 pulongest (strtoulst (p, &p, 10)));
965 if (*p)
966 printf_filtered (_("'nice' value: %s\n"),
967 pulongest (strtoulst (p, &p, 10)));
968 if (*p)
969 printf_filtered (_("jiffies until next timeout: %s\n"),
970 pulongest (strtoulst (p, &p, 10)));
971 if (*p)
972 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
973 pulongest (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("start time (jiffies since "
976 "system boot): %s\n"),
977 pulongest (strtoulst (p, &p, 10)));
978 if (*p)
979 printf_filtered (_("Virtual memory size: %s\n"),
980 pulongest (strtoulst (p, &p, 10)));
981 if (*p)
982 printf_filtered (_("Resident set size: %s\n"),
983 pulongest (strtoulst (p, &p, 10)));
984 if (*p)
985 printf_filtered (_("rlim: %s\n"),
986 pulongest (strtoulst (p, &p, 10)));
987 if (*p)
988 printf_filtered (_("Start of text: %s\n"),
989 hex_string (strtoulst (p, &p, 10)));
990 if (*p)
991 printf_filtered (_("End of text: %s\n"),
992 hex_string (strtoulst (p, &p, 10)));
993 if (*p)
994 printf_filtered (_("Start of stack: %s\n"),
995 hex_string (strtoulst (p, &p, 10)));
996 #if 0 /* Don't know how architecture-dependent the rest is...
997 Anyway the signal bitmap info is available from "status". */
998 if (*p)
999 printf_filtered (_("Kernel stack pointer: %s\n"),
1000 hex_string (strtoulst (p, &p, 10)));
1001 if (*p)
1002 printf_filtered (_("Kernel instr pointer: %s\n"),
1003 hex_string (strtoulst (p, &p, 10)));
1004 if (*p)
1005 printf_filtered (_("Pending signals bitmap: %s\n"),
1006 hex_string (strtoulst (p, &p, 10)));
1007 if (*p)
1008 printf_filtered (_("Blocked signals bitmap: %s\n"),
1009 hex_string (strtoulst (p, &p, 10)));
1010 if (*p)
1011 printf_filtered (_("Ignored signals bitmap: %s\n"),
1012 hex_string (strtoulst (p, &p, 10)));
1013 if (*p)
1014 printf_filtered (_("Catched signals bitmap: %s\n"),
1015 hex_string (strtoulst (p, &p, 10)));
1016 if (*p)
1017 printf_filtered (_("wchan (system call): %s\n"),
1018 hex_string (strtoulst (p, &p, 10)));
1019 #endif
1020 }
1021 else
1022 warning (_("unable to open /proc file '%s'"), filename);
1023 }
1024 }
1025
1026 /* Implement "info proc mappings" for a corefile. */
1027
1028 static void
1029 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1030 {
1031 asection *section;
1032 ULONGEST count, page_size;
1033 unsigned char *descdata, *filenames, *descend;
1034 size_t note_size;
1035 unsigned int addr_size_bits, addr_size;
1036 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1037 /* We assume this for reading 64-bit core files. */
1038 gdb_static_assert (sizeof (ULONGEST) >= 8);
1039
1040 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1041 if (section == NULL)
1042 {
1043 warning (_("unable to find mappings in core file"));
1044 return;
1045 }
1046
1047 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1048 addr_size = addr_size_bits / 8;
1049 note_size = bfd_section_size (section);
1050
1051 if (note_size < 2 * addr_size)
1052 error (_("malformed core note - too short for header"));
1053
1054 gdb::def_vector<unsigned char> contents (note_size);
1055 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1056 0, note_size))
1057 error (_("could not get core note contents"));
1058
1059 descdata = contents.data ();
1060 descend = descdata + note_size;
1061
1062 if (descdata[note_size - 1] != '\0')
1063 error (_("malformed note - does not end with \\0"));
1064
1065 count = bfd_get (addr_size_bits, core_bfd, descdata);
1066 descdata += addr_size;
1067
1068 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1069 descdata += addr_size;
1070
1071 if (note_size < 2 * addr_size + count * 3 * addr_size)
1072 error (_("malformed note - too short for supplied file count"));
1073
1074 printf_filtered (_("Mapped address spaces:\n\n"));
1075 if (gdbarch_addr_bit (gdbarch) == 32)
1076 {
1077 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1078 "Start Addr",
1079 " End Addr",
1080 " Size", " Offset", "objfile");
1081 }
1082 else
1083 {
1084 printf_filtered (" %18s %18s %10s %10s %s\n",
1085 "Start Addr",
1086 " End Addr",
1087 " Size", " Offset", "objfile");
1088 }
1089
1090 filenames = descdata + count * 3 * addr_size;
1091 while (--count > 0)
1092 {
1093 ULONGEST start, end, file_ofs;
1094
1095 if (filenames == descend)
1096 error (_("malformed note - filenames end too early"));
1097
1098 start = bfd_get (addr_size_bits, core_bfd, descdata);
1099 descdata += addr_size;
1100 end = bfd_get (addr_size_bits, core_bfd, descdata);
1101 descdata += addr_size;
1102 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1103 descdata += addr_size;
1104
1105 file_ofs *= page_size;
1106
1107 if (gdbarch_addr_bit (gdbarch) == 32)
1108 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1109 paddress (gdbarch, start),
1110 paddress (gdbarch, end),
1111 hex_string (end - start),
1112 hex_string (file_ofs),
1113 filenames);
1114 else
1115 printf_filtered (" %18s %18s %10s %10s %s\n",
1116 paddress (gdbarch, start),
1117 paddress (gdbarch, end),
1118 hex_string (end - start),
1119 hex_string (file_ofs),
1120 filenames);
1121
1122 filenames += 1 + strlen ((char *) filenames);
1123 }
1124 }
1125
1126 /* Implement "info proc" for a corefile. */
1127
1128 static void
1129 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1130 enum info_proc_what what)
1131 {
1132 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1133 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1134
1135 if (exe_f)
1136 {
1137 const char *exe;
1138
1139 exe = bfd_core_file_failing_command (core_bfd);
1140 if (exe != NULL)
1141 printf_filtered ("exe = '%s'\n", exe);
1142 else
1143 warning (_("unable to find command name in core file"));
1144 }
1145
1146 if (mappings_f)
1147 linux_core_info_proc_mappings (gdbarch, args);
