1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
3 Copyright 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #if defined (HAVE_STRING_H)
28 #include "gdb_assert.h"
31 #include "gdb/sim-m32c.h"
35 #include "arch-utils.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2expr.h"
43 #include "reggroups.h"
44 #include "prologue-value.h"
48 /* The m32c tdep structure. */
50 static struct reggroup
*m32c_dma_reggroup
;
54 /* The type of a function that moves the value of REG between CACHE or
55 BUF --- in either direction. */
56 typedef void (m32c_move_reg_t
) (struct m32c_reg
*reg
,
57 struct regcache
*cache
,
62 /* The name of this register. */
68 /* The architecture this register belongs to. */
71 /* Its GDB register number. */
74 /* Its sim register number. */
77 /* Its DWARF register number, or -1 if it doesn't have one. */
80 /* Register group memberships. */
81 unsigned int general_p
: 1;
82 unsigned int dma_p
: 1;
83 unsigned int system_p
: 1;
84 unsigned int save_restore_p
: 1;
86 /* Functions to read its value from a regcache, and write its value
88 m32c_move_reg_t
*read
, *write
;
90 /* Data for READ and WRITE functions. The exact meaning depends on
91 the specific functions selected; see the comments for those
93 struct m32c_reg
*rx
, *ry
;
98 /* An overestimate of the number of raw and pseudoregisters we will
99 have. The exact answer depends on the variant of the architecture
100 at hand, but we can use this to declare statically allocated
101 arrays, and bump it up when needed. */
102 #define M32C_MAX_NUM_REGS (75)
104 /* The largest assigned DWARF register number. */
105 #define M32C_MAX_DWARF_REGNUM (40)
110 /* All the registers for this variant, indexed by GDB register
111 number, and the number of registers present. */
112 struct m32c_reg regs
[M32C_MAX_NUM_REGS
];
114 /* The number of valid registers. */
117 /* Interesting registers. These are pointers into REGS. */
118 struct m32c_reg
*pc
, *flg
;
119 struct m32c_reg
*r0
, *r1
, *r2
, *r3
, *a0
, *a1
;
120 struct m32c_reg
*r2r0
, *r3r2r1r0
, *r3r1r2r0
;
121 struct m32c_reg
*sb
, *fb
, *sp
;
123 /* A table indexed by DWARF register numbers, pointing into
125 struct m32c_reg
*dwarf_regs
[M32C_MAX_DWARF_REGNUM
+ 1];
127 /* Types for this architecture. We can't use the builtin_type_foo
128 types, because they're not initialized when building a gdbarch
130 struct type
*voyd
, *ptr_voyd
, *func_voyd
;
131 struct type
*uint8
, *uint16
;
132 struct type
*int8
, *int16
, *int32
, *int64
;
134 /* The types for data address and code address registers. */
135 struct type
*data_addr_reg_type
, *code_addr_reg_type
;
137 /* The number of bytes a return address pushed by a 'jsr' instruction
138 occupies on the stack. */
141 /* The number of bytes an address register occupies on the stack
142 when saved by an 'enter' or 'pushm' instruction. */
150 make_types (struct gdbarch
*arch
)
152 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
153 unsigned long mach
= gdbarch_bfd_arch_info (arch
)->mach
;
154 int data_addr_reg_bits
, code_addr_reg_bits
;
158 /* This is used to clip CORE_ADDR values, so this value is
159 appropriate both on the m32c, where pointers are 32 bits long,
160 and on the m16c, where pointers are sixteen bits long, but there
161 may be code above the 64k boundary. */
162 set_gdbarch_addr_bit (arch
, 24);
164 /* GCC uses 32 bits for addrs in the dwarf info, even though
165 only 16/24 bits are used. Setting addr_bit to 24 causes
166 errors in reading the dwarf addresses. */
167 set_gdbarch_addr_bit (arch
, 32);
170 set_gdbarch_int_bit (arch
, 16);
174 data_addr_reg_bits
= 16;
175 code_addr_reg_bits
= 24;
176 set_gdbarch_ptr_bit (arch
, 16);
177 tdep
->ret_addr_bytes
= 3;
178 tdep
->push_addr_bytes
= 2;
182 data_addr_reg_bits
= 24;
183 code_addr_reg_bits
= 24;
184 set_gdbarch_ptr_bit (arch
, 32);
185 tdep
->ret_addr_bytes
= 4;
186 tdep
->push_addr_bytes
= 4;
190 gdb_assert_not_reached ("unexpected mach");
193 /* The builtin_type_mumble variables are sometimes uninitialized when
194 this is called, so we avoid using them. */
195 tdep
->voyd
= arch_type (arch
, TYPE_CODE_VOID
, 1, "void");
197 = arch_type (arch
, TYPE_CODE_PTR
, gdbarch_ptr_bit (arch
) / TARGET_CHAR_BIT
,
199 TYPE_TARGET_TYPE (tdep
->ptr_voyd
) = tdep
->voyd
;
200 TYPE_UNSIGNED (tdep
->ptr_voyd
) = 1;
201 tdep
->func_voyd
= lookup_function_type (tdep
->voyd
);
203 sprintf (type_name
, "%s_data_addr_t",
204 gdbarch_bfd_arch_info (arch
)->printable_name
);
205 tdep
->data_addr_reg_type
206 = arch_type (arch
, TYPE_CODE_PTR
, data_addr_reg_bits
/ TARGET_CHAR_BIT
,
207 xstrdup (type_name
));
208 TYPE_TARGET_TYPE (tdep
->data_addr_reg_type
) = tdep
->voyd
;
209 TYPE_UNSIGNED (tdep
->data_addr_reg_type
) = 1;
211 sprintf (type_name
, "%s_code_addr_t",
212 gdbarch_bfd_arch_info (arch
)->printable_name
);
213 tdep
->code_addr_reg_type
214 = arch_type (arch
, TYPE_CODE_PTR
, code_addr_reg_bits
/ TARGET_CHAR_BIT
,
215 xstrdup (type_name
));
216 TYPE_TARGET_TYPE (tdep
->code_addr_reg_type
) = tdep
->func_voyd
;
217 TYPE_UNSIGNED (tdep
->code_addr_reg_type
) = 1;
219 tdep
->uint8
= arch_integer_type (arch
, 8, 1, "uint8_t");
220 tdep
->uint16
= arch_integer_type (arch
, 16, 1, "uint16_t");
221 tdep
->int8
= arch_integer_type (arch
, 8, 0, "int8_t");
222 tdep
->int16
= arch_integer_type (arch
, 16, 0, "int16_t");
223 tdep
->int32
= arch_integer_type (arch
, 32, 0, "int32_t");
224 tdep
->int64
= arch_integer_type (arch
, 64, 0, "int64_t");
232 m32c_register_name (struct gdbarch
*gdbarch
, int num
)
234 return gdbarch_tdep (gdbarch
)->regs
[num
].name
;
239 m32c_register_type (struct gdbarch
*arch
, int reg_nr
)
241 return gdbarch_tdep (arch
)->regs
[reg_nr
].type
;
246 m32c_register_sim_regno (struct gdbarch
*gdbarch
, int reg_nr
)
248 return gdbarch_tdep (gdbarch
)->regs
[reg_nr
].sim_num
;
253 m32c_debug_info_reg_to_regnum (struct gdbarch
*gdbarch
, int reg_nr
)
255 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
256 if (0 <= reg_nr
&& reg_nr
<= M32C_MAX_DWARF_REGNUM
257 && tdep
->dwarf_regs
[reg_nr
])
258 return tdep
->dwarf_regs
[reg_nr
]->num
;
260 /* The DWARF CFI code expects to see -1 for invalid register
267 m32c_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
268 struct reggroup
*group
)
270 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
271 struct m32c_reg
*reg
= &tdep
->regs
[regnum
];
273 /* The anonymous raw registers aren't in any groups. */
277 if (group
== all_reggroup
)
280 if (group
== general_reggroup
284 if (group
== m32c_dma_reggroup
288 if (group
== system_reggroup
292 /* Since the m32c DWARF register numbers refer to cooked registers, not
293 raw registers, and frame_pop depends on the save and restore groups
294 containing registers the DWARF CFI will actually mention, our save
295 and restore groups are cooked registers, not raw registers. (This is
296 why we can't use the default reggroup function.) */
297 if ((group
== save_reggroup
298 || group
== restore_reggroup
)
299 && reg
->save_restore_p
)
306 /* Register move functions. We declare them here using
307 m32c_move_reg_t to check the types. */
308 static m32c_move_reg_t m32c_raw_read
, m32c_raw_write
;
309 static m32c_move_reg_t m32c_banked_read
, m32c_banked_write
;
310 static m32c_move_reg_t m32c_sb_read
, m32c_sb_write
;
311 static m32c_move_reg_t m32c_part_read
, m32c_part_write
;
312 static m32c_move_reg_t m32c_cat_read
, m32c_cat_write
;
313 static m32c_move_reg_t m32c_r3r2r1r0_read
, m32c_r3r2r1r0_write
;
316 /* Copy the value of the raw register REG from CACHE to BUF. */
318 m32c_raw_read (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
320 regcache_raw_read (cache
, reg
->num
, buf
);
324 /* Copy the value of the raw register REG from BUF to CACHE. */
326 m32c_raw_write (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
328 regcache_raw_write (cache
, reg
->num
, (const void *) buf
);
332 /* Return the value of the 'flg' register in CACHE. */
334 m32c_read_flg (struct regcache
*cache
)
336 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (cache
));
338 regcache_raw_read_unsigned (cache
, tdep
->flg
->num
, &flg
);
343 /* Evaluate the real register number of a banked register. */
344 static struct m32c_reg
*
345 m32c_banked_register (struct m32c_reg
*reg
, struct regcache
*cache
)
347 return ((m32c_read_flg (cache
) & reg
->n
) ? reg
->ry
: reg
->rx
);
351 /* Move the value of a banked register from CACHE to BUF.
352 If the value of the 'flg' register in CACHE has any of the bits
353 masked in REG->n set, then read REG->ry. Otherwise, read
356 m32c_banked_read (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
358 struct m32c_reg
*bank_reg
= m32c_banked_register (reg
, cache
);
359 regcache_raw_read (cache
, bank_reg
->num
, buf
);
363 /* Move the value of a banked register from BUF to CACHE.
364 If the value of the 'flg' register in CACHE has any of the bits
365 masked in REG->n set, then write REG->ry. Otherwise, write
368 m32c_banked_write (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
370 struct m32c_reg
*bank_reg
= m32c_banked_register (reg
, cache
);
371 regcache_raw_write (cache
, bank_reg
->num
, (const void *) buf
);
375 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
376 banked register; on bfd_mach_m16c, it's not. */
378 m32c_sb_read (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
380 if (gdbarch_bfd_arch_info (reg
->arch
)->mach
== bfd_mach_m16c
)
381 m32c_raw_read (reg
->rx
, cache
, buf
);
383 m32c_banked_read (reg
, cache
, buf
);
387 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
388 banked register; on bfd_mach_m16c, it's not. */
390 m32c_sb_write (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
392 if (gdbarch_bfd_arch_info (reg
->arch
)->mach
== bfd_mach_m16c
)
393 m32c_raw_write (reg
->rx
, cache
, buf
);
395 m32c_banked_write (reg
, cache
, buf
);
399 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
400 and *LEN_P to the offset and length, in bytes, of the part REG
401 occupies in its underlying register. The offset is from the
402 lower-addressed end, regardless of the architecture's endianness.
