Revert accidental empty commits
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "gdbsupport/enum-flags.h"
41 #include "gdbsupport/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static bool use_coredump_filter = true;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static bool dump_excluded_mappings = false;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189 struct linux_info
190 {
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range {};
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p = 0;
202 };
203
204 /* Per-inferior data key. */
205 static const struct inferior_key<linux_info> linux_inferior_data;
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 linux_inferior_data.clear (inf);
214 }
215
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219 static struct linux_info *
220 get_linux_inferior_data (void)
221 {
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
225 info = linux_inferior_data.get (inf);
226 if (info == NULL)
227 info = linux_inferior_data.emplace (inf);
228
229 return info;
230 }
231
232 /* See linux-tdep.h. */
233
234 struct type *
235 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
237 {
238 struct linux_gdbarch_data *linux_gdbarch_data;
239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
261 sigval_type->set_name (xstrdup ("sigval_t"));
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type) = int_type;
269 pid_type->set_target_is_stub (true);
270
271 /* __uid_t */
272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type) = uint_type;
275 uid_type->set_target_is_stub (true);
276
277 /* __clock_t */
278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
281 TYPE_TARGET_TYPE (clock_type) = long_type;
282 clock_type->set_target_is_stub (true);
283
284 /* _sifields */
285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
332 append_composite_type_field (type, "si_addr", void_ptr_type);
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 siginfo_type->set_name (xstrdup ("siginfo"));
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
365 return siginfo_type;
366 }
367
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371 static struct type *
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
373 {
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375 }
376
377 /* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380 int
381 linux_is_uclinux (void)
382 {
383 CORE_ADDR dummy;
384
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
387 }
388
389 static int
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
391 {
392 return linux_is_uclinux ();
393 }
394
395 /* This is how we want PTIDs from core files to be printed. */
396
397 static std::string
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399 {
400 if (ptid.lwp () != 0)
401 return string_printf ("LWP %ld", ptid.lwp ());
402
403 return normal_pid_to_str (ptid);
404 }
405
406 /* Service function for corefiles and info proc. */
407
408 static void
409 read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416 {
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
424 p = skip_spaces (p);
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
432 p = skip_spaces (p);
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
440 p = skip_spaces (p);
441 *filename = p;
442 }
443
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453 static void
454 decode_vmflags (char *p, struct smaps_vmflags *v)
455 {
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476 }
477
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481 struct mapping_regexes
482 {
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514 };
515
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526 static int
527 mapping_is_anonymous_p (const char *filename)
528 {
529 static gdb::optional<mapping_regexes> regexes;
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
538 regexes.emplace ();
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
563 return 1;
564
565 return 0;
566 }
567
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
614
615 static int
616 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
618 const char *filename, ULONGEST addr, ULONGEST offset)
619 {
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
628 int dump_p;
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings && v->exclude_coredump)
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
671 }
672 else if (mapping_anon_p)
673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
674 else
675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
686 }
687 else if (mapping_anon_p)
688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
689 else
690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
691 }
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Useful define specifying the size of the ELF magical
705 header. */
706 #ifndef SELFMAG
707 #define SELFMAG 4
708 #endif
709
710 /* Let's check if we have an ELF header. */
711 gdb_byte h[SELFMAG];
712 if (target_read_memory (addr, h, SELFMAG) == 0)
713 {
714 /* The EI_MAG* and ELFMAG* constants come from
715 <elf/common.h>. */
716 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
717 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
718 {
719 /* This mapping contains an ELF header, so we
720 should dump it. */
721 dump_p = 1;
722 }
723 }
724 }
725
726 return dump_p;
727 }
728
729 /* As above, but return true only when we should dump the NT_FILE
730 entry. */
731
732 static int
733 dump_note_entry_p (filter_flags filterflags, const struct smaps_vmflags *v,
734 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
735 const char *filename, ULONGEST addr, ULONGEST offset)
736 {
737 /* vDSO and vsyscall mappings will end up in the core file. Don't
738 put them in the NT_FILE note. */
739 if (strcmp ("[vdso]", filename) == 0
740 || strcmp ("[vsyscall]", filename) == 0)
741 return 0;
742
743 /* Otherwise, any other file-based mapping should be placed in the
744 note. */
745 return 1;
746 }
747
748 /* Implement the "info proc" command. */
749
750 static void
751 linux_info_proc (struct gdbarch *gdbarch, const char *args,
752 enum info_proc_what what)
753 {
754 /* A long is used for pid instead of an int to avoid a loss of precision
755 compiler warning from the output of strtoul. */
756 long pid;
757 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
758 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
759 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
760 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
761 int status_f = (what == IP_STATUS || what == IP_ALL);
762 int stat_f = (what == IP_STAT || what == IP_ALL);
763 char filename[100];
764 int target_errno;
765
766 if (args && isdigit (args[0]))
767 {
768 char *tem;
769
770 pid = strtoul (args, &tem, 10);
771 args = tem;
772 }
773 else
774 {
775 if (!target_has_execution ())
776 error (_("No current process: you must name one."));
777 if (current_inferior ()->fake_pid_p)
778 error (_("Can't determine the current process's PID: you must name one."));
779
780 pid = current_inferior ()->pid;
781 }
782
783 args = skip_spaces (args);
784 if (args && args[0])
785 error (_("Too many parameters: %s"), args);
786
787 printf_filtered (_("process %ld\n"), pid);
788 if (cmdline_f)
789 {
790 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
791 gdb_byte *buffer;
792 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
793
794 if (len > 0)
795 {
796 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
797 ssize_t pos;
798
799 for (pos = 0; pos < len - 1; pos++)
800 {
801 if (buffer[pos] == '\0')
802 buffer[pos] = ' ';
803 }
804 buffer[len - 1] = '\0';
