Import alloca explicitly
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39
40 \f
41 /* The m32c tdep structure. */
42
43 static struct reggroup *m32c_dma_reggroup;
44
45 struct m32c_reg;
46
47 /* The type of a function that moves the value of REG between CACHE or
48 BUF --- in either direction. */
49 typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
50 struct regcache *cache,
51 void *buf);
52
53 struct m32c_reg
54 {
55 /* The name of this register. */
56 const char *name;
57
58 /* Its type. */
59 struct type *type;
60
61 /* The architecture this register belongs to. */
62 struct gdbarch *arch;
63
64 /* Its GDB register number. */
65 int num;
66
67 /* Its sim register number. */
68 int sim_num;
69
70 /* Its DWARF register number, or -1 if it doesn't have one. */
71 int dwarf_num;
72
73 /* Register group memberships. */
74 unsigned int general_p : 1;
75 unsigned int dma_p : 1;
76 unsigned int system_p : 1;
77 unsigned int save_restore_p : 1;
78
79 /* Functions to read its value from a regcache, and write its value
80 to a regcache. */
81 m32c_move_reg_t *read, *write;
82
83 /* Data for READ and WRITE functions. The exact meaning depends on
84 the specific functions selected; see the comments for those
85 functions. */
86 struct m32c_reg *rx, *ry;
87 int n;
88 };
89
90
91 /* An overestimate of the number of raw and pseudoregisters we will
92 have. The exact answer depends on the variant of the architecture
93 at hand, but we can use this to declare statically allocated
94 arrays, and bump it up when needed. */
95 #define M32C_MAX_NUM_REGS (75)
96
97 /* The largest assigned DWARF register number. */
98 #define M32C_MAX_DWARF_REGNUM (40)
99
100
101 struct gdbarch_tdep
102 {
103 /* All the registers for this variant, indexed by GDB register
104 number, and the number of registers present. */
105 struct m32c_reg regs[M32C_MAX_NUM_REGS];
106
107 /* The number of valid registers. */
108 int num_regs;
109
110 /* Interesting registers. These are pointers into REGS. */
111 struct m32c_reg *pc, *flg;
112 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
113 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
114 struct m32c_reg *sb, *fb, *sp;
115
116 /* A table indexed by DWARF register numbers, pointing into
117 REGS. */
118 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
119
120 /* Types for this architecture. We can't use the builtin_type_foo
121 types, because they're not initialized when building a gdbarch
122 structure. */
123 struct type *voyd, *ptr_voyd, *func_voyd;
124 struct type *uint8, *uint16;
125 struct type *int8, *int16, *int32, *int64;
126
127 /* The types for data address and code address registers. */
128 struct type *data_addr_reg_type, *code_addr_reg_type;
129
130 /* The number of bytes a return address pushed by a 'jsr' instruction
131 occupies on the stack. */
132 int ret_addr_bytes;
133
134 /* The number of bytes an address register occupies on the stack
135 when saved by an 'enter' or 'pushm' instruction. */
136 int push_addr_bytes;
137 };
138
139 \f
140 /* Types. */
141
142 static void
143 make_types (struct gdbarch *arch)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
146 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
147 int data_addr_reg_bits, code_addr_reg_bits;
148 char type_name[50];
149
150 #if 0
151 /* This is used to clip CORE_ADDR values, so this value is
152 appropriate both on the m32c, where pointers are 32 bits long,
153 and on the m16c, where pointers are sixteen bits long, but there
154 may be code above the 64k boundary. */
155 set_gdbarch_addr_bit (arch, 24);
156 #else
157 /* GCC uses 32 bits for addrs in the dwarf info, even though
158 only 16/24 bits are used. Setting addr_bit to 24 causes
159 errors in reading the dwarf addresses. */
160 set_gdbarch_addr_bit (arch, 32);
161 #endif
162
163 set_gdbarch_int_bit (arch, 16);
164 switch (mach)
165 {
166 case bfd_mach_m16c:
167 data_addr_reg_bits = 16;
168 code_addr_reg_bits = 24;
169 set_gdbarch_ptr_bit (arch, 16);
170 tdep->ret_addr_bytes = 3;
171 tdep->push_addr_bytes = 2;
172 break;
173
174 case bfd_mach_m32c:
175 data_addr_reg_bits = 24;
176 code_addr_reg_bits = 24;
177 set_gdbarch_ptr_bit (arch, 32);
178 tdep->ret_addr_bytes = 4;
179 tdep->push_addr_bytes = 4;
180 break;
181
182 default:
183 gdb_assert_not_reached ("unexpected mach");
184 }
185
186 /* The builtin_type_mumble variables are sometimes uninitialized when
187 this is called, so we avoid using them. */
188 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
189 tdep->ptr_voyd
190 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
191 NULL);
192 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
193 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
194 tdep->func_voyd = lookup_function_type (tdep->voyd);
195
196 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
197 gdbarch_bfd_arch_info (arch)->printable_name);
198 tdep->data_addr_reg_type
199 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
200 xstrdup (type_name));
201 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
202 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
203
204 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
205 gdbarch_bfd_arch_info (arch)->printable_name);
206 tdep->code_addr_reg_type
207 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
208 xstrdup (type_name));
209 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
210 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
211
212 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
213 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
214 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
215 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
216 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
217 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
218 }
219
220
221 \f
222 /* Register set. */
223
224 static const char *
225 m32c_register_name (struct gdbarch *gdbarch, int num)
226 {
227 return gdbarch_tdep (gdbarch)->regs[num].name;
228 }
229
230
231 static struct type *
232 m32c_register_type (struct gdbarch *arch, int reg_nr)
233 {
234 return gdbarch_tdep (arch)->regs[reg_nr].type;
235 }
236
237
238 static int
239 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
240 {
241 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
242 }
243
244
245 static int
246 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
250 && tdep->dwarf_regs[reg_nr])
251 return tdep->dwarf_regs[reg_nr]->num;
252 else
253 /* The DWARF CFI code expects to see -1 for invalid register
254 numbers. */
255 return -1;
256 }
257
258
259 static int
260 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
261 struct reggroup *group)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264 struct m32c_reg *reg = &tdep->regs[regnum];
265
266 /* The anonymous raw registers aren't in any groups. */
267 if (! reg->name)
268 return 0;
269
270 if (group == all_reggroup)
271 return 1;
272
273 if (group == general_reggroup
274 && reg->general_p)
275 return 1;
276
277 if (group == m32c_dma_reggroup
278 && reg->dma_p)
279 return 1;
280
281 if (group == system_reggroup
282 && reg->system_p)
283 return 1;
284
285 /* Since the m32c DWARF register numbers refer to cooked registers, not
286 raw registers, and frame_pop depends on the save and restore groups
287 containing registers the DWARF CFI will actually mention, our save
288 and restore groups are cooked registers, not raw registers. (This is
289 why we can't use the default reggroup function.) */
290 if ((group == save_reggroup
291 || group == restore_reggroup)
292 && reg->save_restore_p)
293 return 1;
294
295 return 0;
296 }
297
298
299 /* Register move functions. We declare them here using
300 m32c_move_reg_t to check the types. */
301 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
302 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
303 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
304 static m32c_move_reg_t m32c_part_read, m32c_part_write;
305 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
306 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
307
308
309 /* Copy the value of the raw register REG from CACHE to BUF. */
310 static enum register_status
311 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
312 {
313 return regcache_raw_read (cache, reg->num, buf);
314 }
315
316
317 /* Copy the value of the raw register REG from BUF to CACHE. */
318 static enum register_status
319 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
320 {
321 regcache_raw_write (cache, reg->num, (const void *) buf);
322
323 return REG_VALID;
324 }
325
326
327 /* Return the value of the 'flg' register in CACHE. */
328 static int
329 m32c_read_flg (struct regcache *cache)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
332 ULONGEST flg;
333 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
334 return flg & 0xffff;
335 }
336
337
338 /* Evaluate the real register number of a banked register. */
339 static struct m32c_reg *
340 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
341 {
342 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
343 }
344
345
346 /* Move the value of a banked register from CACHE to BUF.
347 If the value of the 'flg' register in CACHE has any of the bits
348 masked in REG->n set, then read REG->ry. Otherwise, read
349 REG->rx. */
350 static enum register_status
351 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
352 {
353 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
354 return regcache_raw_read (cache, bank_reg->num, buf);
355 }
356
357
358 /* Move the value of a banked register from BUF to CACHE.
359 If the value of the 'flg' register in CACHE has any of the bits
360 masked in REG->n set, then write REG->ry. Otherwise, write
361 REG->rx. */
362 static enum register_status
363 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
364 {
365 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
366 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
367
368 return REG_VALID;
369 }
370
371
372 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
373 banked register; on bfd_mach_m16c, it's not. */
374 static enum register_status
375 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
376 {
377 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
378 return m32c_raw_read (reg->rx, cache, buf);
379 else
380 return m32c_banked_read (reg, cache, buf);
381 }
382
383
384 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
385 banked register; on bfd_mach_m16c, it's not. */
386 static enum register_status
387 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
388 {
389 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
390 m32c_raw_write (reg->rx, cache, buf);
391 else
392 m32c_banked_write (reg, cache, buf);
393
394 return REG_VALID;
395 }
396
397
398 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
399 and *LEN_P to the offset and length, in bytes, of the part REG
400 occupies in its underlying register. The offset is from the
401 lower-addressed end, regardless of the architecture's endianness.
