Remove `expout*' globals from parser-defs.h
[deliverable/binutils-gdb.git] / gdb / m2-exp.y
1 /* YACC grammar for Modula-2 expressions, for GDB.
2 Copyright (C) 1986-2014 Free Software Foundation, Inc.
3 Generated from expread.y (now c-exp.y) and contributed by the Department
4 of Computer Science at the State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Parse a Modula-2 expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include <string.h>
42 #include "expression.h"
43 #include "language.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "m2-lang.h"
47 #include "bfd.h" /* Required by objfiles.h. */
48 #include "symfile.h" /* Required by objfiles.h. */
49 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
50 #include "block.h"
51
52 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
53 #define parse_m2_type(ps) builtin_m2_type (parse_gdbarch (ps))
54
55 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
56 as well as gratuitiously global symbol names, so we can have multiple
57 yacc generated parsers in gdb. Note that these are only the variables
58 produced by yacc. If other parser generators (bison, byacc, etc) produce
59 additional global names that conflict at link time, then those parser
60 generators need to be fixed instead of adding those names to this list. */
61
62 #define yymaxdepth m2_maxdepth
63 #define yyparse m2_parse_internal
64 #define yylex m2_lex
65 #define yyerror m2_error
66 #define yylval m2_lval
67 #define yychar m2_char
68 #define yydebug m2_debug
69 #define yypact m2_pact
70 #define yyr1 m2_r1
71 #define yyr2 m2_r2
72 #define yydef m2_def
73 #define yychk m2_chk
74 #define yypgo m2_pgo
75 #define yyact m2_act
76 #define yyexca m2_exca
77 #define yyerrflag m2_errflag
78 #define yynerrs m2_nerrs
79 #define yyps m2_ps
80 #define yypv m2_pv
81 #define yys m2_s
82 #define yy_yys m2_yys
83 #define yystate m2_state
84 #define yytmp m2_tmp
85 #define yyv m2_v
86 #define yy_yyv m2_yyv
87 #define yyval m2_val
88 #define yylloc m2_lloc
89 #define yyreds m2_reds /* With YYDEBUG defined */
90 #define yytoks m2_toks /* With YYDEBUG defined */
91 #define yyname m2_name /* With YYDEBUG defined */
92 #define yyrule m2_rule /* With YYDEBUG defined */
93 #define yylhs m2_yylhs
94 #define yylen m2_yylen
95 #define yydefred m2_yydefred
96 #define yydgoto m2_yydgoto
97 #define yysindex m2_yysindex
98 #define yyrindex m2_yyrindex
99 #define yygindex m2_yygindex
100 #define yytable m2_yytable
101 #define yycheck m2_yycheck
102 #define yyss m2_yyss
103 #define yysslim m2_yysslim
104 #define yyssp m2_yyssp
105 #define yystacksize m2_yystacksize
106 #define yyvs m2_yyvs
107 #define yyvsp m2_yyvsp
108
109 #ifndef YYDEBUG
110 #define YYDEBUG 1 /* Default to yydebug support */
111 #endif
112
113 #define YYFPRINTF parser_fprintf
114
115 /* The state of the parser, used internally when we are parsing the
116 expression. */
117
118 static struct parser_state *pstate = NULL;
119
120 int yyparse (void);
121
122 static int yylex (void);
123
124 void yyerror (char *);
125
126 static int parse_number (int);
127
128 /* The sign of the number being parsed. */
129 static int number_sign = 1;
130
131 %}
132
133 /* Although the yacc "value" of an expression is not used,
134 since the result is stored in the structure being created,
135 other node types do have values. */
136
137 %union
138 {
139 LONGEST lval;
140 ULONGEST ulval;
141 DOUBLEST dval;
142 struct symbol *sym;
143 struct type *tval;
144 struct stoken sval;
145 int voidval;
146 struct block *bval;
147 enum exp_opcode opcode;
148 struct internalvar *ivar;
149
150 struct type **tvec;
151 int *ivec;
152 }
153
154 %type <voidval> exp type_exp start set
155 %type <voidval> variable
156 %type <tval> type
157 %type <bval> block
158 %type <sym> fblock
159
160 %token <lval> INT HEX ERROR
161 %token <ulval> UINT M2_TRUE M2_FALSE CHAR
162 %token <dval> FLOAT
163
164 /* Both NAME and TYPENAME tokens represent symbols in the input,
165 and both convey their data as strings.
