gdb
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <stdarg.h>
23
24 #if defined (HAVE_STRING_H)
25 #include <string.h>
26 #endif
27
28 #include "gdb_assert.h"
29 #include "elf-bfd.h"
30 #include "elf/m32c.h"
31 #include "gdb/sim-m32c.h"
32 #include "dis-asm.h"
33 #include "gdbtypes.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "frame.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2expr.h"
40 #include "symtab.h"
41 #include "gdbcore.h"
42 #include "value.h"
43 #include "reggroups.h"
44 #include "prologue-value.h"
45 #include "target.h"
46
47 \f
48 /* The m32c tdep structure. */
49
50 static struct reggroup *m32c_dma_reggroup;
51
52 struct m32c_reg;
53
54 /* The type of a function that moves the value of REG between CACHE or
55 BUF --- in either direction. */
56 typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
57 struct regcache *cache,
58 void *buf);
59
60 struct m32c_reg
61 {
62 /* The name of this register. */
63 const char *name;
64
65 /* Its type. */
66 struct type *type;
67
68 /* The architecture this register belongs to. */
69 struct gdbarch *arch;
70
71 /* Its GDB register number. */
72 int num;
73
74 /* Its sim register number. */
75 int sim_num;
76
77 /* Its DWARF register number, or -1 if it doesn't have one. */
78 int dwarf_num;
79
80 /* Register group memberships. */
81 unsigned int general_p : 1;
82 unsigned int dma_p : 1;
83 unsigned int system_p : 1;
84 unsigned int save_restore_p : 1;
85
86 /* Functions to read its value from a regcache, and write its value
87 to a regcache. */
88 m32c_move_reg_t *read, *write;
89
90 /* Data for READ and WRITE functions. The exact meaning depends on
91 the specific functions selected; see the comments for those
92 functions. */
93 struct m32c_reg *rx, *ry;
94 int n;
95 };
96
97
98 /* An overestimate of the number of raw and pseudoregisters we will
99 have. The exact answer depends on the variant of the architecture
100 at hand, but we can use this to declare statically allocated
101 arrays, and bump it up when needed. */
102 #define M32C_MAX_NUM_REGS (75)
103
104 /* The largest assigned DWARF register number. */
105 #define M32C_MAX_DWARF_REGNUM (40)
106
107
108 struct gdbarch_tdep
109 {
110 /* All the registers for this variant, indexed by GDB register
111 number, and the number of registers present. */
112 struct m32c_reg regs[M32C_MAX_NUM_REGS];
113
114 /* The number of valid registers. */
115 int num_regs;
116
117 /* Interesting registers. These are pointers into REGS. */
118 struct m32c_reg *pc, *flg;
119 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
120 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
121 struct m32c_reg *sb, *fb, *sp;
122
123 /* A table indexed by DWARF register numbers, pointing into
124 REGS. */
125 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
126
127 /* Types for this architecture. We can't use the builtin_type_foo
128 types, because they're not initialized when building a gdbarch
129 structure. */
130 struct type *voyd, *ptr_voyd, *func_voyd;
131 struct type *uint8, *uint16;
132 struct type *int8, *int16, *int32, *int64;
133
134 /* The types for data address and code address registers. */
135 struct type *data_addr_reg_type, *code_addr_reg_type;
136
137 /* The number of bytes a return address pushed by a 'jsr' instruction
138 occupies on the stack. */
139 int ret_addr_bytes;
140
141 /* The number of bytes an address register occupies on the stack
142 when saved by an 'enter' or 'pushm' instruction. */
143 int push_addr_bytes;
144 };
145
146 \f
147 /* Types. */
148
149 static void
150 make_types (struct gdbarch *arch)
151 {
152 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
153 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
154 int data_addr_reg_bits, code_addr_reg_bits;
155 char type_name[50];
156
157 #if 0
158 /* This is used to clip CORE_ADDR values, so this value is
159 appropriate both on the m32c, where pointers are 32 bits long,
160 and on the m16c, where pointers are sixteen bits long, but there
161 may be code above the 64k boundary. */
162 set_gdbarch_addr_bit (arch, 24);
163 #else
164 /* GCC uses 32 bits for addrs in the dwarf info, even though
165 only 16/24 bits are used. Setting addr_bit to 24 causes
166 errors in reading the dwarf addresses. */
167 set_gdbarch_addr_bit (arch, 32);
168 #endif
169
170 set_gdbarch_int_bit (arch, 16);
171 switch (mach)
172 {
173 case bfd_mach_m16c:
174 data_addr_reg_bits = 16;
175 code_addr_reg_bits = 24;
176 set_gdbarch_ptr_bit (arch, 16);
177 tdep->ret_addr_bytes = 3;
178 tdep->push_addr_bytes = 2;
179 break;
180
181 case bfd_mach_m32c:
182 data_addr_reg_bits = 24;
183 code_addr_reg_bits = 24;
184 set_gdbarch_ptr_bit (arch, 32);
185 tdep->ret_addr_bytes = 4;
186 tdep->push_addr_bytes = 4;
187 break;
188
189 default:
190 gdb_assert (0);
191 }
192
193 /* The builtin_type_mumble variables are sometimes uninitialized when
194 this is called, so we avoid using them. */
195 tdep->voyd = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
196 tdep->ptr_voyd = init_type (TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / 8,
197 TYPE_FLAG_UNSIGNED, NULL, NULL);
198 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
199 tdep->func_voyd = lookup_function_type (tdep->voyd);
200
201 sprintf (type_name, "%s_data_addr_t",
202 gdbarch_bfd_arch_info (arch)->printable_name);
203 tdep->data_addr_reg_type
204 = init_type (TYPE_CODE_PTR, data_addr_reg_bits / 8,
205 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
206 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
207
208 sprintf (type_name, "%s_code_addr_t",
209 gdbarch_bfd_arch_info (arch)->printable_name);
210 tdep->code_addr_reg_type
211 = init_type (TYPE_CODE_PTR, code_addr_reg_bits / 8,
212 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
213 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
214
215 tdep->uint8 = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
216 "uint8_t", NULL);
217 tdep->uint16 = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
218 "uint16_t", NULL);
219 tdep->int8 = init_type (TYPE_CODE_INT, 1, 0, "int8_t", NULL);
220 tdep->int16 = init_type (TYPE_CODE_INT, 2, 0, "int16_t", NULL);
221 tdep->int32 = init_type (TYPE_CODE_INT, 4, 0, "int32_t", NULL);
222 tdep->int64 = init_type (TYPE_CODE_INT, 8, 0, "int64_t", NULL);
223 }
224
225
226 \f
227 /* Register set. */
228
229 static const char *
230 m32c_register_name (struct gdbarch *gdbarch, int num)
231 {
232 return gdbarch_tdep (gdbarch)->regs[num].name;
233 }
234
235
236 static struct type *
237 m32c_register_type (struct gdbarch *arch, int reg_nr)
238 {
239 return gdbarch_tdep (arch)->regs[reg_nr].type;
240 }
241
242
243 static int
244 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
245 {
246 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
247 }
248
249
250 static int
251 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
252 {
253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
254 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
255 && tdep->dwarf_regs[reg_nr])
256 return tdep->dwarf_regs[reg_nr]->num;
257 else
258 /* The DWARF CFI code expects to see -1 for invalid register
259 numbers. */
260 return -1;
261 }
262
263
264 static int
265 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
266 struct reggroup *group)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269 struct m32c_reg *reg = &tdep->regs[regnum];
270
271 /* The anonymous raw registers aren't in any groups. */
272 if (! reg->name)
273 return 0;
274
275 if (group == all_reggroup)
276 return 1;
277
278 if (group == general_reggroup
279 && reg->general_p)
280 return 1;
281
282 if (group == m32c_dma_reggroup
283 && reg->dma_p)
284 return 1;
285
286 if (group == system_reggroup
287 && reg->system_p)
288 return 1;
289
290 /* Since the m32c DWARF register numbers refer to cooked registers, not
291 raw registers, and frame_pop depends on the save and restore groups
292 containing registers the DWARF CFI will actually mention, our save
293 and restore groups are cooked registers, not raw registers. (This is
294 why we can't use the default reggroup function.) */
295 if ((group == save_reggroup
296 || group == restore_reggroup)
297 && reg->save_restore_p)
298 return 1;
299
300 return 0;
301 }
302
303
304 /* Register move functions. We declare them here using
305 m32c_move_reg_t to check the types. */
306 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
307 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
308 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
309 static m32c_move_reg_t m32c_part_read, m32c_part_write;
310 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
311 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
312
313
314 /* Copy the value of the raw register REG from CACHE to BUF. */
315 static void
316 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
317 {
318 regcache_raw_read (cache, reg->num, buf);
319 }
320
321
322 /* Copy the value of the raw register REG from BUF to CACHE. */
323 static void
324 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
325 {
326 regcache_raw_write (cache, reg->num, (const void *) buf);
327 }
328
329
330 /* Return the value of the 'flg' register in CACHE. */
331 static int
332 m32c_read_flg (struct regcache *cache)
333 {
334 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
335 ULONGEST flg;
336 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
337 return flg & 0xffff;
338 }
339
340
341 /* Evaluate the real register number of a banked register. */
342 static struct m32c_reg *
343 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
344 {
345 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
346 }
347
348
349 /* Move the value of a banked register from CACHE to BUF.
350 If the value of the 'flg' register in CACHE has any of the bits
351 masked in REG->n set, then read REG->ry. Otherwise, read
352 REG->rx. */
353 static void
354 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
355 {
356 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
357 regcache_raw_read (cache, bank_reg->num, buf);
358 }
359
360
361 /* Move the value of a banked register from BUF to CACHE.