1148
1149 if (!exe_f && !mappings_f)
1150 error (_("unable to handle request"));
1151 }
1152
1153 /* Read siginfo data from the core, if possible. Returns -1 on
1154 failure. Otherwise, returns the number of bytes read. READBUF,
1155 OFFSET, and LEN are all as specified by the to_xfer_partial
1156 interface. */
1157
1158 static LONGEST
1159 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1160 ULONGEST offset, ULONGEST len)
1161 {
1162 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1163 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1164 if (section == NULL)
1165 return -1;
1166
1167 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1168 return -1;
1169
1170 return len;
1171 }
1172
1173 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1174 ULONGEST offset, ULONGEST inode,
1175 int read, int write,
1176 int exec, int modified,
1177 const char *filename,
1178 void *data);
1179
1180 /* List memory regions in the inferior for a corefile. */
1181
1182 static int
1183 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1184 linux_find_memory_region_ftype *func,
1185 void *obfd)
1186 {
1187 char mapsfilename[100];
1188 char coredumpfilter_name[100];
1189 pid_t pid;
1190 /* Default dump behavior of coredump_filter (0x33), according to
1191 Documentation/filesystems/proc.txt from the Linux kernel
1192 tree. */
1193 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1194 | COREFILTER_ANON_SHARED
1195 | COREFILTER_ELF_HEADERS
1196 | COREFILTER_HUGETLB_PRIVATE);
1197
1198 /* We need to know the real target PID to access /proc. */
1199 if (current_inferior ()->fake_pid_p)
1200 return 1;
1201
1202 pid = current_inferior ()->pid;
1203
1204 if (use_coredump_filter)
1205 {
1206 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1207 "/proc/%d/coredump_filter", pid);
1208 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1209 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1210 if (coredumpfilterdata != NULL)
1211 {
1212 unsigned int flags;
1213
1214 sscanf (coredumpfilterdata.get (), "%x", &flags);
1215 filterflags = (enum filter_flag) flags;
1216 }
1217 }
1218
1219 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1220 gdb::unique_xmalloc_ptr<char> data
1221 = target_fileio_read_stralloc (NULL, mapsfilename);
1222 if (data == NULL)
1223 {
1224 /* Older Linux kernels did not support /proc/PID/smaps. */
1225 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1226 data = target_fileio_read_stralloc (NULL, mapsfilename);
1227 }
1228
1229 if (data != NULL)
1230 {
1231 char *line, *t;
1232
1233 line = strtok_r (data.get (), "\n", &t);
1234 while (line != NULL)
1235 {
1236 ULONGEST addr, endaddr, offset, inode;
1237 const char *permissions, *device, *filename;
1238 struct smaps_vmflags v;
1239 size_t permissions_len, device_len;
1240 int read, write, exec, priv;
1241 int has_anonymous = 0;
1242 int should_dump_p = 0;
1243 int mapping_anon_p;
1244 int mapping_file_p;
1245
1246 memset (&v, 0, sizeof (v));
1247 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1248 &offset, &device, &device_len, &inode, &filename);
1249 mapping_anon_p = mapping_is_anonymous_p (filename);
1250 /* If the mapping is not anonymous, then we can consider it
1251 to be file-backed. These two states (anonymous or
1252 file-backed) seem to be exclusive, but they can actually
1253 coexist. For example, if a file-backed mapping has
1254 "Anonymous:" pages (see more below), then the Linux
1255 kernel will dump this mapping when the user specified
1256 that she only wants anonymous mappings in the corefile
1257 (*even* when she explicitly disabled the dumping of
1258 file-backed mappings). */
1259 mapping_file_p = !mapping_anon_p;
1260
1261 /* Decode permissions. */
1262 read = (memchr (permissions, 'r', permissions_len) != 0);
1263 write = (memchr (permissions, 'w', permissions_len) != 0);
1264 exec = (memchr (permissions, 'x', permissions_len) != 0);
1265 /* 'private' here actually means VM_MAYSHARE, and not
1266 VM_SHARED. In order to know if a mapping is really
1267 private or not, we must check the flag "sh" in the
1268 VmFlags field. This is done by decode_vmflags. However,
1269 if we are using a Linux kernel released before the commit
1270 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1271 not have the VmFlags there. In this case, there is
1272 really no way to know if we are dealing with VM_SHARED,
1273 so we just assume that VM_MAYSHARE is enough. */
1274 priv = memchr (permissions, 'p', permissions_len) != 0;
1275
1276 /* Try to detect if region should be dumped by parsing smaps
1277 counters. */
1278 for (line = strtok_r (NULL, "\n", &t);
1279 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1280 line = strtok_r (NULL, "\n", &t))
1281 {
1282 char keyword[64 + 1];
1283
1284 if (sscanf (line, "%64s", keyword) != 1)
1285 {
1286 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1287 break;
1288 }
1289
1290 if (strcmp (keyword, "Anonymous:") == 0)
1291 {
1292 /* Older Linux kernels did not support the
1293 "Anonymous:" counter. Check it here. */
1294 has_anonymous = 1;
1295 }
1296 else if (strcmp (keyword, "VmFlags:") == 0)
1297 decode_vmflags (line, &v);
1298
1299 if (strcmp (keyword, "AnonHugePages:") == 0
1300 || strcmp (keyword, "Anonymous:") == 0)
1301 {
1302 unsigned long number;
1303
1304 if (sscanf (line, "%*s%lu", &number) != 1)
1305 {
1306 warning (_("Error parsing {s,}maps file '%s' number"),
1307 mapsfilename);
1308 break;
1309 }
1310 if (number > 0)
1311 {
1312 /* Even if we are dealing with a file-backed
1313 mapping, if it contains anonymous pages we
1314 consider it to be *also* an anonymous
1315 mapping, because this is what the Linux
1316 kernel does:
1317
1318 // Dump segments that have been written to.
