gdb: Don't reorder line table entries too much when sorting.
[deliverable/binutils-gdb.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
39 #include <algorithm>
40
41 /* Macros to extract fields from an instruction. */
42 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
43 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
44 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
45 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
46 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
47
48 struct gdbarch_tdep
49 {
50 /* gdbarch target dependent data here. Currently unused for LM32. */
51 };
52
53 struct lm32_frame_cache
54 {
55 /* The frame's base. Used when constructing a frame ID. */
56 CORE_ADDR base;
57 CORE_ADDR pc;
58 /* Size of frame. */
59 int size;
60 /* Table indicating the location of each and every register. */
61 struct trad_frame_saved_reg *saved_regs;
62 };
63
64 /* Add the available register groups. */
65
66 static void
67 lm32_add_reggroups (struct gdbarch *gdbarch)
68 {
69 reggroup_add (gdbarch, general_reggroup);
70 reggroup_add (gdbarch, all_reggroup);
71 reggroup_add (gdbarch, system_reggroup);
72 }
73
74 /* Return whether a given register is in a given group. */
75
76 static int
77 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
78 struct reggroup *group)
79 {
80 if (group == general_reggroup)
81 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
82 || (regnum == SIM_LM32_PC_REGNUM);
83 else if (group == system_reggroup)
84 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
85 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
86 return default_register_reggroup_p (gdbarch, regnum, group);
87 }
88
89 /* Return a name that corresponds to the given register number. */
90
91 static const char *
92 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
93 {
94 static const char *register_names[] = {
95 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
96 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
97 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
98 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
99 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
100 };
101
102 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
103 return NULL;
104 else
105 return register_names[reg_nr];
106 }
107
108 /* Return type of register. */
109
110 static struct type *
111 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
112 {
113 return builtin_type (gdbarch)->builtin_int32;
114 }
115
116 /* Return non-zero if a register can't be written. */
117
118 static int
119 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
120 {
121 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
122 }
123
124 /* Analyze a function's prologue. */
125
126 static CORE_ADDR
127 lm32_analyze_prologue (struct gdbarch *gdbarch,
128 CORE_ADDR pc, CORE_ADDR limit,
129 struct lm32_frame_cache *info)
130 {
131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
132 unsigned long instruction;
133
134 /* Keep reading though instructions, until we come across an instruction
135 that isn't likely to be part of the prologue. */
136 info->size = 0;
137 for (; pc < limit; pc += 4)
138 {
139
140 /* Read an instruction. */
141 instruction = read_memory_integer (pc, 4, byte_order);
142
143 if ((LM32_OPCODE (instruction) == OP_SW)
144 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
145 {
146 /* Any stack displaced store is likely part of the prologue.
147 Record that the register is being saved, and the offset
148 into the stack. */
149 info->saved_regs[LM32_REG1 (instruction)].addr =
150 LM32_IMM16 (instruction);
151 }
152 else if ((LM32_OPCODE (instruction) == OP_ADDI)
153 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
154 {
155 /* An add to the SP is likely to be part of the prologue.
156 Adjust stack size by whatever the instruction adds to the sp. */
157 info->size -= LM32_IMM16 (instruction);
158 }
159 else if ( /* add fp,fp,sp */
160 ((LM32_OPCODE (instruction) == OP_ADD)
161 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
163 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
164 /* mv fp,imm */
165 || ((LM32_OPCODE (instruction) == OP_ADDI)
166 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
167 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
168 {
169 /* Likely to be in the prologue for functions that require
170 a frame pointer. */
171 }
172 else
173 {
174 /* Any other instruction is likely not to be part of the
175 prologue. */
176 break;
177 }
178 }
179
180 return pc;
181 }
182
183 /* Return PC of first non prologue instruction, for the function at the
184 specified address. */
185
186 static CORE_ADDR
187 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
188 {
189 CORE_ADDR func_addr, limit_pc;
190 struct lm32_frame_cache frame_info;
191 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
192
193 /* See if we can determine the end of the prologue via the symbol table.