362 If the value of the 'flg' register in CACHE has any of the bits
363 masked in REG->n set, then write REG->ry. Otherwise, write
364 REG->rx. */
365 static void
366 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
367 {
368 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
369 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
370 }
371
372
373 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
374 banked register; on bfd_mach_m16c, it's not. */
375 static void
376 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
377 {
378 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
379 m32c_raw_read (reg->rx, cache, buf);
380 else
381 m32c_banked_read (reg, cache, buf);
382 }
383
384
385 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
386 banked register; on bfd_mach_m16c, it's not. */
387 static void
388 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
389 {
390 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
391 m32c_raw_write (reg->rx, cache, buf);
392 else
393 m32c_banked_write (reg, cache, buf);
394 }
395
396
397 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
398 and *LEN_P to the offset and length, in bytes, of the part REG
399 occupies in its underlying register. The offset is from the
400 lower-addressed end, regardless of the architecture's endianness.
401 (The M32C family is always little-endian, but let's keep those
402 assumptions out of here.) */
403 static void
404 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
405 {
406 /* The length of the containing register, of which REG is one part. */
407 int containing_len = TYPE_LENGTH (reg->rx->type);
408
409 /* The length of one "element" in our imaginary array. */
410 int elt_len = TYPE_LENGTH (reg->type);
411
412 /* The offset of REG's "element" from the least significant end of
413 the containing register. */
414 int elt_offset = reg->n * elt_len;
415
416 /* If we extend off the end, trim the length of the element. */
417 if (elt_offset + elt_len > containing_len)
418 {
419 elt_len = containing_len - elt_offset;
420 /* We shouldn't be declaring partial registers that go off the
421 end of their containing registers. */
422 gdb_assert (elt_len > 0);
423 }
424
425 /* Flip the offset around if we're big-endian. */
426 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
427 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
428
429 *offset_p = elt_offset;
430 *len_p = elt_len;
431 }
432
433
434 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
435 to BUF. Treating the value of the register REG->rx as an array of
436 REG->type values, where higher indices refer to more significant
437 bits, read the value of the REG->n'th element. */
438 static void
439 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
440 {
441 int offset, len;
442 memset (buf, 0, TYPE_LENGTH (reg->type));
443 m32c_find_part (reg, &offset, &len);
444 regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
445 }
446
447
448 /* Move the value of a banked register from BUF to CACHE.
449 Treating the value of the register REG->rx as an array of REG->type
450 values, where higher indices refer to more significant bits, write
451 the value of the REG->n'th element. */
452 static void
453 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
454 {
455 int offset, len;
456 m32c_find_part (reg, &offset, &len);
457 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
458 }
459
460
461 /* Move the value of REG from CACHE to BUF. REG's value is the
462 concatenation of the values of the registers REG->rx and REG->ry,
463 with REG->rx contributing the more significant bits. */
464 static void
465 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
466 {
467 int high_bytes = TYPE_LENGTH (reg->rx->type);
468 int low_bytes = TYPE_LENGTH (reg->ry->type);
469 /* For address arithmetic. */
470 unsigned char *cbuf = buf;
471
472 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
473
474 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
475 {
476 regcache_cooked_read (cache, reg->rx->num, cbuf);
477 regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
478 }
479 else
480 {
481 regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
482 regcache_cooked_read (cache, reg->ry->num, cbuf);
483 }
484 }
485
486
487 /* Move the value of REG from CACHE to BUF. REG's value is the
488 concatenation of the values of the registers REG->rx and REG->ry,
489 with REG->rx contributing the more significant bits. */
490 static void
491 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
492 {
493 int high_bytes = TYPE_LENGTH (reg->rx->type);
494 int low_bytes = TYPE_LENGTH (reg->ry->type);
495 /* For address arithmetic. */
496 unsigned char *cbuf = buf;
497
498 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
499
500 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
501 {
502 regcache_cooked_write (cache, reg->rx->num, cbuf);
503 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
504 }
505 else
506 {
507 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
508 regcache_cooked_write (cache, reg->ry->num, cbuf);
509 }
510 }
511
512
513 /* Copy the value of the raw register REG from CACHE to BUF. REG is
514 the concatenation (from most significant to least) of r3, r2, r1,
515 and r0. */
516 static void
517 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
518 {
519 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
520 int len = TYPE_LENGTH (tdep->r0->type);
521
522 /* For address arithmetic. */
523 unsigned char *cbuf = buf;
524
525 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
526 {
527 regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
528 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
529 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
530 regcache_cooked_read (cache, tdep->r3->num, cbuf);
531 }
532 else
533 {
534 regcache_cooked_read (cache, tdep->r0->num, cbuf);
535 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
536 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
537 regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
538 }
539 }
540
541
542 /* Copy the value of the raw register REG from BUF to CACHE. REG is
543 the concatenation (from most significant to least) of r3, r2, r1,
544 and r0. */
545 static void
546 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
547 {
548 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
549 int len = TYPE_LENGTH (tdep->r0->type);
550
551 /* For address arithmetic. */
552 unsigned char *cbuf = buf;
553
554 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
555 {
556 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
557 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
558 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
559 regcache_cooked_write (cache, tdep->r3->num, cbuf);
560 }
561 else
562 {
563 regcache_cooked_write (cache, tdep->r0->num, cbuf);
564 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
565 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
566 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
567 }
568 }
569
570
571 static void
572 m32c_pseudo_register_read (struct gdbarch *arch,
573 struct regcache *cache,
574 int cookednum,
575 gdb_byte *buf)
576 {
577 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
578 struct m32c_reg *reg;
579
580 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
581 gdb_assert (arch == get_regcache_arch (cache));
582 gdb_assert (arch == tdep->regs[cookednum].arch);
583 reg = &tdep->regs[cookednum];
584
585 reg->read (reg, cache, buf);
586 }
587
588
589 static void
590 m32c_pseudo_register_write (struct gdbarch *arch,
591 struct regcache *cache,
592 int cookednum,
593 const gdb_byte *buf)
594 {
595 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
596 struct m32c_reg *reg;
597
598 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
599 gdb_assert (arch == get_regcache_arch (cache));
600 gdb_assert (arch == tdep->regs[cookednum].arch);
601 reg = &tdep->regs[cookednum];
602
603 reg->write (reg, cache, (void *) buf);
604 }
605
606
607 /* Add a register with the given fields to the end of ARCH's table.
608 Return a pointer to the newly added register. */
609 static struct m32c_reg *
610 add_reg (struct gdbarch *arch,
611 const char *name,
612 struct type *type,
613 int sim_num,
614 m32c_move_reg_t *read,
615 m32c_move_reg_t *write,
616 struct m32c_reg *rx,
617 struct m32c_reg *ry,
618 int n)
619 {
620 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
621 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
622
623 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
624
625 r->name = name;
626 r->type = type;
627 r->arch = arch;
628 r->num = tdep->num_regs;
629 r->sim_num = sim_num;
630 r->dwarf_num = -1;
631 r->general_p = 0;
632 r->dma_p = 0;
633 r->system_p = 0;
634 r->save_restore_p = 0;
635 r->read = read;
636 r->write = write;
637 r->rx = rx;
638 r->ry = ry;
639 r->n = n;
640
641 tdep->num_regs++;
642
643 return r;
644 }
645
646
647 /* Record NUM as REG's DWARF register number. */
648 static void
649 set_dwarf_regnum (struct m32c_reg *reg, int num)
650 {
651 gdb_assert (num < M32C_MAX_NUM_REGS);
652
653 /* Update the reg->DWARF mapping. Only count the first number
654 assigned to this register. */
655 if (reg->dwarf_num == -1)
656 reg->dwarf_num = num;
657
658 /* Update the DWARF->reg mapping. */
659 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
660 }
661
662
663 /* Mark REG as a general-purpose register, and return it. */
664 static struct m32c_reg *
665 mark_general (struct m32c_reg *reg)
666 {
667 reg->general_p = 1;
668 return reg;
669 }
670
671
672 /* Mark REG as a DMA register, and return it. */
673 static struct m32c_reg *
674 mark_dma (struct m32c_reg *reg)
675 {
676 reg->dma_p = 1;
677 return reg;
678 }
679
680
681 /* Mark REG as a SYSTEM register, and return it. */
682 static struct m32c_reg *
683 mark_system (struct m32c_reg *reg)
684 {
685 reg->system_p = 1;
686 return reg;
687 }
688
689
690 /* Mark REG as a save-restore register, and return it. */
691 static struct m32c_reg *
692 mark_save_restore (struct m32c_reg *reg)
693 {
694 reg->save_restore_p = 1;
695 return reg;
696 }
697
698
699 #define FLAGBIT_B 0x0010
700 #define FLAGBIT_U 0x0080
701
702 /* Handy macros for declaring registers. These all evaluate to
703 pointers to the register declared. Macros that define two
704 registers evaluate to a pointer to the first. */
705
706 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
707 #define R(name, type, sim_num) \
708 (add_reg (arch, (name), (type), (sim_num), \
709 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
710
711 /* The simulator register number for a raw register named NAME. */
712 #define SIM(name) (m32c_sim_reg_ ## name)
713
714 /* A raw unsigned 16-bit data register named NAME.
715 NAME should be an identifier, not a string. */
716 #define R16U(name) \
717 (R(#name, tdep->uint16, SIM (name)))
718
719 /* A raw data address register named NAME.
720 NAME should be an identifier, not a string. */
721 #define RA(name) \
722 (R(#name, tdep->data_addr_reg_type, SIM (name)))
723
724 /* A raw code address register named NAME. NAME should
725 be an identifier, not a string. */
726 #define RC(name) \
727 (R(#name, tdep->code_addr_reg_type, SIM (name)))
728
729 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
730 NAME should be an identifier, not a string. */
731 #define RP(name, type) \
732 (R(#name "0", (type), SIM (name ## 0)), \
733 R(#name "1", (type), SIM (name ## 1)) - 1)
734
735 /* A raw banked general-purpose data register named NAME.
