20a7e163ee82e912c7179c1ed7231b4f7993b80a
[deliverable/binutils-gdb.git] / gdb / lynx-nat.c
1 /* Native-dependent code for LynxOS.
2 Copyright 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26
27 #include <sys/ptrace.h>
28 #include <sys/wait.h>
29 #include <sys/fpp.h>
30
31 static unsigned long registers_addr (int pid);
32 static void fetch_core_registers (char *, unsigned, int, CORE_ADDR);
33
34 #define X(ENTRY)(offsetof(struct econtext, ENTRY))
35
36 #ifdef I386
37 /* Mappings from tm-i386v.h */
38
39 static int regmap[] =
40 {
41 X (eax),
42 X (ecx),
43 X (edx),
44 X (ebx),
45 X (esp), /* sp */
46 X (ebp), /* fp */
47 X (esi),
48 X (edi),
49 X (eip), /* pc */
50 X (flags), /* ps */
51 X (cs),
52 X (ss),
53 X (ds),
54 X (es),
55 X (ecode), /* Lynx doesn't give us either fs or gs, so */
56 X (fault), /* we just substitute these two in the hopes
57 that they are useful. */
58 };
59 #endif /* I386 */
60
61 #ifdef M68K
62 /* Mappings from tm-m68k.h */
63
64 static int regmap[] =
65 {
66 X (regs[0]), /* d0 */
67 X (regs[1]), /* d1 */
68 X (regs[2]), /* d2 */
69 X (regs[3]), /* d3 */
70 X (regs[4]), /* d4 */
71 X (regs[5]), /* d5 */
72 X (regs[6]), /* d6 */
73 X (regs[7]), /* d7 */
74 X (regs[8]), /* a0 */
75 X (regs[9]), /* a1 */
76 X (regs[10]), /* a2 */
77 X (regs[11]), /* a3 */
78 X (regs[12]), /* a4 */
79 X (regs[13]), /* a5 */
80 X (regs[14]), /* fp */
81 offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */
82 X (status), /* ps */
83 X (pc),
84
85 X (fregs[0 * 3]), /* fp0 */
86 X (fregs[1 * 3]), /* fp1 */
87 X (fregs[2 * 3]), /* fp2 */
88 X (fregs[3 * 3]), /* fp3 */
89 X (fregs[4 * 3]), /* fp4 */
90 X (fregs[5 * 3]), /* fp5 */
91 X (fregs[6 * 3]), /* fp6 */
92 X (fregs[7 * 3]), /* fp7 */
93
94 X (fcregs[0]), /* fpcontrol */
95 X (fcregs[1]), /* fpstatus */
96 X (fcregs[2]), /* fpiaddr */
97 X (ssw), /* fpcode */
98 X (fault), /* fpflags */
99 };
100 #endif /* M68K */
101
102 #ifdef SPARC
103 /* Mappings from tm-sparc.h */
104
105 #define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
106
107 static int regmap[] =
108 {
109 -1, /* g0 */
110 X (g1),
111 X (g2),
112 X (g3),
113 X (g4),
114 -1, /* g5->g7 aren't saved by Lynx */
115 -1,
116 -1,
117
118 X (o[0]),
119 X (o[1]),
120 X (o[2]),
121 X (o[3]),
122 X (o[4]),
123 X (o[5]),
124 X (o[6]), /* sp */
125 X (o[7]), /* ra */
126
127 -1, -1, -1, -1, -1, -1, -1, -1, /* l0 -> l7 */
128
129 -1, -1, -1, -1, -1, -1, -1, -1, /* i0 -> i7 */
