gdb-3.5
[deliverable/binutils-gdb.git] / gdb / m-hp300bsd.h
1 /* Parameters for execution on a Hewlett-Packard 9000/300, running bsd.
2 Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 GDB is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GDB is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GDB; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Describe the endian nature of this machine. */
21 #define BITS_BIG_ENDIAN
22 #define BYTES_BIG_ENDIAN
23 #define WORDS_BIG_ENDIAN
24
25 /*
26 * Configuration file for HP9000/300 series machine running
27 * University of Utah's 4.3bsd port. This is NOT for HP-UX.
28 * Problems to hpbsd-bugs@cs.utah.edu
29 */
30
31 #ifndef hp300
32 #define hp300
33 #endif
34
35 /* Watch out for NaNs */
36
37 #define IEEE_FLOAT
38
39 /* Get rid of any system-imposed stack limit if possible. */
40
41 #define SET_STACK_LIMIT_HUGE
42
43 /* Define this if the C compiler puts an underscore at the front
44 of external names before giving them to the linker. */
45
46 #define NAMES_HAVE_UNDERSCORE
47
48 /* Debugger information will be in DBX format. */
49
50 #define READ_DBX_FORMAT
51
52 /* Offset from address of function to start of its code.
53 Zero on most machines. */
54
55 #define FUNCTION_START_OFFSET 0
56
57 /* Advance PC across any function entry prologue instructions
58 to reach some "real" code. */
59
60 #define SKIP_PROLOGUE(pc) \
61 { register int op = read_memory_integer (pc, 2); \
62 if (op == 0047126) \
63 pc += 4; /* Skip link #word */ \
64 else if (op == 0044016) \
65 pc += 6; /* Skip link #long */ \
66 }
67
68 /* Immediately after a function call, return the saved pc.
69 Can't go through the frames for this because on some machines
70 the new frame is not set up until the new function executes
71 some instructions. */
72
73 #define SAVED_PC_AFTER_CALL(frame) \
74 read_memory_integer (read_register (SP_REGNUM), 4)
75
76 /* This is the amount to subtract from u.u_ar0
77 to get the offset in the core file of the register values. */
78
79 #define KERNEL_U_ADDR kernel_u_addr
80
81 /* Same as offsetof macro from stddef.h (which 4.3BSD doesn't have). */
82 #define my_offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
83
84 /* On the HP300, sigtramp is in the u area. Gak! User struct is not
85 mapped to the same virtual address in user/kernel address space
86 (hence STACK_END_ADDR as opposed to KERNEL_U_ADDR). */
87 #define IN_SIGTRAMP(pc, name) \
88 ((pc) >= STACK_END_ADDR + my_offsetof (struct user, u_pcb.pcb_sigc[0]) \
89 && (pc) < STACK_END_ADDR + my_offsetof (struct user, u_pcb.pcb_sigc[12]) \
90 )
91
92 /* Address of end of stack space. */
93
94 #define STACK_END_ADDR 0xfff00000
95
96 /* Stack grows downward. */
97
98 #define INNER_THAN <
99
100 /* Sequence of bytes for breakpoint instruction. */
101
102 #define BREAKPOINT {0x4e, 0x42}
103
104 /* Amount PC must be decremented by after a breakpoint.
105 This is often the number of bytes in BREAKPOINT
106 but not always. */
107
108 #define DECR_PC_AFTER_BREAK 2
109
110 /* Nonzero if instruction at PC is a return instruction. */
111
112 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 2) == 0x4e75)
113
114 /* Return 1 if P points to an invalid floating point value. */
115
116 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
117
118 /* Largest integer type */
119 #define LONGEST long
120
121 /* Name of the builtin type for the LONGEST type above. */
122 #define BUILTIN_TYPE_LONGEST builtin_type_long
123
124 /* Say how long (ordinary) registers are. */
125
126 #define REGISTER_TYPE long
127
128 /* Number of machine registers */
129
130 #define NUM_REGS 29
131
132 /* Initializer for an array of names of registers.