736 NAME should be an identifier, not a string. */
737 #define RBD(name) \
738 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
739 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
740
741 /* A raw banked data address register named NAME.
742 NAME should be an identifier, not a string. */
743 #define RBA(name) \
744 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
745 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
746
747 /* A cooked register named NAME referring to a raw banked register
748 from the bank selected by the current value of FLG. RAW_PAIR
749 should be a pointer to the first register in the banked pair.
750 NAME must be an identifier, not a string. */
751 #define CB(name, raw_pair) \
752 (add_reg (arch, #name, (raw_pair)->type, 0, \
753 m32c_banked_read, m32c_banked_write, \
754 (raw_pair), (raw_pair + 1), FLAGBIT_B))
755
756 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
757 access the top and bottom halves of the register pointed to by
758 NAME. NAME should be an identifier. */
759 #define CHL(name, type) \
760 (add_reg (arch, #name "h", (type), 0, \
761 m32c_part_read, m32c_part_write, name, NULL, 1), \
762 add_reg (arch, #name "l", (type), 0, \
763 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
764
765 /* A register constructed by concatenating the two registers HIGH and
766 LOW, whose name is HIGHLOW and whose type is TYPE. */
767 #define CCAT(high, low, type) \
768 (add_reg (arch, #high #low, (type), 0, \
769 m32c_cat_read, m32c_cat_write, (high), (low), 0))
770
771 /* Abbreviations for marking register group membership. */
772 #define G(reg) (mark_general (reg))
773 #define S(reg) (mark_system (reg))
774 #define DMA(reg) (mark_dma (reg))
775
776
777 /* Construct the register set for ARCH. */
778 static void
779 make_regs (struct gdbarch *arch)
780 {
781 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
782 int mach = gdbarch_bfd_arch_info (arch)->mach;
783 int num_raw_regs;
784 int num_cooked_regs;
785
786 struct m32c_reg *r0;
787 struct m32c_reg *r1;
788 struct m32c_reg *r2;
789 struct m32c_reg *r3;
790 struct m32c_reg *a0;
791 struct m32c_reg *a1;
792 struct m32c_reg *fb;
793 struct m32c_reg *sb;
794 struct m32c_reg *sp;
795 struct m32c_reg *r0hl;
796 struct m32c_reg *r1hl;
797 struct m32c_reg *r2hl;
798 struct m32c_reg *r3hl;
799 struct m32c_reg *intbhl;
800 struct m32c_reg *r2r0;
801 struct m32c_reg *r3r1;
802 struct m32c_reg *r3r1r2r0;
803 struct m32c_reg *r3r2r1r0;
804 struct m32c_reg *a1a0;
805
806 struct m32c_reg *raw_r0_pair = RBD (r0);
807 struct m32c_reg *raw_r1_pair = RBD (r1);
808 struct m32c_reg *raw_r2_pair = RBD (r2);
809 struct m32c_reg *raw_r3_pair = RBD (r3);
810 struct m32c_reg *raw_a0_pair = RBA (a0);
811 struct m32c_reg *raw_a1_pair = RBA (a1);
812 struct m32c_reg *raw_fb_pair = RBA (fb);
813
814 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
815 We always declare both raw registers, and deal with the distinction
816 in the pseudoregister. */
817 struct m32c_reg *raw_sb_pair = RBA (sb);
818
819 struct m32c_reg *usp = S (RA (usp));
820 struct m32c_reg *isp = S (RA (isp));
821 struct m32c_reg *intb = S (RC (intb));
822 struct m32c_reg *pc = G (RC (pc));
823 struct m32c_reg *flg = G (R16U (flg));
824
825 if (mach == bfd_mach_m32c)
826 {
827 struct m32c_reg *svf = S (R16U (svf));
828 struct m32c_reg *svp = S (RC (svp));
829 struct m32c_reg *vct = S (RC (vct));
830
831 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
832 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
833 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
834 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
835 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
836 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
837 }
838
839 num_raw_regs = tdep->num_regs;
840
841 r0 = G (CB (r0, raw_r0_pair));
842 r1 = G (CB (r1, raw_r1_pair));
843 r2 = G (CB (r2, raw_r2_pair));
844 r3 = G (CB (r3, raw_r3_pair));
845 a0 = G (CB (a0, raw_a0_pair));
846 a1 = G (CB (a1, raw_a1_pair));
847 fb = G (CB (fb, raw_fb_pair));
848
849 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
850 Specify custom read/write functions that do the right thing. */
851 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
852 m32c_sb_read, m32c_sb_write,
853 raw_sb_pair, raw_sb_pair + 1, 0));
854
855 /* The current sp is either usp or isp, depending on the value of
856 the FLG register's U bit. */
857 sp = G (add_reg (arch, "sp", usp->type, 0,
858 m32c_banked_read, m32c_banked_write,
859 isp, usp, FLAGBIT_U));
860
861 r0hl = CHL (r0, tdep->int8);
862 r1hl = CHL (r1, tdep->int8);
863 r2hl = CHL (r2, tdep->int8);
864 r3hl = CHL (r3, tdep->int8);
865 intbhl = CHL (intb, tdep->int16);
866
867 r2r0 = CCAT (r2, r0, tdep->int32);
868 r3r1 = CCAT (r3, r1, tdep->int32);
869 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
870
871 r3r2r1r0
872 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
873 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
874
875 if (mach == bfd_mach_m16c)
876 a1a0 = CCAT (a1, a0, tdep->int32);
877 else
878 a1a0 = NULL;
879
880 num_cooked_regs = tdep->num_regs - num_raw_regs;
881
882 tdep->pc = pc;
883 tdep->flg = flg;
884 tdep->r0 = r0;
885 tdep->r1 = r1;
886 tdep->r2 = r2;
887 tdep->r3 = r3;
888 tdep->r2r0 = r2r0;
889 tdep->r3r2r1r0 = r3r2r1r0;
890 tdep->r3r1r2r0 = r3r1r2r0;
891 tdep->a0 = a0;
892 tdep->a1 = a1;
893 tdep->sb = sb;
894 tdep->fb = fb;
895 tdep->sp = sp;
896
897 /* Set up the DWARF register table. */
898 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
899 set_dwarf_regnum (r0hl + 1, 0x01);
900 set_dwarf_regnum (r0hl + 0, 0x02);
901 set_dwarf_regnum (r1hl + 1, 0x03);
902 set_dwarf_regnum (r1hl + 0, 0x04);
903 set_dwarf_regnum (r0, 0x05);
904 set_dwarf_regnum (r1, 0x06);
905 set_dwarf_regnum (r2, 0x07);
906 set_dwarf_regnum (r3, 0x08);
907 set_dwarf_regnum (a0, 0x09);
908 set_dwarf_regnum (a1, 0x0a);
909 set_dwarf_regnum (fb, 0x0b);
910 set_dwarf_regnum (sp, 0x0c);
911 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
912 set_dwarf_regnum (sb, 0x13);
913 set_dwarf_regnum (r2r0, 0x15);
914 set_dwarf_regnum (r3r1, 0x16);
915 if (a1a0)
916 set_dwarf_regnum (a1a0, 0x17);
917
918 /* Enumerate the save/restore register group.
919
920 The regcache_save and regcache_restore functions apply their read
921 function to each register in this group.
922
923 Since frame_pop supplies frame_unwind_register as its read
924 function, the registers meaningful to the Dwarf unwinder need to
925 be in this group.
926
927 On the other hand, when we make inferior calls, save_inferior_status
928 and restore_inferior_status use them to preserve the current register
929 values across the inferior call. For this, you'd kind of like to
930 preserve all the raw registers, to protect the interrupted code from
931 any sort of bank switching the callee might have done. But we handle
932 those cases so badly anyway --- for example, it matters whether we
933 restore FLG before or after we restore the general-purpose registers,
934 but there's no way to express that --- that it isn't worth worrying
935 about.
936
937 We omit control registers like inthl: if you call a function that
938 changes those, it's probably because you wanted that change to be
939 visible to the interrupted code. */
940 mark_save_restore (r0);
941 mark_save_restore (r1);
942 mark_save_restore (r2);
943 mark_save_restore (r3);
944 mark_save_restore (a0);
945 mark_save_restore (a1);
946 mark_save_restore (sb);
947 mark_save_restore (fb);
948 mark_save_restore (sp);
949 mark_save_restore (pc);
950 mark_save_restore (flg);
951
952 set_gdbarch_num_regs (arch, num_raw_regs);
953 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
954 set_gdbarch_pc_regnum (arch, pc->num);
955 set_gdbarch_sp_regnum (arch, sp->num);
956 set_gdbarch_register_name (arch, m32c_register_name);
957 set_gdbarch_register_type (arch, m32c_register_type);
958 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
959 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
960 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
961 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
962 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
963 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
964
965 reggroup_add (arch, general_reggroup);
966 reggroup_add (arch, all_reggroup);
967 reggroup_add (arch, save_reggroup);
968 reggroup_add (arch, restore_reggroup);
969 reggroup_add (arch, system_reggroup);
970 reggroup_add (arch, m32c_dma_reggroup);
971 }
972
973
974 \f
975 /* Breakpoints. */
976
977 static const unsigned char *
978 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
979 {
980 static unsigned char break_insn[] = { 0x00 }; /* brk */
981
982 *len = sizeof (break_insn);
983 return break_insn;
984 }
985
986
987 \f
988 /* Prologue analysis. */
989
990 struct m32c_prologue
991 {
992 /* For consistency with the DWARF 2 .debug_frame info generated by
993 GCC, a frame's CFA is the address immediately after the saved
994 return address. */
995
996 /* The architecture for which we generated this prologue info. */
997 struct gdbarch *arch;
998
999 enum {
1000 /* This function uses a frame pointer. */
1001 prologue_with_frame_ptr,
1002
1003 /* This function has no frame pointer. */
1004 prologue_sans_frame_ptr,
1005
1006 /* This function sets up the stack, so its frame is the first
1007 frame on the stack. */
1008 prologue_first_frame
1009
1010 } kind;
1011
1012 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1013 CFA to where the frame pointer points. This is always zero or
1014 negative. */
1015 LONGEST frame_ptr_offset;
1016
1017 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1018 the stack pointer --- always zero or negative.