166 But a TYPENAME is a string that happens to be defined as a typedef
167 or builtin type name (such as int or char)
168 and a NAME is any other symbol.
169
170 Contexts where this distinction is not important can use the
171 nonterminal "name", which matches either NAME or TYPENAME. */
172
173 %token <sval> STRING
174 %token <sval> NAME BLOCKNAME IDENT VARNAME
175 %token <sval> TYPENAME
176
177 %token SIZE CAP ORD HIGH ABS MIN_FUNC MAX_FUNC FLOAT_FUNC VAL CHR ODD TRUNC
178 %token TSIZE
179 %token INC DEC INCL EXCL
180
181 /* The GDB scope operator */
182 %token COLONCOLON
183
184 %token <voidval> INTERNAL_VAR
185
186 /* M2 tokens */
187 %left ','
188 %left ABOVE_COMMA
189 %nonassoc ASSIGN
190 %left '<' '>' LEQ GEQ '=' NOTEQUAL '#' IN
191 %left OROR
192 %left LOGICAL_AND '&'
193 %left '@'
194 %left '+' '-'
195 %left '*' '/' DIV MOD
196 %right UNARY
197 %right '^' DOT '[' '('
198 %right NOT '~'
199 %left COLONCOLON QID
200 /* This is not an actual token ; it is used for precedence.
201 %right QID
202 */
203
204 \f
205 %%
206
207 start : exp
208 | type_exp
209 ;
210
211 type_exp: type
212 { write_exp_elt_opcode (pstate, OP_TYPE);
213 write_exp_elt_type (pstate, $1);
214 write_exp_elt_opcode (pstate, OP_TYPE);
215 }
216 ;
217
218 /* Expressions */
219
220 exp : exp '^' %prec UNARY
221 { write_exp_elt_opcode (pstate, UNOP_IND); }
222 ;
223
224 exp : '-'
225 { number_sign = -1; }
226 exp %prec UNARY
227 { number_sign = 1;
228 write_exp_elt_opcode (pstate, UNOP_NEG); }
229 ;
230
231 exp : '+' exp %prec UNARY
232 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
233 ;
234
235 exp : not_exp exp %prec UNARY
236 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
237 ;
238
239 not_exp : NOT
240 | '~'
241 ;
242
243 exp : CAP '(' exp ')'
244 { write_exp_elt_opcode (pstate, UNOP_CAP); }
245 ;
246
247 exp : ORD '(' exp ')'
248 { write_exp_elt_opcode (pstate, UNOP_ORD); }
249 ;
250
251 exp : ABS '(' exp ')'
252 { write_exp_elt_opcode (pstate, UNOP_ABS); }
253 ;
254
255 exp : HIGH '(' exp ')'
256 { write_exp_elt_opcode (pstate, UNOP_HIGH); }
257 ;
258
259 exp : MIN_FUNC '(' type ')'
260 { write_exp_elt_opcode (pstate, UNOP_MIN);
261 write_exp_elt_type (pstate, $3);
262 write_exp_elt_opcode (pstate, UNOP_MIN); }
263 ;
264
265 exp : MAX_FUNC '(' type ')'
266 { write_exp_elt_opcode (pstate, UNOP_MAX);
267 write_exp_elt_type (pstate, $3);
268 write_exp_elt_opcode (pstate, UNOP_MAX); }
269 ;
270
271 exp : FLOAT_FUNC '(' exp ')'
272 { write_exp_elt_opcode (pstate, UNOP_FLOAT); }
273 ;
274
275 exp : VAL '(' type ',' exp ')'
276 { write_exp_elt_opcode (pstate, BINOP_VAL);
277 write_exp_elt_type (pstate, $3);
278 write_exp_elt_opcode (pstate, BINOP_VAL); }
279 ;
280
281 exp : CHR '(' exp ')'
282 { write_exp_elt_opcode (pstate, UNOP_CHR); }
283 ;
284
285 exp : ODD '(' exp ')'
286 { write_exp_elt_opcode (pstate, UNOP_ODD); }
287 ;
288
289 exp : TRUNC '(' exp ')'
290 { write_exp_elt_opcode (pstate, UNOP_TRUNC); }
291 ;
292
293 exp : TSIZE '(' exp ')'
294 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
295 ;
296
297 exp : SIZE exp %prec UNARY
298 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
299 ;
300
301
302 exp : INC '(' exp ')'