402 (The M32C family is always little-endian, but let's keep those
403 assumptions out of here.) */
404 static void
405 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
406 {
407 /* The length of the containing register, of which REG is one part. */
408 int containing_len = TYPE_LENGTH (reg->rx->type);
409
410 /* The length of one "element" in our imaginary array. */
411 int elt_len = TYPE_LENGTH (reg->type);
412
413 /* The offset of REG's "element" from the least significant end of
414 the containing register. */
415 int elt_offset = reg->n * elt_len;
416
417 /* If we extend off the end, trim the length of the element. */
418 if (elt_offset + elt_len > containing_len)
419 {
420 elt_len = containing_len - elt_offset;
421 /* We shouldn't be declaring partial registers that go off the
422 end of their containing registers. */
423 gdb_assert (elt_len > 0);
424 }
425
426 /* Flip the offset around if we're big-endian. */
427 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
428 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
429
430 *offset_p = elt_offset;
431 *len_p = elt_len;
432 }
433
434
435 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
436 to BUF. Treating the value of the register REG->rx as an array of
437 REG->type values, where higher indices refer to more significant
438 bits, read the value of the REG->n'th element. */
439 static enum register_status
440 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
441 {
442 int offset, len;
443
444 memset (buf, 0, TYPE_LENGTH (reg->type));
445 m32c_find_part (reg, &offset, &len);
446 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
447 }
448
449
450 /* Move the value of a banked register from BUF to CACHE.
451 Treating the value of the register REG->rx as an array of REG->type
452 values, where higher indices refer to more significant bits, write
453 the value of the REG->n'th element. */
454 static enum register_status
455 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
456 {
457 int offset, len;
458
459 m32c_find_part (reg, &offset, &len);
460 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
461
462 return REG_VALID;
463 }
464
465
466 /* Move the value of REG from CACHE to BUF. REG's value is the
467 concatenation of the values of the registers REG->rx and REG->ry,
468 with REG->rx contributing the more significant bits. */
469 static enum register_status
470 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
471 {
472 int high_bytes = TYPE_LENGTH (reg->rx->type);
473 int low_bytes = TYPE_LENGTH (reg->ry->type);
474 /* For address arithmetic. */
475 unsigned char *cbuf = buf;
476 enum register_status status;
477
478 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
479
480 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
481 {
482 status = regcache_cooked_read (cache, reg->rx->num, cbuf);
483 if (status == REG_VALID)
484 status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
485 }
486 else
487 {
488 status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
489 if (status == REG_VALID)
490 status = regcache_cooked_read (cache, reg->ry->num, cbuf);
491 }
492
493 return status;
494 }
495
496
497 /* Move the value of REG from CACHE to BUF. REG's value is the
498 concatenation of the values of the registers REG->rx and REG->ry,
499 with REG->rx contributing the more significant bits. */
500 static enum register_status
501 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
502 {
503 int high_bytes = TYPE_LENGTH (reg->rx->type);
504 int low_bytes = TYPE_LENGTH (reg->ry->type);
505 /* For address arithmetic. */
506 unsigned char *cbuf = buf;
507
508 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
509
510 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
511 {
512 regcache_cooked_write (cache, reg->rx->num, cbuf);
513 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
514 }
515 else
516 {
517 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
518 regcache_cooked_write (cache, reg->ry->num, cbuf);
519 }
520
521 return REG_VALID;
522 }
523
524
525 /* Copy the value of the raw register REG from CACHE to BUF. REG is
526 the concatenation (from most significant to least) of r3, r2, r1,
527 and r0. */
528 static enum register_status
529 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
530 {
531 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
532 int len = TYPE_LENGTH (tdep->r0->type);
533 enum register_status status;
534
535 /* For address arithmetic. */
536 unsigned char *cbuf = buf;
537
538 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
539 {
540 status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
541 if (status == REG_VALID)
542 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
543 if (status == REG_VALID)
544 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
545 if (status == REG_VALID)
546 status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
547 }
548 else
549 {
550 status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
551 if (status == REG_VALID)
552 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
553 if (status == REG_VALID)
554 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
555 if (status == REG_VALID)
556 status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
557 }
558
559 return status;
560 }
561
562
563 /* Copy the value of the raw register REG from BUF to CACHE. REG is
564 the concatenation (from most significant to least) of r3, r2, r1,
565 and r0. */
566 static enum register_status
567 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
568 {
569 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570 int len = TYPE_LENGTH (tdep->r0->type);
571
572 /* For address arithmetic. */
573 unsigned char *cbuf = buf;
574
575 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
576 {
577 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
578 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
579 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
580 regcache_cooked_write (cache, tdep->r3->num, cbuf);
581 }
582 else
583 {
584 regcache_cooked_write (cache, tdep->r0->num, cbuf);
585 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
586 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
587 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
588 }
589
590 return REG_VALID;
591 }
592
593
594 static enum register_status
595 m32c_pseudo_register_read (struct gdbarch *arch,
596 struct regcache *cache,
597 int cookednum,
598 gdb_byte *buf)
599 {
600 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
601 struct m32c_reg *reg;
602
603 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
604 gdb_assert (arch == get_regcache_arch (cache));
605 gdb_assert (arch == tdep->regs[cookednum].arch);
606 reg = &tdep->regs[cookednum];
607
608 return reg->read (reg, cache, buf);
609 }
610
611
612 static void
613 m32c_pseudo_register_write (struct gdbarch *arch,
614 struct regcache *cache,
615 int cookednum,
616 const gdb_byte *buf)
617 {
618 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
619 struct m32c_reg *reg;
620
621 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
622 gdb_assert (arch == get_regcache_arch (cache));
623 gdb_assert (arch == tdep->regs[cookednum].arch);
624 reg = &tdep->regs[cookednum];
625
626 reg->write (reg, cache, (void *) buf);
627 }
628
629
630 /* Add a register with the given fields to the end of ARCH's table.
631 Return a pointer to the newly added register. */
632 static struct m32c_reg *
633 add_reg (struct gdbarch *arch,
634 const char *name,
635 struct type *type,
636 int sim_num,
637 m32c_move_reg_t *read,
638 m32c_move_reg_t *write,
639 struct m32c_reg *rx,
640 struct m32c_reg *ry,
641 int n)
642 {
643 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
644 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
645
646 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
647
648 r->name = name;
649 r->type = type;
650 r->arch = arch;
651 r->num = tdep->num_regs;
652 r->sim_num = sim_num;
653 r->dwarf_num = -1;
654 r->general_p = 0;
655 r->dma_p = 0;
656 r->system_p = 0;
657 r->save_restore_p = 0;
658 r->read = read;
659 r->write = write;
660 r->rx = rx;
661 r->ry = ry;
662 r->n = n;
663
664 tdep->num_regs++;
665
666 return r;
667 }
668
669
670 /* Record NUM as REG's DWARF register number. */
671 static void
672 set_dwarf_regnum (struct m32c_reg *reg, int num)
673 {
674 gdb_assert (num < M32C_MAX_NUM_REGS);
675
676 /* Update the reg->DWARF mapping. Only count the first number
677 assigned to this register. */
678 if (reg->dwarf_num == -1)
679 reg->dwarf_num = num;
680
681 /* Update the DWARF->reg mapping. */
682 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
683 }
684
685
686 /* Mark REG as a general-purpose register, and return it. */
687 static struct m32c_reg *
688 mark_general (struct m32c_reg *reg)
689 {
690 reg->general_p = 1;
691 return reg;
692 }
693
694
695 /* Mark REG as a DMA register, and return it. */
696 static struct m32c_reg *
697 mark_dma (struct m32c_reg *reg)
698 {
699 reg->dma_p = 1;
700 return reg;
701 }
702
703
704 /* Mark REG as a SYSTEM register, and return it. */
705 static struct m32c_reg *
706 mark_system (struct m32c_reg *reg)
707 {
708 reg->system_p = 1;
709 return reg;
710 }
711
712
713 /* Mark REG as a save-restore register, and return it. */
714 static struct m32c_reg *
715 mark_save_restore (struct m32c_reg *reg)
716 {
717 reg->save_restore_p = 1;
718 return reg;
719 }
720
721
722 #define FLAGBIT_B 0x0010
723 #define FLAGBIT_U 0x0080
724
725 /* Handy macros for declaring registers. These all evaluate to
726 pointers to the register declared. Macros that define two
727 registers evaluate to a pointer to the first. */
728
729 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
730 #define R(name, type, sim_num) \
731 (add_reg (arch, (name), (type), (sim_num), \
732 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
733
734 /* The simulator register number for a raw register named NAME. */
735 #define SIM(name) (m32c_sim_reg_ ## name)
736
737 /* A raw unsigned 16-bit data register named NAME.
738 NAME should be an identifier, not a string. */
739 #define R16U(name) \
740 (R(#name, tdep->uint16, SIM (name)))
741
742 /* A raw data address register named NAME.
743 NAME should be an identifier, not a string. */
744 #define RA(name) \
745 (R(#name, tdep->data_addr_reg_type, SIM (name)))
746
747 /* A raw code address register named NAME. NAME should
748 be an identifier, not a string. */
749 #define RC(name) \
750 (R(#name, tdep->code_addr_reg_type, SIM (name)))
751
752 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
753 NAME should be an identifier, not a string. */
754 #define RP(name, type) \
755 (R(#name "0", (type), SIM (name ## 0)), \
756 R(#name "1", (type), SIM (name ## 1)) - 1)
757
758 /* A raw banked general-purpose data register named NAME.
759 NAME should be an identifier, not a string. */
760 #define RBD(name) \
761 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
762 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
763
764 /* A raw banked data address register named NAME.
765 NAME should be an identifier, not a string. */
766 #define RBA(name) \
767 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
768 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
769
770 /* A cooked register named NAME referring to a raw banked register
771 from the bank selected by the current value of FLG. RAW_PAIR
772 should be a pointer to the first register in the banked pair.