1019
1020 Calling this a "size" is a bit misleading, but given that the
1021 stack grows downwards, using offsets for everything keeps one
1022 from going completely sign-crazy: you never change anything's
1023 sign for an ADD instruction; always change the second operand's
1024 sign for a SUB instruction; and everything takes care of
1025 itself.
1026
1027 Functions that use alloca don't have a constant frame size. But
1028 they always have frame pointers, so we must use that to find the
1029 CFA (and perhaps to unwind the stack pointer). */
1030 LONGEST frame_size;
1031
1032 /* The address of the first instruction at which the frame has been
1033 set up and the arguments are where the debug info says they are
1034 --- as best as we can tell. */
1035 CORE_ADDR prologue_end;
1036
1037 /* reg_offset[R] is the offset from the CFA at which register R is
1038 saved, or 1 if register R has not been saved. (Real values are
1039 always zero or negative.) */
1040 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1041 };
1042
1043
1044 /* The longest I've seen, anyway. */
1045 #define M32C_MAX_INSN_LEN (9)
1046
1047 /* Processor state, for the prologue analyzer. */
1048 struct m32c_pv_state
1049 {
1050 struct gdbarch *arch;
1051 pv_t r0, r1, r2, r3;
1052 pv_t a0, a1;
1053 pv_t sb, fb, sp;
1054 pv_t pc;
1055 struct pv_area *stack;
1056
1057 /* Bytes from the current PC, the address they were read from,
1058 and the address of the next unconsumed byte. */
1059 gdb_byte insn[M32C_MAX_INSN_LEN];
1060 CORE_ADDR scan_pc, next_addr;
1061 };
1062
1063
1064 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1065 all went well, or non-zero if simulating the action would trash our
1066 state. */
1067 static int
1068 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1069 {
1070 if (pv_area_store_would_trash (state->stack, state->sp))
1071 return 1;
1072
1073 state->sp = pv_add_constant (state->sp, -size);
1074 pv_area_store (state->stack, state->sp, size, value);
1075
1076 return 0;
1077 }
1078
1079
1080 /* A source or destination location for an m16c or m32c
1081 instruction. */
1082 struct srcdest
1083 {
1084 /* If srcdest_reg, the location is a register pointed to by REG.
1085 If srcdest_partial_reg, the location is part of a register pointed
1086 to by REG. We don't try to handle this too well.
1087 If srcdest_mem, the location is memory whose address is ADDR. */
1088 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1089 pv_t *reg, addr;
1090 };
1091
1092
1093 /* Return the SIZE-byte value at LOC in STATE. */
1094 static pv_t
1095 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1096 {
1097 if (loc.kind == srcdest_mem)
1098 return pv_area_fetch (state->stack, loc.addr, size);
1099 else if (loc.kind == srcdest_partial_reg)
1100 return pv_unknown ();
1101 else
1102 return *loc.reg;
1103 }
1104
1105
1106 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1107 all went well, or non-zero if simulating the store would trash our
1108 state. */
1109 static int
1110 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1111 pv_t value, int size)
1112 {
1113 if (loc.kind == srcdest_mem)
1114 {
1115 if (pv_area_store_would_trash (state->stack, loc.addr))
1116 return 1;
1117 pv_area_store (state->stack, loc.addr, size, value);
1118 }
1119 else if (loc.kind == srcdest_partial_reg)
1120 *loc.reg = pv_unknown ();
1121 else
1122 *loc.reg = value;
1123
1124 return 0;
1125 }
1126
1127
1128 static int
1129 m32c_sign_ext (int v, int bits)
1130 {
1131 int mask = 1 << (bits - 1);
1132 return (v ^ mask) - mask;
1133 }
1134
1135 static unsigned int
1136 m32c_next_byte (struct m32c_pv_state *st)
1137 {
1138 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1139 return st->insn[st->next_addr++ - st->scan_pc];
1140 }
1141
1142 static int
1143 m32c_udisp8 (struct m32c_pv_state *st)
1144 {
1145 return m32c_next_byte (st);
1146 }
1147
1148
1149 static int
1150 m32c_sdisp8 (struct m32c_pv_state *st)
1151 {
1152 return m32c_sign_ext (m32c_next_byte (st), 8);
1153 }
1154
1155
1156 static int
1157 m32c_udisp16 (struct m32c_pv_state *st)
1158 {
1159 int low = m32c_next_byte (st);
1160 int high = m32c_next_byte (st);
1161
1162 return low + (high << 8);
1163 }
1164
1165
1166 static int
1167 m32c_sdisp16 (struct m32c_pv_state *st)
1168 {
1169 int low = m32c_next_byte (st);
1170 int high = m32c_next_byte (st);
1171
1172 return m32c_sign_ext (low + (high << 8), 16);
1173 }
1174
1175
1176 static int
1177 m32c_udisp24 (struct m32c_pv_state *st)
1178 {
1179 int low = m32c_next_byte (st);
1180 int mid = m32c_next_byte (st);
1181 int high = m32c_next_byte (st);
1182
1183 return low + (mid << 8) + (high << 16);
1184 }
1185
1186
1187 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1188 static int
1189 m32c_get_src23 (unsigned char *i)
1190 {
1191 return (((i[0] & 0x70) >> 2)
1192 | ((i[1] & 0x30) >> 4));
1193 }
1194
1195
1196 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1197 static int
1198 m32c_get_dest23 (unsigned char *i)
1199 {
1200 return (((i[0] & 0x0e) << 1)
1201 | ((i[1] & 0xc0) >> 6));
1202 }
1203
1204
1205 static struct srcdest
1206 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1207 int code, int size)
1208 {
1209 struct srcdest sd;
1210
1211 if (code < 6)
1212 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1213 else
1214 sd.kind = srcdest_mem;
1215
1216 sd.addr = pv_unknown ();
1217 sd.reg = 0;
1218
1219 switch (code)
1220 {
1221 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1222 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1223 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1224 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1225
1226 case 0x4: sd.reg = &st->a0; break;
1227 case 0x5: sd.reg = &st->a1; break;
1228
1229 case 0x6: sd.addr = st->a0; break;
1230 case 0x7: sd.addr = st->a1; break;
1231
1232 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1233 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1234 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1235 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1236
1237 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1238 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1239 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1240 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1241
1242 default:
1243 gdb_assert (0);
1244 }
1245
1246 return sd;
1247 }
1248
1249
1250 static struct srcdest
1251 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1252 {
1253 struct srcdest sd;
1254
1255 sd.addr = pv_unknown ();
1256 sd.reg = 0;
1257
1258 switch (code)
1259 {
1260 case 0x12:
1261 case 0x13:
1262 case 0x10:
1263 case 0x11:
1264 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1265 break;
1266
1267 case 0x02:
1268 case 0x03:
1269 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1270 break;
1271
1272 default:
1273 sd.kind = srcdest_mem;
1274 break;
1275
1276 }
1277
1278 switch (code)
1279 {
1280 case 0x12: sd.reg = &st->r0; break;
1281 case 0x13: sd.reg = &st->r1; break;
1282 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1283 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1284 case 0x02: sd.reg = &st->a0; break;
1285 case 0x03: sd.reg = &st->a1; break;
1286
1287 case 0x00: sd.addr = st->a0; break;
1288 case 0x01: sd.addr = st->a1; break;
1289 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1290 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1291 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1292 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1293 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1294 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1295 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1296 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1297 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1298 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1299 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1300 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1301 default:
1302 gdb_assert (0);
1303 }
1304
1305 if (ind)
1306 {
1307 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1308 sd.kind = srcdest_mem;
1309 }
1310
1311 return sd;
1312 }
1313
1314
1315 /* The r16c and r32c machines have instructions with similar
1316 semantics, but completely different machine language encodings. So
1317 we break out the semantics into their own functions, and leave
1318 machine-specific decoding in m32c_analyze_prologue.
1319
1320 The following functions all expect their arguments already decoded,
1321 and they all return zero if analysis should continue past this
1322 instruction, or non-zero if analysis should stop. */
1323
1324
1325 /* Simulate an 'enter SIZE' instruction in STATE. */
1326 static int
1327 m32c_pv_enter (struct m32c_pv_state *state, int size)
1328 {
1329 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1330
1331 /* If simulating this store would require us to forget
1332 everything we know about the stack frame in the name of
1333 accuracy, it would be better to just quit now. */
1334 if (pv_area_store_would_trash (state->stack, state->sp))
1335 return 1;
1336
1337 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1338 return 1;
1339 state->fb = state->sp;
1340 state->sp = pv_add_constant (state->sp, -size);
1341
1342 return 0;
1343 }
1344
1345
1346 static int
1347 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1348 int bit, int src, int size)
1349 {
1350 if (bit & src)
1351 {
1352 if (m32c_pv_push (state, reg, size))
1353 return 1;
1354 }
1355
1356 return 0;
1357 }
1358
1359
1360 /* Simulate a 'pushm SRC' instruction in STATE. */
1361 static int
1362 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1363 {
1364 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1365
1366 /* The bits in SRC indicating which registers to save are:
1367 r0 r1 r2 r3 a0 a1 sb fb */
1368 return
1369 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1370 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1371 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1372 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1373 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1374 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1375 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1376 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1377 }
1378
1379 /* Return non-zero if VALUE is the first incoming argument register. */
1380
1381 static int
1382 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1383 {
1384 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1385 return (value.kind == pvk_register
1386 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1387 ? (value.reg == tdep->r1->num)
1388 : (value.reg == tdep->r0->num))
1389 && value.k == 0);
1390 }
1391
1392 /* Return non-zero if VALUE is an incoming argument register. */
1393
1394 static int
1395 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1396 {
1397 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1398 return (value.kind == pvk_register
1399 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1400 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1401 : (value.reg == tdep->r0->num))
1402 && value.k == 0);
1403 }
1404
1405 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1406 argument register to its stack slot in STATE. Such instructions
1407 should be included in the prologue, if possible.