1319 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1320 goto whole;
1321
1322 Note that if the mapping is already marked as
1323 file-backed (i.e., mapping_file_p is
1324 non-zero), then this is a special case, and
1325 this mapping will be dumped either when the
1326 user wants to dump file-backed *or* anonymous
1327 mappings. */
1328 mapping_anon_p = 1;
1329 }
1330 }
1331 }
1332
1333 if (has_anonymous)
1334 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1335 mapping_anon_p, mapping_file_p,
1336 filename, addr, offset);
1337 else
1338 {
1339 /* Older Linux kernels did not support the "Anonymous:" counter.
1340 If it is missing, we can't be sure - dump all the pages. */
1341 should_dump_p = 1;
1342 }
1343
1344 /* Invoke the callback function to create the corefile segment. */
1345 if (should_dump_p)
1346 func (addr, endaddr - addr, offset, inode,
1347 read, write, exec, 1, /* MODIFIED is true because we
1348 want to dump the mapping. */
1349 filename, obfd);
1350 }
1351
1352 return 0;
1353 }
1354
1355 return 1;
1356 }
1357
1358 /* A structure for passing information through
1359 linux_find_memory_regions_full. */
1360
1361 struct linux_find_memory_regions_data
1362 {
1363 /* The original callback. */
1364
1365 find_memory_region_ftype func;
1366
1367 /* The original datum. */
1368
1369 void *obfd;
1370 };
1371
1372 /* A callback for linux_find_memory_regions that converts between the
1373 "full"-style callback and find_memory_region_ftype. */
1374
1375 static int
1376 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1377 ULONGEST offset, ULONGEST inode,
1378 int read, int write, int exec, int modified,
1379 const char *filename, void *arg)
1380 {
1381 struct linux_find_memory_regions_data *data
1382 = (struct linux_find_memory_regions_data *) arg;
1383
1384 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1385 }
1386
1387 /* A variant of linux_find_memory_regions_full that is suitable as the
1388 gdbarch find_memory_regions method. */
1389
1390 static int
1391 linux_find_memory_regions (struct gdbarch *gdbarch,
1392 find_memory_region_ftype func, void *obfd)
1393 {
1394 struct linux_find_memory_regions_data data;
1395
1396 data.func = func;
1397 data.obfd = obfd;
1398
1399 return linux_find_memory_regions_full (gdbarch,
1400 linux_find_memory_regions_thunk,
1401 &data);
1402 }
1403
1404 /* Determine which signal stopped execution. */
1405
1406 static int
1407 find_signalled_thread (struct thread_info *info, void *data)
1408 {
1409 if (info->suspend.stop_signal != GDB_SIGNAL_0
1410 && info->ptid.pid () == inferior_ptid.pid ())
1411 return 1;
1412
1413 return 0;
1414 }
1415
1416 /* This is used to pass information from
1417 linux_make_mappings_corefile_notes through
1418 linux_find_memory_regions_full. */
1419
1420 struct linux_make_mappings_data
1421 {
1422 /* Number of files mapped. */
1423 ULONGEST file_count;
1424
1425 /* The obstack for the main part of the data. */
1426 struct obstack *data_obstack;
1427
1428 /* The filename obstack. */
1429 struct obstack *filename_obstack;
1430
1431 /* The architecture's "long" type. */
1432 struct type *long_type;
1433 };
1434
1435 static linux_find_memory_region_ftype linux_make_mappings_callback;
1436
1437 /* A callback for linux_find_memory_regions_full that updates the
1438 mappings data for linux_make_mappings_corefile_notes. */
1439
1440 static int
1441 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1442 ULONGEST offset, ULONGEST inode,
1443 int read, int write, int exec, int modified,
1444 const char *filename, void *data)
1445 {
1446 struct linux_make_mappings_data *map_data
1447 = (struct linux_make_mappings_data *) data;
1448 gdb_byte buf[sizeof (ULONGEST)];
1449
1450 if (*filename == '\0' || inode == 0)
1451 return 0;
1452
1453 ++map_data->file_count;
1454
1455 pack_long (buf, map_data->long_type, vaddr);
1456 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1457 pack_long (buf, map_data->long_type, vaddr + size);
1458 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1459 pack_long (buf, map_data->long_type, offset);
1460 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1461
1462 obstack_grow_str0 (map_data->filename_obstack, filename);
1463
1464 return 0;
1465 }
1466
1467 /* Write the file mapping data to the core file, if possible. OBFD is
1468 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1469 is a pointer to the note size. Returns the new NOTE_DATA and
1470 updates NOTE_SIZE. */
1471
1472 static char *
1473 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1474 char *note_data, int *note_size)
1475 {
1476 struct linux_make_mappings_data mapping_data;
1477 struct type *long_type
1478 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1479 gdb_byte buf[sizeof (ULONGEST)];
1480
1481 auto_obstack data_obstack, filename_obstack;
1482
1483 mapping_data.file_count = 0;
1484 mapping_data.data_obstack = &data_obstack;
1485 mapping_data.filename_obstack = &filename_obstack;
1486 mapping_data.long_type = long_type;
1487
1488 /* Reserve space for the count. */
1489 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1490 /* We always write the page size as 1 since we have no good way to
1491 determine the correct value. */
1492 pack_long (buf, long_type, 1);
1493 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1494
1495 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1496 &mapping_data);
1497
1498 if (mapping_data.file_count != 0)
1499 {
1500 /* Write the count to the obstack. */
1501 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1502 long_type, mapping_data.file_count);
1503
1504 /* Copy the filenames to the data obstack. */
1505 int size = obstack_object_size (&filename_obstack);