403 (The M32C family is always little-endian, but let's keep those
404 assumptions out of here.) */
406 m32c_find_part (struct m32c_reg
*reg
, int *offset_p
, int *len_p
)
408 /* The length of the containing register, of which REG is one part. */
409 int containing_len
= TYPE_LENGTH (reg
->rx
->type
);
411 /* The length of one "element" in our imaginary array. */
412 int elt_len
= TYPE_LENGTH (reg
->type
);
414 /* The offset of REG's "element" from the least significant end of
415 the containing register. */
416 int elt_offset
= reg
->n
* elt_len
;
418 /* If we extend off the end, trim the length of the element. */
419 if (elt_offset
+ elt_len
> containing_len
)
421 elt_len
= containing_len
- elt_offset
;
422 /* We shouldn't be declaring partial registers that go off the
423 end of their containing registers. */
424 gdb_assert (elt_len
> 0);
427 /* Flip the offset around if we're big-endian. */
428 if (gdbarch_byte_order (reg
->arch
) == BFD_ENDIAN_BIG
)
429 elt_offset
= TYPE_LENGTH (reg
->rx
->type
) - elt_offset
- elt_len
;
431 *offset_p
= elt_offset
;
436 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
437 to BUF. Treating the value of the register REG->rx as an array of
438 REG->type values, where higher indices refer to more significant
439 bits, read the value of the REG->n'th element. */
441 m32c_part_read (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
444 memset (buf
, 0, TYPE_LENGTH (reg
->type
));
445 m32c_find_part (reg
, &offset
, &len
);
446 regcache_cooked_read_part (cache
, reg
->rx
->num
, offset
, len
, buf
);
450 /* Move the value of a banked register from BUF to CACHE.
451 Treating the value of the register REG->rx as an array of REG->type
452 values, where higher indices refer to more significant bits, write
453 the value of the REG->n'th element. */
455 m32c_part_write (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
458 m32c_find_part (reg
, &offset
, &len
);
459 regcache_cooked_write_part (cache
, reg
->rx
->num
, offset
, len
, buf
);
463 /* Move the value of REG from CACHE to BUF. REG's value is the
464 concatenation of the values of the registers REG->rx and REG->ry,
465 with REG->rx contributing the more significant bits. */
467 m32c_cat_read (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
469 int high_bytes
= TYPE_LENGTH (reg
->rx
->type
);
470 int low_bytes
= TYPE_LENGTH (reg
->ry
->type
);
471 /* For address arithmetic. */
472 unsigned char *cbuf
= buf
;
474 gdb_assert (TYPE_LENGTH (reg
->type
) == high_bytes
+ low_bytes
);
476 if (gdbarch_byte_order (reg
->arch
) == BFD_ENDIAN_BIG
)
478 regcache_cooked_read (cache
, reg
->rx
->num
, cbuf
);
479 regcache_cooked_read (cache
, reg
->ry
->num
, cbuf
+ high_bytes
);
483 regcache_cooked_read (cache
, reg
->rx
->num
, cbuf
+ low_bytes
);
484 regcache_cooked_read (cache
, reg
->ry
->num
, cbuf
);
489 /* Move the value of REG from CACHE to BUF. REG's value is the
490 concatenation of the values of the registers REG->rx and REG->ry,
491 with REG->rx contributing the more significant bits. */
493 m32c_cat_write (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
495 int high_bytes
= TYPE_LENGTH (reg
->rx
->type
);
496 int low_bytes
= TYPE_LENGTH (reg
->ry
->type
);
497 /* For address arithmetic. */
498 unsigned char *cbuf
= buf
;
500 gdb_assert (TYPE_LENGTH (reg
->type
) == high_bytes
+ low_bytes
);
502 if (gdbarch_byte_order (reg
->arch
) == BFD_ENDIAN_BIG
)
504 regcache_cooked_write (cache
, reg
->rx
->num
, cbuf
);
505 regcache_cooked_write (cache
, reg
->ry
->num
, cbuf
+ high_bytes
);
509 regcache_cooked_write (cache
, reg
->rx
->num
, cbuf
+ low_bytes
);
510 regcache_cooked_write (cache
, reg
->ry
->num
, cbuf
);
515 /* Copy the value of the raw register REG from CACHE to BUF. REG is
516 the concatenation (from most significant to least) of r3, r2, r1,
519 m32c_r3r2r1r0_read (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
521 struct gdbarch_tdep
*tdep
= gdbarch_tdep (reg
->arch
);
522 int len
= TYPE_LENGTH (tdep
->r0
->type
);
524 /* For address arithmetic. */
525 unsigned char *cbuf
= buf
;
527 if (gdbarch_byte_order (reg
->arch
) == BFD_ENDIAN_BIG
)
529 regcache_cooked_read (cache
, tdep
->r0
->num
, cbuf
+ len
* 3);
530 regcache_cooked_read (cache
, tdep
->r1
->num
, cbuf
+ len
* 2);
531 regcache_cooked_read (cache
, tdep
->r2
->num
, cbuf
+ len
* 1);
532 regcache_cooked_read (cache
, tdep
->r3
->num
, cbuf
);
536 regcache_cooked_read (cache
, tdep
->r0
->num
, cbuf
);
537 regcache_cooked_read (cache
, tdep
->r1
->num
, cbuf
+ len
* 1);
538 regcache_cooked_read (cache
, tdep
->r2
->num
, cbuf
+ len
* 2);
539 regcache_cooked_read (cache
, tdep
->r3
->num
, cbuf
+ len
* 3);
544 /* Copy the value of the raw register REG from BUF to CACHE. REG is
545 the concatenation (from most significant to least) of r3, r2, r1,
548 m32c_r3r2r1r0_write (struct m32c_reg
*reg
, struct regcache
*cache
, void *buf
)
550 struct gdbarch_tdep
*tdep
= gdbarch_tdep (reg
->arch
);
551 int len
= TYPE_LENGTH (tdep
->r0
->type
);
553 /* For address arithmetic. */
554 unsigned char *cbuf
= buf
;
556 if (gdbarch_byte_order (reg
->arch
) == BFD_ENDIAN_BIG
)
558 regcache_cooked_write (cache
, tdep
->r0
->num
, cbuf
+ len
* 3);
559 regcache_cooked_write (cache
, tdep
->r1
->num
, cbuf
+ len
* 2);
560 regcache_cooked_write (cache
, tdep
->r2
->num
, cbuf
+ len
* 1);
561 regcache_cooked_write (cache
, tdep
->r3
->num
, cbuf
);
565 regcache_cooked_write (cache
, tdep
->r0
->num
, cbuf
);
566 regcache_cooked_write (cache
, tdep
->r1
->num
, cbuf
+ len
* 1);
567 regcache_cooked_write (cache
, tdep
->r2
->num
, cbuf
+ len
* 2);
568 regcache_cooked_write (cache
, tdep
->r3
->num
, cbuf
+ len
* 3);
574 m32c_pseudo_register_read (struct gdbarch
*arch
,
575 struct regcache
*cache
,
579 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
580 struct m32c_reg
*reg
;
582 gdb_assert (0 <= cookednum
&& cookednum
< tdep
->num_regs
);
583 gdb_assert (arch
== get_regcache_arch (cache
));
584 gdb_assert (arch
== tdep
->regs
[cookednum
].arch
);
585 reg
= &tdep
->regs
[cookednum
];
587 reg
->read (reg
, cache
, buf
);
592 m32c_pseudo_register_write (struct gdbarch
*arch
,
593 struct regcache
*cache
,
597 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
598 struct m32c_reg
*reg
;
600 gdb_assert (0 <= cookednum
&& cookednum
< tdep
->num_regs
);
601 gdb_assert (arch
== get_regcache_arch (cache
));
602 gdb_assert (arch
== tdep
->regs
[cookednum
].arch
);
603 reg
= &tdep
->regs
[cookednum
];
605 reg
->write (reg
, cache
, (void *) buf
);
609 /* Add a register with the given fields to the end of ARCH's table.
610 Return a pointer to the newly added register. */
611 static struct m32c_reg
*
612 add_reg (struct gdbarch
*arch
,
616 m32c_move_reg_t
*read
,
617 m32c_move_reg_t
*write
,
622 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
623 struct m32c_reg
*r
= &tdep
->regs
[tdep
->num_regs
];
625 gdb_assert (tdep
->num_regs
< M32C_MAX_NUM_REGS
);
630 r
->num
= tdep
->num_regs
;
631 r
->sim_num
= sim_num
;
636 r
->save_restore_p
= 0;
649 /* Record NUM as REG's DWARF register number. */
651 set_dwarf_regnum (struct m32c_reg
*reg
, int num
)
653 gdb_assert (num
< M32C_MAX_NUM_REGS
);
655 /* Update the reg->DWARF mapping. Only count the first number
656 assigned to this register. */
657 if (reg
->dwarf_num
== -1)
658 reg
->dwarf_num
= num
;
660 /* Update the DWARF->reg mapping. */
661 gdbarch_tdep (reg
->arch
)->dwarf_regs
[num
] = reg
;
665 /* Mark REG as a general-purpose register, and return it. */
666 static struct m32c_reg
*
667 mark_general (struct m32c_reg
*reg
)
674 /* Mark REG as a DMA register, and return it. */
675 static struct m32c_reg
*
676 mark_dma (struct m32c_reg
*reg
)
683 /* Mark REG as a SYSTEM register, and return it. */
684 static struct m32c_reg
*
685 mark_system (struct m32c_reg
*reg
)
692 /* Mark REG as a save-restore register, and return it. */
693 static struct m32c_reg
*
694 mark_save_restore (struct m32c_reg
*reg
)
696 reg
->save_restore_p
= 1;
701 #define FLAGBIT_B 0x0010
702 #define FLAGBIT_U 0x0080
704 /* Handy macros for declaring registers. These all evaluate to
705 pointers to the register declared. Macros that define two
706 registers evaluate to a pointer to the first. */
708 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
709 #define R(name, type, sim_num) \
710 (add_reg (arch, (name), (type), (sim_num), \
711 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
713 /* The simulator register number for a raw register named NAME. */
714 #define SIM(name) (m32c_sim_reg_ ## name)
716 /* A raw unsigned 16-bit data register named NAME.
717 NAME should be an identifier, not a string. */
719 (R(#name, tdep->uint16, SIM (name)))
721 /* A raw data address register named NAME.
722 NAME should be an identifier, not a string. */
724 (R(#name, tdep->data_addr_reg_type, SIM (name)))
726 /* A raw code address register named NAME. NAME should
727 be an identifier, not a string. */
729 (R(#name, tdep->code_addr_reg_type, SIM (name)))
731 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
732 NAME should be an identifier, not a string. */
733 #define RP(name, type) \
734 (R(#name "0", (type), SIM (name ## 0)), \
735 R(#name "1", (type), SIM (name ## 1)) - 1)
737 /* A raw banked general-purpose data register named NAME.