303 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
304 ;
305
306 exp : INC '(' exp ',' exp ')'
307 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
308 write_exp_elt_opcode (pstate, BINOP_ADD);
309 write_exp_elt_opcode (pstate,
310 BINOP_ASSIGN_MODIFY); }
311 ;
312
313 exp : DEC '(' exp ')'
314 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT);}
315 ;
316
317 exp : DEC '(' exp ',' exp ')'
318 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
319 write_exp_elt_opcode (pstate, BINOP_SUB);
320 write_exp_elt_opcode (pstate,
321 BINOP_ASSIGN_MODIFY); }
322 ;
323
324 exp : exp DOT NAME
325 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
326 write_exp_string (pstate, $3);
327 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
328 ;
329
330 exp : set
331 ;
332
333 exp : exp IN set
334 { error (_("Sets are not implemented."));}
335 ;
336
337 exp : INCL '(' exp ',' exp ')'
338 { error (_("Sets are not implemented."));}
339 ;
340
341 exp : EXCL '(' exp ',' exp ')'
342 { error (_("Sets are not implemented."));}
343 ;
344
345 set : '{' arglist '}'
346 { error (_("Sets are not implemented."));}
347 | type '{' arglist '}'
348 { error (_("Sets are not implemented."));}
349 ;
350
351
352 /* Modula-2 array subscript notation [a,b,c...] */
353 exp : exp '['
354 /* This function just saves the number of arguments
355 that follow in the list. It is *not* specific to
356 function types */
357 { start_arglist(); }
358 non_empty_arglist ']' %prec DOT
359 { write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
360 write_exp_elt_longcst (pstate,
361 (LONGEST) end_arglist());
362 write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT); }
363 ;
364
365 exp : exp '[' exp ']'
366 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
367 ;
368
369 exp : exp '('
370 /* This is to save the value of arglist_len
371 being accumulated by an outer function call. */
372 { start_arglist (); }
373 arglist ')' %prec DOT
374 { write_exp_elt_opcode (pstate, OP_FUNCALL);
375 write_exp_elt_longcst (pstate,
376 (LONGEST) end_arglist ());
377 write_exp_elt_opcode (pstate, OP_FUNCALL); }
378 ;
379
380 arglist :
381 ;
382
383 arglist : exp
384 { arglist_len = 1; }
385 ;
386
387 arglist : arglist ',' exp %prec ABOVE_COMMA
388 { arglist_len++; }
389 ;
390
391 non_empty_arglist
392 : exp
393 { arglist_len = 1; }
394 ;
395
396 non_empty_arglist
397 : non_empty_arglist ',' exp %prec ABOVE_COMMA
398 { arglist_len++; }
399 ;
400
401 /* GDB construct */
402 exp : '{' type '}' exp %prec UNARY
403 { write_exp_elt_opcode (pstate, UNOP_MEMVAL);
404 write_exp_elt_type (pstate, $2);
405 write_exp_elt_opcode (pstate, UNOP_MEMVAL); }
406 ;
407
408 exp : type '(' exp ')' %prec UNARY
409 { write_exp_elt_opcode (pstate, UNOP_CAST);
410 write_exp_elt_type (pstate, $1);
411 write_exp_elt_opcode (pstate, UNOP_CAST); }
412 ;
413
414 exp : '(' exp ')'
415 { }
416 ;
417
418 /* Binary operators in order of decreasing precedence. Note that some
419 of these operators are overloaded! (ie. sets) */
420
421 /* GDB construct */
422 exp : exp '@' exp
423 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
424 ;
425
426 exp : exp '*' exp