133 There should be NUM_REGS strings in this initializer. */
134
135 #define REGISTER_NAMES \
136 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
137 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
138 "ps", "pc", \
139 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
140 "fpcontrol", "fpstatus", "fpiaddr" }
141
142 /* Register numbers of various important registers.
143 Note that some of these values are "real" register numbers,
144 and correspond to the general registers of the machine,
145 and some are "phony" register numbers which are too large
146 to be actual register numbers as far as the user is concerned
147 but do serve to get the desired values when passed to read_register. */
148
149 #define FP_REGNUM 14 /* Contains address of executing stack frame */
150 #define SP_REGNUM 15 /* Contains address of top of stack */
151 #define PS_REGNUM 16 /* Contains processor status */
152 #define PC_REGNUM 17 /* Contains program counter */
153 #define FP0_REGNUM 18 /* Floating point register 0 */
154 #define FPC_REGNUM 26 /* 68881 control register */
155 #define FPS_REGNUM 27 /* 68881 status register */
156
157 /* Total amount of space needed to store our copies of the machine's
158 register state, the array `registers'. */
159 #define REGISTER_BYTES (16*4+8*12+8+12)
160
161 /* Index within `registers' of the first byte of the space for
162 register N. */
163
164 #define REGISTER_BYTE(N) \
165 ((N) >= FPC_REGNUM ? (((N) - FPC_REGNUM) * 4) + 168 \
166 : (N) >= FP0_REGNUM ? (((N) - FP0_REGNUM) * 12) + 72 \
167 : (N) * 4)
168
169 /* Number of bytes of storage in the actual machine representation
170 for register N. On the 68000, all regs are 4 bytes
171 except the floating point regs which are 12 bytes. */
172 /* Note that the unsigned cast here forces the result of the
173 subtractiion to very high positive values if N < FP0_REGNUM */
174
175 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 12 : 4)
176
177 /* Number of bytes of storage in the program's representation
178 for register N. On the 68000, all regs are 4 bytes
179 except the floating point regs which are 8-byte doubles. */
180
181 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 8 : 4)
182
183 /* Largest value REGISTER_RAW_SIZE can have. */
184
185 #define MAX_REGISTER_RAW_SIZE 12
186
187 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
188
189 #define MAX_REGISTER_VIRTUAL_SIZE 8
190
191 /* Nonzero if register N requires conversion
192 from raw format to virtual format. */
193
194 #define REGISTER_CONVERTIBLE(N) (((unsigned)(N) - FP0_REGNUM) < 8)
195
196 /* Convert data from raw format for register REGNUM
197 to virtual format for register REGNUM. */
198
199 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
200 { if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
201 convert_from_68881 ((FROM), (TO)); \
202 else \
203 bcopy ((FROM), (TO), 4); }
204
205 /* Convert data from virtual format for register REGNUM
206 to raw format for register REGNUM. */
207
208 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
209 { if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
210 convert_to_68881 ((FROM), (TO)); \
211 else \
212 bcopy ((FROM), (TO), 4); }
213
214 /* Return the GDB type object for the "standard" data type
215 of data in register N. */
216
217 #define REGISTER_VIRTUAL_TYPE(N) \
218 (((unsigned)(N) - FP0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
219
220 /* Store the address of the place in which to copy the structure the
221 subroutine will return. This is called from call_function. */
222
223 #define STORE_STRUCT_RETURN(ADDR, SP) \
224 { write_register (9, (ADDR)); }
225
226 /* Extract from an array REGBUF containing the (raw) register state
227 a function return value of type TYPE, and copy that, in virtual format,
228 into VALBUF. */
229
230 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
231 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
232
233 /* Write into appropriate registers a function return value
234 of type TYPE, given in virtual format. */
235
236 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