194 If so, then return either PC, or the PC after the prologue, whichever
195 is greater. */
196 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
197 {
198 CORE_ADDR post_prologue_pc
199 = skip_prologue_using_sal (gdbarch, func_addr);
200 if (post_prologue_pc != 0)
201 return std::max (pc, post_prologue_pc);
202 }
203
204 /* Can't determine prologue from the symbol table, need to examine
205 instructions. */
206
207 /* Find an upper limit on the function prologue using the debug
208 information. If the debug information could not be used to provide
209 that bound, then use an arbitrary large number as the upper bound. */
210 limit_pc = skip_prologue_using_sal (gdbarch, pc);
211 if (limit_pc == 0)
212 limit_pc = pc + 100; /* Magic. */
213
214 frame_info.saved_regs = saved_regs;
215 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
216 }
217
218 /* Create a breakpoint instruction. */
219 constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
220
221 typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
222
223
224 /* Setup registers and stack for faking a call to a function in the
225 inferior. */
226
227 static CORE_ADDR
228 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
229 struct regcache *regcache, CORE_ADDR bp_addr,
230 int nargs, struct value **args, CORE_ADDR sp,
231 function_call_return_method return_method,
232 CORE_ADDR struct_addr)
233 {
234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
235 int first_arg_reg = SIM_LM32_R1_REGNUM;
236 int num_arg_regs = 8;
237 int i;
238
239 /* Set the return address. */
240 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
241
242 /* If we're returning a large struct, a pointer to the address to
243 store it at is passed as a first hidden parameter. */
244 if (return_method == return_method_struct)
245 {
246 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
247 first_arg_reg++;
248 num_arg_regs--;
249 sp -= 4;
250 }
251
252 /* Setup parameters. */
253 for (i = 0; i < nargs; i++)
254 {
255 struct value *arg = args[i];
256 struct type *arg_type = check_typedef (value_type (arg));
257 gdb_byte *contents;
258 ULONGEST val;
259
260 /* Promote small integer types to int. */
261 switch (TYPE_CODE (arg_type))
262 {
263 case TYPE_CODE_INT:
264 case TYPE_CODE_BOOL:
265 case TYPE_CODE_CHAR:
266 case TYPE_CODE_RANGE:
267 case TYPE_CODE_ENUM:
268 if (TYPE_LENGTH (arg_type) < 4)
269 {
270 arg_type = builtin_type (gdbarch)->builtin_int32;
271 arg = value_cast (arg_type, arg);
272 }
273 break;
274 }
275
276 /* FIXME: Handle structures. */
277
278 contents = (gdb_byte *) value_contents (arg);
279 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
280 byte_order);
281
282 /* First num_arg_regs parameters are passed by registers,
283 and the rest are passed on the stack. */
284 if (i < num_arg_regs)
285 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
286 else
287 {
288 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
289 val);
290 sp -= 4;
291 }
292 }
293
294 /* Update stack pointer. */
295 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
296
297 /* Return adjusted stack pointer. */
298 return sp;
299 }
300
301 /* Extract return value after calling a function in the inferior. */
302
303 static void
304 lm32_extract_return_value (struct type *type, struct regcache *regcache,
305 gdb_byte *valbuf)
306 {
307 struct gdbarch *gdbarch = regcache->arch ();
308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
309 ULONGEST l;
310 CORE_ADDR return_buffer;
311
312 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
313 && TYPE_CODE (type) != TYPE_CODE_UNION
314 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
315 {
316 /* Return value is returned in a single register. */
317 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
318 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
319 }
320 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
321 {
322 /* 64-bit values are returned in a register pair. */
323 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
324 memcpy (valbuf, &l, 4);
325 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
326 memcpy (valbuf + 4, &l, 4);
327 }
328 else
329 {
330 /* Aggregate types greater than a single register are returned
331 in memory. FIXME: Unless they are only 2 regs?. */
332 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
333 return_buffer = l;
334 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
335 }
336 }
337
338 /* Write into appropriate registers a function return value of type
339 TYPE, given in virtual format. */
340 static void
341 lm32_store_return_value (struct type *type, struct regcache *regcache,
342 const gdb_byte *valbuf)
343 {
344 struct gdbarch *gdbarch = regcache->arch ();
345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
346 ULONGEST val;
347 int len = TYPE_LENGTH (type);
348
349 if (len <= 4)
350 {
351 val = extract_unsigned_integer (valbuf, len, byte_order);
352 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
353 }
354 else if (len <= 8)
355 {
356 val = extract_unsigned_integer (valbuf, 4, byte_order);
357 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
358 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
359 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
360 }
361 else
362 error (_("lm32_store_return_value: type length too large."));
363 }
364
365 /* Determine whether a functions return value is in a register or memory. */
366 static enum return_value_convention
367 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
368 struct type *valtype, struct regcache *regcache,
369 gdb_byte *readbuf, const gdb_byte *writebuf)
370 {
371 enum type_code code = TYPE_CODE (valtype);
372
373 if (code == TYPE_CODE_STRUCT
374 || code == TYPE_CODE_UNION
375 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
376 return RETURN_VALUE_STRUCT_CONVENTION;
377
378 if (readbuf)
379 lm32_extract_return_value (valtype, regcache, readbuf);
380 if (writebuf)
381 lm32_store_return_value (valtype, regcache, writebuf);
382
383 return RETURN_VALUE_REGISTER_CONVENTION;
384 }
385
386 /* Put here the code to store, into fi->saved_regs, the addresses of
387 the saved registers of frame described by FRAME_INFO. This
388 includes special registers such as pc and fp saved in special ways
389 in the stack frame. sp is even more special: the address we return
390 for it IS the sp for the next frame. */
391
392 static struct lm32_frame_cache *
393 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
394 {
395 CORE_ADDR current_pc;
396 ULONGEST prev_sp;
397 ULONGEST this_base;
398 struct lm32_frame_cache *info;
399 int i;
400
401 if ((*this_prologue_cache))
402 return (struct lm32_frame_cache *) (*this_prologue_cache);
403
404 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
405 (*this_prologue_cache) = info;
406 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
407
408 info->pc = get_frame_func (this_frame);
409 current_pc = get_frame_pc (this_frame);
410 lm32_analyze_prologue (get_frame_arch (this_frame),
411 info->pc, current_pc, info);
412
413 /* Compute the frame's base, and the previous frame's SP. */
414 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
415 prev_sp = this_base + info->size;
416 info->base = this_base;
417
418 /* Convert callee save offsets into addresses. */
419 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
420 {
421 if (trad_frame_addr_p (info->saved_regs, i))
422 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
423 }
424
425 /* The call instruction moves the caller's PC in the callee's RA register.
