gdb-2.4+.aux.coff
[deliverable/binutils-gdb.git] / gdb / m-sun2.h
1 /* Parameters for execution on a Sun, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987 Free Software Foundation, Inc.
3
4 GDB is distributed in the hope that it will be useful, but WITHOUT ANY
5 WARRANTY. No author or distributor accepts responsibility to anyone
6 for the consequences of using it or for whether it serves any
7 particular purpose or works at all, unless he says so in writing.
8 Refer to the GDB General Public License for full details.
9
10 Everyone is granted permission to copy, modify and redistribute GDB,
11 but only under the conditions described in the GDB General Public
12 License. A copy of this license is supposed to have been given to you
13 along with GDB so you can know your rights and responsibilities. It
14 should be in a file named COPYING. Among other things, the copyright
15 notice and this notice must be preserved on all copies.
16
17 In other words, go ahead and share GDB, but don't try to stop
18 anyone else from sharing it farther. Help stamp out software hoarding!
19 */
20
21 #ifndef sun2
22 #define sun2
23 #endif
24
25 /* Define this if the C compiler puts an underscore at the front
26 of external names before giving them to the linker. */
27
28 #define NAMES_HAVE_UNDERSCORE
29
30 /* Debugger information will be in DBX format. */
31
32 #define READ_DBX_FORMAT
33
34 /* Offset from address of function to start of its code.
35 Zero on most machines. */
36
37 #define FUNCTION_START_OFFSET 0
38
39 /* Advance PC across any function entry prologue instructions
40 to reach some "real" code. */
41
42 #define SKIP_PROLOGUE(pc) \
43 { register int op = read_memory_integer (pc, 2); \
44 if (op == 0047126) \
45 pc += 4; /* Skip link #word */ \
46 else if (op == 0044016) \
47 pc += 6; /* Skip link #long */ \
48 }
49
50 /* Immediately after a function call, return the saved pc.
51 Can't go through the frames for this because on some machines
52 the new frame is not set up until the new function executes
53 some instructions. */
54
55 #define SAVED_PC_AFTER_CALL(frame) \
56 read_memory_integer (read_register (SP_REGNUM), 4)
57
58 /* This is the amount to subtract from u.u_ar0
59 to get the offset in the core file of the register values. */
60
61 #define KERNEL_U_ADDR 0x2800
62
63 /* Address of end of stack space. */
64
65 #define STACK_END_ADDR 0x1000000
66
67 /* Stack grows downward. */
68
69 #define INNER_THAN <
70
71 /* Sequence of bytes for breakpoint instruction. */
72
73 #define BREAKPOINT {0x4e, 0x4f}
74
75 /* Amount PC must be decremented by after a breakpoint.
76 This is often the number of bytes in BREAKPOINT
77 but not always. */
78
79 #define DECR_PC_AFTER_BREAK 2
80
81 /* Nonzero if instruction at PC is a return instruction. */
82
83 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 2) == 0x4e76)
84
85 /* Return 1 if P points to an invalid floating point value. */
86
87 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
88
89 /* Say how long registers are. */
90
91 #define REGISTER_TYPE long
92
93 /* Number of machine registers */
94
95 #define NUM_REGS 18
96
97 /* Number that are really general registers */
98
99 #define NUM_GENERAL_REGS 16
100
101 /* Initializer for an array of names of registers.
102 There should be NUM_REGS strings in this initializer. */
103
104 #define REGISTER_NAMES {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp", "ps", "pc"}
105
106 /* Register numbers of various important registers.