805 printf_filtered ("cmdline = '%s'\n", buffer);
806 }
807 else
808 warning (_("unable to open /proc file '%s'"), filename);
809 }
810 if (cwd_f)
811 {
812 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
813 gdb::optional<std::string> contents
814 = target_fileio_readlink (NULL, filename, &target_errno);
815 if (contents.has_value ())
816 printf_filtered ("cwd = '%s'\n", contents->c_str ());
817 else
818 warning (_("unable to read link '%s'"), filename);
819 }
820 if (exe_f)
821 {
822 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
823 gdb::optional<std::string> contents
824 = target_fileio_readlink (NULL, filename, &target_errno);
825 if (contents.has_value ())
826 printf_filtered ("exe = '%s'\n", contents->c_str ());
827 else
828 warning (_("unable to read link '%s'"), filename);
829 }
830 if (mappings_f)
831 {
832 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
833 gdb::unique_xmalloc_ptr<char> map
834 = target_fileio_read_stralloc (NULL, filename);
835 if (map != NULL)
836 {
837 char *line;
838
839 printf_filtered (_("Mapped address spaces:\n\n"));
840 if (gdbarch_addr_bit (gdbarch) == 32)
841 {
842 printf_filtered ("\t%10s %10s %10s %10s %s\n",
843 "Start Addr",
844 " End Addr",
845 " Size", " Offset", "objfile");
846 }
847 else
848 {
849 printf_filtered (" %18s %18s %10s %10s %s\n",
850 "Start Addr",
851 " End Addr",
852 " Size", " Offset", "objfile");
853 }
854
855 char *saveptr;
856 for (line = strtok_r (map.get (), "\n", &saveptr);
857 line;
858 line = strtok_r (NULL, "\n", &saveptr))
859 {
860 ULONGEST addr, endaddr, offset, inode;
861 const char *permissions, *device, *mapping_filename;
862 size_t permissions_len, device_len;
863
864 read_mapping (line, &addr, &endaddr,
865 &permissions, &permissions_len,
866 &offset, &device, &device_len,
867 &inode, &mapping_filename);
868
869 if (gdbarch_addr_bit (gdbarch) == 32)
870 {
871 printf_filtered ("\t%10s %10s %10s %10s %s\n",
872 paddress (gdbarch, addr),
873 paddress (gdbarch, endaddr),
874 hex_string (endaddr - addr),
875 hex_string (offset),
876 *mapping_filename ? mapping_filename : "");
877 }
878 else
879 {
880 printf_filtered (" %18s %18s %10s %10s %s\n",
881 paddress (gdbarch, addr),
882 paddress (gdbarch, endaddr),
883 hex_string (endaddr - addr),
884 hex_string (offset),
885 *mapping_filename ? mapping_filename : "");
886 }
887 }
888 }
889 else
890 warning (_("unable to open /proc file '%s'"), filename);
891 }
892 if (status_f)
893 {
894 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
895 gdb::unique_xmalloc_ptr<char> status
896 = target_fileio_read_stralloc (NULL, filename);
897 if (status)
898 puts_filtered (status.get ());
899 else
900 warning (_("unable to open /proc file '%s'"), filename);
901 }
902 if (stat_f)
903 {
904 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
905 gdb::unique_xmalloc_ptr<char> statstr
906 = target_fileio_read_stralloc (NULL, filename);
907 if (statstr)
908 {
909 const char *p = statstr.get ();
910
911 printf_filtered (_("Process: %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913
914 p = skip_spaces (p);
915 if (*p == '(')
916 {
917 /* ps command also relies on no trailing fields
918 ever contain ')'. */
919 const char *ep = strrchr (p, ')');
920 if (ep != NULL)
921 {
922 printf_filtered ("Exec file: %.*s\n",
923 (int) (ep - p - 1), p + 1);
924 p = ep + 1;
925 }
926 }
927
928 p = skip_spaces (p);
929 if (*p)
930 printf_filtered (_("State: %c\n"), *p++);
931
932 if (*p)
933 printf_filtered (_("Parent process: %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("Process group: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Session id: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("TTY: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("TTY owner process group: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947
948 if (*p)
949 printf_filtered (_("Flags: %s\n"),
950 hex_string (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Minor faults (no memory page): %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Minor faults, children: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("Major faults (memory page faults): %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Major faults, children: %s\n"),
962 pulongest (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("utime: %s\n"),
965 pulongest (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("stime: %s\n"),
968 pulongest (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("utime, children: %s\n"),
971 pulongest (strtoulst (p, &p, 10)));
972 if (*p)
973 printf_filtered (_("stime, children: %s\n"),
974 pulongest (strtoulst (p, &p, 10)));
975 if (*p)
976 printf_filtered (_("jiffies remaining in current "
977 "time slice: %s\n"),
978 pulongest (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("'nice' value: %s\n"),
981 pulongest (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("jiffies until next timeout: %s\n"),
984 pulongest (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
987 pulongest (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("start time (jiffies since "
990 "system boot): %s\n"),
991 pulongest (strtoulst (p, &p, 10)));
992 if (*p)
993 printf_filtered (_("Virtual memory size: %s\n"),
994 pulongest (strtoulst (p, &p, 10)));
995 if (*p)
996 printf_filtered (_("Resident set size: %s\n"),
997 pulongest (strtoulst (p, &p, 10)));
998 if (*p)
999 printf_filtered (_("rlim: %s\n"),
1000 pulongest (strtoulst (p, &p, 10)));
1001 if (*p)
1002 printf_filtered (_("Start of text: %s\n"),
1003 hex_string (strtoulst (p, &p, 10)));
1004 if (*p)
1005 printf_filtered (_("End of text: %s\n"),
1006 hex_string (strtoulst (p, &p, 10)));
1007 if (*p)
1008 printf_filtered (_("Start of stack: %s\n"),
1009 hex_string (strtoulst (p, &p, 10)));
1010 #if 0 /* Don't know how architecture-dependent the rest is...
1011 Anyway the signal bitmap info is available from "status". */
1012 if (*p)
1013 printf_filtered (_("Kernel stack pointer: %s\n"),
1014 hex_string (strtoulst (p, &p, 10)));
1015 if (*p)
1016 printf_filtered (_("Kernel instr pointer: %s\n"),
1017 hex_string (strtoulst (p, &p, 10)));
1018 if (*p)
1019 printf_filtered (_("Pending signals bitmap: %s\n"),
1020 hex_string (strtoulst (p, &p, 10)));
1021 if (*p)
1022 printf_filtered (_("Blocked signals bitmap: %s\n"),
1023 hex_string (strtoulst (p, &p, 10)));
1024 if (*p)
1025 printf_filtered (_("Ignored signals bitmap: %s\n"),
1026 hex_string (strtoulst (p, &p, 10)));
1027 if (*p)
1028 printf_filtered (_("Catched signals bitmap: %s\n"),
1029 hex_string (strtoulst (p, &p, 10)));
1030 if (*p)
1031 printf_filtered (_("wchan (system call): %s\n"),
1032 hex_string (strtoulst (p, &p, 10)));
1033 #endif
1034 }
1035 else
1036 warning (_("unable to open /proc file '%s'"), filename);
1037 }
1038 }
1039
1040 /* Implementation of `gdbarch_read_core_file_mappings', as defined in
1041 gdbarch.h.
1042
1043 This function reads the NT_FILE note (which BFD turns into the
1044 section ".note.linuxcore.file"). The format of this note / section
1045 is described as follows in the Linux kernel sources in
1046 fs/binfmt_elf.c:
1047
1048 long count -- how many files are mapped
1049 long page_size -- units for file_ofs
1050 array of [COUNT] elements of
1051 long start
1052 long end
1053 long file_ofs
1054 followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1055
1056 CBFD is the BFD of the core file.
1057
1058 PRE_LOOP_CB is the callback function to invoke prior to starting
1059 the loop which processes individual entries. This callback will
1060 only be executed after the note has been examined in enough
1061 detail to verify that it's not malformed in some way.
