gdb/
[deliverable/binutils-gdb.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
39
40 #include "gdb_string.h"
41
42 /* Macros to extract fields from an instruction. */
43 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
44 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
45 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
46 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
47 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
48
49 struct gdbarch_tdep
50 {
51 /* gdbarch target dependent data here. Currently unused for LM32. */
52 };
53
54 struct lm32_frame_cache
55 {
56 /* The frame's base. Used when constructing a frame ID. */
57 CORE_ADDR base;
58 CORE_ADDR pc;
59 /* Size of frame. */
60 int size;
61 /* Table indicating the location of each and every register. */
62 struct trad_frame_saved_reg *saved_regs;
63 };
64
65 /* Add the available register groups. */
66
67 static void
68 lm32_add_reggroups (struct gdbarch *gdbarch)
69 {
70 reggroup_add (gdbarch, general_reggroup);
71 reggroup_add (gdbarch, all_reggroup);
72 reggroup_add (gdbarch, system_reggroup);
73 }
74
75 /* Return whether a given register is in a given group. */
76
77 static int
78 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
79 struct reggroup *group)
80 {
81 if (group == general_reggroup)
82 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
83 || (regnum == SIM_LM32_PC_REGNUM);
84 else if (group == system_reggroup)
85 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
86 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
87 return default_register_reggroup_p (gdbarch, regnum, group);
88 }
89
90 /* Return a name that corresponds to the given register number. */
91
92 static const char *
93 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
94 {
95 static char *register_names[] = {
96 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
97 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
98 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
99 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
100 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
101 };
102
103 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
104 return NULL;
105 else
106 return register_names[reg_nr];
107 }
108
109 /* Return type of register. */
110
111 static struct type *
112 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
113 {
114 return builtin_type_int32;
115 }
116
117 /* Return non-zero if a register can't be written. */
118
119 static int
120 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
121 {
122 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
123 }
124
125 /* Analyze a function's prologue. */
126
127 static CORE_ADDR
128 lm32_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
129 struct lm32_frame_cache *info)
130 {
131 unsigned long instruction;
132
133 /* Keep reading though instructions, until we come across an instruction
134 that isn't likely to be part of the prologue. */
135 info->size = 0;
136 for (; pc < limit; pc += 4)
137 {
138
139 /* Read an instruction. */
140 instruction = read_memory_integer (pc, 4);
141
142 if ((LM32_OPCODE (instruction) == OP_SW)
143 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
144 {
145 /* Any stack displaced store is likely part of the prologue.
146 Record that the register is being saved, and the offset
147 into the stack. */
148 info->saved_regs[LM32_REG1 (instruction)].addr =
149 LM32_IMM16 (instruction);
150 }
151 else if ((LM32_OPCODE (instruction) == OP_ADDI)
152 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
153 {
154 /* An add to the SP is likely to be part of the prologue.
155 Adjust stack size by whatever the instruction adds to the sp. */
156 info->size -= LM32_IMM16 (instruction);
157 }
158 else if ( /* add fp,fp,sp */
159 ((LM32_OPCODE (instruction) == OP_ADD)
160 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
161 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
163 /* mv fp,imm */
164 || ((LM32_OPCODE (instruction) == OP_ADDI)
165 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
166 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
167 {
168 /* Likely to be in the prologue for functions that require
169 a frame pointer. */
170 }
171 else
172 {
173 /* Any other instruction is likely not to be part of the prologue. */
174 break;
175 }
176 }
177
178 return pc;
179 }
180
181 /* Return PC of first non prologue instruction, for the function at the
182 specified address. */
183
184 static CORE_ADDR
185 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
186 {
187 CORE_ADDR func_addr, limit_pc;
188 struct symtab_and_line sal;
189 struct lm32_frame_cache frame_info;
190 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
191
192 /* See if we can determine the end of the prologue via the symbol table.