1506 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1507 size);
1508
1509 note_data = elfcore_write_note (obfd, note_data, note_size,
1510 "CORE", NT_FILE,
1511 obstack_base (&data_obstack),
1512 obstack_object_size (&data_obstack));
1513 }
1514
1515 return note_data;
1516 }
1517
1518 /* Structure for passing information from
1519 linux_collect_thread_registers via an iterator to
1520 linux_collect_regset_section_cb. */
1521
1522 struct linux_collect_regset_section_cb_data
1523 {
1524 struct gdbarch *gdbarch;
1525 const struct regcache *regcache;
1526 bfd *obfd;
1527 char *note_data;
1528 int *note_size;
1529 unsigned long lwp;
1530 enum gdb_signal stop_signal;
1531 int abort_iteration;
1532 };
1533
1534 /* Callback for iterate_over_regset_sections that records a single
1535 regset in the corefile note section. */
1536
1537 static void
1538 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1539 int collect_size, const struct regset *regset,
1540 const char *human_name, void *cb_data)
1541 {
1542 struct linux_collect_regset_section_cb_data *data
1543 = (struct linux_collect_regset_section_cb_data *) cb_data;
1544 bool variable_size_section = (regset != NULL
1545 && regset->flags & REGSET_VARIABLE_SIZE);
1546
1547 if (!variable_size_section)
1548 gdb_assert (supply_size == collect_size);
1549
1550 if (data->abort_iteration)
1551 return;
1552
1553 gdb_assert (regset && regset->collect_regset);
1554
1555 /* This is intentionally zero-initialized by using std::vector, so
1556 that any padding bytes in the core file will show as 0. */
1557 std::vector<gdb_byte> buf (collect_size);
1558
1559 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1560 collect_size);
1561
1562 /* PRSTATUS still needs to be treated specially. */
1563 if (strcmp (sect_name, ".reg") == 0)
1564 data->note_data = (char *) elfcore_write_prstatus
1565 (data->obfd, data->note_data, data->note_size, data->lwp,
1566 gdb_signal_to_host (data->stop_signal), buf.data ());
1567 else
1568 data->note_data = (char *) elfcore_write_register_note
1569 (data->obfd, data->note_data, data->note_size,
1570 sect_name, buf.data (), collect_size);
1571
1572 if (data->note_data == NULL)
1573 data->abort_iteration = 1;
1574 }
1575
1576 /* Records the thread's register state for the corefile note
1577 section. */
1578
1579 static char *
1580 linux_collect_thread_registers (const struct regcache *regcache,
1581 ptid_t ptid, bfd *obfd,
1582 char *note_data, int *note_size,
1583 enum gdb_signal stop_signal)
1584 {
1585 struct gdbarch *gdbarch = regcache->arch ();
1586 struct linux_collect_regset_section_cb_data data;
1587
1588 data.gdbarch = gdbarch;
1589 data.regcache = regcache;
1590 data.obfd = obfd;
1591 data.note_data = note_data;
1592 data.note_size = note_size;
1593 data.stop_signal = stop_signal;
1594 data.abort_iteration = 0;
1595
1596 /* For remote targets the LWP may not be available, so use the TID. */
1597 data.lwp = ptid.lwp ();
1598 if (!data.lwp)
1599 data.lwp = ptid.tid ();
1600
1601 gdbarch_iterate_over_regset_sections (gdbarch,
1602 linux_collect_regset_section_cb,
1603 &data, regcache);
1604 return data.note_data;
1605 }
1606
1607 /* Fetch the siginfo data for the specified thread, if it exists. If
1608 there is no data, or we could not read it, return an empty
1609 buffer. */
1610
1611 static gdb::byte_vector
1612 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1613 {
1614 struct type *siginfo_type;
1615 LONGEST bytes_read;
1616
1617 if (!gdbarch_get_siginfo_type_p (gdbarch))
1618 return gdb::byte_vector ();
1619
1620 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1621 inferior_ptid = thread->ptid;
1622
1623 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1624
1625 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1626
1627 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1628 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1629 if (bytes_read != TYPE_LENGTH (siginfo_type))
1630 buf.clear ();
1631
1632 return buf;
1633 }
1634
1635 struct linux_corefile_thread_data
1636 {
1637 struct gdbarch *gdbarch;
1638 bfd *obfd;
1639 char *note_data;
1640 int *note_size;
1641 enum gdb_signal stop_signal;
1642 };
1643
1644 /* Records the thread's register state for the corefile note
1645 section. */
1646
1647 static void
1648 linux_corefile_thread (struct thread_info *info,
1649 struct linux_corefile_thread_data *args)
1650 {
1651 struct regcache *regcache;
1652
1653 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1654
1655 target_fetch_registers (regcache, -1);
1656 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1657
1658 args->note_data = linux_collect_thread_registers
1659 (regcache, info->ptid, args->obfd, args->note_data,
1660 args->note_size, args->stop_signal);
1661
1662 /* Don't return anything if we got no register information above,
1663 such a core file is useless. */
1664 if (args->note_data != NULL)
1665 if (!siginfo_data.empty ())
1666 args->note_data = elfcore_write_note (args->obfd,
1667 args->note_data,
1668 args->note_size,
1669 "CORE", NT_SIGINFO,
1670 siginfo_data.data (),
1671 siginfo_data.size ());
1672 }
1673
1674 /* Fill the PRPSINFO structure with information about the process being
1675 debugged. Returns 1 in case of success, 0 for failures. Please note that
1676 even if the structure cannot be entirely filled (e.g., GDB was unable to
1677 gather information about the process UID/GID), this function will still
1678 return 1 since some information was already recorded. It will only return
1679 0 iff nothing can be gathered. */
1680
1681 static int
1682 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1683 {
1684 /* The filename which we will use to obtain some info about the process.