130
131 FX (f.fregs[0]), /* f0 */
132 FX (f.fregs[1]),
133 FX (f.fregs[2]),
134 FX (f.fregs[3]),
135 FX (f.fregs[4]),
136 FX (f.fregs[5]),
137 FX (f.fregs[6]),
138 FX (f.fregs[7]),
139 FX (f.fregs[8]),
140 FX (f.fregs[9]),
141 FX (f.fregs[10]),
142 FX (f.fregs[11]),
143 FX (f.fregs[12]),
144 FX (f.fregs[13]),
145 FX (f.fregs[14]),
146 FX (f.fregs[15]),
147 FX (f.fregs[16]),
148 FX (f.fregs[17]),
149 FX (f.fregs[18]),
150 FX (f.fregs[19]),
151 FX (f.fregs[20]),
152 FX (f.fregs[21]),
153 FX (f.fregs[22]),
154 FX (f.fregs[23]),
155 FX (f.fregs[24]),
156 FX (f.fregs[25]),
157 FX (f.fregs[26]),
158 FX (f.fregs[27]),
159 FX (f.fregs[28]),
160 FX (f.fregs[29]),
161 FX (f.fregs[30]),
162 FX (f.fregs[31]),
163
164 X (y),
165 X (psr),
166 X (wim),
167 X (tbr),
168 X (pc),
169 X (npc),
170 FX (fsr), /* fpsr */
171 -1, /* cpsr */
172 };
173 #endif /* SPARC */
174
175 #ifdef rs6000
176
177 static int regmap[] =
178 {
179 X (iregs[0]), /* r0 */
180 X (iregs[1]),
181 X (iregs[2]),
182 X (iregs[3]),
183 X (iregs[4]),
184 X (iregs[5]),
185 X (iregs[6]),
186 X (iregs[7]),
187 X (iregs[8]),
188 X (iregs[9]),
189 X (iregs[10]),
190 X (iregs[11]),
191 X (iregs[12]),
192 X (iregs[13]),
193 X (iregs[14]),
194 X (iregs[15]),
195 X (iregs[16]),
196 X (iregs[17]),
197 X (iregs[18]),
198 X (iregs[19]),
199 X (iregs[20]),
200 X (iregs[21]),
201 X (iregs[22]),
202 X (iregs[23]),
203 X (iregs[24]),
204 X (iregs[25]),
205 X (iregs[26]),
206 X (iregs[27]),
207 X (iregs[28]),
208 X (iregs[29]),
209 X (iregs[30]),
210 X (iregs[31]),
211
212 X (fregs[0]), /* f0 */
213 X (fregs[1]),
214 X (fregs[2]),
215 X (fregs[3]),
216 X (fregs[4]),
217 X (fregs[5]),
218 X (fregs[6]),
219 X (fregs[7]),
220 X (fregs[8]),
221 X (fregs[9]),
222 X (fregs[10]),
223 X (fregs[11]),
224 X (fregs[12]),
225 X (fregs[13]),
226 X (fregs[14]),
227 X (fregs[15]),
228 X (fregs[16]),
229 X (fregs[17]),
230 X (fregs[18]),
231 X (fregs[19]),
232 X (fregs[20]),
233 X (fregs[21]),
234 X (fregs[22]),
235 X (fregs[23]),
236 X (fregs[24]),
237 X (fregs[25]),
238 X (fregs[26]),
239 X (fregs[27]),
240 X (fregs[28]),
241 X (fregs[29]),
242 X (fregs[30]),
243 X (fregs[31]),
244
245 X (srr0), /* IAR (PC) */
246 X (srr1), /* MSR (PS) */
247 X (cr), /* CR */
248 X (lr), /* LR */
249 X (ctr), /* CTR */
250 X (xer), /* XER */
251 X (mq) /* MQ */
252 };
253
254 #endif /* rs6000 */
255
256 #ifdef SPARC
257
258 /* This routine handles some oddball cases for Sparc registers and LynxOS.