773 NAME must be an identifier, not a string. */
774 #define CB(name, raw_pair) \
775 (add_reg (arch, #name, (raw_pair)->type, 0, \
776 m32c_banked_read, m32c_banked_write, \
777 (raw_pair), (raw_pair + 1), FLAGBIT_B))
778
779 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
780 access the top and bottom halves of the register pointed to by
781 NAME. NAME should be an identifier. */
782 #define CHL(name, type) \
783 (add_reg (arch, #name "h", (type), 0, \
784 m32c_part_read, m32c_part_write, name, NULL, 1), \
785 add_reg (arch, #name "l", (type), 0, \
786 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
787
788 /* A register constructed by concatenating the two registers HIGH and
789 LOW, whose name is HIGHLOW and whose type is TYPE. */
790 #define CCAT(high, low, type) \
791 (add_reg (arch, #high #low, (type), 0, \
792 m32c_cat_read, m32c_cat_write, (high), (low), 0))
793
794 /* Abbreviations for marking register group membership. */
795 #define G(reg) (mark_general (reg))
796 #define S(reg) (mark_system (reg))
797 #define DMA(reg) (mark_dma (reg))
798
799
800 /* Construct the register set for ARCH. */
801 static void
802 make_regs (struct gdbarch *arch)
803 {
804 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
805 int mach = gdbarch_bfd_arch_info (arch)->mach;
806 int num_raw_regs;
807 int num_cooked_regs;
808
809 struct m32c_reg *r0;
810 struct m32c_reg *r1;
811 struct m32c_reg *r2;
812 struct m32c_reg *r3;
813 struct m32c_reg *a0;
814 struct m32c_reg *a1;
815 struct m32c_reg *fb;
816 struct m32c_reg *sb;
817 struct m32c_reg *sp;
818 struct m32c_reg *r0hl;
819 struct m32c_reg *r1hl;
820 struct m32c_reg *r2hl;
821 struct m32c_reg *r3hl;
822 struct m32c_reg *intbhl;
823 struct m32c_reg *r2r0;
824 struct m32c_reg *r3r1;
825 struct m32c_reg *r3r1r2r0;
826 struct m32c_reg *r3r2r1r0;
827 struct m32c_reg *a1a0;
828
829 struct m32c_reg *raw_r0_pair = RBD (r0);
830 struct m32c_reg *raw_r1_pair = RBD (r1);
831 struct m32c_reg *raw_r2_pair = RBD (r2);
832 struct m32c_reg *raw_r3_pair = RBD (r3);
833 struct m32c_reg *raw_a0_pair = RBA (a0);
834 struct m32c_reg *raw_a1_pair = RBA (a1);
835 struct m32c_reg *raw_fb_pair = RBA (fb);
836
837 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
838 We always declare both raw registers, and deal with the distinction
839 in the pseudoregister. */
840 struct m32c_reg *raw_sb_pair = RBA (sb);
841
842 struct m32c_reg *usp = S (RA (usp));
843 struct m32c_reg *isp = S (RA (isp));
844 struct m32c_reg *intb = S (RC (intb));
845 struct m32c_reg *pc = G (RC (pc));
846 struct m32c_reg *flg = G (R16U (flg));
847
848 if (mach == bfd_mach_m32c)
849 {
850 struct m32c_reg *svf = S (R16U (svf));
851 struct m32c_reg *svp = S (RC (svp));
852 struct m32c_reg *vct = S (RC (vct));
853
854 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
855 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
856 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
857 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
858 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
859 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
860 }
861
862 num_raw_regs = tdep->num_regs;
863
864 r0 = G (CB (r0, raw_r0_pair));
865 r1 = G (CB (r1, raw_r1_pair));
866 r2 = G (CB (r2, raw_r2_pair));
867 r3 = G (CB (r3, raw_r3_pair));
868 a0 = G (CB (a0, raw_a0_pair));
869 a1 = G (CB (a1, raw_a1_pair));
870 fb = G (CB (fb, raw_fb_pair));
871
872 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
873 Specify custom read/write functions that do the right thing. */
874 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
875 m32c_sb_read, m32c_sb_write,
876 raw_sb_pair, raw_sb_pair + 1, 0));
877
878 /* The current sp is either usp or isp, depending on the value of
879 the FLG register's U bit. */
880 sp = G (add_reg (arch, "sp", usp->type, 0,
881 m32c_banked_read, m32c_banked_write,
882 isp, usp, FLAGBIT_U));
883
884 r0hl = CHL (r0, tdep->int8);
885 r1hl = CHL (r1, tdep->int8);
886 r2hl = CHL (r2, tdep->int8);
887 r3hl = CHL (r3, tdep->int8);
888 intbhl = CHL (intb, tdep->int16);
889
890 r2r0 = CCAT (r2, r0, tdep->int32);
891 r3r1 = CCAT (r3, r1, tdep->int32);
892 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
893
894 r3r2r1r0
895 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
896 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
897
898 if (mach == bfd_mach_m16c)
899 a1a0 = CCAT (a1, a0, tdep->int32);
900 else
901 a1a0 = NULL;
902
903 num_cooked_regs = tdep->num_regs - num_raw_regs;
904
905 tdep->pc = pc;
906 tdep->flg = flg;
907 tdep->r0 = r0;
908 tdep->r1 = r1;
909 tdep->r2 = r2;
910 tdep->r3 = r3;
911 tdep->r2r0 = r2r0;
912 tdep->r3r2r1r0 = r3r2r1r0;
913 tdep->r3r1r2r0 = r3r1r2r0;
914 tdep->a0 = a0;
915 tdep->a1 = a1;
916 tdep->sb = sb;
917 tdep->fb = fb;
918 tdep->sp = sp;
919
920 /* Set up the DWARF register table. */
921 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
922 set_dwarf_regnum (r0hl + 1, 0x01);
923 set_dwarf_regnum (r0hl + 0, 0x02);
924 set_dwarf_regnum (r1hl + 1, 0x03);
925 set_dwarf_regnum (r1hl + 0, 0x04);
926 set_dwarf_regnum (r0, 0x05);
927 set_dwarf_regnum (r1, 0x06);
928 set_dwarf_regnum (r2, 0x07);
929 set_dwarf_regnum (r3, 0x08);
930 set_dwarf_regnum (a0, 0x09);
931 set_dwarf_regnum (a1, 0x0a);
932 set_dwarf_regnum (fb, 0x0b);
933 set_dwarf_regnum (sp, 0x0c);
934 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
935 set_dwarf_regnum (sb, 0x13);
936 set_dwarf_regnum (r2r0, 0x15);
937 set_dwarf_regnum (r3r1, 0x16);
938 if (a1a0)
939 set_dwarf_regnum (a1a0, 0x17);
940
941 /* Enumerate the save/restore register group.
942
943 The regcache_save and regcache_restore functions apply their read
944 function to each register in this group.
945
946 Since frame_pop supplies frame_unwind_register as its read
947 function, the registers meaningful to the Dwarf unwinder need to
948 be in this group.
949
950 On the other hand, when we make inferior calls, save_inferior_status
951 and restore_inferior_status use them to preserve the current register
952 values across the inferior call. For this, you'd kind of like to
953 preserve all the raw registers, to protect the interrupted code from
954 any sort of bank switching the callee might have done. But we handle
955 those cases so badly anyway --- for example, it matters whether we
956 restore FLG before or after we restore the general-purpose registers,
957 but there's no way to express that --- that it isn't worth worrying
958 about.
959
960 We omit control registers like inthl: if you call a function that
961 changes those, it's probably because you wanted that change to be
962 visible to the interrupted code. */
963 mark_save_restore (r0);
964 mark_save_restore (r1);
965 mark_save_restore (r2);
966 mark_save_restore (r3);
967 mark_save_restore (a0);
968 mark_save_restore (a1);
969 mark_save_restore (sb);
970 mark_save_restore (fb);
971 mark_save_restore (sp);
972 mark_save_restore (pc);
973 mark_save_restore (flg);
974
975 set_gdbarch_num_regs (arch, num_raw_regs);
976 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
977 set_gdbarch_pc_regnum (arch, pc->num);
978 set_gdbarch_sp_regnum (arch, sp->num);
979 set_gdbarch_register_name (arch, m32c_register_name);
980 set_gdbarch_register_type (arch, m32c_register_type);
981 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
982 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
983 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
984 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
985 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
986 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
987
988 reggroup_add (arch, general_reggroup);
989 reggroup_add (arch, all_reggroup);
990 reggroup_add (arch, save_reggroup);
991 reggroup_add (arch, restore_reggroup);
992 reggroup_add (arch, system_reggroup);
993 reggroup_add (arch, m32c_dma_reggroup);
994 }
995
996
997 \f
998 /* Breakpoints. */
999
1000 static const unsigned char *
1001 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1002 {
1003 static unsigned char break_insn[] = { 0x00 }; /* brk */
1004
1005 *len = sizeof (break_insn);
1006 return break_insn;
1007 }
1008
1009
1010 \f
1011 /* Prologue analysis. */
1012
1013 struct m32c_prologue
1014 {
1015 /* For consistency with the DWARF 2 .debug_frame info generated by
1016 GCC, a frame's CFA is the address immediately after the saved
1017 return address. */
1018
1019 /* The architecture for which we generated this prologue info. */
1020 struct gdbarch *arch;
1021
1022 enum {
1023 /* This function uses a frame pointer. */
1024 prologue_with_frame_ptr,
1025
1026 /* This function has no frame pointer. */
1027 prologue_sans_frame_ptr,
1028
1029 /* This function sets up the stack, so its frame is the first
1030 frame on the stack. */
1031 prologue_first_frame
1032
1033 } kind;
1034
1035 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1036 CFA to where the frame pointer points. This is always zero or
1037 negative. */
1038 LONGEST frame_ptr_offset;
1039
1040 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1041 the stack pointer --- always zero or negative.
1042
1043 Calling this a "size" is a bit misleading, but given that the
1044 stack grows downwards, using offsets for everything keeps one
1045 from going completely sign-crazy: you never change anything's
1046 sign for an ADD instruction; always change the second operand's
1047 sign for a SUB instruction; and everything takes care of
1048 itself.