237 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
238
239 /* Extract from an array REGBUF containing the (raw) register state
240 the address in which a function should return its structure value,
241 as a CORE_ADDR (or an expression that can be used as one). */
242
243 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
244
245 /* Compensate for lack of `vprintf' function. */
246 #ifndef HAVE_VPRINTF
247 #define vprintf(format, ap) _doprnt (format, ap, stdout)
248 #endif /* not HAVE_VPRINTF */
249
250 /* This is a piece of magic that is given a register number REGNO
251 and as BLOCKEND the address in the system of the end of the user structure
252 and stores in ADDR the address in the kernel or core dump
253 of that register. */
254
255 #define REGISTER_U_ADDR(addr, blockend, regno) \
256 { \
257 if (regno < PS_REGNUM) \
258 addr = (int) &((struct frame *)(blockend))->f_regs[regno]; \
259 else if (regno == PS_REGNUM) \
260 addr = (int) &((struct frame *)(blockend))->f_stackadj; \
261 else if (regno == PC_REGNUM) \
262 addr = (int) &((struct frame *)(blockend))->f_pc; \
263 else if (regno < FPC_REGNUM) \
264 addr = (int) \
265 &((struct user *)0)->u_pcb.pcb_fpregs.fpf_regs[((regno)-FP0_REGNUM)*3];\
266 else if (regno == FPC_REGNUM) \
267 addr = (int) &((struct user *)0)->u_pcb.pcb_fpregs.fpf_fpcr; \
268 else if (regno == FPS_REGNUM) \
269 addr = (int) &((struct user *)0)->u_pcb.pcb_fpregs.fpf_fpsr; \
270 else \
271 addr = (int) &((struct user *)0)->u_pcb.pcb_fpregs.fpf_fpiar; \
272 }
273 \f
274 /* Describe the pointer in each stack frame to the previous stack frame
275 (its caller). */
276
277 /* FRAME_CHAIN takes a frame's nominal address
278 and produces the frame's chain-pointer.
279
280 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
281 and produces the nominal address of the caller frame.
282
283 However, if FRAME_CHAIN_VALID returns zero,
284 it means the given frame is the outermost one and has no caller.
285 In that case, FRAME_CHAIN_COMBINE is not used. */
286
287 /* In the case of the Sun, the frame's nominal address
288 is the address of a 4-byte word containing the calling frame's address. */
289
290 #define FRAME_CHAIN(thisframe) \
291 (outside_startup_file ((thisframe)->pc) ? \
292 read_memory_integer ((thisframe)->frame, 4) :\
293 0)
294
295 #define FRAME_CHAIN_VALID(chain, thisframe) \
296 (chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
297
298 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
299
300 /* Define other aspects of the stack frame. */
301
302 /* A macro that tells us whether the function invocation represented
303 by FI does not have a frame on the stack associated with it. If it
304 does not, FRAMELESS is set to 1, else 0. */
305 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
306 FRAMELESS_LOOK_FOR_PROLOGUE(FI, FRAMELESS)
307
308 #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
309
310 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
311
312 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
313
314 /* Set VAL to the number of args passed to frame described by FI.
315 Can set VAL to -1, meaning no way to tell. */
316
317 /* We can't tell how many args there are
318 now that the C compiler delays popping them. */
319 #define FRAME_NUM_ARGS(val,fi) (val = -1)
320
321 #if 0
322 #define FRAME_NUM_ARGS(val, fi) \
323 { register CORE_ADDR pc = FRAME_SAVED_PC (fi); \
324 register int insn = 0177777 & read_memory_integer (pc, 2); \
325 val = 0; \
326 if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */ \
327 val = read_memory_integer (pc + 2, 2); \
328 else if ((insn & 0170777) == 0050217 /* addql #N, sp */ \
329 || (insn & 0170777) == 0050117) /* addqw */ \
330 { val = (insn >> 9) & 7; if (val == 0) val = 8; } \
331 else if (insn == 0157774) /* addal #WW, sp */ \
332 val = read_memory_integer (pc + 2, 4); \
333 val >>= 2; }
334 #endif
335
336 /* Return number of bytes at start of arglist that are not really args. */
337
338 #define FRAME_ARGS_SKIP 8
339
340 /* Put here the code to store, into a struct frame_saved_regs,
341 the addresses of the saved registers of frame described by FRAME_INFO.