738 NAME should be an identifier, not a string. */
740 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
741 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
743 /* A raw banked data address register named NAME.
744 NAME should be an identifier, not a string. */
746 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
747 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
749 /* A cooked register named NAME referring to a raw banked register
750 from the bank selected by the current value of FLG. RAW_PAIR
751 should be a pointer to the first register in the banked pair.
752 NAME must be an identifier, not a string. */
753 #define CB(name, raw_pair) \
754 (add_reg (arch, #name, (raw_pair)->type, 0, \
755 m32c_banked_read, m32c_banked_write, \
756 (raw_pair), (raw_pair + 1), FLAGBIT_B))
758 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
759 access the top and bottom halves of the register pointed to by
760 NAME. NAME should be an identifier. */
761 #define CHL(name, type) \
762 (add_reg (arch, #name "h", (type), 0, \
763 m32c_part_read, m32c_part_write, name, NULL, 1), \
764 add_reg (arch, #name "l", (type), 0, \
765 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
767 /* A register constructed by concatenating the two registers HIGH and
768 LOW, whose name is HIGHLOW and whose type is TYPE. */
769 #define CCAT(high, low, type) \
770 (add_reg (arch, #high #low, (type), 0, \
771 m32c_cat_read, m32c_cat_write, (high), (low), 0))
773 /* Abbreviations for marking register group membership. */
774 #define G(reg) (mark_general (reg))
775 #define S(reg) (mark_system (reg))
776 #define DMA(reg) (mark_dma (reg))
779 /* Construct the register set for ARCH. */
781 make_regs (struct gdbarch
*arch
)
783 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
784 int mach
= gdbarch_bfd_arch_info (arch
)->mach
;
797 struct m32c_reg
*r0hl
;
798 struct m32c_reg
*r1hl
;
799 struct m32c_reg
*r2hl
;
800 struct m32c_reg
*r3hl
;
801 struct m32c_reg
*intbhl
;
802 struct m32c_reg
*r2r0
;
803 struct m32c_reg
*r3r1
;
804 struct m32c_reg
*r3r1r2r0
;
805 struct m32c_reg
*r3r2r1r0
;
806 struct m32c_reg
*a1a0
;
808 struct m32c_reg
*raw_r0_pair
= RBD (r0
);
809 struct m32c_reg
*raw_r1_pair
= RBD (r1
);
810 struct m32c_reg
*raw_r2_pair
= RBD (r2
);
811 struct m32c_reg
*raw_r3_pair
= RBD (r3
);
812 struct m32c_reg
*raw_a0_pair
= RBA (a0
);
813 struct m32c_reg
*raw_a1_pair
= RBA (a1
);
814 struct m32c_reg
*raw_fb_pair
= RBA (fb
);
816 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
817 We always declare both raw registers, and deal with the distinction
818 in the pseudoregister. */
819 struct m32c_reg
*raw_sb_pair
= RBA (sb
);
821 struct m32c_reg
*usp
= S (RA (usp
));
822 struct m32c_reg
*isp
= S (RA (isp
));
823 struct m32c_reg
*intb
= S (RC (intb
));
824 struct m32c_reg
*pc
= G (RC (pc
));
825 struct m32c_reg
*flg
= G (R16U (flg
));
827 if (mach
== bfd_mach_m32c
)
829 struct m32c_reg
*svf
= S (R16U (svf
));
830 struct m32c_reg
*svp
= S (RC (svp
));
831 struct m32c_reg
*vct
= S (RC (vct
));
833 struct m32c_reg
*dmd01
= DMA (RP (dmd
, tdep
->uint8
));
834 struct m32c_reg
*dct01
= DMA (RP (dct
, tdep
->uint16
));
835 struct m32c_reg
*drc01
= DMA (RP (drc
, tdep
->uint16
));
836 struct m32c_reg
*dma01
= DMA (RP (dma
, tdep
->data_addr_reg_type
));
837 struct m32c_reg
*dsa01
= DMA (RP (dsa
, tdep
->data_addr_reg_type
));
838 struct m32c_reg
*dra01
= DMA (RP (dra
, tdep
->data_addr_reg_type
));
841 num_raw_regs
= tdep
->num_regs
;
843 r0
= G (CB (r0
, raw_r0_pair
));
844 r1
= G (CB (r1
, raw_r1_pair
));
845 r2
= G (CB (r2
, raw_r2_pair
));
846 r3
= G (CB (r3
, raw_r3_pair
));
847 a0
= G (CB (a0
, raw_a0_pair
));
848 a1
= G (CB (a1
, raw_a1_pair
));
849 fb
= G (CB (fb
, raw_fb_pair
));
851 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
852 Specify custom read/write functions that do the right thing. */
853 sb
= G (add_reg (arch
, "sb", raw_sb_pair
->type
, 0,
854 m32c_sb_read
, m32c_sb_write
,
855 raw_sb_pair
, raw_sb_pair
+ 1, 0));
857 /* The current sp is either usp or isp, depending on the value of
858 the FLG register's U bit. */
859 sp
= G (add_reg (arch
, "sp", usp
->type
, 0,
860 m32c_banked_read
, m32c_banked_write
,
861 isp
, usp
, FLAGBIT_U
));
863 r0hl
= CHL (r0
, tdep
->int8
);
864 r1hl
= CHL (r1
, tdep
->int8
);
865 r2hl
= CHL (r2
, tdep
->int8
);
866 r3hl
= CHL (r3
, tdep
->int8
);
867 intbhl
= CHL (intb
, tdep
->int16
);
869 r2r0
= CCAT (r2
, r0
, tdep
->int32
);
870 r3r1
= CCAT (r3
, r1
, tdep
->int32
);
871 r3r1r2r0
= CCAT (r3r1
, r2r0
, tdep
->int64
);
874 = add_reg (arch
, "r3r2r1r0", tdep
->int64
, 0,
875 m32c_r3r2r1r0_read
, m32c_r3r2r1r0_write
, NULL
, NULL
, 0);
877 if (mach
== bfd_mach_m16c
)
878 a1a0
= CCAT (a1
, a0
, tdep
->int32
);
882 num_cooked_regs
= tdep
->num_regs
- num_raw_regs
;
891 tdep
->r3r2r1r0
= r3r2r1r0
;
892 tdep
->r3r1r2r0
= r3r1r2r0
;
899 /* Set up the DWARF register table. */
900 memset (tdep
->dwarf_regs
, 0, sizeof (tdep
->dwarf_regs
));
901 set_dwarf_regnum (r0hl
+ 1, 0x01);
902 set_dwarf_regnum (r0hl
+ 0, 0x02);
903 set_dwarf_regnum (r1hl
+ 1, 0x03);
904 set_dwarf_regnum (r1hl
+ 0, 0x04);
905 set_dwarf_regnum (r0
, 0x05);
906 set_dwarf_regnum (r1
, 0x06);
907 set_dwarf_regnum (r2
, 0x07);
908 set_dwarf_regnum (r3
, 0x08);
909 set_dwarf_regnum (a0
, 0x09);
910 set_dwarf_regnum (a1
, 0x0a);
911 set_dwarf_regnum (fb
, 0x0b);
912 set_dwarf_regnum (sp
, 0x0c);
913 set_dwarf_regnum (pc
, 0x0d); /* GCC's invention */
914 set_dwarf_regnum (sb
, 0x13);
915 set_dwarf_regnum (r2r0
, 0x15);
916 set_dwarf_regnum (r3r1
, 0x16);
918 set_dwarf_regnum (a1a0
, 0x17);
920 /* Enumerate the save/restore register group.
922 The regcache_save and regcache_restore functions apply their read
923 function to each register in this group.
925 Since frame_pop supplies frame_unwind_register as its read
926 function, the registers meaningful to the Dwarf unwinder need to
929 On the other hand, when we make inferior calls, save_inferior_status
930 and restore_inferior_status use them to preserve the current register
931 values across the inferior call. For this, you'd kind of like to
932 preserve all the raw registers, to protect the interrupted code from
933 any sort of bank switching the callee might have done. But we handle
934 those cases so badly anyway --- for example, it matters whether we
935 restore FLG before or after we restore the general-purpose registers,
936 but there's no way to express that --- that it isn't worth worrying
939 We omit control registers like inthl: if you call a function that
940 changes those, it's probably because you wanted that change to be
941 visible to the interrupted code. */
942 mark_save_restore (r0
);
943 mark_save_restore (r1
);
944 mark_save_restore (r2
);
945 mark_save_restore (r3
);
946 mark_save_restore (a0
);
947 mark_save_restore (a1
);
948 mark_save_restore (sb
);
949 mark_save_restore (fb
);
950 mark_save_restore (sp
);
951 mark_save_restore (pc
);
952 mark_save_restore (flg
);
954 set_gdbarch_num_regs (arch
, num_raw_regs
);
955 set_gdbarch_num_pseudo_regs (arch
, num_cooked_regs
);
956 set_gdbarch_pc_regnum (arch
, pc
->num
);
957 set_gdbarch_sp_regnum (arch
, sp
->num
);
958 set_gdbarch_register_name (arch
, m32c_register_name
);
959 set_gdbarch_register_type (arch
, m32c_register_type
);
960 set_gdbarch_pseudo_register_read (arch
, m32c_pseudo_register_read
);
961 set_gdbarch_pseudo_register_write (arch
, m32c_pseudo_register_write
);
962 set_gdbarch_register_sim_regno (arch
, m32c_register_sim_regno
);
963 set_gdbarch_stab_reg_to_regnum (arch
, m32c_debug_info_reg_to_regnum
);
964 set_gdbarch_dwarf2_reg_to_regnum (arch
, m32c_debug_info_reg_to_regnum
);
965 set_gdbarch_register_reggroup_p (arch
, m32c_register_reggroup_p
);
967 reggroup_add (arch
, general_reggroup
);
968 reggroup_add (arch
, all_reggroup
);
969 reggroup_add (arch
, save_reggroup
);
970 reggroup_add (arch
, restore_reggroup
);
971 reggroup_add (arch
, system_reggroup
);
972 reggroup_add (arch
, m32c_dma_reggroup
);
979 static const unsigned char *
980 m32c_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pc
, int *len
)
982 static unsigned char break_insn
[] = { 0x00 }; /* brk */
984 *len
= sizeof (break_insn
);
990 /* Prologue analysis. */
994 /* For consistency with the DWARF 2 .debug_frame info generated by
995 GCC, a frame's CFA is the address immediately after the saved
998 /* The architecture for which we generated this prologue info. */
999 struct gdbarch
*arch
;
1002 /* This function uses a frame pointer. */
1003 prologue_with_frame_ptr
,
1005 /* This function has no frame pointer. */
1006 prologue_sans_frame_ptr
,
1008 /* This function sets up the stack, so its frame is the first
1009 frame on the stack. */
1010 prologue_first_frame
1014 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1015 CFA to where the frame pointer points. This is always zero or
1017 LONGEST frame_ptr_offset
;
1019 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1020 the stack pointer --- always zero or negative.