1685 We will basically use this to store the `/proc/PID/FILENAME' file. */
1686 char filename[100];
1687 /* The basename of the executable. */
1688 const char *basename;
1689 const char *infargs;
1690 /* Temporary buffer. */
1691 char *tmpstr;
1692 /* The valid states of a process, according to the Linux kernel. */
1693 const char valid_states[] = "RSDTZW";
1694 /* The program state. */
1695 const char *prog_state;
1696 /* The state of the process. */
1697 char pr_sname;
1698 /* The PID of the program which generated the corefile. */
1699 pid_t pid;
1700 /* Process flags. */
1701 unsigned int pr_flag;
1702 /* Process nice value. */
1703 long pr_nice;
1704 /* The number of fields read by `sscanf'. */
1705 int n_fields = 0;
1706
1707 gdb_assert (p != NULL);
1708
1709 /* Obtaining PID and filename. */
1710 pid = inferior_ptid.pid ();
1711 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1712 /* The full name of the program which generated the corefile. */
1713 gdb::unique_xmalloc_ptr<char> fname
1714 = target_fileio_read_stralloc (NULL, filename);
1715
1716 if (fname == NULL || fname.get ()[0] == '\0')
1717 {
1718 /* No program name was read, so we won't be able to retrieve more
1719 information about the process. */
1720 return 0;
1721 }
1722
1723 memset (p, 0, sizeof (*p));
1724
1725 /* Defining the PID. */
1726 p->pr_pid = pid;
1727
1728 /* Copying the program name. Only the basename matters. */
1729 basename = lbasename (fname.get ());
1730 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1731 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1732
1733 infargs = get_inferior_args ();
1734
1735 /* The arguments of the program. */
1736 std::string psargs = fname.get ();
1737 if (infargs != NULL)
1738 psargs = psargs + " " + infargs;
1739
1740 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1741 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1742
1743 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1744 /* The contents of `/proc/PID/stat'. */
1745 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1746 = target_fileio_read_stralloc (NULL, filename);
1747 char *proc_stat = proc_stat_contents.get ();
1748
1749 if (proc_stat == NULL || *proc_stat == '\0')
1750 {
1751 /* Despite being unable to read more information about the
1752 process, we return 1 here because at least we have its
1753 command line, PID and arguments. */
1754 return 1;
1755 }
1756
1757 /* Ok, we have the stats. It's time to do a little parsing of the
1758 contents of the buffer, so that we end up reading what we want.
1759
1760 The following parsing mechanism is strongly based on the
1761 information generated by the `fs/proc/array.c' file, present in
1762 the Linux kernel tree. More details about how the information is
1763 displayed can be obtained by seeing the manpage of proc(5),
1764 specifically under the entry of `/proc/[pid]/stat'. */
1765
1766 /* Getting rid of the PID, since we already have it. */
1767 while (isdigit (*proc_stat))
1768 ++proc_stat;
1769
1770 proc_stat = skip_spaces (proc_stat);
1771
1772 /* ps command also relies on no trailing fields ever contain ')'. */
1773 proc_stat = strrchr (proc_stat, ')');
1774 if (proc_stat == NULL)
1775 return 1;
1776 proc_stat++;
1777
1778 proc_stat = skip_spaces (proc_stat);
1779
1780 n_fields = sscanf (proc_stat,
1781 "%c" /* Process state. */
1782 "%d%d%d" /* Parent PID, group ID, session ID. */
1783 "%*d%*d" /* tty_nr, tpgid (not used). */
1784 "%u" /* Flags. */
1785 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1786 cmajflt (not used). */
1787 "%*s%*s%*s%*s" /* utime, stime, cutime,
1788 cstime (not used). */
1789 "%*s" /* Priority (not used). */
1790 "%ld", /* Nice. */
1791 &pr_sname,
1792 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1793 &pr_flag,
1794 &pr_nice);
1795
1796 if (n_fields != 6)
1797 {
1798 /* Again, we couldn't read the complementary information about
1799 the process state. However, we already have minimal
1800 information, so we just return 1 here. */
1801 return 1;
1802 }
1803
1804 /* Filling the structure fields. */
1805 prog_state = strchr (valid_states, pr_sname);
1806 if (prog_state != NULL)
1807 p->pr_state = prog_state - valid_states;
1808 else
1809 {
1810 /* Zero means "Running". */
1811 p->pr_state = 0;
1812 }
1813
1814 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1815 p->pr_zomb = p->pr_sname == 'Z';
1816 p->pr_nice = pr_nice;
1817 p->pr_flag = pr_flag;
1818
1819 /* Finally, obtaining the UID and GID. For that, we read and parse the
1820 contents of the `/proc/PID/status' file. */
1821 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1822 /* The contents of `/proc/PID/status'. */
1823 gdb::unique_xmalloc_ptr<char> proc_status_contents
1824 = target_fileio_read_stralloc (NULL, filename);
1825 char *proc_status = proc_status_contents.get ();
1826
1827 if (proc_status == NULL || *proc_status == '\0')
1828 {
1829 /* Returning 1 since we already have a bunch of information. */
1830 return 1;
1831 }
1832
1833 /* Extracting the UID. */
1834 tmpstr = strstr (proc_status, "Uid:");
1835 if (tmpstr != NULL)
1836 {
1837 /* Advancing the pointer to the beginning of the UID. */
1838 tmpstr += sizeof ("Uid:");
1839 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1840 ++tmpstr;
1841
1842 if (isdigit (*tmpstr))
1843 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1844 }
1845
1846 /* Extracting the GID. */
1847 tmpstr = strstr (proc_status, "Gid:");
1848 if (tmpstr != NULL)
1849 {
1850 /* Advancing the pointer to the beginning of the GID. */
1851 tmpstr += sizeof ("Gid:");
1852 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1853 ++tmpstr;
1854
1855 if (isdigit (*tmpstr))
1856 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1857 }
1858
1859 return 1;
1860 }
1861
1862 /* Build the note section for a corefile, and return it in a malloc
1863 buffer. */
1864
1865 static char *
1866 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1867 {
1868 struct linux_corefile_thread_data thread_args;
1869 struct elf_internal_linux_prpsinfo prpsinfo;
1870 char *note_data = NULL;
1871 struct thread_info *curr_thr, *signalled_thr;
1872
1873 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1874 return NULL;
1875
1876 if (linux_fill_prpsinfo (&prpsinfo))
1877 {
1878 if (gdbarch_ptr_bit (gdbarch) == 64)
1879 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1880 note_data, note_size,
1881 &prpsinfo);
1882 else
1883 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1884 note_data, note_size,
1885 &prpsinfo);
1886 }
1887
1888 /* Thread register information. */
1889 try
1890 {
1891 update_thread_list ();
1892 }
1893 catch (const gdb_exception_error &e)
1894 {
1895 exception_print (gdb_stderr, e);
1896 }
1897
1898 /* Like the kernel, prefer dumping the signalled thread first.
1899 "First thread" is what tools use to infer the signalled thread.