342 This includes special registers such as pc and fp saved in special
343 ways in the stack frame. sp is even more special:
344 the address we return for it IS the sp for the next frame. */
345
346 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
347 { register int regnum; \
348 register int regmask; \
349 register CORE_ADDR next_addr; \
350 register CORE_ADDR pc; \
351 int nextinsn; \
352 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
353 if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 8*12 - 4 \
354 && (frame_info)->pc <= (frame_info)->frame) \
355 { next_addr = (frame_info)->frame; \
356 pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 8*12 - 4; }\
357 else \
358 { pc = get_pc_function_start ((frame_info)->pc); \
359 /* Verify we have a link a6 instruction next; \
360 if not we lose. If we win, find the address above the saved \
361 regs using the amount of storage from the link instruction. */\
362 if (044016 == read_memory_integer (pc, 2)) \
363 next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 4), pc+=4; \
364 else if (047126 == read_memory_integer (pc, 2)) \
365 next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 2), pc+=2; \
366 else goto lose; \
367 /* If have an addal #-n, sp next, adjust next_addr. */ \
368 if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
369 next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
370 } \
371 /* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
372 regmask = read_memory_integer (pc + 2, 2); \
373 /* But before that can come an fmovem. Check for it. */ \
374 nextinsn = 0xffff & read_memory_integer (pc, 2); \
375 if (0xf227 == nextinsn \
376 && (regmask & 0xff00) == 0xe000) \
377 { pc += 4; /* Regmask's low bit is for register fp7, the first pushed */ \
378 for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
379 if (regmask & 1) \
380 (frame_saved_regs).regs[regnum] = (next_addr -= 12); \
381 regmask = read_memory_integer (pc + 2, 2); } \
382 if (0044327 == read_memory_integer (pc, 2)) \
383 { pc += 4; /* Regmask's low bit is for register 0, the first written */ \
384 for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
385 if (regmask & 1) \
386 (frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
387 else if (0044347 == read_memory_integer (pc, 2)) \
388 { pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
389 for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
390 if (regmask & 1) \
391 (frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
392 else if (0x2f00 == (0xfff0 & read_memory_integer (pc, 2))) \
393 { regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
394 (frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
395 /* fmovemx to index of sp may follow. */ \
396 regmask = read_memory_integer (pc + 2, 2); \
397 nextinsn = 0xffff & read_memory_integer (pc, 2); \
398 if (0xf236 == nextinsn \
399 && (regmask & 0xff00) == 0xf000) \
400 { pc += 10; /* Regmask's low bit is for register fp0, the first written */ \
401 for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
402 if (regmask & 1) \
403 (frame_saved_regs).regs[regnum] = (next_addr += 12) - 12; \
404 regmask = read_memory_integer (pc + 2, 2); } \
405 /* clrw -(sp); movw ccr,-(sp) may follow. */ \
406 if (0x426742e7 == read_memory_integer (pc, 4)) \
407 (frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
408 lose: ; \
409 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 8; \
410 (frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
411 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
412 }
413 \f
414 /* Things needed for making the inferior call functions. */
415
416 /* Push an empty stack frame, to record the current PC, etc. */
417
418 #define PUSH_DUMMY_FRAME \
419 { register CORE_ADDR sp = read_register (SP_REGNUM); \
420 register int regnum; \
421 char raw_buffer[12]; \
422 sp = push_word (sp, read_register (PC_REGNUM)); \
423 sp = push_word (sp, read_register (FP_REGNUM)); \
424 write_register (FP_REGNUM, sp); \
425 for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
426 { read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); \
427 sp = push_bytes (sp, raw_buffer, 12); } \
428 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
429 sp = push_word (sp, read_register (regnum)); \
430 sp = push_word (sp, read_register (PS_REGNUM)); \
431 write_register (SP_REGNUM, sp); }
432
433 /* Discard from the stack the innermost frame,
434 restoring all saved registers. */
435
436 #define POP_FRAME \
437 { register FRAME frame = get_current_frame (); \
438 register CORE_ADDR fp; \
439 register int regnum; \
440 struct frame_saved_regs fsr; \
441 struct frame_info *fi; \
442 char raw_buffer[12]; \
443 fi = get_frame_info (frame); \
444 fp = fi->frame; \
445 get_frame_saved_regs (fi, &fsr); \
446 for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
447 if (fsr.regs[regnum]) \
448 { read_memory (fsr.regs[regnum], raw_buffer, 12); \
449 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); }\
450 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
451 if (fsr.regs[regnum]) \
452 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
453 if (fsr.regs[PS_REGNUM]) \
454 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
455 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
456 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
457 write_register (SP_REGNUM, fp + 8); \
458 flush_cached_frames (); \
459 set_current_frame (create_new_frame (read_register (FP_REGNUM),\
460 read_pc ())); }
461
462 /* This sequence of words is the instructions
463 fmovem 0xff,-(sp)
464 moveml 0xfffc,-(sp)
465 clrw -(sp)
466 movew ccr,-(sp)
467 /..* The arguments are pushed at this point by GDB;
468 no code is needed in the dummy for this.