1049
1050 Functions that use alloca don't have a constant frame size. But
1051 they always have frame pointers, so we must use that to find the
1052 CFA (and perhaps to unwind the stack pointer). */
1053 LONGEST frame_size;
1054
1055 /* The address of the first instruction at which the frame has been
1056 set up and the arguments are where the debug info says they are
1057 --- as best as we can tell. */
1058 CORE_ADDR prologue_end;
1059
1060 /* reg_offset[R] is the offset from the CFA at which register R is
1061 saved, or 1 if register R has not been saved. (Real values are
1062 always zero or negative.) */
1063 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1064 };
1065
1066
1067 /* The longest I've seen, anyway. */
1068 #define M32C_MAX_INSN_LEN (9)
1069
1070 /* Processor state, for the prologue analyzer. */
1071 struct m32c_pv_state
1072 {
1073 struct gdbarch *arch;
1074 pv_t r0, r1, r2, r3;
1075 pv_t a0, a1;
1076 pv_t sb, fb, sp;
1077 pv_t pc;
1078 struct pv_area *stack;
1079
1080 /* Bytes from the current PC, the address they were read from,
1081 and the address of the next unconsumed byte. */
1082 gdb_byte insn[M32C_MAX_INSN_LEN];
1083 CORE_ADDR scan_pc, next_addr;
1084 };
1085
1086
1087 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1088 all went well, or non-zero if simulating the action would trash our
1089 state. */
1090 static int
1091 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1092 {
1093 if (pv_area_store_would_trash (state->stack, state->sp))
1094 return 1;
1095
1096 state->sp = pv_add_constant (state->sp, -size);
1097 pv_area_store (state->stack, state->sp, size, value);
1098
1099 return 0;
1100 }
1101
1102
1103 /* A source or destination location for an m16c or m32c
1104 instruction. */
1105 struct srcdest
1106 {
1107 /* If srcdest_reg, the location is a register pointed to by REG.
1108 If srcdest_partial_reg, the location is part of a register pointed
1109 to by REG. We don't try to handle this too well.
1110 If srcdest_mem, the location is memory whose address is ADDR. */
1111 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1112 pv_t *reg, addr;
1113 };
1114
1115
1116 /* Return the SIZE-byte value at LOC in STATE. */
1117 static pv_t
1118 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1119 {
1120 if (loc.kind == srcdest_mem)
1121 return pv_area_fetch (state->stack, loc.addr, size);
1122 else if (loc.kind == srcdest_partial_reg)
1123 return pv_unknown ();
1124 else
1125 return *loc.reg;
1126 }
1127
1128
1129 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1130 all went well, or non-zero if simulating the store would trash our
1131 state. */
1132 static int
1133 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1134 pv_t value, int size)
1135 {
1136 if (loc.kind == srcdest_mem)
1137 {
1138 if (pv_area_store_would_trash (state->stack, loc.addr))
1139 return 1;
1140 pv_area_store (state->stack, loc.addr, size, value);
1141 }
1142 else if (loc.kind == srcdest_partial_reg)
1143 *loc.reg = pv_unknown ();
1144 else
1145 *loc.reg = value;
1146
1147 return 0;
1148 }
1149
1150
1151 static int
1152 m32c_sign_ext (int v, int bits)
1153 {
1154 int mask = 1 << (bits - 1);
1155 return (v ^ mask) - mask;
1156 }
1157
1158 static unsigned int
1159 m32c_next_byte (struct m32c_pv_state *st)
1160 {
1161 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1162 return st->insn[st->next_addr++ - st->scan_pc];
1163 }
1164
1165 static int
1166 m32c_udisp8 (struct m32c_pv_state *st)
1167 {
1168 return m32c_next_byte (st);
1169 }
1170
1171
1172 static int
1173 m32c_sdisp8 (struct m32c_pv_state *st)
1174 {
1175 return m32c_sign_ext (m32c_next_byte (st), 8);
1176 }
1177
1178
1179 static int
1180 m32c_udisp16 (struct m32c_pv_state *st)
1181 {
1182 int low = m32c_next_byte (st);
1183 int high = m32c_next_byte (st);
1184
1185 return low + (high << 8);
1186 }
1187
1188
1189 static int
1190 m32c_sdisp16 (struct m32c_pv_state *st)
1191 {
1192 int low = m32c_next_byte (st);
1193 int high = m32c_next_byte (st);
1194
1195 return m32c_sign_ext (low + (high << 8), 16);
1196 }
1197
1198
1199 static int
1200 m32c_udisp24 (struct m32c_pv_state *st)
1201 {
1202 int low = m32c_next_byte (st);
1203 int mid = m32c_next_byte (st);
1204 int high = m32c_next_byte (st);
1205
1206 return low + (mid << 8) + (high << 16);
1207 }
1208
1209
1210 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1211 static int
1212 m32c_get_src23 (unsigned char *i)
1213 {
1214 return (((i[0] & 0x70) >> 2)
1215 | ((i[1] & 0x30) >> 4));
1216 }
1217
1218
1219 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1220 static int
1221 m32c_get_dest23 (unsigned char *i)
1222 {
1223 return (((i[0] & 0x0e) << 1)
1224 | ((i[1] & 0xc0) >> 6));
1225 }
1226
1227
1228 static struct srcdest
1229 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1230 int code, int size)
1231 {
1232 struct srcdest sd;
1233
1234 if (code < 6)
1235 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1236 else
1237 sd.kind = srcdest_mem;
1238
1239 sd.addr = pv_unknown ();
1240 sd.reg = 0;
1241
1242 switch (code)
1243 {
1244 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1245 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1246 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1247 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1248
1249 case 0x4: sd.reg = &st->a0; break;
1250 case 0x5: sd.reg = &st->a1; break;
1251
1252 case 0x6: sd.addr = st->a0; break;
1253 case 0x7: sd.addr = st->a1; break;
1254
1255 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1256 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1257 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1258 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1259
1260 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1261 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1262 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1263 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1264
1265 default:
1266 gdb_assert_not_reached ("unexpected srcdest4");
1267 }
1268
1269 return sd;
1270 }
1271
1272
1273 static struct srcdest
1274 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1275 {
1276 struct srcdest sd;
1277
1278 sd.addr = pv_unknown ();
1279 sd.reg = 0;
1280
1281 switch (code)
1282 {
1283 case 0x12:
1284 case 0x13:
1285 case 0x10:
1286 case 0x11:
1287 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1288 break;
1289
1290 case 0x02:
1291 case 0x03:
1292 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1293 break;
1294
1295 default:
1296 sd.kind = srcdest_mem;
1297 break;
1298
1299 }
1300
1301 switch (code)
1302 {
1303 case 0x12: sd.reg = &st->r0; break;
1304 case 0x13: sd.reg = &st->r1; break;
1305 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1306 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1307 case 0x02: sd.reg = &st->a0; break;
1308 case 0x03: sd.reg = &st->a1; break;
1309
1310 case 0x00: sd.addr = st->a0; break;
1311 case 0x01: sd.addr = st->a1; break;
1312 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1313 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1314 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1315 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1316 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1317 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1318 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1319 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1320 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1321 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1322 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1323 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1324 default:
1325 gdb_assert_not_reached ("unexpected sd23");
1326 }
1327
1328 if (ind)
1329 {
1330 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1331 sd.kind = srcdest_mem;
1332 }
1333
1334 return sd;
1335 }
1336
1337
1338 /* The r16c and r32c machines have instructions with similar
1339 semantics, but completely different machine language encodings. So
1340 we break out the semantics into their own functions, and leave
1341 machine-specific decoding in m32c_analyze_prologue.
1342
1343 The following functions all expect their arguments already decoded,
1344 and they all return zero if analysis should continue past this
1345 instruction, or non-zero if analysis should stop. */
1346
1347
1348 /* Simulate an 'enter SIZE' instruction in STATE. */
1349 static int
1350 m32c_pv_enter (struct m32c_pv_state *state, int size)
1351 {
1352 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1353
1354 /* If simulating this store would require us to forget
1355 everything we know about the stack frame in the name of
1356 accuracy, it would be better to just quit now. */
1357 if (pv_area_store_would_trash (state->stack, state->sp))
1358 return 1;
1359
1360 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1361 return 1;
1362 state->fb = state->sp;
1363 state->sp = pv_add_constant (state->sp, -size);
1364
1365 return 0;
1366 }
1367
1368
1369 static int
1370 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1371 int bit, int src, int size)
1372 {
1373 if (bit & src)
1374 {
1375 if (m32c_pv_push (state, reg, size))
1376 return 1;
1377 }
1378
1379 return 0;
1380 }
1381
1382
1383 /* Simulate a 'pushm SRC' instruction in STATE. */
1384 static int
1385 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1386 {
1387 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1388
1389 /* The bits in SRC indicating which registers to save are:
1390 r0 r1 r2 r3 a0 a1 sb fb */
1391 return
1392 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1393 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1394 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1395 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1396 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1397 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1398 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1399 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1400 }
1401
1402 /* Return non-zero if VALUE is the first incoming argument register. */
1403
1404 static int
1405 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1406 {
1407 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1408 return (value.kind == pvk_register
1409 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1410 ? (value.reg == tdep->r1->num)
1411 : (value.reg == tdep->r0->num))
1412 && value.k == 0);
1413 }
1414
1415 /* Return non-zero if VALUE is an incoming argument register. */
1416
1417 static int
1418 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1419 {
1420 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1421 return (value.kind == pvk_register
1422 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1423 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1424 : (value.reg == tdep->r0->num))
1425 && value.k == 0);
1426 }
1427
1428 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1429 argument register to its stack slot in STATE. Such instructions
1430 should be included in the prologue, if possible.