107 Note that some of these values are "real" register numbers,
108 and correspond to the general registers of the machine,
109 and some are "phony" register numbers which are too large
110 to be actual register numbers as far as the user is concerned
111 but do serve to get the desired values when passed to read_register. */
112
113 #define FP_REGNUM 14 /* Contains address of executing stack frame */
114 #define SP_REGNUM 15 /* Contains address of top of stack */
115 #define PS_REGNUM 16 /* Contains processor status */
116 #define PC_REGNUM 17 /* Contains program counter */
117
118 /* Total amount of space needed to store our copies of the machine's
119 register state, the array `registers'. */
120 #define REGISTER_BYTES (16*4+8)
121
122 /* Index within `registers' of the first byte of the space for
123 register N. */
124
125 #define REGISTER_BYTE(N) ((N) * 4)
126
127 /* Number of bytes of storage in the actual machine representation
128 for register N. On the 68000, all regs are 4 bytes. */
129
130 #define REGISTER_RAW_SIZE(N) 4
131
132 /* Number of bytes of storage in the program's representation
133 for register N. On the 68000, all regs are 4 bytes. */
134
135 #define REGISTER_VIRTUAL_SIZE(N) 4
136
137 /* Largest value REGISTER_RAW_SIZE can have. */
138
139 #define MAX_REGISTER_RAW_SIZE 4
140
141 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
142
143 #define MAX_REGISTER_VIRTUAL_SIZE 4
144
145 /* Nonzero if register N requires conversion
146 from raw format to virtual format. */
147
148 #define REGISTER_CONVERTIBLE(N) 0
149
150 /* Convert data from raw format for register REGNUM
151 to virtual format for register REGNUM. */
152
153 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) bcopy ((FROM), (TO), 4);
154
155 /* Convert data from virtual format for register REGNUM
156 to raw format for register REGNUM. */
157
158 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) bcopy ((FROM), (TO), 4);
159
160 /* Return the GDB type object for the "standard" data type
161 of data in register N. */
162
163 #define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
164
165 /* Extract from an array REGBUF containing the (raw) register state
166 a function return value of type TYPE, and copy that, in virtual format,
167 into VALBUF. */
168
169 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
170 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
171
172 /* Write into appropriate registers a function return value
173 of type TYPE, given in virtual format. */
174
175 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
176 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
177
178 /* Extract from an array REGBUF containing the (raw) register state
179 the address in which a function should return its structure value,
180 as a CORE_ADDR (or an expression that can be used as one). */
181
182 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
183
184 /* This is a piece of magic that is given a register number REGNO
185 and as BLOCKEND the address in the system of the end of the user structure
186 and stores in ADDR the address in the kernel or core dump
187 of that register. */
188
189 #define REGISTER_U_ADDR(addr, blockend, regno) \
190 { addr = blockend + regno * 4; }
191 \f
192 /* Describe the pointer in each stack frame to the previous stack frame
193 (its caller). */
194
195 /* FRAME_CHAIN takes a frame's nominal address
196 and produces the frame's chain-pointer.
197
198 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
199 and produces the nominal address of the caller frame.
200
201 However, if FRAME_CHAIN_VALID returns zero,
202 it means the given frame is the outermost one and has no caller.
203 In that case, FRAME_CHAIN_COMBINE is not used. */
204
205 /* In the case of the Sun, the frame's nominal address
206 is the address of a 4-byte word containing the calling frame's address. */
207
208 #define FRAME_CHAIN(thisframe) (read_memory_integer (thisframe, 4))
209
210 #define FRAME_CHAIN_VALID(chain, thisframe) \
211 (chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end))
212
213 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
214
215 /* Define other aspects of the stack frame. */
216
217 #define FRAME_SAVED_PC(frame) (read_memory_integer (frame + 4, 4))
218
219 #define FRAME_ARGS_ADDRESS(fi) (fi.frame)
220
221 #define FRAME_LOCALS_ADDRESS(fi) (fi.frame)
222
223 /* Set VAL to the number of args passed to frame described by FI.