426 Since this is an unwind, do the reverse. Copy the location of RA register
427 into PC (the address / regnum) so that a request for PC will be
428 converted into a request for the RA register. */
429 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
430
431 /* The previous frame's SP needed to be computed. Save the computed
432 value. */
433 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
434
435 return info;
436 }
437
438 static void
439 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
440 struct frame_id *this_id)
441 {
442 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
443
444 /* This marks the outermost frame. */
445 if (cache->base == 0)
446 return;
447
448 (*this_id) = frame_id_build (cache->base, cache->pc);
449 }
450
451 static struct value *
452 lm32_frame_prev_register (struct frame_info *this_frame,
453 void **this_prologue_cache, int regnum)
454 {
455 struct lm32_frame_cache *info;
456
457 info = lm32_frame_cache (this_frame, this_prologue_cache);
458 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
459 }
460
461 static const struct frame_unwind lm32_frame_unwind = {
462 NORMAL_FRAME,
463 default_frame_unwind_stop_reason,
464 lm32_frame_this_id,
465 lm32_frame_prev_register,
466 NULL,
467 default_frame_sniffer
468 };
469
470 static CORE_ADDR
471 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
472 {
473 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
474
475 return info->base;
476 }
477
478 static const struct frame_base lm32_frame_base = {
479 &lm32_frame_unwind,
480 lm32_frame_base_address,
481 lm32_frame_base_address,
482 lm32_frame_base_address
483 };
484
485 static CORE_ADDR
486 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
487 {
488 /* Align to the size of an instruction (so that they can safely be
489 pushed onto the stack. */
490 return sp & ~3;
491 }
492
493 static struct gdbarch *
494 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
495 {
496 struct gdbarch *gdbarch;
497 struct gdbarch_tdep *tdep;
498
499 /* If there is already a candidate, use it. */
500 arches = gdbarch_list_lookup_by_info (arches, &info);
501 if (arches != NULL)
502 return arches->gdbarch;
503
504 /* None found, create a new architecture from the information provided. */
505 tdep = XCNEW (struct gdbarch_tdep);
506 gdbarch = gdbarch_alloc (&info, tdep);
507
508 /* Type sizes. */
509 set_gdbarch_short_bit (gdbarch, 16);
510 set_gdbarch_int_bit (gdbarch, 32);
511 set_gdbarch_long_bit (gdbarch, 32);
512 set_gdbarch_long_long_bit (gdbarch, 64);
513 set_gdbarch_float_bit (gdbarch, 32);
514 set_gdbarch_double_bit (gdbarch, 64);
515 set_gdbarch_long_double_bit (gdbarch, 64);
516 set_gdbarch_ptr_bit (gdbarch, 32);
517
518 /* Register info. */
519 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
520 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
521 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
522 set_gdbarch_register_name (gdbarch, lm32_register_name);
523 set_gdbarch_register_type (gdbarch, lm32_register_type);
524 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
525
526 /* Frame info. */
527 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
528 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
529 set_gdbarch_decr_pc_after_break (gdbarch, 0);
530 set_gdbarch_frame_args_skip (gdbarch, 0);
531
532 /* Frame unwinding. */
533 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
534 frame_base_set_default (gdbarch, &lm32_frame_base);
535 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
536
537 /* Breakpoints. */
538 set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
539 set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
540 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
541
542 /* Calling functions in the inferior. */
543 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
544 set_gdbarch_return_value (gdbarch, lm32_return_value);
545
546 lm32_add_reggroups (gdbarch);
547 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
548
549 return gdbarch;
550 }
551
552 void _initialize_lm32_tdep ();
553 void
554 _initialize_lm32_tdep ()
555 {
556 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
557 }
This page took 0.040632 seconds and 4 git commands to generate.