1408
1409 The store is a spill if:
1410 - the value being stored is the original value of an argument register;
1411 - the value has not already been stored somewhere in STACK; and
1412 - LOC is a stack slot (e.g., a memory location whose address is
1413 relative to the original value of the SP). */
1414
1415 static int
1416 m32c_is_arg_spill (struct m32c_pv_state *st,
1417 struct srcdest loc,
1418 pv_t value)
1419 {
1420 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1421
1422 return (m32c_is_arg_reg (st, value)
1423 && loc.kind == srcdest_mem
1424 && pv_is_register (loc.addr, tdep->sp->num)
1425 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1426 }
1427
1428 /* Return non-zero if a store of VALUE to LOC is probably
1429 copying the struct return address into an address register
1430 for immediate use. This is basically a "spill" into the
1431 address register, instead of onto the stack.
1432
1433 The prerequisites are:
1434 - value being stored is original value of the FIRST arg register;
1435 - value has not already been stored on stack; and
1436 - LOC is an address register (a0 or a1). */
1437
1438 static int
1439 m32c_is_struct_return (struct m32c_pv_state *st,
1440 struct srcdest loc,
1441 pv_t value)
1442 {
1443 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1444
1445 return (m32c_is_1st_arg_reg (st, value)
1446 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1447 && loc.kind == srcdest_reg
1448 && (pv_is_register (*loc.reg, tdep->a0->num)
1449 || pv_is_register (*loc.reg, tdep->a1->num)));
1450 }
1451
1452 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1453 was a register save:
1454 - all the named registers should have their original values, and
1455 - the stack pointer should be at a constant offset from the
1456 original stack pointer. */
1457 static int
1458 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1459 {
1460 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1461 /* The bits in SRC indicating which registers to save are:
1462 r0 r1 r2 r3 a0 a1 sb fb */
1463 return
1464 (pv_is_register (st->sp, tdep->sp->num)
1465 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1466 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1467 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1468 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1469 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1470 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1471 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1472 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1473 }
1474
1475
1476 /* Function for finding saved registers in a 'struct pv_area'; we pass
1477 this to pv_area_scan.
1478
1479 If VALUE is a saved register, ADDR says it was saved at a constant
1480 offset from the frame base, and SIZE indicates that the whole
1481 register was saved, record its offset in RESULT_UNTYPED. */
1482 static void
1483 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1484 {
1485 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1486 struct gdbarch *arch = prologue->arch;
1487 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1488
1489 /* Is this the unchanged value of some register being saved on the
1490 stack? */
1491 if (value.kind == pvk_register
1492 && value.k == 0
1493 && pv_is_register (addr, tdep->sp->num))
1494 {
1495 /* Some registers require special handling: they're saved as a
1496 larger value than the register itself. */
1497 CORE_ADDR saved_size = register_size (arch, value.reg);
1498
1499 if (value.reg == tdep->pc->num)
1500 saved_size = tdep->ret_addr_bytes;
1501 else if (register_type (arch, value.reg)
1502 == tdep->data_addr_reg_type)
1503 saved_size = tdep->push_addr_bytes;
1504
1505 if (size == saved_size)
1506 {
1507 /* Find which end of the saved value corresponds to our
1508 register. */
1509 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1510 prologue->reg_offset[value.reg]
1511 = (addr.k + saved_size - register_size (arch, value.reg));
1512 else
1513 prologue->reg_offset[value.reg] = addr.k;
1514 }
1515 }
1516 }
1517
1518
1519 /* Analyze the function prologue for ARCH at START, going no further
1520 than LIMIT, and place a description of what we found in
1521 PROLOGUE. */
1522 static void
1523 m32c_analyze_prologue (struct gdbarch *arch,
1524 CORE_ADDR start, CORE_ADDR limit,
1525 struct m32c_prologue *prologue)
1526 {
1527 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1528 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1529 CORE_ADDR after_last_frame_related_insn;
1530 struct cleanup *back_to;
1531 struct m32c_pv_state st;
1532
1533 st.arch = arch;
1534 st.r0 = pv_register (tdep->r0->num, 0);
1535 st.r1 = pv_register (tdep->r1->num, 0);
1536 st.r2 = pv_register (tdep->r2->num, 0);
1537 st.r3 = pv_register (tdep->r3->num, 0);
1538 st.a0 = pv_register (tdep->a0->num, 0);
1539 st.a1 = pv_register (tdep->a1->num, 0);
1540 st.sb = pv_register (tdep->sb->num, 0);
1541 st.fb = pv_register (tdep->fb->num, 0);
1542 st.sp = pv_register (tdep->sp->num, 0);
1543 st.pc = pv_register (tdep->pc->num, 0);
1544 st.stack = make_pv_area (tdep->sp->num);
1545 back_to = make_cleanup_free_pv_area (st.stack);
1546
1547 /* Record that the call instruction has saved the return address on
1548 the stack. */
1549 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1550
1551 memset (prologue, 0, sizeof (*prologue));
1552 prologue->arch = arch;
1553 {
1554 int i;
1555 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1556 prologue->reg_offset[i] = 1;
1557 }
1558
1559 st.scan_pc = after_last_frame_related_insn = start;
1560
1561 while (st.scan_pc < limit)
1562 {
1563 pv_t pre_insn_fb = st.fb;
1564 pv_t pre_insn_sp = st.sp;
1565
1566 /* In theory we could get in trouble by trying to read ahead
1567 here, when we only know we're expecting one byte. In
1568 practice I doubt anyone will care, and it makes the rest of
1569 the code easier. */
1570 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1571 /* If we can't fetch the instruction from memory, stop here
1572 and hope for the best. */
1573 break;
1574 st.next_addr = st.scan_pc;
1575
1576 /* The assembly instructions are written as they appear in the
1577 section of the processor manuals that describe the
1578 instruction encodings.
1579
1580 When a single assembly language instruction has several
1581 different machine-language encodings, the manual
1582 distinguishes them by a number in parens, before the
1583 mnemonic. Those numbers are included, as well.
1584
1585 The srcdest decoding instructions have the same names as the
1586 analogous functions in the simulator. */
1587 if (mach == bfd_mach_m16c)
1588 {
1589 /* (1) ENTER #imm8 */
1590 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1591 {
1592 if (m32c_pv_enter (&st, st.insn[2]))
1593 break;
1594 st.next_addr += 3;
1595 }
1596 /* (1) PUSHM src */
1597 else if (st.insn[0] == 0xec)
1598 {
1599 int src = st.insn[1];
1600 if (m32c_pv_pushm (&st, src))
1601 break;
1602 st.next_addr += 2;
1603
1604 if (m32c_pushm_is_reg_save (&st, src))
1605 after_last_frame_related_insn = st.next_addr;
1606 }
1607
1608 /* (6) MOV.size:G src, dest */
1609 else if ((st.insn[0] & 0xfe) == 0x72)
1610 {
1611 int size = (st.insn[0] & 0x01) ? 2 : 1;
1612 struct srcdest src;
1613 struct srcdest dest;
1614 pv_t src_value;
1615 st.next_addr += 2;
1616
1617 src
1618 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1619 dest
1620 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1621 src_value = m32c_srcdest_fetch (&st, src, size);
1622
1623 if (m32c_is_arg_spill (&st, dest, src_value))
1624 after_last_frame_related_insn = st.next_addr;
1625 else if (m32c_is_struct_return (&st, dest, src_value))
1626 after_last_frame_related_insn = st.next_addr;
1627
1628 if (m32c_srcdest_store (&st, dest, src_value, size))
1629 break;
1630 }
1631
1632 /* (1) LDC #IMM16, sp */
1633 else if (st.insn[0] == 0xeb
1634 && st.insn[1] == 0x50)
1635 {
1636 st.next_addr += 2;
1637 st.sp = pv_constant (m32c_udisp16 (&st));
1638 }
1639
1640 else
1641 /* We've hit some instruction we don't know how to simulate.