427 { write_exp_elt_opcode (pstate, BINOP_MUL); }
428 ;
429
430 exp : exp '/' exp
431 { write_exp_elt_opcode (pstate, BINOP_DIV); }
432 ;
433
434 exp : exp DIV exp
435 { write_exp_elt_opcode (pstate, BINOP_INTDIV); }
436 ;
437
438 exp : exp MOD exp
439 { write_exp_elt_opcode (pstate, BINOP_REM); }
440 ;
441
442 exp : exp '+' exp
443 { write_exp_elt_opcode (pstate, BINOP_ADD); }
444 ;
445
446 exp : exp '-' exp
447 { write_exp_elt_opcode (pstate, BINOP_SUB); }
448 ;
449
450 exp : exp '=' exp
451 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
452 ;
453
454 exp : exp NOTEQUAL exp
455 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
456 | exp '#' exp
457 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
458 ;
459
460 exp : exp LEQ exp
461 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
462 ;
463
464 exp : exp GEQ exp
465 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
466 ;
467
468 exp : exp '<' exp
469 { write_exp_elt_opcode (pstate, BINOP_LESS); }
470 ;
471
472 exp : exp '>' exp
473 { write_exp_elt_opcode (pstate, BINOP_GTR); }
474 ;
475
476 exp : exp LOGICAL_AND exp
477 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
478 ;
479
480 exp : exp OROR exp
481 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
482 ;
483
484 exp : exp ASSIGN exp
485 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
486 ;
487
488
489 /* Constants */
490
491 exp : M2_TRUE
492 { write_exp_elt_opcode (pstate, OP_BOOL);
493 write_exp_elt_longcst (pstate, (LONGEST) $1);
494 write_exp_elt_opcode (pstate, OP_BOOL); }
495 ;
496
497 exp : M2_FALSE
498 { write_exp_elt_opcode (pstate, OP_BOOL);
499 write_exp_elt_longcst (pstate, (LONGEST) $1);
500 write_exp_elt_opcode (pstate, OP_BOOL); }
501 ;
502
503 exp : INT
504 { write_exp_elt_opcode (pstate, OP_LONG);
505 write_exp_elt_type (pstate,
506 parse_m2_type (pstate)->builtin_int);
507 write_exp_elt_longcst (pstate, (LONGEST) $1);
508 write_exp_elt_opcode (pstate, OP_LONG); }
509 ;
510
511 exp : UINT
512 {
513 write_exp_elt_opcode (pstate, OP_LONG);
514 write_exp_elt_type (pstate,
515 parse_m2_type (pstate)
516 ->builtin_card);
517 write_exp_elt_longcst (pstate, (LONGEST) $1);
518 write_exp_elt_opcode (pstate, OP_LONG);
519 }
520 ;
521
522 exp : CHAR
523 { write_exp_elt_opcode (pstate, OP_LONG);
524 write_exp_elt_type (pstate,
525 parse_m2_type (pstate)
526 ->builtin_char);
527 write_exp_elt_longcst (pstate, (LONGEST) $1);
528 write_exp_elt_opcode (pstate, OP_LONG); }
529 ;
530
531
532 exp : FLOAT
533 { write_exp_elt_opcode (pstate, OP_DOUBLE);
534 write_exp_elt_type (pstate,
535 parse_m2_type (pstate)
536 ->builtin_real);
537 write_exp_elt_dblcst (pstate, $1);
538 write_exp_elt_opcode (pstate, OP_DOUBLE); }
539 ;
540
541 exp : variable
542 ;
543
544 exp : SIZE '(' type ')' %prec UNARY
545 { write_exp_elt_opcode (pstate, OP_LONG);
546 write_exp_elt_type (pstate,
547 parse_type (pstate)->builtin_int);
548 write_exp_elt_longcst (pstate,
549 (LONGEST) TYPE_LENGTH ($3));
550 write_exp_elt_opcode (pstate, OP_LONG); }
551 ;
552
553 exp : STRING
554 { write_exp_elt_opcode (pstate, OP_M2_STRING);
555 write_exp_string (pstate, $1);
556 write_exp_elt_opcode (pstate, OP_M2_STRING); }