1431
1432 The store is a spill if:
1433 - the value being stored is the original value of an argument register;
1434 - the value has not already been stored somewhere in STACK; and
1435 - LOC is a stack slot (e.g., a memory location whose address is
1436 relative to the original value of the SP). */
1437
1438 static int
1439 m32c_is_arg_spill (struct m32c_pv_state *st,
1440 struct srcdest loc,
1441 pv_t value)
1442 {
1443 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1444
1445 return (m32c_is_arg_reg (st, value)
1446 && loc.kind == srcdest_mem
1447 && pv_is_register (loc.addr, tdep->sp->num)
1448 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1449 }
1450
1451 /* Return non-zero if a store of VALUE to LOC is probably
1452 copying the struct return address into an address register
1453 for immediate use. This is basically a "spill" into the
1454 address register, instead of onto the stack.
1455
1456 The prerequisites are:
1457 - value being stored is original value of the FIRST arg register;
1458 - value has not already been stored on stack; and
1459 - LOC is an address register (a0 or a1). */
1460
1461 static int
1462 m32c_is_struct_return (struct m32c_pv_state *st,
1463 struct srcdest loc,
1464 pv_t value)
1465 {
1466 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1467
1468 return (m32c_is_1st_arg_reg (st, value)
1469 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1470 && loc.kind == srcdest_reg
1471 && (pv_is_register (*loc.reg, tdep->a0->num)
1472 || pv_is_register (*loc.reg, tdep->a1->num)));
1473 }
1474
1475 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1476 was a register save:
1477 - all the named registers should have their original values, and
1478 - the stack pointer should be at a constant offset from the
1479 original stack pointer. */
1480 static int
1481 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1482 {
1483 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1484 /* The bits in SRC indicating which registers to save are:
1485 r0 r1 r2 r3 a0 a1 sb fb */
1486 return
1487 (pv_is_register (st->sp, tdep->sp->num)
1488 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1489 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1490 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1491 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1492 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1493 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1494 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1495 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1496 }
1497
1498
1499 /* Function for finding saved registers in a 'struct pv_area'; we pass
1500 this to pv_area_scan.
1501
1502 If VALUE is a saved register, ADDR says it was saved at a constant
1503 offset from the frame base, and SIZE indicates that the whole
1504 register was saved, record its offset in RESULT_UNTYPED. */
1505 static void
1506 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1507 {
1508 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1509 struct gdbarch *arch = prologue->arch;
1510 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1511
1512 /* Is this the unchanged value of some register being saved on the
1513 stack? */
1514 if (value.kind == pvk_register
1515 && value.k == 0
1516 && pv_is_register (addr, tdep->sp->num))
1517 {
1518 /* Some registers require special handling: they're saved as a
1519 larger value than the register itself. */
1520 CORE_ADDR saved_size = register_size (arch, value.reg);
1521
1522 if (value.reg == tdep->pc->num)
1523 saved_size = tdep->ret_addr_bytes;
1524 else if (register_type (arch, value.reg)
1525 == tdep->data_addr_reg_type)
1526 saved_size = tdep->push_addr_bytes;
1527
1528 if (size == saved_size)
1529 {
1530 /* Find which end of the saved value corresponds to our
1531 register. */
1532 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1533 prologue->reg_offset[value.reg]
1534 = (addr.k + saved_size - register_size (arch, value.reg));
1535 else
1536 prologue->reg_offset[value.reg] = addr.k;
1537 }
1538 }
1539 }
1540
1541
1542 /* Analyze the function prologue for ARCH at START, going no further
1543 than LIMIT, and place a description of what we found in
1544 PROLOGUE. */
1545 static void
1546 m32c_analyze_prologue (struct gdbarch *arch,
1547 CORE_ADDR start, CORE_ADDR limit,
1548 struct m32c_prologue *prologue)
1549 {
1550 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1551 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1552 CORE_ADDR after_last_frame_related_insn;
1553 struct cleanup *back_to;
1554 struct m32c_pv_state st;
1555
1556 st.arch = arch;
1557 st.r0 = pv_register (tdep->r0->num, 0);
1558 st.r1 = pv_register (tdep->r1->num, 0);
1559 st.r2 = pv_register (tdep->r2->num, 0);
1560 st.r3 = pv_register (tdep->r3->num, 0);
1561 st.a0 = pv_register (tdep->a0->num, 0);
1562 st.a1 = pv_register (tdep->a1->num, 0);
1563 st.sb = pv_register (tdep->sb->num, 0);
1564 st.fb = pv_register (tdep->fb->num, 0);
1565 st.sp = pv_register (tdep->sp->num, 0);
1566 st.pc = pv_register (tdep->pc->num, 0);
1567 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1568 back_to = make_cleanup_free_pv_area (st.stack);
1569
1570 /* Record that the call instruction has saved the return address on
1571 the stack. */
1572 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1573
1574 memset (prologue, 0, sizeof (*prologue));
1575 prologue->arch = arch;
1576 {
1577 int i;
1578 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1579 prologue->reg_offset[i] = 1;
1580 }
1581
1582 st.scan_pc = after_last_frame_related_insn = start;
1583
1584 while (st.scan_pc < limit)
1585 {
1586 pv_t pre_insn_fb = st.fb;
1587 pv_t pre_insn_sp = st.sp;
1588
1589 /* In theory we could get in trouble by trying to read ahead
1590 here, when we only know we're expecting one byte. In
1591 practice I doubt anyone will care, and it makes the rest of
1592 the code easier. */
1593 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1594 /* If we can't fetch the instruction from memory, stop here
1595 and hope for the best. */
1596 break;
1597 st.next_addr = st.scan_pc;
1598
1599 /* The assembly instructions are written as they appear in the
1600 section of the processor manuals that describe the
1601 instruction encodings.
1602
1603 When a single assembly language instruction has several
1604 different machine-language encodings, the manual
1605 distinguishes them by a number in parens, before the
1606 mnemonic. Those numbers are included, as well.
1607
1608 The srcdest decoding instructions have the same names as the
1609 analogous functions in the simulator. */
1610 if (mach == bfd_mach_m16c)
1611 {
1612 /* (1) ENTER #imm8 */
1613 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1614 {
1615 if (m32c_pv_enter (&st, st.insn[2]))
1616 break;
1617 st.next_addr += 3;
1618 }
1619 /* (1) PUSHM src */
1620 else if (st.insn[0] == 0xec)
1621 {
1622 int src = st.insn[1];
1623 if (m32c_pv_pushm (&st, src))
1624 break;
1625 st.next_addr += 2;
1626
1627 if (m32c_pushm_is_reg_save (&st, src))
1628 after_last_frame_related_insn = st.next_addr;
1629 }
1630
1631 /* (6) MOV.size:G src, dest */
1632 else if ((st.insn[0] & 0xfe) == 0x72)
1633 {
1634 int size = (st.insn[0] & 0x01) ? 2 : 1;
1635 struct srcdest src;
1636 struct srcdest dest;
1637 pv_t src_value;
1638 st.next_addr += 2;
1639
1640 src
1641 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1642 dest
1643 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1644 src_value = m32c_srcdest_fetch (&st, src, size);
1645
1646 if (m32c_is_arg_spill (&st, dest, src_value))
1647 after_last_frame_related_insn = st.next_addr;
1648 else if (m32c_is_struct_return (&st, dest, src_value))
1649 after_last_frame_related_insn = st.next_addr;
1650
1651 if (m32c_srcdest_store (&st, dest, src_value, size))
1652 break;
1653 }
1654
1655 /* (1) LDC #IMM16, sp */
1656 else if (st.insn[0] == 0xeb
1657 && st.insn[1] == 0x50)
1658 {
1659 st.next_addr += 2;
1660 st.sp = pv_constant (m32c_udisp16 (&st));
1661 }
1662
1663 else
1664 /* We've hit some instruction we don't know how to simulate.
1665 Strictly speaking, we should set every value we're
1666 tracking to "unknown". But we'll be optimistic, assume
1667 that we have enough information already, and stop
1668 analysis here. */
1669 break;
1670 }
1671 else
1672 {
1673 int src_indirect = 0;
1674 int dest_indirect = 0;
1675 int i = 0;
1676
1677 gdb_assert (mach == bfd_mach_m32c);
1678
1679 /* Check for prefix bytes indicating indirect addressing. */
1680 if (st.insn[0] == 0x41)
1681 {
1682 src_indirect = 1;
1683 i++;
1684 }
1685 else if (st.insn[0] == 0x09)
1686 {
1687 dest_indirect = 1;
1688 i++;
1689 }
1690 else if (st.insn[0] == 0x49)
1691 {
1692 src_indirect = dest_indirect = 1;
1693 i++;
1694 }
1695
1696 /* (1) ENTER #imm8 */
1697 if (st.insn[i] == 0xec)
1698 {
1699 if (m32c_pv_enter (&st, st.insn[i + 1]))
1700 break;
1701 st.next_addr += 2;
1702 }
1703
1704 /* (1) PUSHM src */
1705 else if (st.insn[i] == 0x8f)
1706 {
1707 int src = st.insn[i + 1];
1708 if (m32c_pv_pushm (&st, src))
1709 break;
1710 st.next_addr += 2;
1711
1712 if (m32c_pushm_is_reg_save (&st, src))
1713 after_last_frame_related_insn = st.next_addr;
1714 }
1715
1716 /* (7) MOV.size:G src, dest */
1717 else if ((st.insn[i] & 0x80) == 0x80
1718 && (st.insn[i + 1] & 0x0f) == 0x0b
1719 && m32c_get_src23 (&st.insn[i]) < 20
1720 && m32c_get_dest23 (&st.insn[i]) < 20)
1721 {
1722 struct srcdest src;
1723 struct srcdest dest;
1724 pv_t src_value;
1725 int bw = st.insn[i] & 0x01;
1726 int size = bw ? 2 : 1;
1727 st.next_addr += 2;
1728
1729 src
1730 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1731 size, src_indirect);
1732 dest
1733 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1734 size, dest_indirect);
1735 src_value = m32c_srcdest_fetch (&st, src, size);
1736
1737 if (m32c_is_arg_spill (&st, dest, src_value))
1738 after_last_frame_related_insn = st.next_addr;
1739
1740 if (m32c_srcdest_store (&st, dest, src_value, size))
1741 break;
1742 }
1743 /* (2) LDC #IMM24, sp */
1744 else if (st.insn[i] == 0xd5
1745 && st.insn[i + 1] == 0x29)
1746 {
1747 st.next_addr += 2;
1748 st.sp = pv_constant (m32c_udisp24 (&st));
1749 }
1750 else
1751 /* We've hit some instruction we don't know how to simulate.
