testsuite: i386 regression for funcargs.exp
[deliverable/binutils-gdb.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
39
40 /* Macros to extract fields from an instruction. */
41 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
42 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
43 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
44 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
45 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
46
47 struct gdbarch_tdep
48 {
49 /* gdbarch target dependent data here. Currently unused for LM32. */
50 };
51
52 struct lm32_frame_cache
53 {
54 /* The frame's base. Used when constructing a frame ID. */
55 CORE_ADDR base;
56 CORE_ADDR pc;
57 /* Size of frame. */
58 int size;
59 /* Table indicating the location of each and every register. */
60 struct trad_frame_saved_reg *saved_regs;
61 };
62
63 /* Add the available register groups. */
64
65 static void
66 lm32_add_reggroups (struct gdbarch *gdbarch)
67 {
68 reggroup_add (gdbarch, general_reggroup);
69 reggroup_add (gdbarch, all_reggroup);
70 reggroup_add (gdbarch, system_reggroup);
71 }
72
73 /* Return whether a given register is in a given group. */
74
75 static int
76 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
77 struct reggroup *group)
78 {
79 if (group == general_reggroup)
80 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
81 || (regnum == SIM_LM32_PC_REGNUM);
82 else if (group == system_reggroup)
83 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
84 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
85 return default_register_reggroup_p (gdbarch, regnum, group);
86 }
87
88 /* Return a name that corresponds to the given register number. */
89
90 static const char *
91 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
92 {
93 static char *register_names[] = {
94 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
95 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
96 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
97 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
98 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
99 };
100
101 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
102 return NULL;
103 else
104 return register_names[reg_nr];
105 }
106
107 /* Return type of register. */
108
109 static struct type *
110 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
111 {
112 return builtin_type (gdbarch)->builtin_int32;
113 }
114
115 /* Return non-zero if a register can't be written. */
116
117 static int
118 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
119 {
120 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
121 }
122
123 /* Analyze a function's prologue. */
124
125 static CORE_ADDR
126 lm32_analyze_prologue (struct gdbarch *gdbarch,
127 CORE_ADDR pc, CORE_ADDR limit,
128 struct lm32_frame_cache *info)
129 {
130 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
131 unsigned long instruction;
132
133 /* Keep reading though instructions, until we come across an instruction
134 that isn't likely to be part of the prologue. */
135 info->size = 0;
136 for (; pc < limit; pc += 4)
137 {
138
139 /* Read an instruction. */
140 instruction = read_memory_integer (pc, 4, byte_order);
141
142 if ((LM32_OPCODE (instruction) == OP_SW)
143 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
144 {
145 /* Any stack displaced store is likely part of the prologue.
146 Record that the register is being saved, and the offset
147 into the stack. */
148 info->saved_regs[LM32_REG1 (instruction)].addr =
149 LM32_IMM16 (instruction);
150 }
151 else if ((LM32_OPCODE (instruction) == OP_ADDI)
152 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
153 {
154 /* An add to the SP is likely to be part of the prologue.
155 Adjust stack size by whatever the instruction adds to the sp. */
156 info->size -= LM32_IMM16 (instruction);
157 }
158 else if ( /* add fp,fp,sp */
159 ((LM32_OPCODE (instruction) == OP_ADD)
160 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
161 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
163 /* mv fp,imm */
164 || ((LM32_OPCODE (instruction) == OP_ADDI)
165 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
166 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
167 {
168 /* Likely to be in the prologue for functions that require
169 a frame pointer. */
170 }
171 else
172 {
173 /* Any other instruction is likely not to be part of the
174 prologue. */
175 break;
176 }
177 }
178
179 return pc;
180 }
181
182 /* Return PC of first non prologue instruction, for the function at the
183 specified address. */
184
185 static CORE_ADDR
186 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
187 {
188 CORE_ADDR func_addr, limit_pc;
189 struct lm32_frame_cache frame_info;
190 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
191
192 /* See if we can determine the end of the prologue via the symbol table.