557 ;
558
559 /* This will be used for extensions later. Like adding modules. */
560 block : fblock
561 { $$ = SYMBOL_BLOCK_VALUE($1); }
562 ;
563
564 fblock : BLOCKNAME
565 { struct symbol *sym
566 = lookup_symbol (copy_name ($1),
567 expression_context_block,
568 VAR_DOMAIN, 0);
569 $$ = sym;}
570 ;
571
572
573 /* GDB scope operator */
574 fblock : block COLONCOLON BLOCKNAME
575 { struct symbol *tem
576 = lookup_symbol (copy_name ($3), $1,
577 VAR_DOMAIN, 0);
578 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
579 error (_("No function \"%s\" in specified context."),
580 copy_name ($3));
581 $$ = tem;
582 }
583 ;
584
585 /* Useful for assigning to PROCEDURE variables */
586 variable: fblock
587 { write_exp_elt_opcode (pstate, OP_VAR_VALUE);
588 write_exp_elt_block (pstate, NULL);
589 write_exp_elt_sym (pstate, $1);
590 write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
591 ;
592
593 /* GDB internal ($foo) variable */
594 variable: INTERNAL_VAR
595 ;
596
597 /* GDB scope operator */
598 variable: block COLONCOLON NAME
599 { struct symbol *sym;
600 sym = lookup_symbol (copy_name ($3), $1,
601 VAR_DOMAIN, 0);
602 if (sym == 0)
603 error (_("No symbol \"%s\" in specified context."),
604 copy_name ($3));
605 if (symbol_read_needs_frame (sym))
606 {
607 if (innermost_block == 0
608 || contained_in (block_found,
609 innermost_block))
610 innermost_block = block_found;
611 }
612
613 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
614 /* block_found is set by lookup_symbol. */
615 write_exp_elt_block (pstate, block_found);
616 write_exp_elt_sym (pstate, sym);
617 write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
618 ;
619
620 /* Base case for variables. */
621 variable: NAME
622 { struct symbol *sym;
623 struct field_of_this_result is_a_field_of_this;
624
625 sym = lookup_symbol (copy_name ($1),
626 expression_context_block,
627 VAR_DOMAIN,
628 &is_a_field_of_this);
629 if (sym)
630 {
631 if (symbol_read_needs_frame (sym))
632 {
633 if (innermost_block == 0 ||
634 contained_in (block_found,
635 innermost_block))
636 innermost_block = block_found;
637 }
638
639 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
640 /* We want to use the selected frame, not
641 another more inner frame which happens to
642 be in the same block. */
643 write_exp_elt_block (pstate, NULL);
644 write_exp_elt_sym (pstate, sym);
645 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
646 }
647 else
648 {
649 struct bound_minimal_symbol msymbol;
650 char *arg = copy_name ($1);
651
652 msymbol =
653 lookup_bound_minimal_symbol (arg);
654 if (msymbol.minsym != NULL)
655 write_exp_msymbol (pstate, msymbol);
656 else if (!have_full_symbols () && !have_partial_symbols ())
657 error (_("No symbol table is loaded. Use the \"symbol-file\" command."));
658 else
659 error (_("No symbol \"%s\" in current context."),
660 copy_name ($1));
661 }
662 }
663 ;
664
665 type
666 : TYPENAME
667 { $$ = lookup_typename (parse_language (pstate),
668 parse_gdbarch (pstate),
669 copy_name ($1),
670 expression_context_block, 0); }
671
672 ;
673
674 %%
675
676 /* Take care of parsing a number (anything that starts with a digit).