259 In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
260 It also handles knows where to find the I & L regs on the stack. */
261
262 void
263 fetch_inferior_registers (int regno)
264 {
265 int whatregs = 0;
266
267 #define WHATREGS_FLOAT 1
268 #define WHATREGS_GEN 2
269 #define WHATREGS_STACK 4
270
271 if (regno == -1)
272 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
273 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
274 whatregs = WHATREGS_STACK;
275 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
276 whatregs = WHATREGS_FLOAT;
277 else
278 whatregs = WHATREGS_GEN;
279
280 if (whatregs & WHATREGS_GEN)
281 {
282 struct econtext ec; /* general regs */
283 char buf[MAX_REGISTER_RAW_SIZE];
284 int retval;
285 int i;
286
287 errno = 0;
288 retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
289 0);
290 if (errno)
291 perror_with_name ("ptrace(PTRACE_GETREGS)");
292
293 memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
294 supply_register (G0_REGNUM, buf);
295 supply_register (TBR_REGNUM, (char *) &ec.tbr);
296
297 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
298 4 * REGISTER_RAW_SIZE (G1_REGNUM));
299 for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
300 register_valid[i] = 1;
301
302 supply_register (PS_REGNUM, (char *) &ec.psr);
303 supply_register (Y_REGNUM, (char *) &ec.y);
304 supply_register (PC_REGNUM, (char *) &ec.pc);
305 supply_register (NPC_REGNUM, (char *) &ec.npc);
306 supply_register (WIM_REGNUM, (char *) &ec.wim);
307
308 memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
309 8 * REGISTER_RAW_SIZE (O0_REGNUM));
310 for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
311 register_valid[i] = 1;
312 }
313
314 if (whatregs & WHATREGS_STACK)
315 {
316 CORE_ADDR sp;
317 int i;
318
319 sp = read_register (SP_REGNUM);
320
321 target_read_memory (sp + FRAME_SAVED_I0,
322 &registers[REGISTER_BYTE (I0_REGNUM)],
323 8 * REGISTER_RAW_SIZE (I0_REGNUM));
324 for (i = I0_REGNUM; i <= I7_REGNUM; i++)
325 register_valid[i] = 1;
326
327 target_read_memory (sp + FRAME_SAVED_L0,
328 &registers[REGISTER_BYTE (L0_REGNUM)],
329 8 * REGISTER_RAW_SIZE (L0_REGNUM));
330 for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
331 register_valid[i] = 1;
332 }
333
334 if (whatregs & WHATREGS_FLOAT)
335 {
336 struct fcontext fc; /* fp regs */
337 int retval;
338 int i;
339
340 errno = 0;
341 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
342 0);
343 if (errno)
344 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
345
346 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
347 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
348 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
349 register_valid[i] = 1;
350
351 supply_register (FPS_REGNUM, (char *) &fc.fsr);
352 }
353 }
354
355 /* This routine handles storing of the I & L regs for the Sparc. The trick
356 here is that they actually live on the stack. The really tricky part is
357 that when changing the stack pointer, the I & L regs must be written to
358 where the new SP points, otherwise the regs will be incorrect when the
359 process is started up again. We assume that the I & L regs are valid at
360 this point. */
361
362 void
363 store_inferior_registers (int regno)
364 {
365 int whatregs = 0;
366
367 if (regno == -1)
368 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
369 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
370 whatregs = WHATREGS_STACK;
371 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
372 whatregs = WHATREGS_FLOAT;
373 else if (regno == SP_REGNUM)
374 whatregs = WHATREGS_STACK | WHATREGS_GEN;
375 else
376 whatregs = WHATREGS_GEN;
377
378 if (whatregs & WHATREGS_GEN)
379 {
380 struct econtext ec; /* general regs */
381 int retval;
382
383 ec.tbr = read_register (TBR_REGNUM);
384 memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
385 4 * REGISTER_RAW_SIZE (G1_REGNUM));
386