469 The CALL_DUMMY_START_OFFSET gives the position of
470 the following jsr instruction. *../
471 jsr @#32323232
472 addl #69696969,sp
473 trap #2
474 nop
475 Note this is 28 bytes.
476 We actually start executing at the jsr, since the pushing of the
477 registers is done by PUSH_DUMMY_FRAME. If this were real code,
478 the arguments for the function called by the jsr would be pushed
479 between the moveml and the jsr, and we could allow it to execute through.
480 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
481 and we cannot allow the moveml to push the registers again lest they be
482 taken for the arguments. */
483
484 #define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e424e71}
485
486 #define CALL_DUMMY_LENGTH 28
487
488 #define CALL_DUMMY_START_OFFSET 12
489
490 /* Insert the specified number of args and function address
491 into a call sequence of the above form stored at DUMMYNAME. */
492
493 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \
494 { *(int *)((char *) dummyname + 20) = nargs * 4; \
495 *(int *)((char *) dummyname + 14) = fun; }
496 \f
497 /* Interface definitions for kernel debugger KDB. */
498
499 /* Map machine fault codes into signal numbers.
500 First subtract 0, divide by 4, then index in a table.
501 Faults for which the entry in this table is 0
502 are not handled by KDB; the program's own trap handler
503 gets to handle then. */
504
505 #define FAULT_CODE_ORIGIN 0
506 #define FAULT_CODE_UNITS 4
507 #define FAULT_TABLE \
508 { 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \
509 0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \
510 0, 0, 0, 0, 0, 0, 0, 0, \
511 SIGILL }
512
513 /* Start running with a stack stretching from BEG to END.
514 BEG and END should be symbols meaningful to the assembler.
515 This is used only for kdb. */
516
517 #define INIT_STACK(beg, end) \
518 { asm (".globl end"); \
519 asm ("movel #end, sp"); \
520 asm ("movel #0,a6"); }
521
522 /* Push the frame pointer register on the stack. */
523 #define PUSH_FRAME_PTR \
524 asm ("movel a6,sp@-");
525
526 /* Copy the top-of-stack to the frame pointer register. */
527 #define POP_FRAME_PTR \
528 asm ("movl sp@,a6");
529
530 /* After KDB is entered by a fault, push all registers
531 that GDB thinks about (all NUM_REGS of them),
532 so that they appear in order of ascending GDB register number.
533 The fault code will be on the stack beyond the last register. */
534
535 #define PUSH_REGISTERS \
536 { asm ("clrw -(sp)"); \
537 asm ("pea sp@(10)"); \
538 asm ("movem #0xfffe,sp@-"); }
539
540 /* Assuming the registers (including processor status) have been
541 pushed on the stack in order of ascending GDB register number,
542 restore them and return to the address in the saved PC register. */
543
544 #define POP_REGISTERS \
545 { asm ("subil #8,sp@(28)"); \
546 asm ("movem sp@,#0xffff"); \
547 asm ("rte"); }
This page took 0.040797 seconds and 4 git commands to generate.