1022 Calling this a "size" is a bit misleading, but given that the
1023 stack grows downwards, using offsets for everything keeps one
1024 from going completely sign-crazy: you never change anything's
1025 sign for an ADD instruction; always change the second operand's
1026 sign for a SUB instruction; and everything takes care of
1029 Functions that use alloca don't have a constant frame size. But
1030 they always have frame pointers, so we must use that to find the
1031 CFA (and perhaps to unwind the stack pointer). */
1034 /* The address of the first instruction at which the frame has been
1035 set up and the arguments are where the debug info says they are
1036 --- as best as we can tell. */
1037 CORE_ADDR prologue_end
;
1039 /* reg_offset[R] is the offset from the CFA at which register R is
1040 saved, or 1 if register R has not been saved. (Real values are
1041 always zero or negative.) */
1042 LONGEST reg_offset
[M32C_MAX_NUM_REGS
];
1046 /* The longest I've seen, anyway. */
1047 #define M32C_MAX_INSN_LEN (9)
1049 /* Processor state, for the prologue analyzer. */
1050 struct m32c_pv_state
1052 struct gdbarch
*arch
;
1053 pv_t r0
, r1
, r2
, r3
;
1057 struct pv_area
*stack
;
1059 /* Bytes from the current PC, the address they were read from,
1060 and the address of the next unconsumed byte. */
1061 gdb_byte insn
[M32C_MAX_INSN_LEN
];
1062 CORE_ADDR scan_pc
, next_addr
;
1066 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1067 all went well, or non-zero if simulating the action would trash our
1070 m32c_pv_push (struct m32c_pv_state
*state
, pv_t value
, int size
)
1072 if (pv_area_store_would_trash (state
->stack
, state
->sp
))
1075 state
->sp
= pv_add_constant (state
->sp
, -size
);
1076 pv_area_store (state
->stack
, state
->sp
, size
, value
);
1082 /* A source or destination location for an m16c or m32c
1086 /* If srcdest_reg, the location is a register pointed to by REG.
1087 If srcdest_partial_reg, the location is part of a register pointed
1088 to by REG. We don't try to handle this too well.
1089 If srcdest_mem, the location is memory whose address is ADDR. */
1090 enum { srcdest_reg
, srcdest_partial_reg
, srcdest_mem
} kind
;
1095 /* Return the SIZE-byte value at LOC in STATE. */
1097 m32c_srcdest_fetch (struct m32c_pv_state
*state
, struct srcdest loc
, int size
)
1099 if (loc
.kind
== srcdest_mem
)
1100 return pv_area_fetch (state
->stack
, loc
.addr
, size
);
1101 else if (loc
.kind
== srcdest_partial_reg
)
1102 return pv_unknown ();
1108 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1109 all went well, or non-zero if simulating the store would trash our
1112 m32c_srcdest_store (struct m32c_pv_state
*state
, struct srcdest loc
,
1113 pv_t value
, int size
)
1115 if (loc
.kind
== srcdest_mem
)
1117 if (pv_area_store_would_trash (state
->stack
, loc
.addr
))
1119 pv_area_store (state
->stack
, loc
.addr
, size
, value
);
1121 else if (loc
.kind
== srcdest_partial_reg
)
1122 *loc
.reg
= pv_unknown ();
1131 m32c_sign_ext (int v
, int bits
)
1133 int mask
= 1 << (bits
- 1);
1134 return (v
^ mask
) - mask
;
1138 m32c_next_byte (struct m32c_pv_state
*st
)
1140 gdb_assert (st
->next_addr
- st
->scan_pc
< sizeof (st
->insn
));
1141 return st
->insn
[st
->next_addr
++ - st
->scan_pc
];
1145 m32c_udisp8 (struct m32c_pv_state
*st
)
1147 return m32c_next_byte (st
);
1152 m32c_sdisp8 (struct m32c_pv_state
*st
)
1154 return m32c_sign_ext (m32c_next_byte (st
), 8);
1159 m32c_udisp16 (struct m32c_pv_state
*st
)
1161 int low
= m32c_next_byte (st
);
1162 int high
= m32c_next_byte (st
);
1164 return low
+ (high
<< 8);
1169 m32c_sdisp16 (struct m32c_pv_state
*st
)
1171 int low
= m32c_next_byte (st
);
1172 int high
= m32c_next_byte (st
);
1174 return m32c_sign_ext (low
+ (high
<< 8), 16);
1179 m32c_udisp24 (struct m32c_pv_state
*st
)
1181 int low
= m32c_next_byte (st
);
1182 int mid
= m32c_next_byte (st
);
1183 int high
= m32c_next_byte (st
);
1185 return low
+ (mid
<< 8) + (high
<< 16);
1189 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1191 m32c_get_src23 (unsigned char *i
)
1193 return (((i
[0] & 0x70) >> 2)
1194 | ((i
[1] & 0x30) >> 4));
1198 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1200 m32c_get_dest23 (unsigned char *i
)
1202 return (((i
[0] & 0x0e) << 1)
1203 | ((i
[1] & 0xc0) >> 6));
1207 static struct srcdest
1208 m32c_decode_srcdest4 (struct m32c_pv_state
*st
,
1214 sd
.kind
= (size
== 2 ? srcdest_reg
: srcdest_partial_reg
);
1216 sd
.kind
= srcdest_mem
;
1218 sd
.addr
= pv_unknown ();
1223 case 0x0: sd
.reg
= (size
== 1 ? &st
->r0
: &st
->r0
); break;
1224 case 0x1: sd
.reg
= (size
== 1 ? &st
->r0
: &st
->r1
); break;
1225 case 0x2: sd
.reg
= (size
== 1 ? &st
->r1
: &st
->r2
); break;
1226 case 0x3: sd
.reg
= (size
== 1 ? &st
->r1
: &st
->r3
); break;
1228 case 0x4: sd
.reg
= &st
->a0
; break;
1229 case 0x5: sd
.reg
= &st
->a1
; break;
1231 case 0x6: sd
.addr
= st
->a0
; break;
1232 case 0x7: sd
.addr
= st
->a1
; break;
1234 case 0x8: sd
.addr
= pv_add_constant (st
->a0
, m32c_udisp8 (st
)); break;
1235 case 0x9: sd
.addr
= pv_add_constant (st
->a1
, m32c_udisp8 (st
)); break;
1236 case 0xa: sd
.addr
= pv_add_constant (st
->sb
, m32c_udisp8 (st
)); break;
1237 case 0xb: sd
.addr
= pv_add_constant (st
->fb
, m32c_sdisp8 (st
)); break;
1239 case 0xc: sd
.addr
= pv_add_constant (st
->a0
, m32c_udisp16 (st
)); break;
1240 case 0xd: sd
.addr
= pv_add_constant (st
->a1
, m32c_udisp16 (st
)); break;
1241 case 0xe: sd
.addr
= pv_add_constant (st
->sb
, m32c_udisp16 (st
)); break;
1242 case 0xf: sd
.addr
= pv_constant (m32c_udisp16 (st
)); break;
1245 gdb_assert_not_reached ("unexpected srcdest4");
1252 static struct srcdest
1253 m32c_decode_sd23 (struct m32c_pv_state
*st
, int code
, int size
, int ind
)
1257 sd
.addr
= pv_unknown ();
1266 sd
.kind
= (size
== 1) ? srcdest_partial_reg
: srcdest_reg
;
1271 sd
.kind
= (size
== 4) ? srcdest_reg
: srcdest_partial_reg
;
1275 sd
.kind
= srcdest_mem
;
1282 case 0x12: sd
.reg
= &st
->r0
; break;
1283 case 0x13: sd
.reg
= &st
->r1
; break;
1284 case 0x10: sd
.reg
= ((size
== 1) ? &st
->r0
: &st
->r2
); break;
1285 case 0x11: sd
.reg
= ((size
== 1) ? &st
->r1
: &st
->r3
); break;
1286 case 0x02: sd
.reg
= &st
->a0
; break;
1287 case 0x03: sd
.reg
= &st
->a1
; break;
1289 case 0x00: sd
.addr
= st
->a0
; break;
1290 case 0x01: sd
.addr
= st
->a1
; break;
1291 case 0x04: sd
.addr
= pv_add_constant (st
->a0
, m32c_udisp8 (st
)); break;
1292 case 0x05: sd
.addr
= pv_add_constant (st
->a1
, m32c_udisp8 (st
)); break;
1293 case 0x06: sd
.addr
= pv_add_constant (st
->sb
, m32c_udisp8 (st
)); break;
1294 case 0x07: sd
.addr
= pv_add_constant (st
->fb
, m32c_sdisp8 (st
)); break;
1295 case 0x08: sd
.addr
= pv_add_constant (st
->a0
, m32c_udisp16 (st
)); break;
1296 case 0x09: sd
.addr
= pv_add_constant (st
->a1
, m32c_udisp16 (st
)); break;
1297 case 0x0a: sd
.addr
= pv_add_constant (st
->sb
, m32c_udisp16 (st
)); break;
1298 case 0x0b: sd
.addr
= pv_add_constant (st
->fb
, m32c_sdisp16 (st
)); break;
1299 case 0x0c: sd
.addr
= pv_add_constant (st
->a0
, m32c_udisp24 (st
)); break;
1300 case 0x0d: sd
.addr
= pv_add_constant (st
->a1
, m32c_udisp24 (st
)); break;
1301 case 0x0f: sd
.addr
= pv_constant (m32c_udisp16 (st
)); break;
1302 case 0x0e: sd
.addr
= pv_constant (m32c_udisp24 (st
)); break;
1304 gdb_assert_not_reached ("unexpected sd23");
1309 sd
.addr
= m32c_srcdest_fetch (st
, sd
, 4);
1310 sd
.kind
= srcdest_mem
;
1317 /* The r16c and r32c machines have instructions with similar
1318 semantics, but completely different machine language encodings. So
1319 we break out the semantics into their own functions, and leave
1320 machine-specific decoding in m32c_analyze_prologue.