677 Set yylval and return the token type; update lexptr.
678 LEN is the number of characters in it. */
679
680 /*** Needs some error checking for the float case ***/
681
682 static int
683 parse_number (int olen)
684 {
685 const char *p = lexptr;
686 LONGEST n = 0;
687 LONGEST prevn = 0;
688 int c,i,ischar=0;
689 int base = input_radix;
690 int len = olen;
691 int unsigned_p = number_sign == 1 ? 1 : 0;
692
693 if(p[len-1] == 'H')
694 {
695 base = 16;
696 len--;
697 }
698 else if(p[len-1] == 'C' || p[len-1] == 'B')
699 {
700 base = 8;
701 ischar = p[len-1] == 'C';
702 len--;
703 }
704
705 /* Scan the number */
706 for (c = 0; c < len; c++)
707 {
708 if (p[c] == '.' && base == 10)
709 {
710 /* It's a float since it contains a point. */
711 yylval.dval = atof (p);
712 lexptr += len;
713 return FLOAT;
714 }
715 if (p[c] == '.' && base != 10)
716 error (_("Floating point numbers must be base 10."));
717 if (base == 10 && (p[c] < '0' || p[c] > '9'))
718 error (_("Invalid digit \'%c\' in number."),p[c]);
719 }
720
721 while (len-- > 0)
722 {
723 c = *p++;
724 n *= base;
725 if( base == 8 && (c == '8' || c == '9'))
726 error (_("Invalid digit \'%c\' in octal number."),c);
727 if (c >= '0' && c <= '9')
728 i = c - '0';
729 else
730 {
731 if (base == 16 && c >= 'A' && c <= 'F')
732 i = c - 'A' + 10;
733 else
734 return ERROR;
735 }
736 n+=i;
737 if(i >= base)
738 return ERROR;
739 if(!unsigned_p && number_sign == 1 && (prevn >= n))
740 unsigned_p=1; /* Try something unsigned */
741 /* Don't do the range check if n==i and i==0, since that special
742 case will give an overflow error. */
743 if(RANGE_CHECK && n!=i && i)
744 {
745 if((unsigned_p && (unsigned)prevn >= (unsigned)n) ||
746 ((!unsigned_p && number_sign==-1) && -prevn <= -n))
747 range_error (_("Overflow on numeric constant."));
748 }
749 prevn=n;
750 }
751
752 lexptr = p;
753 if(*p == 'B' || *p == 'C' || *p == 'H')
754 lexptr++; /* Advance past B,C or H */
755
756 if (ischar)
757 {
758 yylval.ulval = n;
759 return CHAR;
760 }
761 else if ( unsigned_p && number_sign == 1)
762 {
763 yylval.ulval = n;
764 return UINT;
765 }
766 else if((unsigned_p && (n<0))) {
767 range_error (_("Overflow on numeric constant -- number too large."));
768 /* But, this can return if range_check == range_warn. */
769 }
770 yylval.lval = n;
771 return INT;
772 }
773
774
775 /* Some tokens */
776
777 static struct
778 {
779 char name[2];
780 int token;
781 } tokentab2[] =
782 {
783 { {'<', '>'}, NOTEQUAL },
784 { {':', '='}, ASSIGN },
785 { {'<', '='}, LEQ },
786 { {'>', '='}, GEQ },
787 { {':', ':'}, COLONCOLON },
788
789 };
790
791 /* Some specific keywords */
792
793 struct keyword {
794 char keyw[10];
795 int token;
796 };
797
798 static struct keyword keytab[] =
799 {
800 {"OR" , OROR },
801 {"IN", IN },/* Note space after IN */
802 {"AND", LOGICAL_AND},
803 {"ABS", ABS },
804 {"CHR", CHR },
805 {"DEC", DEC },
806 {"NOT", NOT },
807 {"DIV", DIV },