193 If so, then return either PC, or the PC after the prologue, whichever
194 is greater. */
195 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
196 {
197 CORE_ADDR post_prologue_pc
198 = skip_prologue_using_sal (gdbarch, func_addr);
199 if (post_prologue_pc != 0)
200 return max (pc, post_prologue_pc);
201 }
202
203 /* Can't determine prologue from the symbol table, need to examine
204 instructions. */
205
206 /* Find an upper limit on the function prologue using the debug
207 information. If the debug information could not be used to provide
208 that bound, then use an arbitrary large number as the upper bound. */
209 limit_pc = skip_prologue_using_sal (gdbarch, pc);
210 if (limit_pc == 0)
211 limit_pc = pc + 100; /* Magic. */
212
213 frame_info.saved_regs = saved_regs;
214 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
215 }
216
217 /* Create a breakpoint instruction. */
218
219 static const gdb_byte *
220 lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
221 int *lenptr)
222 {
223 static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
224
225 *lenptr = sizeof (breakpoint);
226 return breakpoint;
227 }
228
229 /* Setup registers and stack for faking a call to a function in the
230 inferior. */
231
232 static CORE_ADDR
233 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
234 struct regcache *regcache, CORE_ADDR bp_addr,
235 int nargs, struct value **args, CORE_ADDR sp,
236 int struct_return, CORE_ADDR struct_addr)
237 {
238 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
239 int first_arg_reg = SIM_LM32_R1_REGNUM;
240 int num_arg_regs = 8;
241 int i;
242
243 /* Set the return address. */
244 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
245
246 /* If we're returning a large struct, a pointer to the address to
247 store it at is passed as a first hidden parameter. */
248 if (struct_return)
249 {
250 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
251 first_arg_reg++;
252 num_arg_regs--;
253 sp -= 4;
254 }
255
256 /* Setup parameters. */
257 for (i = 0; i < nargs; i++)
258 {
259 struct value *arg = args[i];
260 struct type *arg_type = check_typedef (value_type (arg));
261 gdb_byte *contents;
262 ULONGEST val;
263
264 /* Promote small integer types to int. */
265 switch (TYPE_CODE (arg_type))
266 {
267 case TYPE_CODE_INT:
268 case TYPE_CODE_BOOL:
269 case TYPE_CODE_CHAR:
270 case TYPE_CODE_RANGE:
271 case TYPE_CODE_ENUM:
272 if (TYPE_LENGTH (arg_type) < 4)
273 {
274 arg_type = builtin_type (gdbarch)->builtin_int32;
275 arg = value_cast (arg_type, arg);
276 }
277 break;
278 }
279
280 /* FIXME: Handle structures. */
281
282 contents = (gdb_byte *) value_contents (arg);
283 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
284 byte_order);
285
286 /* First num_arg_regs parameters are passed by registers,
287 and the rest are passed on the stack. */
288 if (i < num_arg_regs)
289 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
290 else
291 {
292 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
293 val);
294 sp -= 4;
295 }
296 }
297
298 /* Update stack pointer. */
299 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
300
301 /* Return adjusted stack pointer. */
302 return sp;
303 }
304
305 /* Extract return value after calling a function in the inferior. */
306
307 static void
308 lm32_extract_return_value (struct type *type, struct regcache *regcache,
309 gdb_byte *valbuf)
310 {
311 struct gdbarch *gdbarch = get_regcache_arch (regcache);
312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
313 ULONGEST l;
314 CORE_ADDR return_buffer;
315
316 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
317 && TYPE_CODE (type) != TYPE_CODE_UNION
318 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
319 {
320 /* Return value is returned in a single register. */
321 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
322 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
323 }
324 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
325 {
326 /* 64-bit values are returned in a register pair. */
327 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
328 memcpy (valbuf, &l, 4);
329 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
330 memcpy (valbuf + 4, &l, 4);
331 }
332 else
333 {
334 /* Aggregate types greater than a single register are returned
335 in memory. FIXME: Unless they are only 2 regs?. */
336 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
337 return_buffer = l;
338 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
339 }
340 }
341
342 /* Write into appropriate registers a function return value of type
343 TYPE, given in virtual format. */
344 static void
345 lm32_store_return_value (struct type *type, struct regcache *regcache,
346 const gdb_byte *valbuf)
347 {
348 struct gdbarch *gdbarch = get_regcache_arch (regcache);
349 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
350 ULONGEST val;
351 int len = TYPE_LENGTH (type);
352
353 if (len <= 4)
354 {
355 val = extract_unsigned_integer (valbuf, len, byte_order);
356 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
357 }
358 else if (len <= 8)
359 {
360 val = extract_unsigned_integer (valbuf, 4, byte_order);
361 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
362 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
363 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
364 }
365 else
366 error (_("lm32_store_return_value: type length too large."));
367 }
368
369 /* Determine whether a functions return value is in a register or memory. */
370 static enum return_value_convention
371 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
372 struct type *valtype, struct regcache *regcache,
373 gdb_byte *readbuf, const gdb_byte *writebuf)
374 {
375 enum type_code code = TYPE_CODE (valtype);
376
377 if (code == TYPE_CODE_STRUCT
378 || code == TYPE_CODE_UNION
379 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
380 return RETURN_VALUE_STRUCT_CONVENTION;
381
382 if (readbuf)
383 lm32_extract_return_value (valtype, regcache, readbuf);
384 if (writebuf)
385 lm32_store_return_value (valtype, regcache, writebuf);
386
387 return RETURN_VALUE_REGISTER_CONVENTION;
388 }
389
390 static CORE_ADDR
391 lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
392 {
393 return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
394 }
395
396 static CORE_ADDR
397 lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
398 {
399 return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
400 }
401
402 static struct frame_id
403 lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
404 {
405 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
406
407 return frame_id_build (sp, get_frame_pc (this_frame));
408 }
409
410 /* Put here the code to store, into fi->saved_regs, the addresses of
411 the saved registers of frame described by FRAME_INFO. This
412 includes special registers such as pc and fp saved in special ways
413 in the stack frame. sp is even more special: the address we return
414 for it IS the sp for the next frame. */
415
416 static struct lm32_frame_cache *
417 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
418 {
419 CORE_ADDR current_pc;
420 ULONGEST prev_sp;
421 ULONGEST this_base;
422 struct lm32_frame_cache *info;
423 int i;
424
425 if ((*this_prologue_cache))
426 return (struct lm32_frame_cache *) (*this_prologue_cache);
427
428 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
429 (*this_prologue_cache) = info;
430 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
431
432 info->pc = get_frame_func (this_frame);
433 current_pc = get_frame_pc (this_frame);
434 lm32_analyze_prologue (get_frame_arch (this_frame),
435 info->pc, current_pc, info);
436
437 /* Compute the frame's base, and the previous frame's SP. */
438 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
439 prev_sp = this_base + info->size;
440 info->base = this_base;
441
442 /* Convert callee save offsets into addresses. */
443 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
444 {
445 if (trad_frame_addr_p (info->saved_regs, i))
446 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
447 }
448
449 /* The call instruction moves the caller's PC in the callee's RA register.