1062
1063 LOOP_CB is the callback function that will be executed once
1064 for each mapping. */
1065
1066 static void
1067 linux_read_core_file_mappings (struct gdbarch *gdbarch,
1068 struct bfd *cbfd,
1069 gdb::function_view<void (ULONGEST count)>
1070 pre_loop_cb,
1071 gdb::function_view<void (int num,
1072 ULONGEST start,
1073 ULONGEST end,
1074 ULONGEST file_ofs,
1075 const char *filename)>
1076 loop_cb)
1077 {
1078 /* Ensure that ULONGEST is big enough for reading 64-bit core files. */
1079 gdb_static_assert (sizeof (ULONGEST) >= 8);
1080
1081 /* It's not required that the NT_FILE note exists, so return silently
1082 if it's not found. Beyond this point though, we'll complain
1083 if problems are found. */
1084 asection *section = bfd_get_section_by_name (cbfd, ".note.linuxcore.file");
1085 if (section == nullptr)
1086 return;
1087
1088 unsigned int addr_size_bits = gdbarch_addr_bit (gdbarch);
1089 unsigned int addr_size = addr_size_bits / 8;
1090 size_t note_size = bfd_section_size (section);
1091
1092 if (note_size < 2 * addr_size)
1093 {
1094 warning (_("malformed core note - too short for header"));
1095 return;
1096 }
1097
1098 gdb::def_vector<gdb_byte> contents (note_size);
1099 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1100 0, note_size))
1101 {
1102 warning (_("could not get core note contents"));
1103 return;
1104 }
1105
1106 gdb_byte *descdata = contents.data ();
1107 char *descend = (char *) descdata + note_size;
1108
1109 if (descdata[note_size - 1] != '\0')
1110 {
1111 warning (_("malformed note - does not end with \\0"));
1112 return;
1113 }
1114
1115 ULONGEST count = bfd_get (addr_size_bits, core_bfd, descdata);
1116 descdata += addr_size;
1117
1118 ULONGEST page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1119 descdata += addr_size;
1120
1121 if (note_size < 2 * addr_size + count * 3 * addr_size)
1122 {
1123 warning (_("malformed note - too short for supplied file count"));
1124 return;
1125 }
1126
1127 char *filenames = (char *) descdata + count * 3 * addr_size;
1128
1129 /* Make sure that the correct number of filenames exist. Complain
1130 if there aren't enough or are too many. */
1131 char *f = filenames;
1132 for (int i = 0; i < count; i++)
1133 {
1134 if (f >= descend)
1135 {
1136 warning (_("malformed note - filename area is too small"));
1137 return;
1138 }
1139 f += strnlen (f, descend - f) + 1;
1140 }
1141 /* Complain, but don't return early if the filename area is too big. */
1142 if (f != descend)
1143 warning (_("malformed note - filename area is too big"));
1144
1145 pre_loop_cb (count);
1146
1147 for (int i = 0; i < count; i++)
1148 {
1149 ULONGEST start = bfd_get (addr_size_bits, core_bfd, descdata);
1150 descdata += addr_size;
1151 ULONGEST end = bfd_get (addr_size_bits, core_bfd, descdata);
1152 descdata += addr_size;
1153 ULONGEST file_ofs
1154 = bfd_get (addr_size_bits, core_bfd, descdata) * page_size;
1155 descdata += addr_size;
1156 char * filename = filenames;
1157 filenames += strlen ((char *) filenames) + 1;
1158
1159 loop_cb (i, start, end, file_ofs, filename);
1160 }
1161 }
1162
1163 /* Implement "info proc mappings" for a corefile. */
1164
1165 static void
1166 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1167 {
1168 linux_read_core_file_mappings (gdbarch, core_bfd,
1169 [=] (ULONGEST count)
1170 {
1171 printf_filtered (_("Mapped address spaces:\n\n"));
1172 if (gdbarch_addr_bit (gdbarch) == 32)
1173 {
1174 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1175 "Start Addr",
1176 " End Addr",
1177 " Size", " Offset", "objfile");
1178 }
1179 else
1180 {
1181 printf_filtered (" %18s %18s %10s %10s %s\n",
1182 "Start Addr",
1183 " End Addr",
1184 " Size", " Offset", "objfile");
1185 }
1186 },
1187 [=] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
1188 const char *filename)
1189 {
1190 if (gdbarch_addr_bit (gdbarch) == 32)
1191 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1192 paddress (gdbarch, start),
1193 paddress (gdbarch, end),
1194 hex_string (end - start),
1195 hex_string (file_ofs),
1196 filename);
1197 else
1198 printf_filtered (" %18s %18s %10s %10s %s\n",
1199 paddress (gdbarch, start),
1200 paddress (gdbarch, end),
1201 hex_string (end - start),
1202 hex_string (file_ofs),
1203 filename);
1204 });
1205 }
1206
1207 /* Implement "info proc" for a corefile. */
1208
1209 static void
1210 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1211 enum info_proc_what what)
1212 {
1213 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1214 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1215
1216 if (exe_f)
1217 {
1218 const char *exe;
1219
1220 exe = bfd_core_file_failing_command (core_bfd);
1221 if (exe != NULL)
1222 printf_filtered ("exe = '%s'\n", exe);
1223 else
1224 warning (_("unable to find command name in core file"));
1225 }
1226
1227 if (mappings_f)
1228 linux_core_info_proc_mappings (gdbarch, args);
1229
1230 if (!exe_f && !mappings_f)
1231 error (_("unable to handle request"));
1232 }
1233
1234 /* Read siginfo data from the core, if possible. Returns -1 on
1235 failure. Otherwise, returns the number of bytes read. READBUF,
1236 OFFSET, and LEN are all as specified by the to_xfer_partial
1237 interface. */
1238
1239 static LONGEST
1240 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1241 ULONGEST offset, ULONGEST len)
1242 {
1243 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1244 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1245 if (section == NULL)
1246 return -1;
1247
1248 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1249 return -1;
1250
1251 return len;
1252 }
1253
1254 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1255 ULONGEST offset, ULONGEST inode,
1256 int read, int write,
1257 int exec, int modified,
1258 const char *filename,
1259 void *data);
1260
1261 typedef int linux_dump_mapping_p_ftype (filter_flags filterflags,
1262 const struct smaps_vmflags *v,
1263 int maybe_private_p,
1264 int mapping_anon_p,
1265 int mapping_file_p,
1266 const char *filename,
1267 ULONGEST addr,
1268 ULONGEST offset);
1269
1270 /* List memory regions in the inferior for a corefile. */
1271
1272 static int
1273 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1274 linux_dump_mapping_p_ftype *should_dump_mapping_p,
1275 linux_find_memory_region_ftype *func,
1276 void *obfd)
1277 {
1278 char mapsfilename[100];
1279 char coredumpfilter_name[100];
1280 pid_t pid;
1281 /* Default dump behavior of coredump_filter (0x33), according to
1282 Documentation/filesystems/proc.txt from the Linux kernel
1283 tree. */
1284 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1285 | COREFILTER_ANON_SHARED
1286 | COREFILTER_ELF_HEADERS
1287 | COREFILTER_HUGETLB_PRIVATE);
1288
1289 /* We need to know the real target PID to access /proc. */
1290 if (current_inferior ()->fake_pid_p)
1291 return 1;
1292
1293 pid = current_inferior ()->pid;
1294
1295 if (use_coredump_filter)
1296 {
1297 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1298 "/proc/%d/coredump_filter", pid);
1299 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1300 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1301 if (coredumpfilterdata != NULL)
1302 {
1303 unsigned int flags;
1304
1305 sscanf (coredumpfilterdata.get (), "%x", &flags);
1306 filterflags = (enum filter_flag) flags;
1307 }
1308 }
1309
1310 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1311 gdb::unique_xmalloc_ptr<char> data
1312 = target_fileio_read_stralloc (NULL, mapsfilename);
1313 if (data == NULL)
1314 {
1315 /* Older Linux kernels did not support /proc/PID/smaps. */
1316 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1317 data = target_fileio_read_stralloc (NULL, mapsfilename);
1318 }
1319
1320 if (data != NULL)
1321 {
1322 char *line, *t;
1323
1324 line = strtok_r (data.get (), "\n", &t);
1325 while (line != NULL)
1326 {
1327 ULONGEST addr, endaddr, offset, inode;
1328 const char *permissions, *device, *filename;
1329 struct smaps_vmflags v;
1330 size_t permissions_len, device_len;
1331 int read, write, exec, priv;
1332 int has_anonymous = 0;
1333 int should_dump_p = 0;
1334 int mapping_anon_p;
1335 int mapping_file_p;
1336
1337 memset (&v, 0, sizeof (v));
1338 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1339 &offset, &device, &device_len, &inode, &filename);
1340 mapping_anon_p = mapping_is_anonymous_p (filename);
1341 /* If the mapping is not anonymous, then we can consider it
1342 to be file-backed. These two states (anonymous or
1343 file-backed) seem to be exclusive, but they can actually
1344 coexist. For example, if a file-backed mapping has
1345 "Anonymous:" pages (see more below), then the Linux
1346 kernel will dump this mapping when the user specified
1347 that she only wants anonymous mappings in the corefile
1348 (*even* when she explicitly disabled the dumping of
1349 file-backed mappings). */
1350 mapping_file_p = !mapping_anon_p;
1351
1352 /* Decode permissions. */
1353 read = (memchr (permissions, 'r', permissions_len) != 0);
1354 write = (memchr (permissions, 'w', permissions_len) != 0);
1355 exec = (memchr (permissions, 'x', permissions_len) != 0);
1356 /* 'private' here actually means VM_MAYSHARE, and not
1357 VM_SHARED. In order to know if a mapping is really
1358 private or not, we must check the flag "sh" in the
1359 VmFlags field. This is done by decode_vmflags. However,
1360 if we are using a Linux kernel released before the commit
1361 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1362 not have the VmFlags there. In this case, there is
1363 really no way to know if we are dealing with VM_SHARED,
1364 so we just assume that VM_MAYSHARE is enough. */
1365 priv = memchr (permissions, 'p', permissions_len) != 0;
1366
1367 /* Try to detect if region should be dumped by parsing smaps
1368 counters. */
1369 for (line = strtok_r (NULL, "\n", &t);
1370 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1371 line = strtok_r (NULL, "\n", &t))
1372 {
1373 char keyword[64 + 1];
1374
1375 if (sscanf (line, "%64s", keyword) != 1)
1376 {
1377 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1378 break;
1379 }
1380
1381 if (strcmp (keyword, "Anonymous:") == 0)
1382 {
1383 /* Older Linux kernels did not support the
1384 "Anonymous:" counter. Check it here. */
1385 has_anonymous = 1;
1386 }
1387 else if (strcmp (keyword, "VmFlags:") == 0)
1388 decode_vmflags (line, &v);
1389
1390 if (strcmp (keyword, "AnonHugePages:") == 0
1391 || strcmp (keyword, "Anonymous:") == 0)
1392 {
1393 unsigned long number;
1394
1395 if (sscanf (line, "%*s%lu", &number) != 1)
1396 {
1397 warning (_("Error parsing {s,}maps file '%s' number"),
1398 mapsfilename);
1399 break;
1400 }
1401 if (number > 0)
1402 {
1403 /* Even if we are dealing with a file-backed
1404 mapping, if it contains anonymous pages we
1405 consider it to be *also* an anonymous
1406 mapping, because this is what the Linux
1407 kernel does:
1408
1409 // Dump segments that have been written to.