1900 In case there's more than one signalled thread, prefer the
1901 current thread, if it is signalled. */
1902 curr_thr = inferior_thread ();
1903 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1904 signalled_thr = curr_thr;
1905 else
1906 {
1907 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1908 if (signalled_thr == NULL)
1909 signalled_thr = curr_thr;
1910 }
1911
1912 thread_args.gdbarch = gdbarch;
1913 thread_args.obfd = obfd;
1914 thread_args.note_data = note_data;
1915 thread_args.note_size = note_size;
1916 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1917
1918 linux_corefile_thread (signalled_thr, &thread_args);
1919 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1920 {
1921 if (thr == signalled_thr)
1922 continue;
1923
1924 linux_corefile_thread (thr, &thread_args);
1925 }
1926
1927 note_data = thread_args.note_data;
1928 if (!note_data)
1929 return NULL;
1930
1931 /* Auxillary vector. */
1932 gdb::optional<gdb::byte_vector> auxv =
1933 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
1934 if (auxv && !auxv->empty ())
1935 {
1936 note_data = elfcore_write_note (obfd, note_data, note_size,
1937 "CORE", NT_AUXV, auxv->data (),
1938 auxv->size ());
1939
1940 if (!note_data)
1941 return NULL;
1942 }
1943
1944 /* File mappings. */
1945 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1946 note_data, note_size);
1947
1948 return note_data;
1949 }
1950
1951 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1952 gdbarch.h. This function is not static because it is exported to
1953 other -tdep files. */
1954
1955 enum gdb_signal
1956 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1957 {
1958 switch (signal)
1959 {
1960 case 0:
1961 return GDB_SIGNAL_0;
1962
1963 case LINUX_SIGHUP:
1964 return GDB_SIGNAL_HUP;
1965
1966 case LINUX_SIGINT:
1967 return GDB_SIGNAL_INT;
1968
1969 case LINUX_SIGQUIT:
1970 return GDB_SIGNAL_QUIT;
1971
1972 case LINUX_SIGILL:
1973 return GDB_SIGNAL_ILL;
1974
1975 case LINUX_SIGTRAP:
1976 return GDB_SIGNAL_TRAP;
1977
1978 case LINUX_SIGABRT:
1979 return GDB_SIGNAL_ABRT;
1980
1981 case LINUX_SIGBUS:
1982 return GDB_SIGNAL_BUS;
1983
1984 case LINUX_SIGFPE:
1985 return GDB_SIGNAL_FPE;
1986
1987 case LINUX_SIGKILL:
1988 return GDB_SIGNAL_KILL;
1989
1990 case LINUX_SIGUSR1:
1991 return GDB_SIGNAL_USR1;
1992
1993 case LINUX_SIGSEGV:
1994 return GDB_SIGNAL_SEGV;
1995
1996 case LINUX_SIGUSR2:
1997 return GDB_SIGNAL_USR2;
1998
1999 case LINUX_SIGPIPE:
2000 return GDB_SIGNAL_PIPE;
2001
2002 case LINUX_SIGALRM:
2003 return GDB_SIGNAL_ALRM;
2004
2005 case LINUX_SIGTERM:
2006 return GDB_SIGNAL_TERM;
2007
2008 case LINUX_SIGCHLD:
2009 return GDB_SIGNAL_CHLD;
2010
2011 case LINUX_SIGCONT:
2012 return GDB_SIGNAL_CONT;
2013
2014 case LINUX_SIGSTOP:
2015 return GDB_SIGNAL_STOP;
2016
2017 case LINUX_SIGTSTP:
2018 return GDB_SIGNAL_TSTP;
2019
2020 case LINUX_SIGTTIN:
2021 return GDB_SIGNAL_TTIN;
2022
2023 case LINUX_SIGTTOU:
2024 return GDB_SIGNAL_TTOU;
2025
2026 case LINUX_SIGURG:
2027 return GDB_SIGNAL_URG;
2028
2029 case LINUX_SIGXCPU:
2030 return GDB_SIGNAL_XCPU;
2031
2032 case LINUX_SIGXFSZ:
2033 return GDB_SIGNAL_XFSZ;
2034
2035 case LINUX_SIGVTALRM:
2036 return GDB_SIGNAL_VTALRM;
2037
2038 case LINUX_SIGPROF:
2039 return GDB_SIGNAL_PROF;
2040
2041 case LINUX_SIGWINCH:
2042 return GDB_SIGNAL_WINCH;
2043
2044 /* No way to differentiate between SIGIO and SIGPOLL.