224 Can set VAL to -1, meaning no way to tell. */
225
226 /* We can't tell how many args there are
227 now that the C compiler delays popping them. */
228 #define FRAME_NUM_ARGS(val,fi) (val = -1)
229
230 #if 0
231 #define FRAME_NUM_ARGS(val, fi) \
232 { register CORE_ADDR pc = FRAME_SAVED_PC (fi.frame); \
233 register int insn = 0177777 & read_memory_integer (pc, 2); \
234 val = 0; \
235 if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */ \
236 val = read_memory_integer (pc + 2, 2); \
237 else if ((insn & 0170777) == 0050217 /* addql #N, sp */ \
238 || (insn & 0170777) == 0050117) /* addqw */ \
239 { val = (insn >> 9) & 7; if (val == 0) val = 8; } \
240 else if (insn == 0157774) /* addal #WW, sp */ \
241 val = read_memory_integer (pc + 2, 4); \
242 val >>= 2; }
243 #endif
244
245 /* Return number of bytes at start of arglist that are not really args. */
246
247 #define FRAME_ARGS_SKIP 8
248
249 /* Put here the code to store, into a struct frame_saved_regs,
250 the addresses of the saved registers of frame described by FRAME_INFO.
251 This includes special registers such as pc and fp saved in special
252 ways in the stack frame. sp is even more special:
253 the address we return for it IS the sp for the next frame. */
254
255 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
256 { register int regnum; \
257 register int regmask; \
258 register CORE_ADDR next_addr; \
259 register CORE_ADDR pc; \
260 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
261 if ((frame_info).pc >= (frame_info).frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 4 \
262 && (frame_info).pc <= (frame_info).frame) \
263 { next_addr = (frame_info).frame; \
264 pc = (frame_info).frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4; }\
265 else \
266 { pc = get_pc_function_start ((frame_info).pc); \
267 /* Verify we have a link a6 instruction next; \
268 if not we lose. If we win, find the address above the saved \
269 regs using the amount of storage from the link instruction. */\
270 if (044016 == read_memory_integer (pc, 2)) \
271 next_addr = (frame_info).frame + read_memory_integer (pc += 2, 4), pc+=4; \
272 else if (047126 == read_memory_integer (pc, 2)) \
273 next_addr = (frame_info).frame + read_memory_integer (pc += 2, 2), pc+=2; \
274 else goto lose; \
275 /* If have an addal #-n, sp next, adjust next_addr. */ \
276 if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
277 next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
278 } \
279 /* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
280 regmask = read_memory_integer (pc + 2, 2); \
281 if (0044327 == read_memory_integer (pc, 2)) \
282 { pc += 4; /* Regmask's low bit is for register 0, the first written */ \
283 for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
284 if (regmask & 1) \
285 (frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
286 else if (0044347 == read_memory_integer (pc, 2)) \
287 { pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
288 for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
289 if (regmask & 1) \
290 (frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
291 else if (0x2f00 == 0xfff0 & read_memory_integer (pc, 2)) \
292 { regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
293 (frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
294 /* clrw -(sp); movw ccr,-(sp) may follow. */ \
295 if (0x426742e7 == read_memory_integer (pc, 4)) \
296 (frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
297 lose: ; \
298 (frame_saved_regs).regs[SP_REGNUM] = (frame_info).frame + 8; \
299 (frame_saved_regs).regs[FP_REGNUM] = (frame_info).frame; \
300 (frame_saved_regs).regs[PC_REGNUM] = (frame_info).frame + 4; \
301 }
302 \f
303 /* Things needed for making the inferior call functions. */
304
305 /* Push an empty stack frame, to record the current PC, etc. */
306
307 #define PUSH_DUMMY_FRAME \
308 { register CORE_ADDR sp = read_register (SP_REGNUM);\
309 register int regnum; \
310 sp = push_word (sp, read_register (PC_REGNUM)); \
311 sp = push_word (sp, read_register (FP_REGNUM)); \
312 write_register (FP_REGNUM, sp); \
313 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
314 sp = push_word (sp, read_register (regnum)); \
315 sp = push_word (sp, read_register (PS_REGNUM)); \
316 write_register (SP_REGNUM, sp); }
317
318 /* Discard from the stack the innermost frame, restoring all registers. */
319
320 #define POP_FRAME \
321 { register CORE_ADDR fp = read_register (FP_REGNUM); \
322 register int regnum; \
323 struct frame_saved_regs fsr; \
324 struct frame_info fi; \
325 fi = get_frame_info (fp); \
326 get_frame_saved_regs (&fi, &fsr); \
327 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
328 if (fsr.regs[regnum]) \
329 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
330 if (fsr.regs[PS_REGNUM]) \
331 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
332 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
333 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
334 write_register (SP_REGNUM, fp + 8); \
335 }
336
337 /* This sequence of words is the instructions
338 moveml 0xfffc,-(sp)
339 clrw -(sp)
340 movew ccr,-(sp)
341 /..* The arguments are pushed at this point by GDB;
342 no code is needed in the dummy for this.