193 If so, then return either PC, or the PC after the prologue, whichever
194 is greater. */
195 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
196 {
197 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
198 if (post_prologue_pc != 0)
199 return max (pc, post_prologue_pc);
200 }
201
202 /* Can't determine prologue from the symbol table, need to examine
203 instructions. */
204
205 /* Find an upper limit on the function prologue using the debug
206 information. If the debug information could not be used to provide
207 that bound, then use an arbitrary large number as the upper bound. */
208 limit_pc = skip_prologue_using_sal (pc);
209 if (limit_pc == 0)
210 limit_pc = pc + 100; /* Magic. */
211
212 frame_info.saved_regs = saved_regs;
213 return lm32_analyze_prologue (pc, limit_pc, &frame_info);
214 }
215
216 /* Create a breakpoint instruction. */
217
218 static const gdb_byte *
219 lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
220 int *lenptr)
221 {
222 static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
223
224 *lenptr = sizeof (breakpoint);
225 return breakpoint;
226 }
227
228 /* Setup registers and stack for faking a call to a function in the
229 inferior. */
230
231 static CORE_ADDR
232 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
233 struct regcache *regcache, CORE_ADDR bp_addr,
234 int nargs, struct value **args, CORE_ADDR sp,
235 int struct_return, CORE_ADDR struct_addr)
236 {
237 int first_arg_reg = SIM_LM32_R1_REGNUM;
238 int num_arg_regs = 8;
239 int i;
240
241 /* Set the return address. */
242 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
243
244 /* If we're returning a large struct, a pointer to the address to
245 store it at is passed as a first hidden parameter. */
246 if (struct_return)
247 {
248 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
249 first_arg_reg++;
250 num_arg_regs--;
251 sp -= 4;
252 }
253
254 /* Setup parameters. */
255 for (i = 0; i < nargs; i++)
256 {
257 struct value *arg = args[i];
258 struct type *arg_type = check_typedef (value_type (arg));
259 gdb_byte *contents;
260 int len;
261 int j;
262 int reg;
263 ULONGEST val;
264
265 /* Promote small integer types to int. */
266 switch (TYPE_CODE (arg_type))
267 {
268 case TYPE_CODE_INT:
269 case TYPE_CODE_BOOL:
270 case TYPE_CODE_CHAR:
271 case TYPE_CODE_RANGE:
272 case TYPE_CODE_ENUM:
273 if (TYPE_LENGTH (arg_type) < 4)
274 {
275 arg_type = builtin_type_int32;
276 arg = value_cast (arg_type, arg);
277 }
278 break;
279 }
280
281 /* FIXME: Handle structures. */
282
283 contents = (gdb_byte *) value_contents (arg);
284 len = TYPE_LENGTH (arg_type);
285 val = extract_unsigned_integer (contents, len);
286
287 /* First num_arg_regs parameters are passed by registers,
288 and the rest are passed on the stack. */
289 if (i < num_arg_regs)
290 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
291 else
292 {
293 write_memory (sp, (void *) &val, len);
294 sp -= 4;
295 }
296 }
297
298 /* Update stack pointer. */
299 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
300
301 /* Return adjusted stack pointer. */
302 return sp;
303 }
304
305 /* Extract return value after calling a function in the inferior. */
306
307 static void
308 lm32_extract_return_value (struct type *type, struct regcache *regcache,
309 gdb_byte *valbuf)
310 {
311 int offset;
312 ULONGEST l;
313 CORE_ADDR return_buffer;
314
315 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
316 && TYPE_CODE (type) != TYPE_CODE_UNION
317 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
318 {
319 /* Return value is returned in a single register. */
320 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
321 store_unsigned_integer (valbuf, TYPE_LENGTH (type), l);
322 }
323 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
324 {
325 /* 64-bit values are returned in a register pair. */
326 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
327 memcpy (valbuf, &l, 4);
328 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
329 memcpy (valbuf + 4, &l, 4);
330 }
331 else
332 {
333 /* Aggregate types greater than a single register are returned in memory.
334 FIXME: Unless they are only 2 regs?. */
335 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
336 return_buffer = l;
337 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
338 }
339 }
340
341 /* Write into appropriate registers a function return value of type
342 TYPE, given in virtual format. */
343 static void
344 lm32_store_return_value (struct type *type, struct regcache *regcache,
345 const gdb_byte *valbuf)
346 {
347 ULONGEST val;
348 int len = TYPE_LENGTH (type);
349
350 if (len <= 4)
351 {
352 val = extract_unsigned_integer (valbuf, len);
353 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
354 }
355 else if (len <= 8)
356 {
357 val = extract_unsigned_integer (valbuf, 4);
358 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
359 val = extract_unsigned_integer (valbuf + 4, len - 4);
360 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
361 }
362 else
363 error (_("lm32_store_return_value: type length too large."));
364 }
365
366 /* Determine whether a functions return value is in a register or memory. */
367 static enum return_value_convention
368 lm32_return_value (struct gdbarch *gdbarch, struct type *func_type,
369 struct type *valtype, struct regcache *regcache,
370 gdb_byte *readbuf, const gdb_byte *writebuf)
371 {
372 enum type_code code = TYPE_CODE (valtype);
373
374 if (code == TYPE_CODE_STRUCT
375 || code == TYPE_CODE_UNION
376 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
377 return RETURN_VALUE_STRUCT_CONVENTION;
378
379 if (readbuf)
380 lm32_extract_return_value (valtype, regcache, readbuf);
381 if (writebuf)
382 lm32_store_return_value (valtype, regcache, writebuf);
383
384 return RETURN_VALUE_REGISTER_CONVENTION;
385 }
386
387 static CORE_ADDR
388 lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
389 {
390 return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
391 }
392
393 static CORE_ADDR
394 lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
395 {
396 return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
397 }
398
399 static struct frame_id
400 lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
401 {
402 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
403
404 return frame_id_build (sp, get_frame_pc (this_frame));
405 }
406
407 /* Put here the code to store, into fi->saved_regs, the addresses of
408 the saved registers of frame described by FRAME_INFO. This
409 includes special registers such as pc and fp saved in special ways
410 in the stack frame. sp is even more special: the address we return
411 for it IS the sp for the next frame. */
412
413 static struct lm32_frame_cache *
414 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
415 {
416 CORE_ADDR prologue_pc;
417 CORE_ADDR current_pc;
418 ULONGEST prev_sp;
419 ULONGEST this_base;
420 struct lm32_frame_cache *info;
421 int prefixed;
422 unsigned long instruction;
423 int op;
424 int offsets[32];
425 int i;
426 long immediate;
427
428 if ((*this_prologue_cache))
429 return (*this_prologue_cache);
430
431 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
432 (*this_prologue_cache) = info;
433 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
434
435 info->pc = get_frame_func (this_frame);
436 current_pc = get_frame_pc (this_frame);
437 lm32_analyze_prologue (info->pc, current_pc, info);
438
439 /* Compute the frame's base, and the previous frame's SP. */
440 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
441 prev_sp = this_base + info->size;
442 info->base = this_base;
443
444 /* Convert callee save offsets into addresses. */
445 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
446 {
447 if (trad_frame_addr_p (info->saved_regs, i))
448 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
449 }
450
451 /* The call instruction moves the caller's PC in the callee's RA register.