387 ec.psr = read_register (PS_REGNUM);
388 ec.y = read_register (Y_REGNUM);
389 ec.pc = read_register (PC_REGNUM);
390 ec.npc = read_register (NPC_REGNUM);
391 ec.wim = read_register (WIM_REGNUM);
392
393 memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
394 8 * REGISTER_RAW_SIZE (O0_REGNUM));
395
396 errno = 0;
397 retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
398 0);
399 if (errno)
400 perror_with_name ("ptrace(PTRACE_SETREGS)");
401 }
402
403 if (whatregs & WHATREGS_STACK)
404 {
405 int regoffset;
406 CORE_ADDR sp;
407
408 sp = read_register (SP_REGNUM);
409
410 if (regno == -1 || regno == SP_REGNUM)
411 {
412 if (!register_valid[L0_REGNUM + 5])
413 abort ();
414 target_write_memory (sp + FRAME_SAVED_I0,
415 &registers[REGISTER_BYTE (I0_REGNUM)],
416 8 * REGISTER_RAW_SIZE (I0_REGNUM));
417
418 target_write_memory (sp + FRAME_SAVED_L0,
419 &registers[REGISTER_BYTE (L0_REGNUM)],
420 8 * REGISTER_RAW_SIZE (L0_REGNUM));
421 }
422 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
423 {
424 if (!register_valid[regno])
425 abort ();
426 if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
427 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
428 + FRAME_SAVED_L0;
429 else
430 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
431 + FRAME_SAVED_I0;
432 target_write_memory (sp + regoffset,
433 &registers[REGISTER_BYTE (regno)],
434 REGISTER_RAW_SIZE (regno));
435 }
436 }
437
438 if (whatregs & WHATREGS_FLOAT)
439 {
440 struct fcontext fc; /* fp regs */
441 int retval;
442
443 /* We read fcontext first so that we can get good values for fq_t... */
444 errno = 0;
445 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
446 0);
447 if (errno)
448 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
449
450 memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
451 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
452
453 fc.fsr = read_register (FPS_REGNUM);
454
455 errno = 0;
456 retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
457 0);
458 if (errno)
459 perror_with_name ("ptrace(PTRACE_SETFPREGS)");
460 }
461 }
462 #endif /* SPARC */
463
464 #if defined (I386) || defined (M68K) || defined (rs6000)
465
466 /* Return the offset relative to the start of the per-thread data to the
467 saved context block. */
468
469 static unsigned long
470 registers_addr (int pid)
471 {
472 CORE_ADDR stblock;
473 int ecpoff = offsetof (st_t, ecp);
474 CORE_ADDR ecp;
475
476 errno = 0;
477 stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE) 0,
478 0);
479 if (errno)
480 perror_with_name ("ptrace(PTRACE_THREADUSER)");
481
482 ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE) ecpoff,
483 0);
484 if (errno)
485 perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
486
487 return ecp - stblock;
488 }
489
490 /* Fetch one or more registers from the inferior. REGNO == -1 to get
491 them all. We actually fetch more than requested, when convenient,
492 marking them as valid so we won't fetch them again. */
493
494 void
495 fetch_inferior_registers (int regno)
496 {
497 int reglo, reghi;
498 int i;
499 unsigned long ecp;
500
501 if (regno == -1)
502 {
503 reglo = 0;
504 reghi = NUM_REGS - 1;
505 }
506 else
507 reglo = reghi = regno;
508
509 ecp = registers_addr (inferior_pid);
510
511 for (regno = reglo; regno <= reghi; regno++)
512 {
513 char buf[MAX_REGISTER_RAW_SIZE];
514 int ptrace_fun = PTRACE_PEEKTHREAD;
515
516 #ifdef M68K
517 ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
518 #endif
519
520 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
521 {
522 unsigned int reg;
523
524 errno = 0;
525 reg = ptrace (ptrace_fun, inferior_pid,
526 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
527 if (errno)
528 perror_with_name ("ptrace(PTRACE_PEEKUSP)");
529
530 *(int *) &buf[i] = reg;
531 }
532 supply_register (regno, buf);
533 }
534 }
535
536 /* Store our register values back into the inferior.