1322 The following functions all expect their arguments already decoded,
1323 and they all return zero if analysis should continue past this
1324 instruction, or non-zero if analysis should stop. */
1327 /* Simulate an 'enter SIZE' instruction in STATE. */
1329 m32c_pv_enter (struct m32c_pv_state
*state
, int size
)
1331 struct gdbarch_tdep
*tdep
= gdbarch_tdep (state
->arch
);
1333 /* If simulating this store would require us to forget
1334 everything we know about the stack frame in the name of
1335 accuracy, it would be better to just quit now. */
1336 if (pv_area_store_would_trash (state
->stack
, state
->sp
))
1339 if (m32c_pv_push (state
, state
->fb
, tdep
->push_addr_bytes
))
1341 state
->fb
= state
->sp
;
1342 state
->sp
= pv_add_constant (state
->sp
, -size
);
1349 m32c_pv_pushm_one (struct m32c_pv_state
*state
, pv_t reg
,
1350 int bit
, int src
, int size
)
1354 if (m32c_pv_push (state
, reg
, size
))
1362 /* Simulate a 'pushm SRC' instruction in STATE. */
1364 m32c_pv_pushm (struct m32c_pv_state
*state
, int src
)
1366 struct gdbarch_tdep
*tdep
= gdbarch_tdep (state
->arch
);
1368 /* The bits in SRC indicating which registers to save are:
1369 r0 r1 r2 r3 a0 a1 sb fb */
1371 ( m32c_pv_pushm_one (state
, state
->fb
, 0x01, src
, tdep
->push_addr_bytes
)
1372 || m32c_pv_pushm_one (state
, state
->sb
, 0x02, src
, tdep
->push_addr_bytes
)
1373 || m32c_pv_pushm_one (state
, state
->a1
, 0x04, src
, tdep
->push_addr_bytes
)
1374 || m32c_pv_pushm_one (state
, state
->a0
, 0x08, src
, tdep
->push_addr_bytes
)
1375 || m32c_pv_pushm_one (state
, state
->r3
, 0x10, src
, 2)
1376 || m32c_pv_pushm_one (state
, state
->r2
, 0x20, src
, 2)
1377 || m32c_pv_pushm_one (state
, state
->r1
, 0x40, src
, 2)
1378 || m32c_pv_pushm_one (state
, state
->r0
, 0x80, src
, 2));
1381 /* Return non-zero if VALUE is the first incoming argument register. */
1384 m32c_is_1st_arg_reg (struct m32c_pv_state
*state
, pv_t value
)
1386 struct gdbarch_tdep
*tdep
= gdbarch_tdep (state
->arch
);
1387 return (value
.kind
== pvk_register
1388 && (gdbarch_bfd_arch_info (state
->arch
)->mach
== bfd_mach_m16c
1389 ? (value
.reg
== tdep
->r1
->num
)
1390 : (value
.reg
== tdep
->r0
->num
))
1394 /* Return non-zero if VALUE is an incoming argument register. */
1397 m32c_is_arg_reg (struct m32c_pv_state
*state
, pv_t value
)
1399 struct gdbarch_tdep
*tdep
= gdbarch_tdep (state
->arch
);
1400 return (value
.kind
== pvk_register
1401 && (gdbarch_bfd_arch_info (state
->arch
)->mach
== bfd_mach_m16c
1402 ? (value
.reg
== tdep
->r1
->num
|| value
.reg
== tdep
->r2
->num
)
1403 : (value
.reg
== tdep
->r0
->num
))
1407 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1408 argument register to its stack slot in STATE. Such instructions
1409 should be included in the prologue, if possible.
1411 The store is a spill if:
1412 - the value being stored is the original value of an argument register;
1413 - the value has not already been stored somewhere in STACK; and
1414 - LOC is a stack slot (e.g., a memory location whose address is
1415 relative to the original value of the SP). */
1418 m32c_is_arg_spill (struct m32c_pv_state
*st
,
1422 struct gdbarch_tdep
*tdep
= gdbarch_tdep (st
->arch
);
1424 return (m32c_is_arg_reg (st
, value
)
1425 && loc
.kind
== srcdest_mem
1426 && pv_is_register (loc
.addr
, tdep
->sp
->num
)
1427 && ! pv_area_find_reg (st
->stack
, st
->arch
, value
.reg
, 0));
1430 /* Return non-zero if a store of VALUE to LOC is probably
1431 copying the struct return address into an address register
1432 for immediate use. This is basically a "spill" into the
1433 address register, instead of onto the stack.
1435 The prerequisites are:
1436 - value being stored is original value of the FIRST arg register;
1437 - value has not already been stored on stack; and
1438 - LOC is an address register (a0 or a1). */
1441 m32c_is_struct_return (struct m32c_pv_state
*st
,
1445 struct gdbarch_tdep
*tdep
= gdbarch_tdep (st
->arch
);
1447 return (m32c_is_1st_arg_reg (st
, value
)
1448 && !pv_area_find_reg (st
->stack
, st
->arch
, value
.reg
, 0)
1449 && loc
.kind
== srcdest_reg
1450 && (pv_is_register (*loc
.reg
, tdep
->a0
->num
)
1451 || pv_is_register (*loc
.reg
, tdep
->a1
->num
)));
1454 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1455 was a register save:
1456 - all the named registers should have their original values, and
1457 - the stack pointer should be at a constant offset from the
1458 original stack pointer. */
1460 m32c_pushm_is_reg_save (struct m32c_pv_state
*st
, int src
)
1462 struct gdbarch_tdep
*tdep
= gdbarch_tdep (st
->arch
);
1463 /* The bits in SRC indicating which registers to save are:
1464 r0 r1 r2 r3 a0 a1 sb fb */
1466 (pv_is_register (st
->sp
, tdep
->sp
->num
)
1467 && (! (src
& 0x01) || pv_is_register_k (st
->fb
, tdep
->fb
->num
, 0))
1468 && (! (src
& 0x02) || pv_is_register_k (st
->sb
, tdep
->sb
->num
, 0))
1469 && (! (src
& 0x04) || pv_is_register_k (st
->a1
, tdep
->a1
->num
, 0))
1470 && (! (src
& 0x08) || pv_is_register_k (st
->a0
, tdep
->a0
->num
, 0))
1471 && (! (src
& 0x10) || pv_is_register_k (st
->r3
, tdep
->r3
->num
, 0))
1472 && (! (src
& 0x20) || pv_is_register_k (st
->r2
, tdep
->r2
->num
, 0))
1473 && (! (src
& 0x40) || pv_is_register_k (st
->r1
, tdep
->r1
->num
, 0))
1474 && (! (src
& 0x80) || pv_is_register_k (st
->r0
, tdep
->r0
->num
, 0)));
1478 /* Function for finding saved registers in a 'struct pv_area'; we pass
1479 this to pv_area_scan.
1481 If VALUE is a saved register, ADDR says it was saved at a constant
1482 offset from the frame base, and SIZE indicates that the whole
1483 register was saved, record its offset in RESULT_UNTYPED. */
1485 check_for_saved (void *prologue_untyped
, pv_t addr
, CORE_ADDR size
, pv_t value
)
1487 struct m32c_prologue
*prologue
= (struct m32c_prologue
*) prologue_untyped
;
1488 struct gdbarch
*arch
= prologue
->arch
;
1489 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
1491 /* Is this the unchanged value of some register being saved on the
1493 if (value
.kind
== pvk_register
1495 && pv_is_register (addr
, tdep
->sp
->num
))
1497 /* Some registers require special handling: they're saved as a
1498 larger value than the register itself. */
1499 CORE_ADDR saved_size
= register_size (arch
, value
.reg
);
1501 if (value
.reg
== tdep
->pc
->num
)
1502 saved_size
= tdep
->ret_addr_bytes
;
1503 else if (register_type (arch
, value
.reg
)
1504 == tdep
->data_addr_reg_type
)
1505 saved_size
= tdep
->push_addr_bytes
;
1507 if (size
== saved_size
)
1509 /* Find which end of the saved value corresponds to our
1511 if (gdbarch_byte_order (arch
) == BFD_ENDIAN_BIG
)
1512 prologue
->reg_offset
[value
.reg
]
1513 = (addr
.k
+ saved_size
- register_size (arch
, value
.reg
));
1515 prologue
->reg_offset
[value
.reg
] = addr
.k
;
1521 /* Analyze the function prologue for ARCH at START, going no further
1522 than LIMIT, and place a description of what we found in
1525 m32c_analyze_prologue (struct gdbarch
*arch
,
1526 CORE_ADDR start
, CORE_ADDR limit
,
1527 struct m32c_prologue
*prologue
)
1529 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
1530 unsigned long mach
= gdbarch_bfd_arch_info (arch
)->mach
;
1531 CORE_ADDR after_last_frame_related_insn
;
1532 struct cleanup
*back_to
;
1533 struct m32c_pv_state st
;
1536 st
.r0
= pv_register (tdep
->r0
->num
, 0);
1537 st
.r1
= pv_register (tdep
->r1
->num
, 0);
1538 st
.r2
= pv_register (tdep
->r2
->num
, 0);
1539 st
.r3
= pv_register (tdep
->r3
->num
, 0);
1540 st
.a0
= pv_register (tdep
->a0
->num
, 0);
1541 st
.a1
= pv_register (tdep
->a1
->num
, 0);
1542 st
.sb
= pv_register (tdep
->sb
->num
, 0);
1543 st
.fb
= pv_register (tdep
->fb
->num
, 0);
1544 st
.sp
= pv_register (tdep
->sp
->num
, 0);
1545 st
.pc
= pv_register (tdep
->pc
->num
, 0);
1546 st
.stack
= make_pv_area (tdep
->sp
->num
, gdbarch_addr_bit (arch
));
1547 back_to
= make_cleanup_free_pv_area (st
.stack
);
1549 /* Record that the call instruction has saved the return address on
1551 m32c_pv_push (&st
, st
.pc
, tdep
->ret_addr_bytes
);
1553 memset (prologue
, 0, sizeof (*prologue
));
1554 prologue
->arch
= arch
;
1557 for (i
= 0; i
< M32C_MAX_NUM_REGS
; i
++)
1558 prologue
->reg_offset
[i
] = 1;
1561 st
.scan_pc
= after_last_frame_related_insn
= start
;
1563 while (st
.scan_pc
< limit
)
1565 pv_t pre_insn_fb
= st
.fb
;
1566 pv_t pre_insn_sp
= st
.sp
;
1568 /* In theory we could get in trouble by trying to read ahead
1569 here, when we only know we're expecting one byte. In
1570 practice I doubt anyone will care, and it makes the rest of
1572 if (target_read_memory (st
.scan_pc
, st
.insn
, sizeof (st
.insn
)))
1573 /* If we can't fetch the instruction from memory, stop here
1574 and hope for the best. */
1576 st
.next_addr
= st
.scan_pc
;
1578 /* The assembly instructions are written as they appear in the
1579 section of the processor manuals that describe the
1580 instruction encodings.
1582 When a single assembly language instruction has several
1583 different machine-language encodings, the manual
1584 distinguishes them by a number in parens, before the
1585 mnemonic. Those numbers are included, as well.
1587 The srcdest decoding instructions have the same names as the
1588 analogous functions in the simulator. */
1589 if (mach
== bfd_mach_m16c
)
1591 /* (1) ENTER #imm8 */
1592 if (st
.insn
[0] == 0x7c && st
.insn
[1] == 0xf2)
1594 if (m32c_pv_enter (&st
, st
.insn
[2]))
1599 else if (st
.insn
[0] == 0xec)
1601 int src
= st
.insn
[1];
1602 if (m32c_pv_pushm (&st
, src
))
1606 if (m32c_pushm_is_reg_save (&st
, src
))
1607 after_last_frame_related_insn
= st
.next_addr
;
1610 /* (6) MOV.size:G src, dest */
1611 else if ((st
.insn
[0] & 0xfe) == 0x72)
1613 int size
= (st
.insn
[0] & 0x01) ? 2 : 1;
1615 struct srcdest dest
;
1620 = m32c_decode_srcdest4 (&st
, (st
.insn
[1] >> 4) & 0xf, size
);
1622 = m32c_decode_srcdest4 (&st
, st
.insn
[1] & 0xf, size
);
1623 src_value
= m32c_srcdest_fetch (&st
, src
, size
);
1625 if (m32c_is_arg_spill (&st
, dest
, src_value
))
1626 after_last_frame_related_insn
= st
.next_addr
;
1627 else if (m32c_is_struct_return (&st
, dest
, src_value
))
1628 after_last_frame_related_insn
= st
.next_addr
;
1630 if (m32c_srcdest_store (&st
, dest
, src_value
, size
))
1634 /* (1) LDC #IMM16, sp */
1635 else if (st
.insn
[0] == 0xeb
1636 && st
.insn
[1] == 0x50)
1639 st
.sp
= pv_constant (m32c_udisp16 (&st
));
1643 /* We've hit some instruction we don't know how to simulate.