808 {"INC", INC },
809 {"MAX", MAX_FUNC },
810 {"MIN", MIN_FUNC },
811 {"MOD", MOD },
812 {"ODD", ODD },
813 {"CAP", CAP },
814 {"ORD", ORD },
815 {"VAL", VAL },
816 {"EXCL", EXCL },
817 {"HIGH", HIGH },
818 {"INCL", INCL },
819 {"SIZE", SIZE },
820 {"FLOAT", FLOAT_FUNC },
821 {"TRUNC", TRUNC },
822 {"TSIZE", SIZE },
823 };
824
825
826 /* Read one token, getting characters through lexptr. */
827
828 /* This is where we will check to make sure that the language and the
829 operators used are compatible */
830
831 static int
832 yylex (void)
833 {
834 int c;
835 int namelen;
836 int i;
837 const char *tokstart;
838 char quote;
839
840 retry:
841
842 prev_lexptr = lexptr;
843
844 tokstart = lexptr;
845
846
847 /* See if it is a special token of length 2 */
848 for( i = 0 ; i < (int) (sizeof tokentab2 / sizeof tokentab2[0]) ; i++)
849 if (strncmp (tokentab2[i].name, tokstart, 2) == 0)
850 {
851 lexptr += 2;
852 return tokentab2[i].token;
853 }
854
855 switch (c = *tokstart)
856 {
857 case 0:
858 return 0;
859
860 case ' ':
861 case '\t':
862 case '\n':
863 lexptr++;
864 goto retry;
865
866 case '(':
867 paren_depth++;
868 lexptr++;
869 return c;
870
871 case ')':
872 if (paren_depth == 0)
873 return 0;
874 paren_depth--;
875 lexptr++;
876 return c;
877
878 case ',':
879 if (comma_terminates && paren_depth == 0)
880 return 0;
881 lexptr++;
882 return c;
883
884 case '.':
885 /* Might be a floating point number. */
886 if (lexptr[1] >= '0' && lexptr[1] <= '9')
887 break; /* Falls into number code. */
888 else
889 {
890 lexptr++;
891 return DOT;
892 }
893
894 /* These are character tokens that appear as-is in the YACC grammar */
895 case '+':
896 case '-':
897 case '*':
898 case '/':
899 case '^':
900 case '<':
901 case '>':
902 case '[':
903 case ']':
904 case '=':
905 case '{':
906 case '}':
907 case '#':
908 case '@':
909 case '~':
910 case '&':
911 lexptr++;
912 return c;
913
914 case '\'' :
915 case '"':
916 quote = c;
917 for (namelen = 1; (c = tokstart[namelen]) != quote && c != '\0'; namelen++)
918 if (c == '\\')
919 {
920 c = tokstart[++namelen];
921 if (c >= '0' && c <= '9')
922 {
923 c = tokstart[++namelen];
924 if (c >= '0' && c <= '9')
925 c = tokstart[++namelen];
926 }
927 }
928 if(c != quote)
929 error (_("Unterminated string or character constant."));
930 yylval.sval.ptr = tokstart + 1;
931 yylval.sval.length = namelen - 1;
932 lexptr += namelen + 1;
933
934 if(namelen == 2) /* Single character */
935 {
936 yylval.ulval = tokstart[1];
937 return CHAR;
938 }
939 else
940 return STRING;
941 }
942
943 /* Is it a number? */
944 /* Note: We have already dealt with the case of the token '.'.
945 See case '.' above. */
946 if ((c >= '0' && c <= '9'))
947 {
948 /* It's a number. */
949 int got_dot = 0, got_e = 0;
950 const char *p = tokstart;
951 int toktype;
952
953 for (++p ;; ++p)
954 {
955 if (!got_e && (*p == 'e' || *p == 'E'))
956 got_dot = got_e = 1;
957 else if (!got_dot && *p == '.')