1752 Strictly speaking, we should set every value we're
1753 tracking to "unknown". But we'll be optimistic, assume
1754 that we have enough information already, and stop
1755 analysis here. */
1756 break;
1757 }
1758
1759 /* If this instruction changed the FB or decreased the SP (i.e.,
1760 allocated more stack space), then this may be a good place to
1761 declare the prologue finished. However, there are some
1762 exceptions:
1763
1764 - If the instruction just changed the FB back to its original
1765 value, then that's probably a restore instruction. The
1766 prologue should definitely end before that.
1767
1768 - If the instruction increased the value of the SP (that is,
1769 shrunk the frame), then it's probably part of a frame
1770 teardown sequence, and the prologue should end before
1771 that. */
1772
1773 if (! pv_is_identical (st.fb, pre_insn_fb))
1774 {
1775 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1776 after_last_frame_related_insn = st.next_addr;
1777 }
1778 else if (! pv_is_identical (st.sp, pre_insn_sp))
1779 {
1780 /* The comparison of the constants looks odd, there, because
1781 .k is unsigned. All it really means is that the SP is
1782 lower than it was before the instruction. */
1783 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1784 && pv_is_register (st.sp, tdep->sp->num)
1785 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1786 after_last_frame_related_insn = st.next_addr;
1787 }
1788
1789 st.scan_pc = st.next_addr;
1790 }
1791
1792 /* Did we load a constant value into the stack pointer? */
1793 if (pv_is_constant (st.sp))
1794 prologue->kind = prologue_first_frame;
1795
1796 /* Alternatively, did we initialize the frame pointer? Remember
1797 that the CFA is the address after the return address. */
1798 if (pv_is_register (st.fb, tdep->sp->num))
1799 {
1800 prologue->kind = prologue_with_frame_ptr;
1801 prologue->frame_ptr_offset = st.fb.k;
1802 }
1803
1804 /* Is the frame size a known constant? Remember that frame_size is
1805 actually the offset from the CFA to the SP (i.e., a negative
1806 value). */
1807 else if (pv_is_register (st.sp, tdep->sp->num))
1808 {
1809 prologue->kind = prologue_sans_frame_ptr;
1810 prologue->frame_size = st.sp.k;
1811 }
1812
1813 /* We haven't been able to make sense of this function's frame. Treat
1814 it as the first frame. */
1815 else
1816 prologue->kind = prologue_first_frame;
1817
1818 /* Record where all the registers were saved. */
1819 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1820
1821 prologue->prologue_end = after_last_frame_related_insn;
1822
1823 do_cleanups (back_to);
1824 }
1825
1826
1827 static CORE_ADDR
1828 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1829 {
1830 const char *name;
1831 CORE_ADDR func_addr, func_end, sal_end;
1832 struct m32c_prologue p;
1833
1834 /* Try to find the extent of the function that contains IP. */
1835 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1836 return ip;
1837
1838 /* Find end by prologue analysis. */
1839 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1840 /* Find end by line info. */
1841 sal_end = skip_prologue_using_sal (gdbarch, ip);
1842 /* Return whichever is lower. */
1843 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1844 return sal_end;
1845 else
1846 return p.prologue_end;
1847 }
1848
1849
1850 \f
1851 /* Stack unwinding. */
1852
1853 static struct m32c_prologue *
1854 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1855 void **this_prologue_cache)
1856 {
1857 if (! *this_prologue_cache)
1858 {
1859 CORE_ADDR func_start = get_frame_func (this_frame);
1860 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1861
1862 /* If we couldn't find any function containing the PC, then
1863 just initialize the prologue cache, but don't do anything. */
1864 if (! func_start)
1865 stop_addr = func_start;
1866
1867 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1868 m32c_analyze_prologue (get_frame_arch (this_frame),
1869 func_start, stop_addr, *this_prologue_cache);
1870 }
1871
1872 return *this_prologue_cache;
1873 }
1874
1875
1876 static CORE_ADDR
1877 m32c_frame_base (struct frame_info *this_frame,
1878 void **this_prologue_cache)
1879 {
1880 struct m32c_prologue *p
1881 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1882 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1883
1884 /* In functions that use alloca, the distance between the stack
1885 pointer and the frame base varies dynamically, so we can't use
1886 the SP plus static information like prologue analysis to find the
1887 frame base. However, such functions must have a frame pointer,
1888 to be able to restore the SP on exit. So whenever we do have a
1889 frame pointer, use that to find the base. */
1890 switch (p->kind)
1891 {
1892 case prologue_with_frame_ptr:
1893 {
1894 CORE_ADDR fb
1895 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1896 return fb - p->frame_ptr_offset;
1897 }
1898
1899 case prologue_sans_frame_ptr:
1900 {
1901 CORE_ADDR sp
1902 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1903 return sp - p->frame_size;
1904 }
1905
1906 case prologue_first_frame:
1907 return 0;
1908
1909 default:
1910 gdb_assert_not_reached ("unexpected prologue kind");
1911 }
1912 }
1913
1914
1915 static void
1916 m32c_this_id (struct frame_info *this_frame,
1917 void **this_prologue_cache,
1918 struct frame_id *this_id)
1919 {
1920 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1921
1922 if (base)
1923 *this_id = frame_id_build (base, get_frame_func (this_frame));
1924 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1925 }
1926
1927
1928 static struct value *
1929 m32c_prev_register (struct frame_info *this_frame,
1930 void **this_prologue_cache, int regnum)
1931 {
1932 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1933 struct m32c_prologue *p
1934 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1935 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1936 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1937
1938 if (regnum == tdep->sp->num)
1939 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1940
1941 /* If prologue analysis says we saved this register somewhere,
1942 return a description of the stack slot holding it. */
1943 if (p->reg_offset[regnum] != 1)
1944 return frame_unwind_got_memory (this_frame, regnum,
1945 frame_base + p->reg_offset[regnum]);
1946
1947 /* Otherwise, presume we haven't changed the value of this
1948 register, and get it from the next frame. */
1949 return frame_unwind_got_register (this_frame, regnum, regnum);
1950 }
1951
1952
1953 static const struct frame_unwind m32c_unwind = {
1954 NORMAL_FRAME,
1955 default_frame_unwind_stop_reason,
1956 m32c_this_id,
1957 m32c_prev_register,
1958 NULL,
1959 default_frame_sniffer
1960 };
1961
1962
1963 static CORE_ADDR
1964 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1965 {
1966 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1967 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1968 }
1969
1970
1971 static CORE_ADDR
1972 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1973 {
1974 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1975 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1976 }
1977
1978 \f
1979 /* Inferior calls. */
1980
1981 /* The calling conventions, according to GCC:
1982
1983 r8c, m16c
1984 ---------
1985 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1986 HImode), (2) is named, and (3) is an integer or pointer type (no
1987 structs, floats, etc). Otherwise, it's passed on the stack.
1988
1989 Second arg may be passed in r2, same restrictions (but not QImode),
1990 even if the first arg is passed on the stack.
1991
1992 Third and further args are passed on the stack. No padding is
1993 used, stack "alignment" is 8 bits.