2045 Therefore, we just handle the first one. */
2046 case LINUX_SIGIO:
2047 return GDB_SIGNAL_IO;
2048
2049 case LINUX_SIGPWR:
2050 return GDB_SIGNAL_PWR;
2051
2052 case LINUX_SIGSYS:
2053 return GDB_SIGNAL_SYS;
2054
2055 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2056 therefore we have to handle them here. */
2057 case LINUX_SIGRTMIN:
2058 return GDB_SIGNAL_REALTIME_32;
2059
2060 case LINUX_SIGRTMAX:
2061 return GDB_SIGNAL_REALTIME_64;
2062 }
2063
2064 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2065 {
2066 int offset = signal - LINUX_SIGRTMIN + 1;
2067
2068 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2069 }
2070
2071 return GDB_SIGNAL_UNKNOWN;
2072 }
2073
2074 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2075 gdbarch.h. This function is not static because it is exported to
2076 other -tdep files. */
2077
2078 int
2079 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2080 enum gdb_signal signal)
2081 {
2082 switch (signal)
2083 {
2084 case GDB_SIGNAL_0:
2085 return 0;
2086
2087 case GDB_SIGNAL_HUP:
2088 return LINUX_SIGHUP;
2089
2090 case GDB_SIGNAL_INT:
2091 return LINUX_SIGINT;
2092
2093 case GDB_SIGNAL_QUIT:
2094 return LINUX_SIGQUIT;
2095
2096 case GDB_SIGNAL_ILL:
2097 return LINUX_SIGILL;
2098
2099 case GDB_SIGNAL_TRAP:
2100 return LINUX_SIGTRAP;
2101
2102 case GDB_SIGNAL_ABRT:
2103 return LINUX_SIGABRT;
2104
2105 case GDB_SIGNAL_FPE:
2106 return LINUX_SIGFPE;
2107
2108 case GDB_SIGNAL_KILL:
2109 return LINUX_SIGKILL;
2110
2111 case GDB_SIGNAL_BUS:
2112 return LINUX_SIGBUS;
2113
2114 case GDB_SIGNAL_SEGV:
2115 return LINUX_SIGSEGV;
2116
2117 case GDB_SIGNAL_SYS:
2118 return LINUX_SIGSYS;
2119
2120 case GDB_SIGNAL_PIPE:
2121 return LINUX_SIGPIPE;
2122
2123 case GDB_SIGNAL_ALRM:
2124 return LINUX_SIGALRM;
2125
2126 case GDB_SIGNAL_TERM:
2127 return LINUX_SIGTERM;
2128
2129 case GDB_SIGNAL_URG:
2130 return LINUX_SIGURG;
2131
2132 case GDB_SIGNAL_STOP:
2133 return LINUX_SIGSTOP;
2134
2135 case GDB_SIGNAL_TSTP:
2136 return LINUX_SIGTSTP;
2137
2138 case GDB_SIGNAL_CONT:
2139 return LINUX_SIGCONT;
2140
2141 case GDB_SIGNAL_CHLD:
2142 return LINUX_SIGCHLD;
2143
2144 case GDB_SIGNAL_TTIN:
2145 return LINUX_SIGTTIN;
2146
2147 case GDB_SIGNAL_TTOU:
2148 return LINUX_SIGTTOU;
2149
2150 case GDB_SIGNAL_IO:
2151 return LINUX_SIGIO;
2152
2153 case GDB_SIGNAL_XCPU:
2154 return LINUX_SIGXCPU;
2155
2156 case GDB_SIGNAL_XFSZ:
2157 return LINUX_SIGXFSZ;
2158
2159 case GDB_SIGNAL_VTALRM:
2160 return LINUX_SIGVTALRM;
2161
2162 case GDB_SIGNAL_PROF:
2163 return LINUX_SIGPROF;
2164
2165 case GDB_SIGNAL_WINCH:
2166 return LINUX_SIGWINCH;
2167
2168 case GDB_SIGNAL_USR1:
2169 return LINUX_SIGUSR1;
2170
2171 case GDB_SIGNAL_USR2:
2172 return LINUX_SIGUSR2;
2173
2174 case GDB_SIGNAL_PWR:
2175 return LINUX_SIGPWR;
2176
2177 case GDB_SIGNAL_POLL:
2178 return LINUX_SIGPOLL;
2179
2180 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2181 therefore we have to handle it here. */
2182 case GDB_SIGNAL_REALTIME_32:
2183 return LINUX_SIGRTMIN;
2184
2185 /* Same comment applies to _64. */
2186 case GDB_SIGNAL_REALTIME_64:
2187 return LINUX_SIGRTMAX;
2188 }
2189
2190 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2191 if (signal >= GDB_SIGNAL_REALTIME_33
2192 && signal <= GDB_SIGNAL_REALTIME_63)
2193 {
2194 int offset = signal - GDB_SIGNAL_REALTIME_33;
2195
2196 return LINUX_SIGRTMIN + 1 + offset;
2197 }
2198
2199 return -1;
2200 }
2201
2202 /* Helper for linux_vsyscall_range that does the real work of finding
2203 the vsyscall's address range. */
2204
2205 static int
2206 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2207 {
2208 char filename[100];
2209 long pid;
2210
2211 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2212 return 0;
2213
2214 /* It doesn't make sense to access the host's /proc when debugging a
2215 core file. Instead, look for the PT_LOAD segment that matches
2216 the vDSO. */
2217 if (!target_has_execution)
2218 {
2219 long phdrs_size;
2220 int num_phdrs, i;
2221
2222 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2223 if (phdrs_size == -1)
2224 return 0;
2225
2226 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2227 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2228 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2229 if (num_phdrs == -1)
2230 return 0;
2231
2232 for (i = 0; i < num_phdrs; i++)
2233 if (phdrs.get ()[i].p_type == PT_LOAD
2234 && phdrs.get ()[i].p_vaddr == range->start)
2235 {
2236 range->length = phdrs.get ()[i].p_memsz;
2237 return 1;
2238 }
2239
2240 return 0;
2241 }
2242
2243 /* We need to know the real target PID to access /proc. */
2244 if (current_inferior ()->fake_pid_p)
2245 return 0;
2246
2247 pid = current_inferior ()->pid;
2248
2249 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2250 reading /proc/PID/maps (2). The later identifies thread stacks
2251 in the output, which requires scanning every thread in the thread
2252 group to check whether a VMA is actually a thread's stack. With
2253 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2254 a few thousand threads, (1) takes a few miliseconds, while (2)
2255 takes several seconds. Also note that "smaps", what we read for
2256 determining core dump mappings, is even slower than "maps". */
2257 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2258 gdb::unique_xmalloc_ptr<char> data
2259 = target_fileio_read_stralloc (NULL, filename);
2260 if (data != NULL)
2261 {
2262 char *line;
2263 char *saveptr = NULL;
2264
2265 for (line = strtok_r (data.get (), "\n", &saveptr);
2266 line != NULL;
2267 line = strtok_r (NULL, "\n", &saveptr))
2268 {
2269 ULONGEST addr, endaddr;
2270 const char *p = line;
2271
2272 addr = strtoulst (p, &p, 16);
2273 if (addr == range->start)
2274 {
2275 if (*p == '-')
2276 p++;
2277 endaddr = strtoulst (p, &p, 16);
2278 range->length = endaddr - addr;
2279 return 1;
2280 }
2281 }
2282 }
2283 else
2284 warning (_("unable to open /proc file '%s'"), filename);
2285
2286 return 0;
2287 }
2288
2289 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2290 caching, and defers the real work to linux_vsyscall_range_raw. */
2291
2292 static int
2293 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2294 {
2295 struct linux_info *info = get_linux_inferior_data ();
2296
2297 if (info->vsyscall_range_p == 0)
2298 {
2299 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2300 info->vsyscall_range_p = 1;
2301 else
2302 info->vsyscall_range_p = -1;
2303 }
2304
2305 if (info->vsyscall_range_p < 0)
2306 return 0;
2307
2308 *range = info->vsyscall_range;
2309 return 1;
2310 }
2311
2312 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2313 definitions would be dependent on compilation host. */
2314 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2315 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2316
2317 /* See gdbarch.sh 'infcall_mmap'. */
2318
2319 static CORE_ADDR
2320 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2321 {
2322 struct objfile *objf;
2323 /* Do there still exist any Linux systems without "mmap64"?