1642 Strictly speaking, we should set every value we're
1643 tracking to "unknown". But we'll be optimistic, assume
1644 that we have enough information already, and stop
1645 analysis here. */
1646 break;
1647 }
1648 else
1649 {
1650 int src_indirect = 0;
1651 int dest_indirect = 0;
1652 int i = 0;
1653
1654 gdb_assert (mach == bfd_mach_m32c);
1655
1656 /* Check for prefix bytes indicating indirect addressing. */
1657 if (st.insn[0] == 0x41)
1658 {
1659 src_indirect = 1;
1660 i++;
1661 }
1662 else if (st.insn[0] == 0x09)
1663 {
1664 dest_indirect = 1;
1665 i++;
1666 }
1667 else if (st.insn[0] == 0x49)
1668 {
1669 src_indirect = dest_indirect = 1;
1670 i++;
1671 }
1672
1673 /* (1) ENTER #imm8 */
1674 if (st.insn[i] == 0xec)
1675 {
1676 if (m32c_pv_enter (&st, st.insn[i + 1]))
1677 break;
1678 st.next_addr += 2;
1679 }
1680
1681 /* (1) PUSHM src */
1682 else if (st.insn[i] == 0x8f)
1683 {
1684 int src = st.insn[i + 1];
1685 if (m32c_pv_pushm (&st, src))
1686 break;
1687 st.next_addr += 2;
1688
1689 if (m32c_pushm_is_reg_save (&st, src))
1690 after_last_frame_related_insn = st.next_addr;
1691 }
1692
1693 /* (7) MOV.size:G src, dest */
1694 else if ((st.insn[i] & 0x80) == 0x80
1695 && (st.insn[i + 1] & 0x0f) == 0x0b
1696 && m32c_get_src23 (&st.insn[i]) < 20
1697 && m32c_get_dest23 (&st.insn[i]) < 20)
1698 {
1699 struct srcdest src;
1700 struct srcdest dest;
1701 pv_t src_value;
1702 int bw = st.insn[i] & 0x01;
1703 int size = bw ? 2 : 1;
1704 st.next_addr += 2;
1705
1706 src
1707 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1708 size, src_indirect);
1709 dest
1710 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1711 size, dest_indirect);
1712 src_value = m32c_srcdest_fetch (&st, src, size);
1713
1714 if (m32c_is_arg_spill (&st, dest, src_value))
1715 after_last_frame_related_insn = st.next_addr;
1716
1717 if (m32c_srcdest_store (&st, dest, src_value, size))
1718 break;
1719 }
1720 /* (2) LDC #IMM24, sp */
1721 else if (st.insn[i] == 0xd5
1722 && st.insn[i + 1] == 0x29)
1723 {
1724 st.next_addr += 2;
1725 st.sp = pv_constant (m32c_udisp24 (&st));
1726 }
1727 else
1728 /* We've hit some instruction we don't know how to simulate.
1729 Strictly speaking, we should set every value we're
1730 tracking to "unknown". But we'll be optimistic, assume
1731 that we have enough information already, and stop
1732 analysis here. */
1733 break;
1734 }
1735
1736 /* If this instruction changed the FB or decreased the SP (i.e.,
1737 allocated more stack space), then this may be a good place to
1738 declare the prologue finished. However, there are some
1739 exceptions:
1740
1741 - If the instruction just changed the FB back to its original
1742 value, then that's probably a restore instruction. The
1743 prologue should definitely end before that.
1744
1745 - If the instruction increased the value of the SP (that is,
1746 shrunk the frame), then it's probably part of a frame
1747 teardown sequence, and the prologue should end before
1748 that. */
1749
1750 if (! pv_is_identical (st.fb, pre_insn_fb))
1751 {
1752 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1753 after_last_frame_related_insn = st.next_addr;
1754 }
1755 else if (! pv_is_identical (st.sp, pre_insn_sp))
1756 {
1757 /* The comparison of the constants looks odd, there, because
1758 .k is unsigned. All it really means is that the SP is
1759 lower than it was before the instruction. */
1760 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1761 && pv_is_register (st.sp, tdep->sp->num)
1762 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1763 after_last_frame_related_insn = st.next_addr;
1764 }
1765
1766 st.scan_pc = st.next_addr;
1767 }
1768
1769 /* Did we load a constant value into the stack pointer? */
1770 if (pv_is_constant (st.sp))
1771 prologue->kind = prologue_first_frame;
1772
1773 /* Alternatively, did we initialize the frame pointer? Remember
1774 that the CFA is the address after the return address. */
1775 if (pv_is_register (st.fb, tdep->sp->num))
1776 {
1777 prologue->kind = prologue_with_frame_ptr;
1778 prologue->frame_ptr_offset = st.fb.k;
1779 }
1780
1781 /* Is the frame size a known constant? Remember that frame_size is
1782 actually the offset from the CFA to the SP (i.e., a negative
1783 value). */
1784 else if (pv_is_register (st.sp, tdep->sp->num))
1785 {
1786 prologue->kind = prologue_sans_frame_ptr;
1787 prologue->frame_size = st.sp.k;
1788 }
1789
1790 /* We haven't been able to make sense of this function's frame. Treat
1791 it as the first frame. */
1792 else
1793 prologue->kind = prologue_first_frame;
1794
1795 /* Record where all the registers were saved. */
1796 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1797
1798 prologue->prologue_end = after_last_frame_related_insn;
1799
1800 do_cleanups (back_to);
1801 }
1802
1803
1804 static CORE_ADDR
1805 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1806 {
1807 char *name;
1808 CORE_ADDR func_addr, func_end, sal_end;
1809 struct m32c_prologue p;
1810
1811 /* Try to find the extent of the function that contains IP. */
1812 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1813 return ip;
1814
1815 /* Find end by prologue analysis. */
1816 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1817 /* Find end by line info. */
1818 sal_end = skip_prologue_using_sal (ip);
1819 /* Return whichever is lower. */
1820 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1821 return sal_end;
1822 else
1823 return p.prologue_end;
1824 }
1825
1826
1827 \f
1828 /* Stack unwinding. */
1829
1830 static struct m32c_prologue *
1831 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1832 void **this_prologue_cache)
1833 {
1834 if (! *this_prologue_cache)
1835 {
1836 CORE_ADDR func_start = get_frame_func (this_frame);
1837 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1838
1839 /* If we couldn't find any function containing the PC, then
1840 just initialize the prologue cache, but don't do anything. */
1841 if (! func_start)
1842 stop_addr = func_start;
1843
1844 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1845 m32c_analyze_prologue (get_frame_arch (this_frame),
1846 func_start, stop_addr, *this_prologue_cache);
1847 }
1848
1849 return *this_prologue_cache;
1850 }
1851
1852
1853 static CORE_ADDR
1854 m32c_frame_base (struct frame_info *this_frame,
1855 void **this_prologue_cache)
1856 {
1857 struct m32c_prologue *p
1858 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1859 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1860
1861 /* In functions that use alloca, the distance between the stack
1862 pointer and the frame base varies dynamically, so we can't use
1863 the SP plus static information like prologue analysis to find the
1864 frame base. However, such functions must have a frame pointer,
1865 to be able to restore the SP on exit. So whenever we do have a
1866 frame pointer, use that to find the base. */
1867 switch (p->kind)
1868 {
1869 case prologue_with_frame_ptr:
1870 {
1871 CORE_ADDR fb
1872 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1873 return fb - p->frame_ptr_offset;
1874 }
1875
1876 case prologue_sans_frame_ptr:
1877 {
1878 CORE_ADDR sp
1879 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1880 return sp - p->frame_size;
1881 }
1882
1883 case prologue_first_frame:
1884 return 0;
1885
1886 default:
1887 gdb_assert (0);
1888 }
1889 }
1890
1891
1892 static void
1893 m32c_this_id (struct frame_info *this_frame,
1894 void **this_prologue_cache,
1895 struct frame_id *this_id)
1896 {
1897 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1898
1899 if (base)
1900 *this_id = frame_id_build (base, get_frame_func (this_frame));
1901 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1902 }
1903
1904
1905 static struct value *
1906 m32c_prev_register (struct frame_info *this_frame,
1907 void **this_prologue_cache, int regnum)
1908 {
1909 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1910 struct m32c_prologue *p
1911 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1912 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1913 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1914
1915 if (regnum == tdep->sp->num)
1916 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1917
1918 /* If prologue analysis says we saved this register somewhere,
1919 return a description of the stack slot holding it. */
1920 if (p->reg_offset[regnum] != 1)
1921 return frame_unwind_got_memory (this_frame, regnum,
1922 frame_base + p->reg_offset[regnum]);
1923
1924 /* Otherwise, presume we haven't changed the value of this
1925 register, and get it from the next frame. */
1926 return frame_unwind_got_register (this_frame, regnum, regnum);
1927 }
1928
1929
1930 static const struct frame_unwind m32c_unwind = {
1931 NORMAL_FRAME,
1932 m32c_this_id,
1933 m32c_prev_register,
1934 NULL,
1935 default_frame_sniffer
1936 };
1937
1938
1939 static CORE_ADDR
1940 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1941 {
1942 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1943 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1944 }
1945
1946
1947 static CORE_ADDR
1948 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1949 {
1950 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1951 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1952 }
1953
1954 \f
1955 /* Inferior calls. */
1956
1957 /* The calling conventions, according to GCC:
1958
1959 r8c, m16c
1960 ---------
1961 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1962 HImode), (2) is named, and (3) is an integer or pointer type (no
1963 structs, floats, etc). Otherwise, it's passed on the stack.
1964
1965 Second arg may be passed in r2, same restrictions (but not QImode),
1966 even if the first arg is passed on the stack.
1967
1968 Third and further args are passed on the stack. No padding is
1969 used, stack "alignment" is 8 bits.