452 Since this is an unwind, do the reverse. Copy the location of RA register
453 into PC (the address / regnum) so that a request for PC will be
454 converted into a request for the RA register. */
455 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
456
457 /* The previous frame's SP needed to be computed. Save the computed value. */
458 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
459
460 return info;
461 }
462
463 static void
464 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
465 struct frame_id *this_id)
466 {
467 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
468
469 /* This marks the outermost frame. */
470 if (cache->base == 0)
471 return;
472
473 (*this_id) = frame_id_build (cache->base, cache->pc);
474 }
475
476 static struct value *
477 lm32_frame_prev_register (struct frame_info *this_frame,
478 void **this_prologue_cache, int regnum)
479 {
480 struct lm32_frame_cache *info;
481
482 info = lm32_frame_cache (this_frame, this_prologue_cache);
483 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
484 }
485
486 static const struct frame_unwind lm32_frame_unwind = {
487 NORMAL_FRAME,
488 lm32_frame_this_id,
489 lm32_frame_prev_register,
490 NULL,
491 default_frame_sniffer
492 };
493
494 static CORE_ADDR
495 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
496 {
497 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
498
499 return info->base;
500 }
501
502 static const struct frame_base lm32_frame_base = {
503 &lm32_frame_unwind,
504 lm32_frame_base_address,
505 lm32_frame_base_address,
506 lm32_frame_base_address
507 };
508
509 static CORE_ADDR
510 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
511 {
512 /* Align to the size of an instruction (so that they can safely be
513 pushed onto the stack. */
514 return sp & ~3;
515 }
516
517 static struct gdbarch *
518 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
519 {
520 struct gdbarch *gdbarch;
521 struct gdbarch_tdep *tdep;
522
523 /* If there is already a candidate, use it. */
524 arches = gdbarch_list_lookup_by_info (arches, &info);
525 if (arches != NULL)
526 return arches->gdbarch;
527
528 /* None found, create a new architecture from the information provided. */
529 tdep = XMALLOC (struct gdbarch_tdep);
530 gdbarch = gdbarch_alloc (&info, tdep);
531
532 /* Type sizes. */
533 set_gdbarch_short_bit (gdbarch, 16);
534 set_gdbarch_int_bit (gdbarch, 32);
535 set_gdbarch_long_bit (gdbarch, 32);
536 set_gdbarch_long_long_bit (gdbarch, 64);
537 set_gdbarch_float_bit (gdbarch, 32);
538 set_gdbarch_double_bit (gdbarch, 64);
539 set_gdbarch_long_double_bit (gdbarch, 64);
540 set_gdbarch_ptr_bit (gdbarch, 32);
541
542 /* Register info. */
543 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
544 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
545 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
546 set_gdbarch_register_name (gdbarch, lm32_register_name);
547 set_gdbarch_register_type (gdbarch, lm32_register_type);
548 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
549
550 /* Frame info. */
551 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
552 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
553 set_gdbarch_decr_pc_after_break (gdbarch, 0);
554 set_gdbarch_frame_args_skip (gdbarch, 0);
555
556 /* Frame unwinding. */
557 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
558 frame_base_set_default (gdbarch, &lm32_frame_base);
559 set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
560 set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
561 set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
562 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
563
564 /* Breakpoints. */
565 set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
566 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
567
568 /* Calling functions in the inferior. */
569 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
570 set_gdbarch_return_value (gdbarch, lm32_return_value);
571
572 /* Instruction disassembler. */
573 set_gdbarch_print_insn (gdbarch, print_insn_lm32);
574
575 lm32_add_reggroups (gdbarch);
576 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
577
578 return gdbarch;
579 }
580
581 void
582 _initialize_lm32_tdep (void)
583 {
584 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
585 }
This page took 0.045223 seconds and 5 git commands to generate.