2324 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2325 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2326 struct value *addr_val;
2327 struct gdbarch *gdbarch = get_objfile_arch (objf);
2328 CORE_ADDR retval;
2329 enum
2330 {
2331 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2332 };
2333 struct value *arg[ARG_LAST];
2334
2335 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2336 0);
2337 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2338 arg[ARG_LENGTH] = value_from_ulongest
2339 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2340 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2341 | GDB_MMAP_PROT_EXEC))
2342 == 0);
2343 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2344 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2345 GDB_MMAP_MAP_PRIVATE
2346 | GDB_MMAP_MAP_ANONYMOUS);
2347 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2348 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2349 0);
2350 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2351 retval = value_as_address (addr_val);
2352 if (retval == (CORE_ADDR) -1)
2353 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2354 pulongest (size));
2355 return retval;
2356 }
2357
2358 /* See gdbarch.sh 'infcall_munmap'. */
2359
2360 static void
2361 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2362 {
2363 struct objfile *objf;
2364 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2365 struct value *retval_val;
2366 struct gdbarch *gdbarch = get_objfile_arch (objf);
2367 LONGEST retval;
2368 enum
2369 {
2370 ARG_ADDR, ARG_LENGTH, ARG_LAST
2371 };
2372 struct value *arg[ARG_LAST];
2373
2374 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2375 addr);
2376 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2377 arg[ARG_LENGTH] = value_from_ulongest
2378 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2379 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2380 retval = value_as_long (retval_val);
2381 if (retval != 0)
2382 warning (_("Failed inferior munmap call at %s for %s bytes, "
2383 "errno is changed."),
2384 hex_string (addr), pulongest (size));
2385 }
2386
2387 /* See linux-tdep.h. */
2388
2389 CORE_ADDR
2390 linux_displaced_step_location (struct gdbarch *gdbarch)
2391 {
2392 CORE_ADDR addr;
2393 int bp_len;
2394
2395 /* Determine entry point from target auxiliary vector. This avoids
2396 the need for symbols. Also, when debugging a stand-alone SPU
2397 executable, entry_point_address () will point to an SPU
2398 local-store address and is thus not usable as displaced stepping
2399 location. The auxiliary vector gets us the PowerPC-side entry
2400 point address instead. */
2401 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2402 throw_error (NOT_SUPPORTED_ERROR,
2403 _("Cannot find AT_ENTRY auxiliary vector entry."));
2404
2405 /* Make certain that the address points at real code, and not a
2406 function descriptor. */
2407 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2408 current_top_target ());
2409
2410 /* Inferior calls also use the entry point as a breakpoint location.
2411 We don't want displaced stepping to interfere with those
2412 breakpoints, so leave space. */
2413 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2414 addr += bp_len * 2;
2415
2416 return addr;
2417 }
2418
2419 /* See linux-tdep.h. */
2420
2421 CORE_ADDR
2422 linux_get_hwcap (struct target_ops *target)
2423 {
2424 CORE_ADDR field;
2425 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2426 return 0;
2427 return field;
2428 }
2429
2430 /* See linux-tdep.h. */
2431
2432 CORE_ADDR
2433 linux_get_hwcap2 (struct target_ops *target)
2434 {
2435 CORE_ADDR field;
2436 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2437 return 0;
2438 return field;
2439 }
2440
2441 /* Display whether the gcore command is using the
2442 /proc/PID/coredump_filter file. */
2443
2444 static void
2445 show_use_coredump_filter (struct ui_file *file, int from_tty,
2446 struct cmd_list_element *c, const char *value)
2447 {
2448 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2449 " corefiles is %s.\n"), value);
2450 }
2451
2452 /* Display whether the gcore command is dumping mappings marked with
2453 the VM_DONTDUMP flag. */
2454
2455 static void
2456 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2457 struct cmd_list_element *c, const char *value)
2458 {
2459 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2460 " flag is %s.\n"), value);
2461 }
2462
2463 /* To be called from the various GDB_OSABI_LINUX handlers for the
2464 various GNU/Linux architectures and machine types. */
2465
2466 void
2467 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2468 {
2469 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2470 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2471 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2472 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2473 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2474 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2475 set_gdbarch_has_shared_address_space (gdbarch,
2476 linux_has_shared_address_space);
2477 set_gdbarch_gdb_signal_from_target (gdbarch,
2478 linux_gdb_signal_from_target);
2479 set_gdbarch_gdb_signal_to_target (gdbarch,
2480 linux_gdb_signal_to_target);
2481 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2482 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2483 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2484 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2485 }
2486
2487 void
2488 _initialize_linux_tdep (void)
2489 {
2490 linux_gdbarch_data_handle =
2491 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2492
2493 /* Observers used to invalidate the cache when needed. */
2494 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2495 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2496
2497 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2498 &use_coredump_filter, _("\
2499 Set whether gcore should consider /proc/PID/coredump_filter."),
2500 _("\
2501 Show whether gcore should consider /proc/PID/coredump_filter."),
2502 _("\
2503 Use this command to set whether gcore should consider the contents\n\
2504 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2505 about this file, refer to the manpage of core(5)."),
2506 NULL, show_use_coredump_filter,
2507 &setlist, &showlist);
2508
2509 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2510 &dump_excluded_mappings, _("\
2511 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2512 _("\
2513 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2514 _("\
2515 Use this command to set whether gcore should dump mappings marked with the\n\
2516 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2517 more information about this file, refer to the manpage of proc(5) and core(5)."),
2518 NULL, show_dump_excluded_mappings,
2519 &setlist, &showlist);
2520 }
This page took 0.08126 seconds and 4 git commands to generate.