1970
1971 m32cm, m32c
1972 -----------
1973
1974 First arg may be passed in r0l or r0, same restrictions as above.
1975
1976 Second and further args are passed on the stack. Padding is used
1977 after QImode parameters (i.e. lower-addressed byte is the value,
1978 higher-addressed byte is the padding), stack "alignment" is 16
1979 bits. */
1980
1981
1982 /* Return true if TYPE is a type that can be passed in registers. (We
1983 ignore the size, and pay attention only to the type code;
1984 acceptable sizes depends on which register is being considered to
1985 hold it.) */
1986 static int
1987 m32c_reg_arg_type (struct type *type)
1988 {
1989 enum type_code code = TYPE_CODE (type);
1990
1991 return (code == TYPE_CODE_INT
1992 || code == TYPE_CODE_ENUM
1993 || code == TYPE_CODE_PTR
1994 || code == TYPE_CODE_REF
1995 || code == TYPE_CODE_BOOL
1996 || code == TYPE_CODE_CHAR);
1997 }
1998
1999
2000 static CORE_ADDR
2001 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2002 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2003 struct value **args, CORE_ADDR sp, int struct_return,
2004 CORE_ADDR struct_addr)
2005 {
2006 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2007 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2008 CORE_ADDR cfa;
2009 int i;
2010
2011 /* The number of arguments given in this function's prototype, or
2012 zero if it has a non-prototyped function type. The m32c ABI
2013 passes arguments mentioned in the prototype differently from
2014 those in the ellipsis of a varargs function, or from those passed
2015 to a non-prototyped function. */
2016 int num_prototyped_args = 0;
2017
2018 {
2019 struct type *func_type = value_type (function);
2020
2021 /* Dereference function pointer types. */
2022 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2023 func_type = TYPE_TARGET_TYPE (func_type);
2024
2025 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2026 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2027
2028 #if 0
2029 /* The ABI description in gcc/config/m32c/m32c.abi says that
2030 we need to handle prototyped and non-prototyped functions
2031 separately, but the code in GCC doesn't actually do so. */
2032 if (TYPE_PROTOTYPED (func_type))
2033 #endif
2034 num_prototyped_args = TYPE_NFIELDS (func_type);
2035 }
2036
2037 /* First, if the function returns an aggregate by value, push a
2038 pointer to a buffer for it. This doesn't affect the way
2039 subsequent arguments are allocated to registers. */
2040 if (struct_return)
2041 {
2042 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2043 sp -= ptr_len;
2044 write_memory_unsigned_integer (sp, ptr_len, struct_addr);
2045 }
2046
2047 /* Push the arguments. */
2048 for (i = nargs - 1; i >= 0; i--)
2049 {
2050 struct value *arg = args[i];
2051 const gdb_byte *arg_bits = value_contents (arg);
2052 struct type *arg_type = value_type (arg);
2053 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2054
2055 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2056 if (i == 0
2057 && arg_size <= 2
2058 && i < num_prototyped_args
2059 && m32c_reg_arg_type (arg_type))
2060 {
2061 /* Extract and re-store as an integer as a terse way to make
2062 sure it ends up in the least significant end of r1. (GDB
2063 should avoid assuming endianness, even on uni-endian
2064 processors.) */
2065 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size);
2066 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2067 regcache_cooked_write_unsigned (regcache, reg->num, u);
2068 }
2069
2070 /* Can it go in r2? */
2071 else if (mach == bfd_mach_m16c
2072 && i == 1
2073 && arg_size == 2
2074 && i < num_prototyped_args
2075 && m32c_reg_arg_type (arg_type))
2076 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2077
2078 /* Everything else goes on the stack. */
2079 else
2080 {
2081 sp -= arg_size;
2082
2083 /* Align the stack. */
2084 if (mach == bfd_mach_m32c)
2085 sp &= ~1;
2086
2087 write_memory (sp, arg_bits, arg_size);
2088 }
2089 }
2090
2091 /* This is the CFA we use to identify the dummy frame. */
2092 cfa = sp;
2093
2094 /* Push the return address. */
2095 sp -= tdep->ret_addr_bytes;
2096 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr);
2097
2098 /* Update the stack pointer. */
2099 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2100
2101 /* We need to borrow an odd trick from the i386 target here.
2102
2103 The value we return from this function gets used as the stack
2104 address (the CFA) for the dummy frame's ID. The obvious thing is
2105 to return the new TOS. However, that points at the return
2106 address, saved on the stack, which is inconsistent with the CFA's
2107 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2108 .debug_frame info uses the address immediately after the saved
2109 return address. So you end up with a dummy frame whose CFA
2110 points at the return address, but the frame for the function
2111 being called has a CFA pointing after the return address: the
2112 younger CFA is *greater than* the older CFA. The sanity checks
2113 in frame.c don't like that.
2114
2115 So we try to be consistent with the CFA's used by DWARF 2.
2116 Having a dummy frame and a real frame with the *same* CFA is
2117 tolerable. */
2118 return cfa;
2119 }
2120
2121
2122 static struct frame_id
2123 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2124 {
2125 /* This needs to return a frame ID whose PC is the return address
2126 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2127 m32c_push_dummy_call returned.
2128
2129 m32c_unwind_sp gives us the CFA, which is the value the SP had
2130 before the return address was pushed. */
2131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2132 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2133 return frame_id_build (sp, get_frame_pc (this_frame));
2134 }
2135
2136
2137 \f
2138 /* Return values. */
2139
2140 /* Return value conventions, according to GCC:
2141
2142 r8c, m16c
2143 ---------
2144
2145 QImode in r0l
2146 HImode in r0
2147 SImode in r2r0
2148 near pointer in r0
2149 far pointer in r2r0
2150
2151 Aggregate values (regardless of size) are returned by pushing a
2152 pointer to a temporary area on the stack after the args are pushed.
2153 The function fills in this area with the value. Note that this
2154 pointer on the stack does not affect how register arguments, if any,
2155 are configured.
2156
2157 m32cm, m32c
2158 -----------
2159 Same. */
2160
2161 /* Return non-zero if values of type TYPE are returned by storing them
2162 in a buffer whose address is passed on the stack, ahead of the
2163 other arguments. */
2164 static int
2165 m32c_return_by_passed_buf (struct type *type)
2166 {
2167 enum type_code code = TYPE_CODE (type);
2168
2169 return (code == TYPE_CODE_STRUCT
2170 || code == TYPE_CODE_UNION);
2171 }
2172
2173 static enum return_value_convention
2174 m32c_return_value (struct gdbarch *gdbarch,
2175 struct type *func_type,
2176 struct type *valtype,
2177 struct regcache *regcache,
2178 gdb_byte *readbuf,
2179 const gdb_byte *writebuf)
2180 {
2181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2182 enum return_value_convention conv;
2183 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2184
2185 if (m32c_return_by_passed_buf (valtype))
2186 conv = RETURN_VALUE_STRUCT_CONVENTION;
2187 else
2188 conv = RETURN_VALUE_REGISTER_CONVENTION;
2189
2190 if (readbuf)
2191 {
2192 /* We should never be called to find values being returned by
2193 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2194 unless we made the call ourselves. */
2195 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2196
2197 gdb_assert (valtype_len <= 8);
2198
2199 /* Anything that fits in r0 is returned there. */
2200 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2201 {
2202 ULONGEST u;
2203 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2204 store_unsigned_integer (readbuf, valtype_len, u);
2205 }
2206 else
2207 {
2208 /* Everything else is passed in mem0, using as many bytes as
2209 needed. This is not what the Renesas tools do, but it's
2210 what GCC does at the moment. */
2211 struct minimal_symbol *mem0
2212 = lookup_minimal_symbol ("mem0", NULL, NULL);
2213
2214 if (! mem0)
2215 error ("The return value is stored in memory at 'mem0', "
2216 "but GDB cannot find\n"
2217 "its address.");
2218 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2219 }
2220 }
2221
2222 if (writebuf)
2223 {
2224 /* We should never be called to store values to be returned
2225 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2226 finding the buffer, unless we made the call ourselves. */
2227 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2228
2229 gdb_assert (valtype_len <= 8);
2230
2231 /* Anything that fits in r0 is returned there. */
2232 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2233 {
2234 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len);
2235 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2236 }
2237 else
2238 {
2239 /* Everything else is passed in mem0, using as many bytes as
2240 needed. This is not what the Renesas tools do, but it's
2241 what GCC does at the moment. */
2242 struct minimal_symbol *mem0
2243 = lookup_minimal_symbol ("mem0", NULL, NULL);
2244
2245 if (! mem0)
2246 error ("The return value is stored in memory at 'mem0', "
2247 "but GDB cannot find\n"
2248 " its address.");
2249 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2250 (char *) writebuf, valtype_len);
2251 }
2252 }
2253
2254 return conv;
2255 }
2256
2257
2258 \f
2259 /* Trampolines. */
2260
2261 /* The m16c and m32c use a trampoline function for indirect function
2262 calls. An indirect call looks like this:
2263
2264 ... push arguments ...
2265 ... push target function address ...
2266 jsr.a m32c_jsri16
2267
2268 The code for m32c_jsri16 looks like this:
2269
2270 m32c_jsri16:
2271
2272 # Save return address.
2273 pop.w m32c_jsri_ret
2274 pop.b m32c_jsri_ret+2
2275
2276 # Store target function address.
2277 pop.w m32c_jsri_addr
2278
2279 # Re-push return address.
2280 push.b m32c_jsri_ret+2
2281 push.w m32c_jsri_ret
2282
2283 # Call the target function.
2284 jmpi.a m32c_jsri_addr
2285
2286 Without further information, GDB will treat calls to m32c_jsri16
2287 like calls to any other function. Since m32c_jsri16 doesn't have
2288 debugging information, that normally means that GDB sets a step-
2289 resume breakpoint and lets the program continue --- which is not
2290 what the user wanted. (Giving the trampoline debugging info
2291 doesn't help: the user expects the program to stop in the function
2292 their program is calling, not in some trampoline code they've never
2293 seen before.)
2294
2295 The gdbarch_skip_trampoline_code method tells GDB how to step
2296 through such trampoline functions transparently to the user. When
2297 given the address of a trampoline function's first instruction,
2298 gdbarch_skip_trampoline_code should return the address of the first
2299 instruction of the function really being called. If GDB decides it
2300 wants to step into that function, it will set a breakpoint there
2301 and silently continue to it.