1410 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1411 goto whole;
1412
1413 Note that if the mapping is already marked as
1414 file-backed (i.e., mapping_file_p is
1415 non-zero), then this is a special case, and
1416 this mapping will be dumped either when the
1417 user wants to dump file-backed *or* anonymous
1418 mappings. */
1419 mapping_anon_p = 1;
1420 }
1421 }
1422 }
1423
1424 if (has_anonymous)
1425 should_dump_p = should_dump_mapping_p (filterflags, &v, priv,
1426 mapping_anon_p,
1427 mapping_file_p,
1428 filename, addr, offset);
1429 else
1430 {
1431 /* Older Linux kernels did not support the "Anonymous:" counter.
1432 If it is missing, we can't be sure - dump all the pages. */
1433 should_dump_p = 1;
1434 }
1435
1436 /* Invoke the callback function to create the corefile segment. */
1437 if (should_dump_p)
1438 func (addr, endaddr - addr, offset, inode,
1439 read, write, exec, 1, /* MODIFIED is true because we
1440 want to dump the mapping. */
1441 filename, obfd);
1442 }
1443
1444 return 0;
1445 }
1446
1447 return 1;
1448 }
1449
1450 /* A structure for passing information through
1451 linux_find_memory_regions_full. */
1452
1453 struct linux_find_memory_regions_data
1454 {
1455 /* The original callback. */
1456
1457 find_memory_region_ftype func;
1458
1459 /* The original datum. */
1460
1461 void *obfd;
1462 };
1463
1464 /* A callback for linux_find_memory_regions that converts between the
1465 "full"-style callback and find_memory_region_ftype. */
1466
1467 static int
1468 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1469 ULONGEST offset, ULONGEST inode,
1470 int read, int write, int exec, int modified,
1471 const char *filename, void *arg)
1472 {
1473 struct linux_find_memory_regions_data *data
1474 = (struct linux_find_memory_regions_data *) arg;
1475
1476 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1477 }
1478
1479 /* A variant of linux_find_memory_regions_full that is suitable as the
1480 gdbarch find_memory_regions method. */
1481
1482 static int
1483 linux_find_memory_regions (struct gdbarch *gdbarch,
1484 find_memory_region_ftype func, void *obfd)
1485 {
1486 struct linux_find_memory_regions_data data;
1487
1488 data.func = func;
1489 data.obfd = obfd;
1490
1491 return linux_find_memory_regions_full (gdbarch,
1492 dump_mapping_p,
1493 linux_find_memory_regions_thunk,
1494 &data);
1495 }
1496
1497 /* This is used to pass information from
1498 linux_make_mappings_corefile_notes through
1499 linux_find_memory_regions_full. */
1500
1501 struct linux_make_mappings_data
1502 {
1503 /* Number of files mapped. */
1504 ULONGEST file_count;
1505
1506 /* The obstack for the main part of the data. */
1507 struct obstack *data_obstack;
1508
1509 /* The filename obstack. */
1510 struct obstack *filename_obstack;
1511
1512 /* The architecture's "long" type. */
1513 struct type *long_type;
1514 };
1515
1516 static linux_find_memory_region_ftype linux_make_mappings_callback;
1517
1518 /* A callback for linux_find_memory_regions_full that updates the
1519 mappings data for linux_make_mappings_corefile_notes. */
1520
1521 static int
1522 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1523 ULONGEST offset, ULONGEST inode,
1524 int read, int write, int exec, int modified,
1525 const char *filename, void *data)
1526 {
1527 struct linux_make_mappings_data *map_data
1528 = (struct linux_make_mappings_data *) data;
1529 gdb_byte buf[sizeof (ULONGEST)];
1530
1531 if (*filename == '\0' || inode == 0)
1532 return 0;
1533
1534 ++map_data->file_count;
1535
1536 pack_long (buf, map_data->long_type, vaddr);
1537 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1538 pack_long (buf, map_data->long_type, vaddr + size);
1539 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1540 pack_long (buf, map_data->long_type, offset);
1541 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1542
1543 obstack_grow_str0 (map_data->filename_obstack, filename);
1544
1545 return 0;
1546 }
1547
1548 /* Write the file mapping data to the core file, if possible. OBFD is
1549 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1550 is a pointer to the note size. Updates NOTE_DATA and NOTE_SIZE. */
1551
1552 static void
1553 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1554 gdb::unique_xmalloc_ptr<char> &note_data,
1555 int *note_size)
1556 {
1557 struct linux_make_mappings_data mapping_data;
1558 struct type *long_type
1559 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1560 gdb_byte buf[sizeof (ULONGEST)];
1561
1562 auto_obstack data_obstack, filename_obstack;
1563
1564 mapping_data.file_count = 0;
1565 mapping_data.data_obstack = &data_obstack;
1566 mapping_data.filename_obstack = &filename_obstack;
1567 mapping_data.long_type = long_type;
1568
1569 /* Reserve space for the count. */
1570 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1571 /* We always write the page size as 1 since we have no good way to
1572 determine the correct value. */
1573 pack_long (buf, long_type, 1);
1574 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1575
1576 linux_find_memory_regions_full (gdbarch,
1577 dump_note_entry_p,
1578 linux_make_mappings_callback,
1579 &mapping_data);
1580
1581 if (mapping_data.file_count != 0)
1582 {
1583 /* Write the count to the obstack. */
1584 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1585 long_type, mapping_data.file_count);
1586
1587 /* Copy the filenames to the data obstack. */
1588 int size = obstack_object_size (&filename_obstack);
1589 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1590 size);
1591
1592 note_data.reset (elfcore_write_note
1593 (obfd, note_data.release (),
1594 note_size, "CORE", NT_FILE,
1595 obstack_base (&data_obstack),
1596 obstack_object_size (&data_obstack)));
1597 }
1598 }
1599
1600 /* Structure for passing information from
1601 linux_collect_thread_registers via an iterator to
1602 linux_collect_regset_section_cb. */
1603
1604 struct linux_collect_regset_section_cb_data
1605 {
1606 linux_collect_regset_section_cb_data (struct gdbarch *gdbarch,
1607 const struct regcache *regcache,
1608 bfd *obfd,
1609 gdb::unique_xmalloc_ptr<char> &note_data,
1610 int *note_size,
1611 unsigned long lwp,
1612 gdb_signal stop_signal)
1613 : gdbarch (gdbarch), regcache (regcache), obfd (obfd),
1614 note_data (note_data), note_size (note_size), lwp (lwp),
1615 stop_signal (stop_signal)
1616 {}
1617
1618 struct gdbarch *gdbarch;
1619 const struct regcache *regcache;
1620 bfd *obfd;
1621 gdb::unique_xmalloc_ptr<char> &note_data;
1622 int *note_size;
1623 unsigned long lwp;
1624 enum gdb_signal stop_signal;
1625 bool abort_iteration = false;
1626 };
1627
1628 /* Callback for iterate_over_regset_sections that records a single
1629 regset in the corefile note section. */
1630
1631 static void
1632 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1633 int collect_size, const struct regset *regset,
1634 const char *human_name, void *cb_data)
1635 {
1636 struct linux_collect_regset_section_cb_data *data
1637 = (struct linux_collect_regset_section_cb_data *) cb_data;
1638 bool variable_size_section = (regset != NULL
1639 && regset->flags & REGSET_VARIABLE_SIZE);
1640
1641 if (!variable_size_section)
1642 gdb_assert (supply_size == collect_size);