450 Since this is an unwind, do the reverse. Copy the location of RA register
451 into PC (the address / regnum) so that a request for PC will be
452 converted into a request for the RA register. */
453 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
454
455 /* The previous frame's SP needed to be computed. Save the computed
456 value. */
457 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
458
459 return info;
460 }
461
462 static void
463 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
464 struct frame_id *this_id)
465 {
466 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
467
468 /* This marks the outermost frame. */
469 if (cache->base == 0)
470 return;
471
472 (*this_id) = frame_id_build (cache->base, cache->pc);
473 }
474
475 static struct value *
476 lm32_frame_prev_register (struct frame_info *this_frame,
477 void **this_prologue_cache, int regnum)
478 {
479 struct lm32_frame_cache *info;
480
481 info = lm32_frame_cache (this_frame, this_prologue_cache);
482 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
483 }
484
485 static const struct frame_unwind lm32_frame_unwind = {
486 NORMAL_FRAME,
487 default_frame_unwind_stop_reason,
488 lm32_frame_this_id,
489 lm32_frame_prev_register,
490 NULL,
491 default_frame_sniffer
492 };
493
494 static CORE_ADDR
495 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
496 {
497 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
498
499 return info->base;
500 }
501
502 static const struct frame_base lm32_frame_base = {
503 &lm32_frame_unwind,
504 lm32_frame_base_address,
505 lm32_frame_base_address,
506 lm32_frame_base_address
507 };
508
509 static CORE_ADDR
510 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
511 {
512 /* Align to the size of an instruction (so that they can safely be
513 pushed onto the stack. */
514 return sp & ~3;
515 }
516
517 static struct gdbarch *
518 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
519 {
520 struct gdbarch *gdbarch;
521 struct gdbarch_tdep *tdep;
522
523 /* If there is already a candidate, use it. */
524 arches = gdbarch_list_lookup_by_info (arches, &info);
525 if (arches != NULL)
526 return arches->gdbarch;
527
528 /* None found, create a new architecture from the information provided. */
529 tdep = XNEW (struct gdbarch_tdep);
530 gdbarch = gdbarch_alloc (&info, tdep);
531
532 /* Type sizes. */
533 set_gdbarch_short_bit (gdbarch, 16);
534 set_gdbarch_int_bit (gdbarch, 32);
535 set_gdbarch_long_bit (gdbarch, 32);
536 set_gdbarch_long_long_bit (gdbarch, 64);
537 set_gdbarch_float_bit (gdbarch, 32);
538 set_gdbarch_double_bit (gdbarch, 64);
539 set_gdbarch_long_double_bit (gdbarch, 64);
540 set_gdbarch_ptr_bit (gdbarch, 32);
541
542 /* Register info. */
543 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
544 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
545 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
546 set_gdbarch_register_name (gdbarch, lm32_register_name);
547 set_gdbarch_register_type (gdbarch, lm32_register_type);
548 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
549
550 /* Frame info. */
551 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
552 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
553 set_gdbarch_decr_pc_after_break (gdbarch, 0);
554 set_gdbarch_frame_args_skip (gdbarch, 0);
555
556 /* Frame unwinding. */
557 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
558 frame_base_set_default (gdbarch, &lm32_frame_base);
559 set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
560 set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
561 set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
562 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
563
564 /* Breakpoints. */
565 set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
566 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
567
568 /* Calling functions in the inferior. */
569 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
570 set_gdbarch_return_value (gdbarch, lm32_return_value);
571
572 /* Instruction disassembler. */
573 set_gdbarch_print_insn (gdbarch, print_insn_lm32);
574
575 lm32_add_reggroups (gdbarch);
576 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
577
578 return gdbarch;
579 }
580
581 /* -Wmissing-prototypes */
582 extern initialize_file_ftype _initialize_lm32_tdep;
583
584 void
585 _initialize_lm32_tdep (void)
586 {
587 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
588 }
This page took 0.060301 seconds and 4 git commands to generate.