958 got_dot = 1;
959 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
960 && (*p == '-' || *p == '+'))
961 /* This is the sign of the exponent, not the end of the
962 number. */
963 continue;
964 else if ((*p < '0' || *p > '9') &&
965 (*p < 'A' || *p > 'F') &&
966 (*p != 'H')) /* Modula-2 hexadecimal number */
967 break;
968 }
969 toktype = parse_number (p - tokstart);
970 if (toktype == ERROR)
971 {
972 char *err_copy = (char *) alloca (p - tokstart + 1);
973
974 memcpy (err_copy, tokstart, p - tokstart);
975 err_copy[p - tokstart] = 0;
976 error (_("Invalid number \"%s\"."), err_copy);
977 }
978 lexptr = p;
979 return toktype;
980 }
981
982 if (!(c == '_' || c == '$'
983 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
984 /* We must have come across a bad character (e.g. ';'). */
985 error (_("Invalid character '%c' in expression."), c);
986
987 /* It's a name. See how long it is. */
988 namelen = 0;
989 for (c = tokstart[namelen];
990 (c == '_' || c == '$' || (c >= '0' && c <= '9')
991 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
992 c = tokstart[++namelen])
993 ;
994
995 /* The token "if" terminates the expression and is NOT
996 removed from the input stream. */
997 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
998 {
999 return 0;
1000 }
1001
1002 lexptr += namelen;
1003
1004 /* Lookup special keywords */
1005 for(i = 0 ; i < (int) (sizeof(keytab) / sizeof(keytab[0])) ; i++)
1006 if (namelen == strlen (keytab[i].keyw)
1007 && strncmp (tokstart, keytab[i].keyw, namelen) == 0)
1008 return keytab[i].token;
1009
1010 yylval.sval.ptr = tokstart;
1011 yylval.sval.length = namelen;
1012
1013 if (*tokstart == '$')
1014 {
1015 write_dollar_variable (pstate, yylval.sval);
1016 return INTERNAL_VAR;
1017 }
1018
1019 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1020 functions. If this is not so, then ...
1021 Use token-type TYPENAME for symbols that happen to be defined
1022 currently as names of types; NAME for other symbols.
1023 The caller is not constrained to care about the distinction. */
1024 {
1025
1026
1027 char *tmp = copy_name (yylval.sval);
1028 struct symbol *sym;
1029
1030 if (lookup_symtab (tmp))
1031 return BLOCKNAME;
1032 sym = lookup_symbol (tmp, expression_context_block, VAR_DOMAIN, 0);
1033 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1034 return BLOCKNAME;
1035 if (lookup_typename (parse_language (pstate), parse_gdbarch (pstate),
1036 copy_name (yylval.sval),
1037 expression_context_block, 1))
1038 return TYPENAME;
1039
1040 if(sym)
1041 {
1042 switch(SYMBOL_CLASS (sym))
1043 {
1044 case LOC_STATIC:
1045 case LOC_REGISTER:
1046 case LOC_ARG:
1047 case LOC_REF_ARG:
1048 case LOC_REGPARM_ADDR:
1049 case LOC_LOCAL:
1050 case LOC_CONST:
1051 case LOC_CONST_BYTES:
1052 case LOC_OPTIMIZED_OUT:
1053 case LOC_COMPUTED:
1054 return NAME;
1055
1056 case LOC_TYPEDEF:
1057 return TYPENAME;
1058
1059 case LOC_BLOCK:
1060 return BLOCKNAME;
1061
1062 case LOC_UNDEF:
1063 error (_("internal: Undefined class in m2lex()"));
1064
1065 case LOC_LABEL:
1066 case LOC_UNRESOLVED:
1067 error (_("internal: Unforseen case in m2lex()"));
1068
1069 default:
1070 error (_("unhandled token in m2lex()"));
1071 break;
1072 }
1073 }
1074 else
1075 {
1076 /* Built-in BOOLEAN type. This is sort of a hack. */
1077 if (strncmp (tokstart, "TRUE", 4) == 0)
1078 {
1079 yylval.ulval = 1;
1080 return M2_TRUE;
1081 }
1082 else if (strncmp (tokstart, "FALSE", 5) == 0)
1083 {
1084 yylval.ulval = 0;
1085 return M2_FALSE;
1086 }
1087 }
1088
1089 /* Must be another type of name... */
1090 return NAME;
1091 }
1092 }
1093
1094 int
1095 m2_parse (struct parser_state *par_state)
1096 {
1097 int result;
1098 struct cleanup *c = make_cleanup_clear_parser_state (&pstate);
1099
1100 /* Setting up the parser state. */
1101 gdb_assert (par_state != NULL);
1102 pstate = par_state;
1103
1104 result = yyparse ();
1105 do_cleanups (c);
1106
1107 return result;
1108 }
1109
1110 void
1111 yyerror (char *msg)
1112 {
1113 if (prev_lexptr)
1114 lexptr = prev_lexptr;
1115
1116 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1117 }
This page took 0.059622 seconds and 5 git commands to generate.