1643
1644 if (data->abort_iteration)
1645 return;
1646
1647 gdb_assert (regset && regset->collect_regset);
1648
1649 /* This is intentionally zero-initialized by using std::vector, so
1650 that any padding bytes in the core file will show as 0. */
1651 std::vector<gdb_byte> buf (collect_size);
1652
1653 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1654 collect_size);
1655
1656 /* PRSTATUS still needs to be treated specially. */
1657 if (strcmp (sect_name, ".reg") == 0)
1658 data->note_data.reset (elfcore_write_prstatus
1659 (data->obfd, data->note_data.release (),
1660 data->note_size, data->lwp,
1661 gdb_signal_to_host (data->stop_signal),
1662 buf.data ()));
1663 else
1664 data->note_data.reset (elfcore_write_register_note
1665 (data->obfd, data->note_data.release (),
1666 data->note_size, sect_name, buf.data (),
1667 collect_size));
1668
1669 if (data->note_data == NULL)
1670 data->abort_iteration = true;
1671 }
1672
1673 /* Records the thread's register state for the corefile note
1674 section. */
1675
1676 static void
1677 linux_collect_thread_registers (const struct regcache *regcache,
1678 ptid_t ptid, bfd *obfd,
1679 gdb::unique_xmalloc_ptr<char> &note_data,
1680 int *note_size,
1681 enum gdb_signal stop_signal)
1682 {
1683 struct gdbarch *gdbarch = regcache->arch ();
1684
1685 /* For remote targets the LWP may not be available, so use the TID. */
1686 long lwp = ptid.lwp ();
1687 if (lwp == 0)
1688 lwp = ptid.tid ();
1689
1690 linux_collect_regset_section_cb_data data (gdbarch, regcache, obfd, note_data,
1691 note_size, lwp, stop_signal);
1692
1693 gdbarch_iterate_over_regset_sections (gdbarch,
1694 linux_collect_regset_section_cb,
1695 &data, regcache);
1696 }
1697
1698 /* Fetch the siginfo data for the specified thread, if it exists. If
1699 there is no data, or we could not read it, return an empty
1700 buffer. */
1701
1702 static gdb::byte_vector
1703 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1704 {
1705 struct type *siginfo_type;
1706 LONGEST bytes_read;
1707
1708 if (!gdbarch_get_siginfo_type_p (gdbarch))
1709 return gdb::byte_vector ();
1710
1711 scoped_restore_current_thread save_current_thread;
1712 switch_to_thread (thread);
1713
1714 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1715
1716 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1717
1718 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1719 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1720 if (bytes_read != TYPE_LENGTH (siginfo_type))
1721 buf.clear ();
1722
1723 return buf;
1724 }
1725
1726 struct linux_corefile_thread_data
1727 {
1728 linux_corefile_thread_data (struct gdbarch *gdbarch, bfd *obfd,
1729 gdb::unique_xmalloc_ptr<char> &note_data,
1730 int *note_size, gdb_signal stop_signal)
1731 : gdbarch (gdbarch), obfd (obfd), note_data (note_data),
1732 note_size (note_size), stop_signal (stop_signal)
1733 {}
1734
1735 struct gdbarch *gdbarch;
1736 bfd *obfd;
1737 gdb::unique_xmalloc_ptr<char> &note_data;
1738 int *note_size;
1739 enum gdb_signal stop_signal;
1740 };
1741
1742 /* Records the thread's register state for the corefile note
1743 section. */
1744
1745 static void
1746 linux_corefile_thread (struct thread_info *info,
1747 struct linux_corefile_thread_data *args)
1748 {
1749 struct regcache *regcache;
1750
1751 regcache = get_thread_arch_regcache (info->inf->process_target (),
1752 info->ptid, args->gdbarch);
1753
1754 target_fetch_registers (regcache, -1);
1755 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1756
1757 linux_collect_thread_registers (regcache, info->ptid, args->obfd,
1758 args->note_data, args->note_size,
1759 args->stop_signal);
1760
1761 /* Don't return anything if we got no register information above,
1762 such a core file is useless. */
1763 if (args->note_data != NULL)
1764 {
1765 if (!siginfo_data.empty ())
1766 args->note_data.reset (elfcore_write_note (args->obfd,
1767 args->note_data.release (),
1768 args->note_size,
1769 "CORE", NT_SIGINFO,
1770 siginfo_data.data (),
1771 siginfo_data.size ()));
1772 }
1773 }
1774
1775 /* Fill the PRPSINFO structure with information about the process being
1776 debugged. Returns 1 in case of success, 0 for failures. Please note that
1777 even if the structure cannot be entirely filled (e.g., GDB was unable to
1778 gather information about the process UID/GID), this function will still
1779 return 1 since some information was already recorded. It will only return
1780 0 iff nothing can be gathered. */
1781
1782 static int
1783 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1784 {
1785 /* The filename which we will use to obtain some info about the process.
1786 We will basically use this to store the `/proc/PID/FILENAME' file. */
1787 char filename[100];
1788 /* The basename of the executable. */
1789 const char *basename;
1790 const char *infargs;
1791 /* Temporary buffer. */
1792 char *tmpstr;
1793 /* The valid states of a process, according to the Linux kernel. */
1794 const char valid_states[] = "RSDTZW";
1795 /* The program state. */
1796 const char *prog_state;
1797 /* The state of the process. */
1798 char pr_sname;
1799 /* The PID of the program which generated the corefile. */
1800 pid_t pid;
1801 /* Process flags. */
1802 unsigned int pr_flag;
1803 /* Process nice value. */
1804 long pr_nice;
1805 /* The number of fields read by `sscanf'. */
1806 int n_fields = 0;
1807
1808 gdb_assert (p != NULL);
1809
1810 /* Obtaining PID and filename. */
1811 pid = inferior_ptid.pid ();
1812 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1813 /* The full name of the program which generated the corefile. */
1814 gdb::unique_xmalloc_ptr<char> fname
1815 = target_fileio_read_stralloc (NULL, filename);
1816
1817 if (fname == NULL || fname.get ()[0] == '\0')
1818 {
1819 /* No program name was read, so we won't be able to retrieve more
1820 information about the process. */
1821 return 0;
1822 }
1823
1824 memset (p, 0, sizeof (*p));
1825
1826 /* Defining the PID. */
1827 p->pr_pid = pid;
1828
1829 /* Copying the program name. Only the basename matters. */
1830 basename = lbasename (fname.get ());
1831 strncpy (p->pr_fname, basename, sizeof (p->pr_fname) - 1);
1832 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1833
1834 infargs = get_inferior_args ();
1835
1836 /* The arguments of the program. */
1837 std::string psargs = fname.get ();
1838 if (infargs != NULL)
1839 psargs = psargs + " " + infargs;
1840
1841 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs) - 1);
1842 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1843
1844 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1845 /* The contents of `/proc/PID/stat'. */
1846 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1847 = target_fileio_read_stralloc (NULL, filename);
1848 char *proc_stat = proc_stat_contents.get ();
1849
1850 if (proc_stat == NULL || *proc_stat == '\0')
1851 {
1852 /* Despite being unable to read more information about the
1853 process, we return 1 here because at least we have its
1854 command line, PID and arguments. */
1855 return 1;
1856 }
1857
1858 /* Ok, we have the stats. It's time to do a little parsing of the
1859 contents of the buffer, so that we end up reading what we want.