537 If REGNO is -1, do this for all registers.
538 Otherwise, REGNO specifies which register (so we can save time). */
539
540 /* Registers we shouldn't try to store. */
541 #if !defined (CANNOT_STORE_REGISTER)
542 #define CANNOT_STORE_REGISTER(regno) 0
543 #endif
544
545 void
546 store_inferior_registers (int regno)
547 {
548 int reglo, reghi;
549 int i;
550 unsigned long ecp;
551
552 if (regno == -1)
553 {
554 reglo = 0;
555 reghi = NUM_REGS - 1;
556 }
557 else
558 reglo = reghi = regno;
559
560 ecp = registers_addr (inferior_pid);
561
562 for (regno = reglo; regno <= reghi; regno++)
563 {
564 int ptrace_fun = PTRACE_POKEUSER;
565
566 if (CANNOT_STORE_REGISTER (regno))
567 continue;
568
569 #ifdef M68K
570 ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
571 #endif
572
573 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
574 {
575 unsigned int reg;
576
577 reg = *(unsigned int *) &registers[REGISTER_BYTE (regno) + i];
578
579 errno = 0;
580 ptrace (ptrace_fun, inferior_pid,
581 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
582 if (errno)
583 perror_with_name ("ptrace(PTRACE_POKEUSP)");
584 }
585 }
586 }
587 #endif /* defined (I386) || defined (M68K) || defined (rs6000) */
588
589 /* Wait for child to do something. Return pid of child, or -1 in case
590 of error; store status through argument pointer OURSTATUS. */
591
592 int
593 child_wait (int pid, struct target_waitstatus *ourstatus)
594 {
595 int save_errno;
596 int thread;
597 union wait status;
598
599 while (1)
600 {
601 int sig;
602
603 set_sigint_trap (); /* Causes SIGINT to be passed on to the
604 attached process. */
605 pid = wait (&status);
606
607 save_errno = errno;
608
609 clear_sigint_trap ();
610
611 if (pid == -1)
612 {
613 if (save_errno == EINTR)
614 continue;
615 fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
616 safe_strerror (save_errno));
617 /* Claim it exited with unknown signal. */
618 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
619 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
620 return -1;
621 }
622
623 if (pid != PIDGET (inferior_pid)) /* Some other process?!? */
624 continue;
625
626 thread = status.w_tid; /* Get thread id from status */
627
628 /* Initial thread value can only be acquired via wait, so we have to
629 resort to this hack. */
630
631 if (TIDGET (inferior_pid) == 0 && thread != 0)
632 {
633 inferior_pid = BUILDPID (inferior_pid, thread);
634 add_thread (inferior_pid);
635 }
636
637 pid = BUILDPID (pid, thread);
638
639 /* We've become a single threaded process again. */
640 if (thread == 0)
641 inferior_pid = pid;
642
643 /* Check for thread creation. */
644 if (WIFSTOPPED (status)
645 && WSTOPSIG (status) == SIGTRAP
646 && !in_thread_list (pid))
647 {
648 int realsig;
649
650 realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
651
652 if (realsig == SIGNEWTHREAD)
653 {
654 /* It's a new thread notification. We don't want to much with
655 realsig -- the code in wait_for_inferior expects SIGTRAP. */
656 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
657 ourstatus->value.sig = TARGET_SIGNAL_0;
658 return pid;
659 }
660 else
661 error ("Signal for unknown thread was not SIGNEWTHREAD");
662 }
663
664 /* Check for thread termination. */
665 else if (WIFSTOPPED (status)
666 && WSTOPSIG (status) == SIGTRAP
667 && in_thread_list (pid))
668 {
669 int realsig;
670
671 realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
672
673 if (realsig == SIGTHREADEXIT)
674 {
675 ptrace (PTRACE_CONT, PIDGET (pid), (PTRACE_ARG3_TYPE) 0, 0);
676 continue;
677 }
678 }
679
680 #ifdef SPARC
681 /* SPARC Lynx uses an byte reversed wait status; we must use the
682 host macros to access it. These lines just a copy of
683 store_waitstatus. We can't use CHILD_SPECIAL_WAITSTATUS
684 because target.c can't include the Lynx <sys/wait.h>. */
685 if (WIFEXITED (status))
686 {
687 ourstatus->kind = TARGET_WAITKIND_EXITED;
688 ourstatus->value.integer = WEXITSTATUS (status);
689 }
690 else if (!WIFSTOPPED (status))
691 {
692 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
693 ourstatus->value.sig =
694 target_signal_from_host (WTERMSIG (status));
695 }
696 else
697 {
698 ourstatus->kind = TARGET_WAITKIND_STOPPED;
699 ourstatus->value.sig =
700 target_signal_from_host (WSTOPSIG (status));
701 }
702 #else
703 store_waitstatus (ourstatus, status.w_status);
704 #endif
705
706 return pid;
707 }
708 }
709
710 /* Return nonzero if the given thread is still alive. */
711 int
712 child_thread_alive (int pid)
713 {
714 /* Arggh. Apparently pthread_kill only works for threads within
715 the process that calls pthread_kill.