1644 Strictly speaking, we should set every value we're
1645 tracking to "unknown". But we'll be optimistic, assume
1646 that we have enough information already, and stop
1652 int src_indirect
= 0;
1653 int dest_indirect
= 0;
1656 gdb_assert (mach
== bfd_mach_m32c
);
1658 /* Check for prefix bytes indicating indirect addressing. */
1659 if (st
.insn
[0] == 0x41)
1664 else if (st
.insn
[0] == 0x09)
1669 else if (st
.insn
[0] == 0x49)
1671 src_indirect
= dest_indirect
= 1;
1675 /* (1) ENTER #imm8 */
1676 if (st
.insn
[i
] == 0xec)
1678 if (m32c_pv_enter (&st
, st
.insn
[i
+ 1]))
1684 else if (st
.insn
[i
] == 0x8f)
1686 int src
= st
.insn
[i
+ 1];
1687 if (m32c_pv_pushm (&st
, src
))
1691 if (m32c_pushm_is_reg_save (&st
, src
))
1692 after_last_frame_related_insn
= st
.next_addr
;
1695 /* (7) MOV.size:G src, dest */
1696 else if ((st
.insn
[i
] & 0x80) == 0x80
1697 && (st
.insn
[i
+ 1] & 0x0f) == 0x0b
1698 && m32c_get_src23 (&st
.insn
[i
]) < 20
1699 && m32c_get_dest23 (&st
.insn
[i
]) < 20)
1702 struct srcdest dest
;
1704 int bw
= st
.insn
[i
] & 0x01;
1705 int size
= bw
? 2 : 1;
1709 = m32c_decode_sd23 (&st
, m32c_get_src23 (&st
.insn
[i
]),
1710 size
, src_indirect
);
1712 = m32c_decode_sd23 (&st
, m32c_get_dest23 (&st
.insn
[i
]),
1713 size
, dest_indirect
);
1714 src_value
= m32c_srcdest_fetch (&st
, src
, size
);
1716 if (m32c_is_arg_spill (&st
, dest
, src_value
))
1717 after_last_frame_related_insn
= st
.next_addr
;
1719 if (m32c_srcdest_store (&st
, dest
, src_value
, size
))
1722 /* (2) LDC #IMM24, sp */
1723 else if (st
.insn
[i
] == 0xd5
1724 && st
.insn
[i
+ 1] == 0x29)
1727 st
.sp
= pv_constant (m32c_udisp24 (&st
));
1730 /* We've hit some instruction we don't know how to simulate.
1731 Strictly speaking, we should set every value we're
1732 tracking to "unknown". But we'll be optimistic, assume
1733 that we have enough information already, and stop
1738 /* If this instruction changed the FB or decreased the SP (i.e.,
1739 allocated more stack space), then this may be a good place to
1740 declare the prologue finished. However, there are some
1743 - If the instruction just changed the FB back to its original
1744 value, then that's probably a restore instruction. The
1745 prologue should definitely end before that.
1747 - If the instruction increased the value of the SP (that is,
1748 shrunk the frame), then it's probably part of a frame
1749 teardown sequence, and the prologue should end before
1752 if (! pv_is_identical (st
.fb
, pre_insn_fb
))
1754 if (! pv_is_register_k (st
.fb
, tdep
->fb
->num
, 0))
1755 after_last_frame_related_insn
= st
.next_addr
;
1757 else if (! pv_is_identical (st
.sp
, pre_insn_sp
))
1759 /* The comparison of the constants looks odd, there, because
1760 .k is unsigned. All it really means is that the SP is
1761 lower than it was before the instruction. */
1762 if ( pv_is_register (pre_insn_sp
, tdep
->sp
->num
)
1763 && pv_is_register (st
.sp
, tdep
->sp
->num
)
1764 && ((pre_insn_sp
.k
- st
.sp
.k
) < (st
.sp
.k
- pre_insn_sp
.k
)))
1765 after_last_frame_related_insn
= st
.next_addr
;
1768 st
.scan_pc
= st
.next_addr
;
1771 /* Did we load a constant value into the stack pointer? */
1772 if (pv_is_constant (st
.sp
))
1773 prologue
->kind
= prologue_first_frame
;
1775 /* Alternatively, did we initialize the frame pointer? Remember
1776 that the CFA is the address after the return address. */
1777 if (pv_is_register (st
.fb
, tdep
->sp
->num
))
1779 prologue
->kind
= prologue_with_frame_ptr
;
1780 prologue
->frame_ptr_offset
= st
.fb
.k
;
1783 /* Is the frame size a known constant? Remember that frame_size is
1784 actually the offset from the CFA to the SP (i.e., a negative
1786 else if (pv_is_register (st
.sp
, tdep
->sp
->num
))
1788 prologue
->kind
= prologue_sans_frame_ptr
;
1789 prologue
->frame_size
= st
.sp
.k
;
1792 /* We haven't been able to make sense of this function's frame. Treat
1793 it as the first frame. */
1795 prologue
->kind
= prologue_first_frame
;
1797 /* Record where all the registers were saved. */
1798 pv_area_scan (st
.stack
, check_for_saved
, (void *) prologue
);
1800 prologue
->prologue_end
= after_last_frame_related_insn
;
1802 do_cleanups (back_to
);
1807 m32c_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR ip
)
1810 CORE_ADDR func_addr
, func_end
, sal_end
;
1811 struct m32c_prologue p
;
1813 /* Try to find the extent of the function that contains IP. */
1814 if (! find_pc_partial_function (ip
, &name
, &func_addr
, &func_end
))
1817 /* Find end by prologue analysis. */
1818 m32c_analyze_prologue (gdbarch
, ip
, func_end
, &p
);
1819 /* Find end by line info. */
1820 sal_end
= skip_prologue_using_sal (gdbarch
, ip
);
1821 /* Return whichever is lower. */
1822 if (sal_end
!= 0 && sal_end
!= ip
&& sal_end
< p
.prologue_end
)
1825 return p
.prologue_end
;
1830 /* Stack unwinding. */
1832 static struct m32c_prologue
*
1833 m32c_analyze_frame_prologue (struct frame_info
*this_frame
,
1834 void **this_prologue_cache
)
1836 if (! *this_prologue_cache
)
1838 CORE_ADDR func_start
= get_frame_func (this_frame
);
1839 CORE_ADDR stop_addr
= get_frame_pc (this_frame
);
1841 /* If we couldn't find any function containing the PC, then
1842 just initialize the prologue cache, but don't do anything. */
1844 stop_addr
= func_start
;
1846 *this_prologue_cache
= FRAME_OBSTACK_ZALLOC (struct m32c_prologue
);
1847 m32c_analyze_prologue (get_frame_arch (this_frame
),
1848 func_start
, stop_addr
, *this_prologue_cache
);
1851 return *this_prologue_cache
;
1856 m32c_frame_base (struct frame_info
*this_frame
,
1857 void **this_prologue_cache
)
1859 struct m32c_prologue
*p
1860 = m32c_analyze_frame_prologue (this_frame
, this_prologue_cache
);
1861 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (this_frame
));
1863 /* In functions that use alloca, the distance between the stack
1864 pointer and the frame base varies dynamically, so we can't use
1865 the SP plus static information like prologue analysis to find the
1866 frame base. However, such functions must have a frame pointer,
1867 to be able to restore the SP on exit. So whenever we do have a
1868 frame pointer, use that to find the base. */
1871 case prologue_with_frame_ptr
:
1874 = get_frame_register_unsigned (this_frame
, tdep
->fb
->num
);
1875 return fb
- p
->frame_ptr_offset
;
1878 case prologue_sans_frame_ptr
:
1881 = get_frame_register_unsigned (this_frame
, tdep
->sp
->num
);
1882 return sp
- p
->frame_size
;
1885 case prologue_first_frame
:
1889 gdb_assert_not_reached ("unexpected prologue kind");
1895 m32c_this_id (struct frame_info
*this_frame
,
1896 void **this_prologue_cache
,
1897 struct frame_id
*this_id
)
1899 CORE_ADDR base
= m32c_frame_base (this_frame
, this_prologue_cache
);
1902 *this_id
= frame_id_build (base
, get_frame_func (this_frame
));
1903 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1907 static struct value
*
1908 m32c_prev_register (struct frame_info
*this_frame
,
1909 void **this_prologue_cache
, int regnum
)
1911 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (this_frame
));
1912 struct m32c_prologue
*p
1913 = m32c_analyze_frame_prologue (this_frame
, this_prologue_cache
);
1914 CORE_ADDR frame_base
= m32c_frame_base (this_frame
, this_prologue_cache
);
1915 int reg_size
= register_size (get_frame_arch (this_frame
), regnum
);
1917 if (regnum
== tdep
->sp
->num
)
1918 return frame_unwind_got_constant (this_frame
, regnum
, frame_base
);
1920 /* If prologue analysis says we saved this register somewhere,
1921 return a description of the stack slot holding it. */
1922 if (p
->reg_offset
[regnum
] != 1)
1923 return frame_unwind_got_memory (this_frame
, regnum
,
1924 frame_base
+ p
->reg_offset
[regnum
]);
1926 /* Otherwise, presume we haven't changed the value of this
1927 register, and get it from the next frame. */
1928 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1932 static const struct frame_unwind m32c_unwind
= {
1937 default_frame_sniffer
1942 m32c_unwind_pc (struct gdbarch
*arch
, struct frame_info
*next_frame
)
1944 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
1945 return frame_unwind_register_unsigned (next_frame
, tdep
->pc
->num
);
1950 m32c_unwind_sp (struct gdbarch
*arch
, struct frame_info
*next_frame
)
1952 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
1953 return frame_unwind_register_unsigned (next_frame
, tdep
->sp
->num
);
1957 /* Inferior calls. */
1959 /* The calling conventions, according to GCC:
1963 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1964 HImode), (2) is named, and (3) is an integer or pointer type (no
1965 structs, floats, etc). Otherwise, it's passed on the stack.
1967 Second arg may be passed in r2, same restrictions (but not QImode),
1968 even if the first arg is passed on the stack.
1970 Third and further args are passed on the stack. No padding is
1971 used, stack "alignment" is 8 bits.