1860
1861 The following parsing mechanism is strongly based on the
1862 information generated by the `fs/proc/array.c' file, present in
1863 the Linux kernel tree. More details about how the information is
1864 displayed can be obtained by seeing the manpage of proc(5),
1865 specifically under the entry of `/proc/[pid]/stat'. */
1866
1867 /* Getting rid of the PID, since we already have it. */
1868 while (isdigit (*proc_stat))
1869 ++proc_stat;
1870
1871 proc_stat = skip_spaces (proc_stat);
1872
1873 /* ps command also relies on no trailing fields ever contain ')'. */
1874 proc_stat = strrchr (proc_stat, ')');
1875 if (proc_stat == NULL)
1876 return 1;
1877 proc_stat++;
1878
1879 proc_stat = skip_spaces (proc_stat);
1880
1881 n_fields = sscanf (proc_stat,
1882 "%c" /* Process state. */
1883 "%d%d%d" /* Parent PID, group ID, session ID. */
1884 "%*d%*d" /* tty_nr, tpgid (not used). */
1885 "%u" /* Flags. */
1886 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1887 cmajflt (not used). */
1888 "%*s%*s%*s%*s" /* utime, stime, cutime,
1889 cstime (not used). */
1890 "%*s" /* Priority (not used). */
1891 "%ld", /* Nice. */
1892 &pr_sname,
1893 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1894 &pr_flag,
1895 &pr_nice);
1896
1897 if (n_fields != 6)
1898 {
1899 /* Again, we couldn't read the complementary information about
1900 the process state. However, we already have minimal
1901 information, so we just return 1 here. */
1902 return 1;
1903 }
1904
1905 /* Filling the structure fields. */
1906 prog_state = strchr (valid_states, pr_sname);
1907 if (prog_state != NULL)
1908 p->pr_state = prog_state - valid_states;
1909 else
1910 {
1911 /* Zero means "Running". */
1912 p->pr_state = 0;
1913 }
1914
1915 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1916 p->pr_zomb = p->pr_sname == 'Z';
1917 p->pr_nice = pr_nice;
1918 p->pr_flag = pr_flag;
1919
1920 /* Finally, obtaining the UID and GID. For that, we read and parse the
1921 contents of the `/proc/PID/status' file. */
1922 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1923 /* The contents of `/proc/PID/status'. */
1924 gdb::unique_xmalloc_ptr<char> proc_status_contents
1925 = target_fileio_read_stralloc (NULL, filename);
1926 char *proc_status = proc_status_contents.get ();
1927
1928 if (proc_status == NULL || *proc_status == '\0')
1929 {
1930 /* Returning 1 since we already have a bunch of information. */
1931 return 1;
1932 }
1933
1934 /* Extracting the UID. */
1935 tmpstr = strstr (proc_status, "Uid:");
1936 if (tmpstr != NULL)
1937 {
1938 /* Advancing the pointer to the beginning of the UID. */
1939 tmpstr += sizeof ("Uid:");
1940 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1941 ++tmpstr;
1942
1943 if (isdigit (*tmpstr))
1944 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1945 }
1946
1947 /* Extracting the GID. */
1948 tmpstr = strstr (proc_status, "Gid:");
1949 if (tmpstr != NULL)
1950 {
1951 /* Advancing the pointer to the beginning of the GID. */
1952 tmpstr += sizeof ("Gid:");
1953 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1954 ++tmpstr;
1955
1956 if (isdigit (*tmpstr))
1957 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1958 }
1959
1960 return 1;
1961 }
1962
1963 /* Find the signalled thread. In case there's more than one signalled
1964 thread, prefer the current thread, if it is signalled. If no
1965 thread was signalled, default to the current thread, unless it has
1966 exited, in which case return NULL. */
1967
1968 static thread_info *
1969 find_signalled_thread ()
1970 {
1971 thread_info *curr_thr = inferior_thread ();
1972 if (curr_thr->state != THREAD_EXITED
1973 && curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1974 return curr_thr;
1975
1976 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1977 if (thr->suspend.stop_signal != GDB_SIGNAL_0)
1978 return thr;
1979
1980 /* Default to the current thread, unless it has exited. */
1981 if (curr_thr->state != THREAD_EXITED)
1982 return curr_thr;
1983
1984 return nullptr;
1985 }
1986
1987 /* Build the note section for a corefile, and return it in a malloc
1988 buffer. */
1989
1990 static gdb::unique_xmalloc_ptr<char>
1991 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1992 {
1993 struct elf_internal_linux_prpsinfo prpsinfo;
1994 gdb::unique_xmalloc_ptr<char> note_data;
1995
1996 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1997 return NULL;
1998
1999 if (linux_fill_prpsinfo (&prpsinfo))
2000 {
2001 if (gdbarch_ptr_bit (gdbarch) == 64)
2002 note_data.reset (elfcore_write_linux_prpsinfo64 (obfd,
2003 note_data.release (),
2004 note_size, &prpsinfo));
2005 else
2006 note_data.reset (elfcore_write_linux_prpsinfo32 (obfd,
2007 note_data.release (),
2008 note_size, &prpsinfo));
2009 }
2010
2011 /* Thread register information. */
2012 try
2013 {
2014 update_thread_list ();
2015 }
2016 catch (const gdb_exception_error &e)
2017 {
2018 exception_print (gdb_stderr, e);
2019 }
2020
2021 /* Like the kernel, prefer dumping the signalled thread first.
2022 "First thread" is what tools use to infer the signalled
2023 thread. */
2024 thread_info *signalled_thr = find_signalled_thread ();
2025 gdb_signal stop_signal;
2026 if (signalled_thr != nullptr)
2027 stop_signal = signalled_thr->suspend.stop_signal;
2028 else
2029 stop_signal = GDB_SIGNAL_0;
2030
2031 linux_corefile_thread_data thread_args (gdbarch, obfd, note_data, note_size,
2032 stop_signal);
2033
2034 if (signalled_thr != nullptr)
2035 linux_corefile_thread (signalled_thr, &thread_args);
2036 for (thread_info *thr : current_inferior ()->non_exited_threads ())
2037 {
2038 if (thr == signalled_thr)
2039 continue;
2040
2041 linux_corefile_thread (thr, &thread_args);
2042 }
2043
2044 if (!note_data)
2045 return NULL;
2046
2047 /* Auxillary vector. */
2048 gdb::optional<gdb::byte_vector> auxv =
2049 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
2050 if (auxv && !auxv->empty ())
2051 {
2052 note_data.reset (elfcore_write_note (obfd, note_data.release (),
2053 note_size, "CORE", NT_AUXV,
2054 auxv->data (), auxv->size ()));
2055
2056 if (!note_data)
2057 return NULL;
2058 }
2059
2060 /* File mappings. */
2061 linux_make_mappings_corefile_notes (gdbarch, obfd, note_data, note_size);
2062
2063 return note_data;
2064 }
2065
2066 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2067 gdbarch.h. This function is not static because it is exported to
2068 other -tdep files. */
2069
2070 enum gdb_signal
2071 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2072 {
2073 switch (signal)
2074 {
2075 case 0:
2076 return GDB_SIGNAL_0;
2077
2078 case LINUX_SIGHUP:
2079 return GDB_SIGNAL_HUP;
2080
2081 case LINUX_SIGINT:
2082 return GDB_SIGNAL_INT;
2083
2084 case LINUX_SIGQUIT:
2085 return GDB_SIGNAL_QUIT;
2086
2087 case LINUX_SIGILL:
2088 return GDB_SIGNAL_ILL;
2089
2090 case LINUX_SIGTRAP:
2091 return GDB_SIGNAL_TRAP;
2092
2093 case LINUX_SIGABRT:
2094 return GDB_SIGNAL_ABRT;
2095
2096 case LINUX_SIGBUS:
2097 return GDB_SIGNAL_BUS;
2098
2099 case LINUX_SIGFPE:
2100 return GDB_SIGNAL_FPE;
2101
2102 case LINUX_SIGKILL:
2103 return GDB_SIGNAL_KILL;
2104
2105 case LINUX_SIGUSR1:
2106 return GDB_SIGNAL_USR1;
2107
2108 case LINUX_SIGSEGV:
2109 return GDB_SIGNAL_SEGV;
2110
2111 case LINUX_SIGUSR2:
2112 return GDB_SIGNAL_USR2;
2113
2114 case LINUX_SIGPIPE:
2115 return GDB_SIGNAL_PIPE;
2116
2117 case LINUX_SIGALRM:
2118 return GDB_SIGNAL_ALRM;
2119
2120 case LINUX_SIGTERM:
2121 return GDB_SIGNAL_TERM;
2122
2123 case LINUX_SIGCHLD:
2124 return GDB_SIGNAL_CHLD;
2125
2126 case LINUX_SIGCONT:
2127 return GDB_SIGNAL_CONT;
2128
2129 case LINUX_SIGSTOP:
2130 return GDB_SIGNAL_STOP;
2131
2132 case LINUX_SIGTSTP:
2133 return GDB_SIGNAL_TSTP;
2134
2135 case LINUX_SIGTTIN:
2136 return GDB_SIGNAL_TTIN;
2137
2138 case LINUX_SIGTTOU:
2139 return GDB_SIGNAL_TTOU;
2140
2141 case LINUX_SIGURG:
2142 return GDB_SIGNAL_URG;
2143
2144 case LINUX_SIGXCPU:
2145 return GDB_SIGNAL_XCPU;
2146
2147 case LINUX_SIGXFSZ:
2148 return GDB_SIGNAL_XFSZ;
2149
2150 case LINUX_SIGVTALRM:
2151 return GDB_SIGNAL_VTALRM;
2152
2153 case LINUX_SIGPROF:
2154 return GDB_SIGNAL_PROF;
2155
2156 case LINUX_SIGWINCH:
2157 return GDB_SIGNAL_WINCH;
2158
2159 /* No way to differentiate between SIGIO and SIGPOLL.