343 The CALL_DUMMY_START_OFFSET gives the position of
344 the following jsr instruction. *../
345 jsr @#32323232
346 addl #69696969,sp
347 bpt
348 nop
349 Note this is 24 bytes.
350 We actually start executing at the jsr, since the pushing of the
351 registers is done by PUSH_DUMMY_FRAME. If this were real code,
352 the arguments for the function called by the jsr would be pushed
353 between the moveml and the jsr, and we could allow it to execute through.
354 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
355 and we cannot allow the moveml to push the registers again lest they be
356 taken for the arguments. */
357
358 #define CALL_DUMMY {0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e4f4e71}
359
360 #define CALL_DUMMY_LENGTH 24
361
362 #define CALL_DUMMY_START_OFFSET 8
363
364 /* Insert the specified number of args and function address
365 into a call sequence of the above form stored at DUMMYNAME. */
366
367 #define FIX_CALL_DUMMY(dummyname, fun, nargs) \
368 { *(int *)((char *) dummyname + 16) = nargs * 4; \
369 *(int *)((char *) dummyname + 10) = fun; }
370 \f
371 /* Interface definitions for kernel debugger KDB. */
372
373 /* Map machine fault codes into signal numbers.
374 First subtract 0, divide by 4, then index in a table.
375 Faults for which the entry in this table is 0
376 are not handled by KDB; the program's own trap handler
377 gets to handle then. */
378
379 #define FAULT_CODE_ORIGIN 0
380 #define FAULT_CODE_UNITS 4
381 #define FAULT_TABLE \
382 { 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \
383 0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \
384 0, 0, 0, 0, 0, 0, 0, 0, \
385 SIGILL }
386
387 /* Start running with a stack stretching from BEG to END.
388 BEG and END should be symbols meaningful to the assembler.
389 This is used only for kdb. */
390
391 #define INIT_STACK(beg, end) \
392 { asm (".globl end"); \
393 asm ("movel $ end, sp"); \
394 asm ("clrl fp"); }
395
396 /* Push the frame pointer register on the stack. */
397 #define PUSH_FRAME_PTR \
398 asm ("movel fp, -(sp)");
399
400 /* Copy the top-of-stack to the frame pointer register. */
401 #define POP_FRAME_PTR \
402 asm ("movl (sp), fp");
403
404 /* After KDB is entered by a fault, push all registers
405 that GDB thinks about (all NUM_REGS of them),
406 so that they appear in order of ascending GDB register number.
407 The fault code will be on the stack beyond the last register. */
408
409 #define PUSH_REGISTERS \
410 { asm ("clrw -(sp)"); \
411 asm ("pea 10(sp)"); \
412 asm ("movem $ 0xfffe,-(sp)"); }
413
414 /* Assuming the registers (including processor status) have been
415 pushed on the stack in order of ascending GDB register number,
416 restore them and return to the address in the saved PC register. */
417
418 #define POP_REGISTERS \
419 { asm ("subil $8,28(sp)"); \
420 asm ("movem (sp),$ 0xffff"); \
421 asm ("rte"); }
This page took 0.039156 seconds and 4 git commands to generate.