1976 First arg may be passed in r0l or r0, same restrictions as above.
1978 Second and further args are passed on the stack. Padding is used
1979 after QImode parameters (i.e. lower-addressed byte is the value,
1980 higher-addressed byte is the padding), stack "alignment" is 16
1984 /* Return true if TYPE is a type that can be passed in registers. (We
1985 ignore the size, and pay attention only to the type code;
1986 acceptable sizes depends on which register is being considered to
1989 m32c_reg_arg_type (struct type
*type
)
1991 enum type_code code
= TYPE_CODE (type
);
1993 return (code
== TYPE_CODE_INT
1994 || code
== TYPE_CODE_ENUM
1995 || code
== TYPE_CODE_PTR
1996 || code
== TYPE_CODE_REF
1997 || code
== TYPE_CODE_BOOL
1998 || code
== TYPE_CODE_CHAR
);
2003 m32c_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2004 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
2005 struct value
**args
, CORE_ADDR sp
, int struct_return
,
2006 CORE_ADDR struct_addr
)
2008 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2009 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2010 unsigned long mach
= gdbarch_bfd_arch_info (gdbarch
)->mach
;
2014 /* The number of arguments given in this function's prototype, or
2015 zero if it has a non-prototyped function type. The m32c ABI
2016 passes arguments mentioned in the prototype differently from
2017 those in the ellipsis of a varargs function, or from those passed
2018 to a non-prototyped function. */
2019 int num_prototyped_args
= 0;
2022 struct type
*func_type
= value_type (function
);
2024 /* Dereference function pointer types. */
2025 if (TYPE_CODE (func_type
) == TYPE_CODE_PTR
)
2026 func_type
= TYPE_TARGET_TYPE (func_type
);
2028 gdb_assert (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
||
2029 TYPE_CODE (func_type
) == TYPE_CODE_METHOD
);
2032 /* The ABI description in gcc/config/m32c/m32c.abi says that
2033 we need to handle prototyped and non-prototyped functions
2034 separately, but the code in GCC doesn't actually do so. */
2035 if (TYPE_PROTOTYPED (func_type
))
2037 num_prototyped_args
= TYPE_NFIELDS (func_type
);
2040 /* First, if the function returns an aggregate by value, push a
2041 pointer to a buffer for it. This doesn't affect the way
2042 subsequent arguments are allocated to registers. */
2045 int ptr_len
= TYPE_LENGTH (tdep
->ptr_voyd
);
2047 write_memory_unsigned_integer (sp
, ptr_len
, byte_order
, struct_addr
);
2050 /* Push the arguments. */
2051 for (i
= nargs
- 1; i
>= 0; i
--)
2053 struct value
*arg
= args
[i
];
2054 const gdb_byte
*arg_bits
= value_contents (arg
);
2055 struct type
*arg_type
= value_type (arg
);
2056 ULONGEST arg_size
= TYPE_LENGTH (arg_type
);
2058 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2061 && i
< num_prototyped_args
2062 && m32c_reg_arg_type (arg_type
))
2064 /* Extract and re-store as an integer as a terse way to make
2065 sure it ends up in the least significant end of r1. (GDB
2066 should avoid assuming endianness, even on uni-endian
2068 ULONGEST u
= extract_unsigned_integer (arg_bits
, arg_size
,
2070 struct m32c_reg
*reg
= (mach
== bfd_mach_m16c
) ? tdep
->r1
: tdep
->r0
;
2071 regcache_cooked_write_unsigned (regcache
, reg
->num
, u
);
2074 /* Can it go in r2? */
2075 else if (mach
== bfd_mach_m16c
2078 && i
< num_prototyped_args
2079 && m32c_reg_arg_type (arg_type
))
2080 regcache_cooked_write (regcache
, tdep
->r2
->num
, arg_bits
);
2082 /* Everything else goes on the stack. */
2087 /* Align the stack. */
2088 if (mach
== bfd_mach_m32c
)
2091 write_memory (sp
, arg_bits
, arg_size
);
2095 /* This is the CFA we use to identify the dummy frame. */
2098 /* Push the return address. */
2099 sp
-= tdep
->ret_addr_bytes
;
2100 write_memory_unsigned_integer (sp
, tdep
->ret_addr_bytes
, byte_order
,
2103 /* Update the stack pointer. */
2104 regcache_cooked_write_unsigned (regcache
, tdep
->sp
->num
, sp
);
2106 /* We need to borrow an odd trick from the i386 target here.
2108 The value we return from this function gets used as the stack
2109 address (the CFA) for the dummy frame's ID. The obvious thing is
2110 to return the new TOS. However, that points at the return
2111 address, saved on the stack, which is inconsistent with the CFA's
2112 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2113 .debug_frame info uses the address immediately after the saved
2114 return address. So you end up with a dummy frame whose CFA
2115 points at the return address, but the frame for the function
2116 being called has a CFA pointing after the return address: the
2117 younger CFA is *greater than* the older CFA. The sanity checks
2118 in frame.c don't like that.
2120 So we try to be consistent with the CFA's used by DWARF 2.
2121 Having a dummy frame and a real frame with the *same* CFA is
2127 static struct frame_id
2128 m32c_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2130 /* This needs to return a frame ID whose PC is the return address
2131 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2132 m32c_push_dummy_call returned.
2134 m32c_unwind_sp gives us the CFA, which is the value the SP had
2135 before the return address was pushed. */
2136 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2137 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, tdep
->sp
->num
);
2138 return frame_id_build (sp
, get_frame_pc (this_frame
));
2143 /* Return values. */
2145 /* Return value conventions, according to GCC:
2156 Aggregate values (regardless of size) are returned by pushing a
2157 pointer to a temporary area on the stack after the args are pushed.
2158 The function fills in this area with the value. Note that this
2159 pointer on the stack does not affect how register arguments, if any,
2166 /* Return non-zero if values of type TYPE are returned by storing them
2167 in a buffer whose address is passed on the stack, ahead of the
2170 m32c_return_by_passed_buf (struct type
*type
)
2172 enum type_code code
= TYPE_CODE (type
);
2174 return (code
== TYPE_CODE_STRUCT
2175 || code
== TYPE_CODE_UNION
);
2178 static enum return_value_convention
2179 m32c_return_value (struct gdbarch
*gdbarch
,
2180 struct type
*func_type
,
2181 struct type
*valtype
,
2182 struct regcache
*regcache
,
2184 const gdb_byte
*writebuf
)
2186 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2187 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2188 enum return_value_convention conv
;
2189 ULONGEST valtype_len
= TYPE_LENGTH (valtype
);
2191 if (m32c_return_by_passed_buf (valtype
))
2192 conv
= RETURN_VALUE_STRUCT_CONVENTION
;
2194 conv
= RETURN_VALUE_REGISTER_CONVENTION
;
2198 /* We should never be called to find values being returned by
2199 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2200 unless we made the call ourselves. */
2201 gdb_assert (conv
== RETURN_VALUE_REGISTER_CONVENTION
);
2203 gdb_assert (valtype_len
<= 8);
2205 /* Anything that fits in r0 is returned there. */
2206 if (valtype_len
<= TYPE_LENGTH (tdep
->r0
->type
))
2209 regcache_cooked_read_unsigned (regcache
, tdep
->r0
->num
, &u
);
2210 store_unsigned_integer (readbuf
, valtype_len
, byte_order
, u
);
2214 /* Everything else is passed in mem0, using as many bytes as
2215 needed. This is not what the Renesas tools do, but it's
2216 what GCC does at the moment. */
2217 struct minimal_symbol
*mem0
2218 = lookup_minimal_symbol ("mem0", NULL
, NULL
);
2221 error ("The return value is stored in memory at 'mem0', "
2222 "but GDB cannot find\n"
2224 read_memory (SYMBOL_VALUE_ADDRESS (mem0
), readbuf
, valtype_len
);
2230 /* We should never be called to store values to be returned
2231 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2232 finding the buffer, unless we made the call ourselves. */
2233 gdb_assert (conv
== RETURN_VALUE_REGISTER_CONVENTION
);
2235 gdb_assert (valtype_len
<= 8);
2237 /* Anything that fits in r0 is returned there. */
2238 if (valtype_len
<= TYPE_LENGTH (tdep
->r0
->type
))
2240 ULONGEST u
= extract_unsigned_integer (writebuf
, valtype_len
,
2242 regcache_cooked_write_unsigned (regcache
, tdep
->r0
->num
, u
);
2246 /* Everything else is passed in mem0, using as many bytes as
2247 needed. This is not what the Renesas tools do, but it's
2248 what GCC does at the moment. */
2249 struct minimal_symbol
*mem0
2250 = lookup_minimal_symbol ("mem0", NULL
, NULL
);
2253 error ("The return value is stored in memory at 'mem0', "
2254 "but GDB cannot find\n"
2256 write_memory (SYMBOL_VALUE_ADDRESS (mem0
),
2257 (char *) writebuf
, valtype_len
);
2268 /* The m16c and m32c use a trampoline function for indirect function
2269 calls. An indirect call looks like this:
2271 ... push arguments ...
2272 ... push target function address ...
2275 The code for m32c_jsri16 looks like this:
2279 # Save return address.
2281 pop.b m32c_jsri_ret+2
2283 # Store target function address.
2284 pop.w m32c_jsri_addr
2286 # Re-push return address.
2287 push.b m32c_jsri_ret+2
2288 push.w m32c_jsri_ret
2290 # Call the target function.
2291 jmpi.a m32c_jsri_addr
2293 Without further information, GDB will treat calls to m32c_jsri16
2294 like calls to any other function. Since m32c_jsri16 doesn't have
2295 debugging information, that normally means that GDB sets a step-
2296 resume breakpoint and lets the program continue --- which is not
2297 what the user wanted. (Giving the trampoline debugging info
2298 doesn't help: the user expects the program to stop in the function
2299 their program is calling, not in some trampoline code they've never
2302 The gdbarch_skip_trampoline_code method tells GDB how to step
2303 through such trampoline functions transparently to the user. When
2304 given the address of a trampoline function's first instruction,
2305 gdbarch_skip_trampoline_code should return the address of the first
2306 instruction of the function really being called. If GDB decides it
2307 wants to step into that function, it will set a breakpoint there
2308 and silently continue to it.
2310 We recognize the trampoline by name, and extract the target address
2311 directly from the stack. This isn't great, but recognizing by its
2312 code sequence seems more fragile. */
2315 m32c_skip_trampoline_code (struct frame_info
*frame
, CORE_ADDR stop_pc
)
2317 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2318 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2319 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2321 /* It would be nicer to simply look up the addresses of known
2322 trampolines once, and then compare stop_pc with them. However,
2323 we'd need to ensure that that cached address got invalidated when
2324 someone loaded a new executable, and I'm not quite sure of the
2325 best way to do that. find_pc_partial_function does do some
2326 caching, so we'll see how this goes. */
2328 CORE_ADDR start
, end
;
2330 if (find_pc_partial_function (stop_pc
, &name
, &start
, &end
))
2332 /* Are we stopped at the beginning of the trampoline function? */
2333 if (strcmp (name
, "m32c_jsri16") == 0
2334 && stop_pc
== start
)
2336 /* Get the stack pointer. The return address is at the top,
2337 and the target function's address is just below that. We
2338 know it's a two-byte address, since the trampoline is
2340 CORE_ADDR sp
= get_frame_sp (get_current_frame ());
2342 = read_memory_unsigned_integer (sp
+ tdep
->ret_addr_bytes
,
2345 /* What we have now is the address of a jump instruction.