2160 Therefore, we just handle the first one. */
2161 case LINUX_SIGIO:
2162 return GDB_SIGNAL_IO;
2163
2164 case LINUX_SIGPWR:
2165 return GDB_SIGNAL_PWR;
2166
2167 case LINUX_SIGSYS:
2168 return GDB_SIGNAL_SYS;
2169
2170 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2171 therefore we have to handle them here. */
2172 case LINUX_SIGRTMIN:
2173 return GDB_SIGNAL_REALTIME_32;
2174
2175 case LINUX_SIGRTMAX:
2176 return GDB_SIGNAL_REALTIME_64;
2177 }
2178
2179 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2180 {
2181 int offset = signal - LINUX_SIGRTMIN + 1;
2182
2183 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2184 }
2185
2186 return GDB_SIGNAL_UNKNOWN;
2187 }
2188
2189 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2190 gdbarch.h. This function is not static because it is exported to
2191 other -tdep files. */
2192
2193 int
2194 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2195 enum gdb_signal signal)
2196 {
2197 switch (signal)
2198 {
2199 case GDB_SIGNAL_0:
2200 return 0;
2201
2202 case GDB_SIGNAL_HUP:
2203 return LINUX_SIGHUP;
2204
2205 case GDB_SIGNAL_INT:
2206 return LINUX_SIGINT;
2207
2208 case GDB_SIGNAL_QUIT:
2209 return LINUX_SIGQUIT;
2210
2211 case GDB_SIGNAL_ILL:
2212 return LINUX_SIGILL;
2213
2214 case GDB_SIGNAL_TRAP:
2215 return LINUX_SIGTRAP;
2216
2217 case GDB_SIGNAL_ABRT:
2218 return LINUX_SIGABRT;
2219
2220 case GDB_SIGNAL_FPE:
2221 return LINUX_SIGFPE;
2222
2223 case GDB_SIGNAL_KILL:
2224 return LINUX_SIGKILL;
2225
2226 case GDB_SIGNAL_BUS:
2227 return LINUX_SIGBUS;
2228
2229 case GDB_SIGNAL_SEGV:
2230 return LINUX_SIGSEGV;
2231
2232 case GDB_SIGNAL_SYS:
2233 return LINUX_SIGSYS;
2234
2235 case GDB_SIGNAL_PIPE:
2236 return LINUX_SIGPIPE;
2237
2238 case GDB_SIGNAL_ALRM:
2239 return LINUX_SIGALRM;
2240
2241 case GDB_SIGNAL_TERM:
2242 return LINUX_SIGTERM;
2243
2244 case GDB_SIGNAL_URG:
2245 return LINUX_SIGURG;
2246
2247 case GDB_SIGNAL_STOP:
2248 return LINUX_SIGSTOP;
2249
2250 case GDB_SIGNAL_TSTP:
2251 return LINUX_SIGTSTP;
2252
2253 case GDB_SIGNAL_CONT:
2254 return LINUX_SIGCONT;
2255
2256 case GDB_SIGNAL_CHLD:
2257 return LINUX_SIGCHLD;
2258
2259 case GDB_SIGNAL_TTIN:
2260 return LINUX_SIGTTIN;
2261
2262 case GDB_SIGNAL_TTOU:
2263 return LINUX_SIGTTOU;
2264
2265 case GDB_SIGNAL_IO:
2266 return LINUX_SIGIO;
2267
2268 case GDB_SIGNAL_XCPU:
2269 return LINUX_SIGXCPU;
2270
2271 case GDB_SIGNAL_XFSZ:
2272 return LINUX_SIGXFSZ;
2273
2274 case GDB_SIGNAL_VTALRM:
2275 return LINUX_SIGVTALRM;
2276
2277 case GDB_SIGNAL_PROF:
2278 return LINUX_SIGPROF;
2279
2280 case GDB_SIGNAL_WINCH:
2281 return LINUX_SIGWINCH;
2282
2283 case GDB_SIGNAL_USR1:
2284 return LINUX_SIGUSR1;
2285
2286 case GDB_SIGNAL_USR2:
2287 return LINUX_SIGUSR2;
2288
2289 case GDB_SIGNAL_PWR:
2290 return LINUX_SIGPWR;
2291
2292 case GDB_SIGNAL_POLL:
2293 return LINUX_SIGPOLL;
2294
2295 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2296 therefore we have to handle it here. */
2297 case GDB_SIGNAL_REALTIME_32:
2298 return LINUX_SIGRTMIN;
2299
2300 /* Same comment applies to _64. */
2301 case GDB_SIGNAL_REALTIME_64:
2302 return LINUX_SIGRTMAX;
2303 }
2304
2305 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2306 if (signal >= GDB_SIGNAL_REALTIME_33
2307 && signal <= GDB_SIGNAL_REALTIME_63)
2308 {
2309 int offset = signal - GDB_SIGNAL_REALTIME_33;
2310
2311 return LINUX_SIGRTMIN + 1 + offset;
2312 }
2313
2314 return -1;
2315 }
2316
2317 /* Helper for linux_vsyscall_range that does the real work of finding
2318 the vsyscall's address range. */
2319
2320 static int
2321 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2322 {
2323 char filename[100];
2324 long pid;
2325
2326 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2327 return 0;
2328
2329 /* It doesn't make sense to access the host's /proc when debugging a
2330 core file. Instead, look for the PT_LOAD segment that matches
2331 the vDSO. */
2332 if (!target_has_execution ())
2333 {
2334 long phdrs_size;
2335 int num_phdrs, i;
2336
2337 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2338 if (phdrs_size == -1)
2339 return 0;
2340
2341 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2342 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2343 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2344 if (num_phdrs == -1)
2345 return 0;
2346
2347 for (i = 0; i < num_phdrs; i++)
2348 if (phdrs.get ()[i].p_type == PT_LOAD
2349 && phdrs.get ()[i].p_vaddr == range->start)
2350 {
2351 range->length = phdrs.get ()[i].p_memsz;
2352 return 1;
2353 }
2354
2355 return 0;
2356 }
2357
2358 /* We need to know the real target PID to access /proc. */
2359 if (current_inferior ()->fake_pid_p)
2360 return 0;
2361
2362 pid = current_inferior ()->pid;
2363
2364 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2365 reading /proc/PID/maps (2). The later identifies thread stacks
2366 in the output, which requires scanning every thread in the thread
2367 group to check whether a VMA is actually a thread's stack. With
2368 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2369 a few thousand threads, (1) takes a few miliseconds, while (2)
2370 takes several seconds. Also note that "smaps", what we read for
2371 determining core dump mappings, is even slower than "maps". */
2372 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2373 gdb::unique_xmalloc_ptr<char> data
2374 = target_fileio_read_stralloc (NULL, filename);
2375 if (data != NULL)
2376 {
2377 char *line;
2378 char *saveptr = NULL;
2379
2380 for (line = strtok_r (data.get (), "\n", &saveptr);
2381 line != NULL;
2382 line = strtok_r (NULL, "\n", &saveptr))
2383 {
2384 ULONGEST addr, endaddr;
2385 const char *p = line;
2386
2387 addr = strtoulst (p, &p, 16);
2388 if (addr == range->start)
2389 {
2390 if (*p == '-')
2391 p++;
2392 endaddr = strtoulst (p, &p, 16);
2393 range->length = endaddr - addr;
2394 return 1;
2395 }
2396 }
2397 }
2398 else
2399 warning (_("unable to open /proc file '%s'"), filename);
2400
2401 return 0;
2402 }
2403
2404 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2405 caching, and defers the real work to linux_vsyscall_range_raw. */
2406
2407 static int
2408 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2409 {
2410 struct linux_info *info = get_linux_inferior_data ();
2411
2412 if (info->vsyscall_range_p == 0)
2413 {
2414 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2415 info->vsyscall_range_p = 1;
2416 else
2417 info->vsyscall_range_p = -1;
2418 }
2419
2420 if (info->vsyscall_range_p < 0)
2421 return 0;
2422
2423 *range = info->vsyscall_range;
2424 return 1;
2425 }
2426
2427 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2428 definitions would be dependent on compilation host. */
2429 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2430 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2431
2432 /* See gdbarch.sh 'infcall_mmap'. */
2433
2434 static CORE_ADDR
2435 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2436 {
2437 struct objfile *objf;
2438 /* Do there still exist any Linux systems without "mmap64"?