716
717 We want to avoid the lynx signal extensions as they simply don't
718 map well to the generic gdb interface we want to keep.
719
720 All we want to do is determine if a particular thread is alive;
721 it appears as if we can just make a harmless thread specific
722 ptrace call to do that. */
723 return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1);
724 }
725
726 /* Resume execution of the inferior process.
727 If STEP is nonzero, single-step it.
728 If SIGNAL is nonzero, give it that signal. */
729
730 void
731 child_resume (int pid, int step, enum target_signal signal)
732 {
733 int func;
734
735 errno = 0;
736
737 /* If pid == -1, then we want to step/continue all threads, else
738 we only want to step/continue a single thread. */
739 if (pid == -1)
740 {
741 pid = inferior_pid;
742 func = step ? PTRACE_SINGLESTEP : PTRACE_CONT;
743 }
744 else
745 func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE;
746
747
748 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
749 it was. (If GDB wanted it to start some other way, we have already
750 written a new PC value to the child.)
751
752 If this system does not support PT_STEP, a higher level function will
753 have called single_step() to transmute the step request into a
754 continue request (by setting breakpoints on all possible successor
755 instructions), so we don't have to worry about that here. */
756
757 ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));
758
759 if (errno)
760 perror_with_name ("ptrace");
761 }
762
763 /* Convert a Lynx process ID to a string. Returns the string in a static
764 buffer. */
765
766 char *
767 child_pid_to_str (int pid)
768 {
769 static char buf[40];
770
771 sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));
772
773 return buf;
774 }
775
776 /* Extract the register values out of the core file and store
777 them where `read_register' will find them.
778
779 CORE_REG_SECT points to the register values themselves, read into memory.
780 CORE_REG_SIZE is the size of that area.
781 WHICH says which set of registers we are handling (0 = int, 2 = float
782 on machines where they are discontiguous).
783 REG_ADDR is the offset from u.u_ar0 to the register values relative to
784 core_reg_sect. This is used with old-fashioned core files to
785 locate the registers in a large upage-plus-stack ".reg" section.
786 Original upage address X is at location core_reg_sect+x+reg_addr.
787 */
788
789 static void
790 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which,
791 CORE_ADDR reg_addr)
792 {
793 struct st_entry s;
794 unsigned int regno;
795
796 for (regno = 0; regno < NUM_REGS; regno++)
797 if (regmap[regno] != -1)
798 supply_register (regno, core_reg_sect + offsetof (st_t, ec)
799 + regmap[regno]);
800
801 #ifdef SPARC
802 /* Fetching this register causes all of the I & L regs to be read from the
803 stack and validated. */
804
805 fetch_inferior_registers (I0_REGNUM);
806 #endif
807 }
808 \f
809
810 /* Register that we are able to handle lynx core file formats.
811 FIXME: is this really bfd_target_unknown_flavour? */
812
813 static struct core_fns lynx_core_fns =
814 {
815 bfd_target_unknown_flavour, /* core_flavour */
816 default_check_format, /* check_format */
817 default_core_sniffer, /* core_sniffer */
818 fetch_core_registers, /* core_read_registers */
819 NULL /* next */
820 };
821
822 void
823 _initialize_core_lynx (void)
824 {
825 add_core_fns (&lynx_core_fns);
826 }
This page took 0.047372 seconds and 3 git commands to generate.