2346 What we need is the destination of that jump.
2347 The opcode is 1 byte, and the destination is the next 3 bytes.
2349 target
= read_memory_unsigned_integer (target
+ 1, 3, byte_order
);
2358 /* Address/pointer conversions. */
2360 /* On the m16c, there is a 24-bit address space, but only a very few
2361 instructions can generate addresses larger than 0xffff: jumps,
2362 jumps to subroutines, and the lde/std (load/store extended)
2365 Since GCC can only support one size of pointer, we can't have
2366 distinct 'near' and 'far' pointer types; we have to pick one size
2367 for everything. If we wanted to use 24-bit pointers, then GCC
2368 would have to use lde and ste for all memory references, which
2369 would be terrible for performance and code size. So the GNU
2370 toolchain uses 16-bit pointers for everything, and gives up the
2371 ability to have pointers point outside the first 64k of memory.
2373 However, as a special hack, we let the linker place functions at
2374 addresses above 0xffff, as long as it also places a trampoline in
2375 the low 64k for every function whose address is taken. Each
2376 trampoline consists of a single jmp.a instruction that jumps to the
2377 function's real entry point. Pointers to functions can be 16 bits
2378 long, even though the functions themselves are at higher addresses:
2379 the pointers refer to the trampolines, not the functions.
2381 This complicates things for GDB, however: given the address of a
2382 function (from debug info or linker symbols, say) which could be
2383 anywhere in the 24-bit address space, how can we find an
2384 appropriate 16-bit value to use as a pointer to it?
2386 If the linker has not generated a trampoline for the function,
2387 we're out of luck. Well, I guess we could malloc some space and
2388 write a jmp.a instruction to it, but I'm not going to get into that
2391 If the linker has generated a trampoline for the function, then it
2392 also emitted a symbol for the trampoline: if the function's linker
2393 symbol is named NAME, then the function's trampoline's linker
2394 symbol is named NAME.plt.
2396 So, given a code address:
2397 - We try to find a linker symbol at that address.
2398 - If we find such a symbol named NAME, we look for a linker symbol
2400 - If we find such a symbol, we assume it is a trampoline, and use
2401 its address as the pointer value.
2403 And, given a function pointer:
2404 - We try to find a linker symbol at that address named NAME.plt.
2405 - If we find such a symbol, we look for a linker symbol named NAME.
2406 - If we find that, we provide that as the function's address.
2407 - If any of the above steps fail, we return the original address
2408 unchanged; it might really be a function in the low 64k.
2410 See? You *knew* there was a reason you wanted to be a computer
2414 m32c_m16c_address_to_pointer (struct gdbarch
*gdbarch
,
2415 struct type
*type
, gdb_byte
*buf
, CORE_ADDR addr
)
2417 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2418 enum type_code target_code
;
2419 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_PTR
||
2420 TYPE_CODE (type
) == TYPE_CODE_REF
);
2422 target_code
= TYPE_CODE (TYPE_TARGET_TYPE (type
));
2424 if (target_code
== TYPE_CODE_FUNC
|| target_code
== TYPE_CODE_METHOD
)
2428 struct minimal_symbol
*tramp_msym
;
2430 /* Try to find a linker symbol at this address. */
2431 struct minimal_symbol
*func_msym
= lookup_minimal_symbol_by_pc (addr
);
2434 error (_("Cannot convert code address %s to function pointer:\n"
2435 "couldn't find a symbol at that address, to find trampoline."),
2436 paddress (gdbarch
, addr
));
2438 func_name
= SYMBOL_LINKAGE_NAME (func_msym
);
2439 tramp_name
= xmalloc (strlen (func_name
) + 5);
2440 strcpy (tramp_name
, func_name
);
2441 strcat (tramp_name
, ".plt");
2443 /* Try to find a linker symbol for the trampoline. */
2444 tramp_msym
= lookup_minimal_symbol (tramp_name
, NULL
, NULL
);
2446 /* We've either got another copy of the name now, or don't need
2447 the name any more. */
2454 /* No PLT entry found. Mask off the upper bits of the address
2455 to make a pointer. As noted in the warning to the user
2456 below, this value might be useful if converted back into
2457 an address by GDB, but will otherwise, almost certainly,
2460 Using this masked result does seem to be useful
2461 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2462 PASSes. These results appear to be correct as well.
2464 We print a warning here so that the user can make a
2465 determination about whether the result is useful or not. */
2466 ptrval
= addr
& 0xffff;
2468 warning (_("Cannot convert code address %s to function pointer:\n"
2469 "couldn't find trampoline named '%s.plt'.\n"
2470 "Returning pointer value %s instead; this may produce\n"
2471 "a useful result if converted back into an address by GDB,\n"
2472 "but will most likely not be useful otherwise.\n"),
2473 paddress (gdbarch
, addr
), func_name
,
2474 paddress (gdbarch
, ptrval
));
2481 /* The trampoline's address is our pointer. */
2482 addr
= SYMBOL_VALUE_ADDRESS (tramp_msym
);
2486 store_unsigned_integer (buf
, TYPE_LENGTH (type
), byte_order
, addr
);
2491 m32c_m16c_pointer_to_address (struct gdbarch
*gdbarch
,
2492 struct type
*type
, const gdb_byte
*buf
)
2494 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2496 enum type_code target_code
;
2498 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_PTR
||
2499 TYPE_CODE (type
) == TYPE_CODE_REF
);
2501 ptr
= extract_unsigned_integer (buf
, TYPE_LENGTH (type
), byte_order
);
2503 target_code
= TYPE_CODE (TYPE_TARGET_TYPE (type
));
2505 if (target_code
== TYPE_CODE_FUNC
|| target_code
== TYPE_CODE_METHOD
)
2507 /* See if there is a minimal symbol at that address whose name is
2509 struct minimal_symbol
*ptr_msym
= lookup_minimal_symbol_by_pc (ptr
);
2513 char *ptr_msym_name
= SYMBOL_LINKAGE_NAME (ptr_msym
);
2514 int len
= strlen (ptr_msym_name
);
2517 && strcmp (ptr_msym_name
+ len
- 4, ".plt") == 0)
2519 struct minimal_symbol
*func_msym
;
2520 /* We have a .plt symbol; try to find the symbol for the
2521 corresponding function.
2523 Since the trampoline contains a jump instruction, we
2524 could also just extract the jump's target address. I
2525 don't see much advantage one way or the other. */
2526 char *func_name
= xmalloc (len
- 4 + 1);
2527 memcpy (func_name
, ptr_msym_name
, len
- 4);
2528 func_name
[len
- 4] = '\0';
2530 = lookup_minimal_symbol (func_name
, NULL
, NULL
);
2532 /* If we do have such a symbol, return its value as the
2533 function's true address. */
2535 ptr
= SYMBOL_VALUE_ADDRESS (func_msym
);
2542 for (aspace
= 1; aspace
<= 15; aspace
++)
2544 ptr_msym
= lookup_minimal_symbol_by_pc ((aspace
<< 16) | ptr
);
2547 ptr
|= aspace
<< 16;
2556 m32c_virtual_frame_pointer (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
2558 LONGEST
*frame_offset
)
2561 CORE_ADDR func_addr
, func_end
, sal_end
;
2562 struct m32c_prologue p
;
2564 struct regcache
*regcache
= get_current_regcache ();
2565 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2567 if (!find_pc_partial_function (pc
, &name
, &func_addr
, &func_end
))
2568 internal_error (__FILE__
, __LINE__
, _("No virtual frame pointer available"));
2570 m32c_analyze_prologue (gdbarch
, func_addr
, pc
, &p
);
2573 case prologue_with_frame_ptr
:
2574 *frame_regnum
= m32c_banked_register (tdep
->fb
, regcache
)->num
;
2575 *frame_offset
= p
.frame_ptr_offset
;
2577 case prologue_sans_frame_ptr
:
2578 *frame_regnum
= m32c_banked_register (tdep
->sp
, regcache
)->num
;
2579 *frame_offset
= p
.frame_size
;
2582 *frame_regnum
= m32c_banked_register (tdep
->sp
, regcache
)->num
;
2587 if (*frame_regnum
> gdbarch_num_regs (gdbarch
))
2588 internal_error (__FILE__
, __LINE__
, _("No virtual frame pointer available"));
2592 /* Initialization. */
2594 static struct gdbarch
*
2595 m32c_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2597 struct gdbarch
*arch
;
2598 struct gdbarch_tdep
*tdep
;
2599 unsigned long mach
= info
.bfd_arch_info
->mach
;
2601 /* Find a candidate among the list of architectures we've created
2603 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2605 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
2606 return arches
->gdbarch
;
2608 tdep
= xcalloc (1, sizeof (*tdep
));
2609 arch
= gdbarch_alloc (&info
, tdep
);
2611 /* Essential types. */
2614 /* Address/pointer conversions. */
2615 if (mach
== bfd_mach_m16c
)
2617 set_gdbarch_address_to_pointer (arch
, m32c_m16c_address_to_pointer
);
2618 set_gdbarch_pointer_to_address (arch
, m32c_m16c_pointer_to_address
);
2625 set_gdbarch_print_insn (arch
, print_insn_m32c
);
2628 set_gdbarch_breakpoint_from_pc (arch
, m32c_breakpoint_from_pc
);
2630 /* Prologue analysis and unwinding. */
2631 set_gdbarch_inner_than (arch
, core_addr_lessthan
);
2632 set_gdbarch_skip_prologue (arch
, m32c_skip_prologue
);
2633 set_gdbarch_unwind_pc (arch
, m32c_unwind_pc
);
2634 set_gdbarch_unwind_sp (arch
, m32c_unwind_sp
);
2636 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2637 They may be in the dwarf2 cfi code in GDB, or they may be in
2638 the debug info emitted by the upstream toolchain. I don't
2639 know which, but I do know that the prologue analyzer works better.
2642 dwarf2_append_sniffers (arch
);
2644 frame_unwind_append_unwinder (arch
, &m32c_unwind
);
2646 /* Inferior calls. */
2647 set_gdbarch_push_dummy_call (arch
, m32c_push_dummy_call
);
2648 set_gdbarch_return_value (arch
, m32c_return_value
);
2649 set_gdbarch_dummy_id (arch
, m32c_dummy_id
);
2652 set_gdbarch_skip_trampoline_code (arch
, m32c_skip_trampoline_code
);
2654 set_gdbarch_virtual_frame_pointer (arch
, m32c_virtual_frame_pointer
);
2656 /* m32c function boundary addresses are not necessarily even.
2657 Therefore, the `vbit', which indicates a pointer to a virtual
2658 member function, is stored in the delta field, rather than as
2659 the low bit of a function pointer address.
2661 In order to verify this, see the definition of
2662 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2663 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2664 set_gdbarch_vbit_in_delta (arch
, 1);
2669 /* Provide a prototype to silence -Wmissing-prototypes. */
2670 extern initialize_file_ftype _initialize_m32c_tdep
;
2673 _initialize_m32c_tdep (void)
2675 register_gdbarch_init (bfd_arch_m32c
, m32c_gdbarch_init
);
2677 m32c_dma_reggroup
= reggroup_new ("dma", USER_REGGROUP
);