2439 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2440 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2441 struct value *addr_val;
2442 struct gdbarch *gdbarch = objf->arch ();
2443 CORE_ADDR retval;
2444 enum
2445 {
2446 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2447 };
2448 struct value *arg[ARG_LAST];
2449
2450 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2451 0);
2452 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2453 arg[ARG_LENGTH] = value_from_ulongest
2454 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2455 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2456 | GDB_MMAP_PROT_EXEC))
2457 == 0);
2458 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2459 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2460 GDB_MMAP_MAP_PRIVATE
2461 | GDB_MMAP_MAP_ANONYMOUS);
2462 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2463 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2464 0);
2465 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2466 retval = value_as_address (addr_val);
2467 if (retval == (CORE_ADDR) -1)
2468 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2469 pulongest (size));
2470 return retval;
2471 }
2472
2473 /* See gdbarch.sh 'infcall_munmap'. */
2474
2475 static void
2476 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2477 {
2478 struct objfile *objf;
2479 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2480 struct value *retval_val;
2481 struct gdbarch *gdbarch = objf->arch ();
2482 LONGEST retval;
2483 enum
2484 {
2485 ARG_ADDR, ARG_LENGTH, ARG_LAST
2486 };
2487 struct value *arg[ARG_LAST];
2488
2489 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2490 addr);
2491 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2492 arg[ARG_LENGTH] = value_from_ulongest
2493 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2494 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2495 retval = value_as_long (retval_val);
2496 if (retval != 0)
2497 warning (_("Failed inferior munmap call at %s for %s bytes, "
2498 "errno is changed."),
2499 hex_string (addr), pulongest (size));
2500 }
2501
2502 /* See linux-tdep.h. */
2503
2504 CORE_ADDR
2505 linux_displaced_step_location (struct gdbarch *gdbarch)
2506 {
2507 CORE_ADDR addr;
2508 int bp_len;
2509
2510 /* Determine entry point from target auxiliary vector. This avoids
2511 the need for symbols. Also, when debugging a stand-alone SPU
2512 executable, entry_point_address () will point to an SPU
2513 local-store address and is thus not usable as displaced stepping
2514 location. The auxiliary vector gets us the PowerPC-side entry
2515 point address instead. */
2516 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2517 throw_error (NOT_SUPPORTED_ERROR,
2518 _("Cannot find AT_ENTRY auxiliary vector entry."));
2519
2520 /* Make certain that the address points at real code, and not a
2521 function descriptor. */
2522 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2523 current_top_target ());
2524
2525 /* Inferior calls also use the entry point as a breakpoint location.
2526 We don't want displaced stepping to interfere with those
2527 breakpoints, so leave space. */
2528 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2529 addr += bp_len * 2;
2530
2531 return addr;
2532 }
2533
2534 /* See linux-tdep.h. */
2535
2536 CORE_ADDR
2537 linux_get_hwcap (struct target_ops *target)
2538 {
2539 CORE_ADDR field;
2540 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2541 return 0;
2542 return field;
2543 }
2544
2545 /* See linux-tdep.h. */
2546
2547 CORE_ADDR
2548 linux_get_hwcap2 (struct target_ops *target)
2549 {
2550 CORE_ADDR field;
2551 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2552 return 0;
2553 return field;
2554 }
2555
2556 /* Display whether the gcore command is using the
2557 /proc/PID/coredump_filter file. */
2558
2559 static void
2560 show_use_coredump_filter (struct ui_file *file, int from_tty,
2561 struct cmd_list_element *c, const char *value)
2562 {
2563 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2564 " corefiles is %s.\n"), value);
2565 }
2566
2567 /* Display whether the gcore command is dumping mappings marked with
2568 the VM_DONTDUMP flag. */
2569
2570 static void
2571 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2573 {
2574 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2575 " flag is %s.\n"), value);
2576 }
2577
2578 /* To be called from the various GDB_OSABI_LINUX handlers for the
2579 various GNU/Linux architectures and machine types. */
2580
2581 void
2582 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2583 {
2584 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2585 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2586 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2587 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2588 set_gdbarch_read_core_file_mappings (gdbarch, linux_read_core_file_mappings);
2589 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2590 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2591 set_gdbarch_has_shared_address_space (gdbarch,
2592 linux_has_shared_address_space);
2593 set_gdbarch_gdb_signal_from_target (gdbarch,
2594 linux_gdb_signal_from_target);
2595 set_gdbarch_gdb_signal_to_target (gdbarch,
2596 linux_gdb_signal_to_target);
2597 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2598 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2599 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2600 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2601 }
2602
2603 void _initialize_linux_tdep ();
2604 void
2605 _initialize_linux_tdep ()
2606 {
2607 linux_gdbarch_data_handle =
2608 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2609
2610 /* Observers used to invalidate the cache when needed. */
2611 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2612 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2613
2614 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2615 &use_coredump_filter, _("\
2616 Set whether gcore should consider /proc/PID/coredump_filter."),
2617 _("\
2618 Show whether gcore should consider /proc/PID/coredump_filter."),
2619 _("\
2620 Use this command to set whether gcore should consider the contents\n\
2621 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2622 about this file, refer to the manpage of core(5)."),
2623 NULL, show_use_coredump_filter,
2624 &setlist, &showlist);
2625
2626 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2627 &dump_excluded_mappings, _("\
2628 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2629 _("\
2630 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2631 _("\
2632 Use this command to set whether gcore should dump mappings marked with the\n\
2633 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2634 more information about this file, refer to the manpage of proc(5) and core(5)."),
2635 NULL, show_dump_excluded_mappings,
2636 &setlist, &showlist);
2637 }
This page took 0.241401 seconds and 4 git commands to generate.