1994
1995 m32cm, m32c
1996 -----------
1997
1998 First arg may be passed in r0l or r0, same restrictions as above.
1999
2000 Second and further args are passed on the stack. Padding is used
2001 after QImode parameters (i.e. lower-addressed byte is the value,
2002 higher-addressed byte is the padding), stack "alignment" is 16
2003 bits. */
2004
2005
2006 /* Return true if TYPE is a type that can be passed in registers. (We
2007 ignore the size, and pay attention only to the type code;
2008 acceptable sizes depends on which register is being considered to
2009 hold it.) */
2010 static int
2011 m32c_reg_arg_type (struct type *type)
2012 {
2013 enum type_code code = TYPE_CODE (type);
2014
2015 return (code == TYPE_CODE_INT
2016 || code == TYPE_CODE_ENUM
2017 || code == TYPE_CODE_PTR
2018 || code == TYPE_CODE_REF
2019 || code == TYPE_CODE_BOOL
2020 || code == TYPE_CODE_CHAR);
2021 }
2022
2023
2024 static CORE_ADDR
2025 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2026 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2027 struct value **args, CORE_ADDR sp, int struct_return,
2028 CORE_ADDR struct_addr)
2029 {
2030 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2032 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2033 CORE_ADDR cfa;
2034 int i;
2035
2036 /* The number of arguments given in this function's prototype, or
2037 zero if it has a non-prototyped function type. The m32c ABI
2038 passes arguments mentioned in the prototype differently from
2039 those in the ellipsis of a varargs function, or from those passed
2040 to a non-prototyped function. */
2041 int num_prototyped_args = 0;
2042
2043 {
2044 struct type *func_type = value_type (function);
2045
2046 /* Dereference function pointer types. */
2047 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2048 func_type = TYPE_TARGET_TYPE (func_type);
2049
2050 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2051 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2052
2053 #if 0
2054 /* The ABI description in gcc/config/m32c/m32c.abi says that
2055 we need to handle prototyped and non-prototyped functions
2056 separately, but the code in GCC doesn't actually do so. */
2057 if (TYPE_PROTOTYPED (func_type))
2058 #endif
2059 num_prototyped_args = TYPE_NFIELDS (func_type);
2060 }
2061
2062 /* First, if the function returns an aggregate by value, push a
2063 pointer to a buffer for it. This doesn't affect the way
2064 subsequent arguments are allocated to registers. */
2065 if (struct_return)
2066 {
2067 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2068 sp -= ptr_len;
2069 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2070 }
2071
2072 /* Push the arguments. */
2073 for (i = nargs - 1; i >= 0; i--)
2074 {
2075 struct value *arg = args[i];
2076 const gdb_byte *arg_bits = value_contents (arg);
2077 struct type *arg_type = value_type (arg);
2078 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2079
2080 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2081 if (i == 0
2082 && arg_size <= 2
2083 && i < num_prototyped_args
2084 && m32c_reg_arg_type (arg_type))
2085 {
2086 /* Extract and re-store as an integer as a terse way to make
2087 sure it ends up in the least significant end of r1. (GDB
2088 should avoid assuming endianness, even on uni-endian
2089 processors.) */
2090 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2091 byte_order);
2092 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2093 regcache_cooked_write_unsigned (regcache, reg->num, u);
2094 }
2095
2096 /* Can it go in r2? */
2097 else if (mach == bfd_mach_m16c
2098 && i == 1
2099 && arg_size == 2
2100 && i < num_prototyped_args
2101 && m32c_reg_arg_type (arg_type))
2102 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2103
2104 /* Everything else goes on the stack. */
2105 else
2106 {
2107 sp -= arg_size;
2108
2109 /* Align the stack. */
2110 if (mach == bfd_mach_m32c)
2111 sp &= ~1;
2112
2113 write_memory (sp, arg_bits, arg_size);
2114 }
2115 }
2116
2117 /* This is the CFA we use to identify the dummy frame. */
2118 cfa = sp;
2119
2120 /* Push the return address. */
2121 sp -= tdep->ret_addr_bytes;
2122 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2123 bp_addr);
2124
2125 /* Update the stack pointer. */
2126 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2127
2128 /* We need to borrow an odd trick from the i386 target here.
2129
2130 The value we return from this function gets used as the stack
2131 address (the CFA) for the dummy frame's ID. The obvious thing is
2132 to return the new TOS. However, that points at the return
2133 address, saved on the stack, which is inconsistent with the CFA's
2134 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2135 .debug_frame info uses the address immediately after the saved
2136 return address. So you end up with a dummy frame whose CFA
2137 points at the return address, but the frame for the function
2138 being called has a CFA pointing after the return address: the
2139 younger CFA is *greater than* the older CFA. The sanity checks
2140 in frame.c don't like that.
2141
2142 So we try to be consistent with the CFA's used by DWARF 2.
2143 Having a dummy frame and a real frame with the *same* CFA is
2144 tolerable. */
2145 return cfa;
2146 }
2147
2148
2149 static struct frame_id
2150 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2151 {
2152 /* This needs to return a frame ID whose PC is the return address
2153 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2154 m32c_push_dummy_call returned.
2155
2156 m32c_unwind_sp gives us the CFA, which is the value the SP had
2157 before the return address was pushed. */
2158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2159 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2160 return frame_id_build (sp, get_frame_pc (this_frame));
2161 }
2162
2163
2164 \f
2165 /* Return values. */
2166
2167 /* Return value conventions, according to GCC:
2168
2169 r8c, m16c
2170 ---------
2171
2172 QImode in r0l
2173 HImode in r0
2174 SImode in r2r0
2175 near pointer in r0
2176 far pointer in r2r0
2177
2178 Aggregate values (regardless of size) are returned by pushing a
2179 pointer to a temporary area on the stack after the args are pushed.
2180 The function fills in this area with the value. Note that this
2181 pointer on the stack does not affect how register arguments, if any,
2182 are configured.
2183
2184 m32cm, m32c
2185 -----------
2186 Same. */
2187
2188 /* Return non-zero if values of type TYPE are returned by storing them
2189 in a buffer whose address is passed on the stack, ahead of the
2190 other arguments. */
2191 static int
2192 m32c_return_by_passed_buf (struct type *type)
2193 {
2194 enum type_code code = TYPE_CODE (type);
2195
2196 return (code == TYPE_CODE_STRUCT
2197 || code == TYPE_CODE_UNION);
2198 }
2199
2200 static enum return_value_convention
2201 m32c_return_value (struct gdbarch *gdbarch,
2202 struct value *function,
2203 struct type *valtype,
2204 struct regcache *regcache,
2205 gdb_byte *readbuf,
2206 const gdb_byte *writebuf)
2207 {
2208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2209 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2210 enum return_value_convention conv;
2211 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2212
2213 if (m32c_return_by_passed_buf (valtype))
2214 conv = RETURN_VALUE_STRUCT_CONVENTION;
2215 else
2216 conv = RETURN_VALUE_REGISTER_CONVENTION;
2217
2218 if (readbuf)
2219 {
2220 /* We should never be called to find values being returned by
2221 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2222 unless we made the call ourselves. */
2223 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2224
2225 gdb_assert (valtype_len <= 8);
2226
2227 /* Anything that fits in r0 is returned there. */
2228 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2229 {
2230 ULONGEST u;
2231 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2232 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2233 }
2234 else
2235 {
2236 /* Everything else is passed in mem0, using as many bytes as
2237 needed. This is not what the Renesas tools do, but it's
2238 what GCC does at the moment. */
2239 struct bound_minimal_symbol mem0
2240 = lookup_minimal_symbol ("mem0", NULL, NULL);
2241
2242 if (! mem0.minsym)
2243 error (_("The return value is stored in memory at 'mem0', "
2244 "but GDB cannot find\n"
2245 "its address."));
2246 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2247 }
2248 }
2249
2250 if (writebuf)
2251 {
2252 /* We should never be called to store values to be returned
2253 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2254 finding the buffer, unless we made the call ourselves. */
2255 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2256
2257 gdb_assert (valtype_len <= 8);
2258
2259 /* Anything that fits in r0 is returned there. */
2260 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2261 {
2262 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2263 byte_order);
2264 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2265 }
2266 else
2267 {
2268 /* Everything else is passed in mem0, using as many bytes as
2269 needed. This is not what the Renesas tools do, but it's
2270 what GCC does at the moment. */
2271 struct bound_minimal_symbol mem0
2272 = lookup_minimal_symbol ("mem0", NULL, NULL);
2273
2274 if (! mem0.minsym)
2275 error (_("The return value is stored in memory at 'mem0', "
2276 "but GDB cannot find\n"
2277 " its address."));
2278 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2279 }
2280 }
2281
2282 return conv;
2283 }
2284
2285
2286 \f
2287 /* Trampolines. */
2288
2289 /* The m16c and m32c use a trampoline function for indirect function
2290 calls. An indirect call looks like this:
2291
2292 ... push arguments ...
2293 ... push target function address ...
2294 jsr.a m32c_jsri16
2295
2296 The code for m32c_jsri16 looks like this:
2297
2298 m32c_jsri16:
2299
2300 # Save return address.
2301 pop.w m32c_jsri_ret
2302 pop.b m32c_jsri_ret+2
2303
2304 # Store target function address.
2305 pop.w m32c_jsri_addr
2306
2307 # Re-push return address.
2308 push.b m32c_jsri_ret+2
2309 push.w m32c_jsri_ret
2310
2311 # Call the target function.
2312 jmpi.a m32c_jsri_addr
2313
2314 Without further information, GDB will treat calls to m32c_jsri16
2315 like calls to any other function. Since m32c_jsri16 doesn't have
2316 debugging information, that normally means that GDB sets a step-
2317 resume breakpoint and lets the program continue --- which is not
2318 what the user wanted. (Giving the trampoline debugging info
2319 doesn't help: the user expects the program to stop in the function
2320 their program is calling, not in some trampoline code they've never
2321 seen before.)
2322
2323 The gdbarch_skip_trampoline_code method tells GDB how to step
2324 through such trampoline functions transparently to the user. When
2325 given the address of a trampoline function's first instruction,
2326 gdbarch_skip_trampoline_code should return the address of the first
2327 instruction of the function really being called. If GDB decides it
2328 wants to step into that function, it will set a breakpoint there
2329 and silently continue to it.
2330
2331 We recognize the trampoline by name, and extract the target address
2332 directly from the stack. This isn't great, but recognizing by its
2333 code sequence seems more fragile. */
2334
2335 static CORE_ADDR
2336 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2337 {
2338 struct gdbarch *gdbarch = get_frame_arch (frame);
2339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2341
2342 /* It would be nicer to simply look up the addresses of known
2343 trampolines once, and then compare stop_pc with them. However,
2344 we'd need to ensure that that cached address got invalidated when
2345 someone loaded a new executable, and I'm not quite sure of the
2346 best way to do that. find_pc_partial_function does do some
2347 caching, so we'll see how this goes. */
2348 const char *name;
2349 CORE_ADDR start, end;
2350
2351 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2352 {
2353 /* Are we stopped at the beginning of the trampoline function? */
2354 if (strcmp (name, "m32c_jsri16") == 0
2355 && stop_pc == start)
2356 {
2357 /* Get the stack pointer. The return address is at the top,
2358 and the target function's address is just below that. We
2359 know it's a two-byte address, since the trampoline is
2360 m32c_jsri*16*. */
2361 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2362 CORE_ADDR target
2363 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2364 2, byte_order);
2365
2366 /* What we have now is the address of a jump instruction.
2367 What we need is the destination of that jump.
2368 The opcode is 1 byte, and the destination is the next 3 bytes. */
2369
2370 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2371 return target;
2372 }
2373 }
2374
2375 return 0;
2376 }
2377
2378
2379 /* Address/pointer conversions. */
2380
2381 /* On the m16c, there is a 24-bit address space, but only a very few
2382 instructions can generate addresses larger than 0xffff: jumps,
2383 jumps to subroutines, and the lde/std (load/store extended)
2384 instructions.