2302
2303 We recognize the trampoline by name, and extract the target address
2304 directly from the stack. This isn't great, but recognizing by its
2305 code sequence seems more fragile. */
2306
2307 static CORE_ADDR
2308 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2309 {
2310 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2311
2312 /* It would be nicer to simply look up the addresses of known
2313 trampolines once, and then compare stop_pc with them. However,
2314 we'd need to ensure that that cached address got invalidated when
2315 someone loaded a new executable, and I'm not quite sure of the
2316 best way to do that. find_pc_partial_function does do some
2317 caching, so we'll see how this goes. */
2318 char *name;
2319 CORE_ADDR start, end;
2320
2321 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2322 {
2323 /* Are we stopped at the beginning of the trampoline function? */
2324 if (strcmp (name, "m32c_jsri16") == 0
2325 && stop_pc == start)
2326 {
2327 /* Get the stack pointer. The return address is at the top,
2328 and the target function's address is just below that. We
2329 know it's a two-byte address, since the trampoline is
2330 m32c_jsri*16*. */
2331 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2332 CORE_ADDR target
2333 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2);
2334
2335 /* What we have now is the address of a jump instruction.
2336 What we need is the destination of that jump.
2337 The opcode is 1 byte, and the destination is the next 3 bytes.
2338 */
2339 target = read_memory_unsigned_integer (target + 1, 3);
2340 return target;
2341 }
2342 }
2343
2344 return 0;
2345 }
2346
2347
2348 /* Address/pointer conversions. */
2349
2350 /* On the m16c, there is a 24-bit address space, but only a very few
2351 instructions can generate addresses larger than 0xffff: jumps,
2352 jumps to subroutines, and the lde/std (load/store extended)
2353 instructions.
2354
2355 Since GCC can only support one size of pointer, we can't have
2356 distinct 'near' and 'far' pointer types; we have to pick one size
2357 for everything. If we wanted to use 24-bit pointers, then GCC
2358 would have to use lde and ste for all memory references, which
2359 would be terrible for performance and code size. So the GNU
2360 toolchain uses 16-bit pointers for everything, and gives up the
2361 ability to have pointers point outside the first 64k of memory.
2362
2363 However, as a special hack, we let the linker place functions at
2364 addresses above 0xffff, as long as it also places a trampoline in
2365 the low 64k for every function whose address is taken. Each
2366 trampoline consists of a single jmp.a instruction that jumps to the
2367 function's real entry point. Pointers to functions can be 16 bits
2368 long, even though the functions themselves are at higher addresses:
2369 the pointers refer to the trampolines, not the functions.
2370
2371 This complicates things for GDB, however: given the address of a
2372 function (from debug info or linker symbols, say) which could be
2373 anywhere in the 24-bit address space, how can we find an
2374 appropriate 16-bit value to use as a pointer to it?
2375
2376 If the linker has not generated a trampoline for the function,
2377 we're out of luck. Well, I guess we could malloc some space and
2378 write a jmp.a instruction to it, but I'm not going to get into that
2379 at the moment.
2380
2381 If the linker has generated a trampoline for the function, then it
2382 also emitted a symbol for the trampoline: if the function's linker
2383 symbol is named NAME, then the function's trampoline's linker
2384 symbol is named NAME.plt.
2385
2386 So, given a code address:
2387 - We try to find a linker symbol at that address.
2388 - If we find such a symbol named NAME, we look for a linker symbol
2389 named NAME.plt.
2390 - If we find such a symbol, we assume it is a trampoline, and use
2391 its address as the pointer value.
2392
2393 And, given a function pointer:
2394 - We try to find a linker symbol at that address named NAME.plt.
2395 - If we find such a symbol, we look for a linker symbol named NAME.
2396 - If we find that, we provide that as the function's address.
2397 - If any of the above steps fail, we return the original address
2398 unchanged; it might really be a function in the low 64k.
2399
2400 See? You *knew* there was a reason you wanted to be a computer
2401 programmer! :) */
2402
2403 static void
2404 m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
2405 {
2406 enum type_code target_code;
2407 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2408 TYPE_CODE (type) == TYPE_CODE_REF);
2409
2410 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2411
2412 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2413 {
2414 char *func_name;
2415 char *tramp_name;
2416 struct minimal_symbol *tramp_msym;
2417
2418 /* Try to find a linker symbol at this address. */
2419 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2420
2421 if (! func_msym)
2422 error ("Cannot convert code address %s to function pointer:\n"
2423 "couldn't find a symbol at that address, to find trampoline.",
2424 paddr_nz (addr));
2425
2426 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2427 tramp_name = xmalloc (strlen (func_name) + 5);
2428 strcpy (tramp_name, func_name);
2429 strcat (tramp_name, ".plt");
2430
2431 /* Try to find a linker symbol for the trampoline. */
2432 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2433
2434 /* We've either got another copy of the name now, or don't need
2435 the name any more. */
2436 xfree (tramp_name);
2437
2438 if (! tramp_msym)
2439 error ("Cannot convert code address %s to function pointer:\n"
2440 "couldn't find trampoline named '%s.plt'.",
2441 paddr_nz (addr), func_name);
2442
2443 /* The trampoline's address is our pointer. */
2444 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2445 }
2446
2447 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
2448 }
2449
2450
2451 static CORE_ADDR
2452 m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf)
2453 {
2454 CORE_ADDR ptr;
2455 enum type_code target_code;
2456
2457 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2458 TYPE_CODE (type) == TYPE_CODE_REF);
2459
2460 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
2461
2462 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2463
2464 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2465 {
2466 /* See if there is a minimal symbol at that address whose name is
2467 "NAME.plt". */
2468 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2469
2470 if (ptr_msym)
2471 {
2472 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2473 int len = strlen (ptr_msym_name);
2474
2475 if (len > 4
2476 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2477 {
2478 struct minimal_symbol *func_msym;
2479 /* We have a .plt symbol; try to find the symbol for the
2480 corresponding function.
2481
2482 Since the trampoline contains a jump instruction, we
2483 could also just extract the jump's target address. I
2484 don't see much advantage one way or the other. */
2485 char *func_name = xmalloc (len - 4 + 1);
2486 memcpy (func_name, ptr_msym_name, len - 4);
2487 func_name[len - 4] = '\0';
2488 func_msym
2489 = lookup_minimal_symbol (func_name, NULL, NULL);
2490
2491 /* If we do have such a symbol, return its value as the
2492 function's true address. */
2493 if (func_msym)
2494 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2495 }
2496 }
2497 }
2498
2499 return ptr;
2500 }
2501
2502 static void
2503 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2504 int *frame_regnum,
2505 LONGEST *frame_offset)
2506 {
2507 char *name;
2508 CORE_ADDR func_addr, func_end, sal_end;
2509 struct m32c_prologue p;
2510
2511 struct regcache *regcache = get_current_regcache ();
2512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2513
2514 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2515 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2516
2517 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2518 switch (p.kind)
2519 {
2520 case prologue_with_frame_ptr:
2521 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2522 *frame_offset = p.frame_ptr_offset;
2523 break;
2524 case prologue_sans_frame_ptr:
2525 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2526 *frame_offset = p.frame_size;
2527 break;
2528 default:
2529 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2530 *frame_offset = 0;
2531 break;
2532 }
2533 /* Sanity check */
2534 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2535 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2536 }
2537
2538 \f
2539 /* Initialization. */
2540
2541 static struct gdbarch *
2542 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2543 {
2544 struct gdbarch *arch;
2545 struct gdbarch_tdep *tdep;
2546 unsigned long mach = info.bfd_arch_info->mach;
2547
2548 /* Find a candidate among the list of architectures we've created
2549 already. */
2550 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2551 arches != NULL;
2552 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2553 return arches->gdbarch;
2554
2555 tdep = xcalloc (1, sizeof (*tdep));
2556 arch = gdbarch_alloc (&info, tdep);
2557
2558 /* Essential types. */
2559 make_types (arch);
2560
2561 /* Address/pointer conversions. */
2562 if (mach == bfd_mach_m16c)
2563 {
2564 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2565 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2566 }
2567
2568 /* Register set. */
2569 make_regs (arch);
2570
2571 /* Disassembly. */
2572 set_gdbarch_print_insn (arch, print_insn_m32c);
2573
2574 /* Breakpoints. */
2575 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2576
2577 /* Prologue analysis and unwinding. */
2578 set_gdbarch_inner_than (arch, core_addr_lessthan);
2579 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2580 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2581 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2582 #if 0
2583 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2584 They may be in the dwarf2 cfi code in GDB, or they may be in
2585 the debug info emitted by the upstream toolchain. I don't
2586 know which, but I do know that the prologue analyzer works better.
2587 MVS 04/13/06
2588 */
2589 dwarf2_append_sniffers (arch);
2590 #endif
2591 frame_unwind_append_unwinder (arch, &m32c_unwind);
2592
2593 /* Inferior calls. */
2594 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2595 set_gdbarch_return_value (arch, m32c_return_value);
2596 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2597
2598 /* Trampolines. */
2599 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2600
2601 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2602
2603 /* m32c function boundary addresses are not necessarily even.
2604 Therefore, the `vbit', which indicates a pointer to a virtual
2605 member function, is stored in the delta field, rather than as
2606 the low bit of a function pointer address.
2607
2608 In order to verify this, see the definition of
2609 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2610 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2611 set_gdbarch_vbit_in_delta (arch, 1);
2612
2613 return arch;
2614 }
2615
2616 /* Provide a prototype to silence -Wmissing-prototypes. */
2617 extern initialize_file_ftype _initialize_m32c_tdep;
2618
2619 void
2620 _initialize_m32c_tdep (void)
2621 {
2622 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2623
2624 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2625 }
This page took 0.087243 seconds and 4 git commands to generate.