2385
2386 Since GCC can only support one size of pointer, we can't have
2387 distinct 'near' and 'far' pointer types; we have to pick one size
2388 for everything. If we wanted to use 24-bit pointers, then GCC
2389 would have to use lde and ste for all memory references, which
2390 would be terrible for performance and code size. So the GNU
2391 toolchain uses 16-bit pointers for everything, and gives up the
2392 ability to have pointers point outside the first 64k of memory.
2393
2394 However, as a special hack, we let the linker place functions at
2395 addresses above 0xffff, as long as it also places a trampoline in
2396 the low 64k for every function whose address is taken. Each
2397 trampoline consists of a single jmp.a instruction that jumps to the
2398 function's real entry point. Pointers to functions can be 16 bits
2399 long, even though the functions themselves are at higher addresses:
2400 the pointers refer to the trampolines, not the functions.
2401
2402 This complicates things for GDB, however: given the address of a
2403 function (from debug info or linker symbols, say) which could be
2404 anywhere in the 24-bit address space, how can we find an
2405 appropriate 16-bit value to use as a pointer to it?
2406
2407 If the linker has not generated a trampoline for the function,
2408 we're out of luck. Well, I guess we could malloc some space and
2409 write a jmp.a instruction to it, but I'm not going to get into that
2410 at the moment.
2411
2412 If the linker has generated a trampoline for the function, then it
2413 also emitted a symbol for the trampoline: if the function's linker
2414 symbol is named NAME, then the function's trampoline's linker
2415 symbol is named NAME.plt.
2416
2417 So, given a code address:
2418 - We try to find a linker symbol at that address.
2419 - If we find such a symbol named NAME, we look for a linker symbol
2420 named NAME.plt.
2421 - If we find such a symbol, we assume it is a trampoline, and use
2422 its address as the pointer value.
2423
2424 And, given a function pointer:
2425 - We try to find a linker symbol at that address named NAME.plt.
2426 - If we find such a symbol, we look for a linker symbol named NAME.
2427 - If we find that, we provide that as the function's address.
2428 - If any of the above steps fail, we return the original address
2429 unchanged; it might really be a function in the low 64k.
2430
2431 See? You *knew* there was a reason you wanted to be a computer
2432 programmer! :) */
2433
2434 static void
2435 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2436 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2437 {
2438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2439 enum type_code target_code;
2440 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2441 TYPE_CODE (type) == TYPE_CODE_REF);
2442
2443 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2444
2445 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2446 {
2447 const char *func_name;
2448 char *tramp_name;
2449 struct bound_minimal_symbol tramp_msym;
2450
2451 /* Try to find a linker symbol at this address. */
2452 struct bound_minimal_symbol func_msym
2453 = lookup_minimal_symbol_by_pc (addr);
2454
2455 if (! func_msym.minsym)
2456 error (_("Cannot convert code address %s to function pointer:\n"
2457 "couldn't find a symbol at that address, to find trampoline."),
2458 paddress (gdbarch, addr));
2459
2460 func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2461 tramp_name = xmalloc (strlen (func_name) + 5);
2462 strcpy (tramp_name, func_name);
2463 strcat (tramp_name, ".plt");
2464
2465 /* Try to find a linker symbol for the trampoline. */
2466 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2467
2468 /* We've either got another copy of the name now, or don't need
2469 the name any more. */
2470 xfree (tramp_name);
2471
2472 if (! tramp_msym.minsym)
2473 {
2474 CORE_ADDR ptrval;
2475
2476 /* No PLT entry found. Mask off the upper bits of the address
2477 to make a pointer. As noted in the warning to the user
2478 below, this value might be useful if converted back into
2479 an address by GDB, but will otherwise, almost certainly,
2480 be garbage.
2481
2482 Using this masked result does seem to be useful
2483 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2484 PASSes. These results appear to be correct as well.
2485
2486 We print a warning here so that the user can make a
2487 determination about whether the result is useful or not. */
2488 ptrval = addr & 0xffff;
2489
2490 warning (_("Cannot convert code address %s to function pointer:\n"
2491 "couldn't find trampoline named '%s.plt'.\n"
2492 "Returning pointer value %s instead; this may produce\n"
2493 "a useful result if converted back into an address by GDB,\n"
2494 "but will most likely not be useful otherwise.\n"),
2495 paddress (gdbarch, addr), func_name,
2496 paddress (gdbarch, ptrval));
2497
2498 addr = ptrval;
2499
2500 }
2501 else
2502 {
2503 /* The trampoline's address is our pointer. */
2504 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2505 }
2506 }
2507
2508 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2509 }
2510
2511
2512 static CORE_ADDR
2513 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2514 struct type *type, const gdb_byte *buf)
2515 {
2516 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2517 CORE_ADDR ptr;
2518 enum type_code target_code;
2519
2520 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2521 TYPE_CODE (type) == TYPE_CODE_REF);
2522
2523 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2524
2525 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2526
2527 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2528 {
2529 /* See if there is a minimal symbol at that address whose name is
2530 "NAME.plt". */
2531 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2532
2533 if (ptr_msym.minsym)
2534 {
2535 const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2536 int len = strlen (ptr_msym_name);
2537
2538 if (len > 4
2539 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2540 {
2541 struct bound_minimal_symbol func_msym;
2542 /* We have a .plt symbol; try to find the symbol for the
2543 corresponding function.
2544
2545 Since the trampoline contains a jump instruction, we
2546 could also just extract the jump's target address. I
2547 don't see much advantage one way or the other. */
2548 char *func_name = xmalloc (len - 4 + 1);
2549 memcpy (func_name, ptr_msym_name, len - 4);
2550 func_name[len - 4] = '\0';
2551 func_msym
2552 = lookup_minimal_symbol (func_name, NULL, NULL);
2553
2554 /* If we do have such a symbol, return its value as the
2555 function's true address. */
2556 if (func_msym.minsym)
2557 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2558 }
2559 }
2560 else
2561 {
2562 int aspace;
2563
2564 for (aspace = 1; aspace <= 15; aspace++)
2565 {
2566 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2567
2568 if (ptr_msym.minsym)
2569 ptr |= aspace << 16;
2570 }
2571 }
2572 }
2573
2574 return ptr;
2575 }
2576
2577 static void
2578 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2579 int *frame_regnum,
2580 LONGEST *frame_offset)
2581 {
2582 const char *name;
2583 CORE_ADDR func_addr, func_end;
2584 struct m32c_prologue p;
2585
2586 struct regcache *regcache = get_current_regcache ();
2587 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2588
2589 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2590 internal_error (__FILE__, __LINE__,
2591 _("No virtual frame pointer available"));
2592
2593 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2594 switch (p.kind)
2595 {
2596 case prologue_with_frame_ptr:
2597 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2598 *frame_offset = p.frame_ptr_offset;
2599 break;
2600 case prologue_sans_frame_ptr:
2601 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2602 *frame_offset = p.frame_size;
2603 break;
2604 default:
2605 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2606 *frame_offset = 0;
2607 break;
2608 }
2609 /* Sanity check */
2610 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2611 internal_error (__FILE__, __LINE__,
2612 _("No virtual frame pointer available"));
2613 }
2614
2615 \f
2616 /* Initialization. */
2617
2618 static struct gdbarch *
2619 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2620 {
2621 struct gdbarch *arch;
2622 struct gdbarch_tdep *tdep;
2623 unsigned long mach = info.bfd_arch_info->mach;
2624
2625 /* Find a candidate among the list of architectures we've created
2626 already. */
2627 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2628 arches != NULL;
2629 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2630 return arches->gdbarch;
2631
2632 tdep = xcalloc (1, sizeof (*tdep));
2633 arch = gdbarch_alloc (&info, tdep);
2634
2635 /* Essential types. */
2636 make_types (arch);
2637
2638 /* Address/pointer conversions. */
2639 if (mach == bfd_mach_m16c)
2640 {
2641 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2642 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2643 }
2644
2645 /* Register set. */
2646 make_regs (arch);
2647
2648 /* Disassembly. */
2649 set_gdbarch_print_insn (arch, print_insn_m32c);
2650
2651 /* Breakpoints. */
2652 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2653
2654 /* Prologue analysis and unwinding. */
2655 set_gdbarch_inner_than (arch, core_addr_lessthan);
2656 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2657 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2658 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2659 #if 0
2660 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2661 They may be in the dwarf2 cfi code in GDB, or they may be in
2662 the debug info emitted by the upstream toolchain. I don't
2663 know which, but I do know that the prologue analyzer works better.
2664 MVS 04/13/06 */
2665 dwarf2_append_sniffers (arch);
2666 #endif
2667 frame_unwind_append_unwinder (arch, &m32c_unwind);
2668
2669 /* Inferior calls. */
2670 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2671 set_gdbarch_return_value (arch, m32c_return_value);
2672 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2673
2674 /* Trampolines. */
2675 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2676
2677 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2678
2679 /* m32c function boundary addresses are not necessarily even.
2680 Therefore, the `vbit', which indicates a pointer to a virtual
2681 member function, is stored in the delta field, rather than as
2682 the low bit of a function pointer address.
2683
2684 In order to verify this, see the definition of
2685 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2686 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2687 set_gdbarch_vbit_in_delta (arch, 1);
2688
2689 return arch;
2690 }
2691
2692 /* Provide a prototype to silence -Wmissing-prototypes. */
2693 extern initialize_file_ftype _initialize_m32c_tdep;
2694
2695 void
2696 _initialize_m32c_tdep (void)
2697 {
2698 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2699
2700 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2701 }
This page took 0.098768 seconds and 4 git commands to generate.