Make GDB wait for events after handling target File-I/O
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39
40 \f
41 /* The m32c tdep structure. */
42
43 static struct reggroup *m32c_dma_reggroup;
44
45 struct m32c_reg;
46
47 /* The type of a function that moves the value of REG between CACHE or
48 BUF --- in either direction. */
49 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
50 struct regcache *cache,
51 const gdb_byte *buf);
52
53 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
54 struct regcache *cache,
55 gdb_byte *buf);
56
57 struct m32c_reg
58 {
59 /* The name of this register. */
60 const char *name;
61
62 /* Its type. */
63 struct type *type;
64
65 /* The architecture this register belongs to. */
66 struct gdbarch *arch;
67
68 /* Its GDB register number. */
69 int num;
70
71 /* Its sim register number. */
72 int sim_num;
73
74 /* Its DWARF register number, or -1 if it doesn't have one. */
75 int dwarf_num;
76
77 /* Register group memberships. */
78 unsigned int general_p : 1;
79 unsigned int dma_p : 1;
80 unsigned int system_p : 1;
81 unsigned int save_restore_p : 1;
82
83 /* Functions to read its value from a regcache, and write its value
84 to a regcache. */
85 m32c_read_reg_t *read;
86 m32c_write_reg_t *write;
87
88 /* Data for READ and WRITE functions. The exact meaning depends on
89 the specific functions selected; see the comments for those
90 functions. */
91 struct m32c_reg *rx, *ry;
92 int n;
93 };
94
95
96 /* An overestimate of the number of raw and pseudoregisters we will
97 have. The exact answer depends on the variant of the architecture
98 at hand, but we can use this to declare statically allocated
99 arrays, and bump it up when needed. */
100 #define M32C_MAX_NUM_REGS (75)
101
102 /* The largest assigned DWARF register number. */
103 #define M32C_MAX_DWARF_REGNUM (40)
104
105
106 struct gdbarch_tdep
107 {
108 /* All the registers for this variant, indexed by GDB register
109 number, and the number of registers present. */
110 struct m32c_reg regs[M32C_MAX_NUM_REGS];
111
112 /* The number of valid registers. */
113 int num_regs;
114
115 /* Interesting registers. These are pointers into REGS. */
116 struct m32c_reg *pc, *flg;
117 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
118 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
119 struct m32c_reg *sb, *fb, *sp;
120
121 /* A table indexed by DWARF register numbers, pointing into
122 REGS. */
123 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
124
125 /* Types for this architecture. We can't use the builtin_type_foo
126 types, because they're not initialized when building a gdbarch
127 structure. */
128 struct type *voyd, *ptr_voyd, *func_voyd;
129 struct type *uint8, *uint16;
130 struct type *int8, *int16, *int32, *int64;
131
132 /* The types for data address and code address registers. */
133 struct type *data_addr_reg_type, *code_addr_reg_type;
134
135 /* The number of bytes a return address pushed by a 'jsr' instruction
136 occupies on the stack. */
137 int ret_addr_bytes;
138
139 /* The number of bytes an address register occupies on the stack
140 when saved by an 'enter' or 'pushm' instruction. */
141 int push_addr_bytes;
142 };
143
144 \f
145 /* Types. */
146
147 static void
148 make_types (struct gdbarch *arch)
149 {
150 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
151 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
152 int data_addr_reg_bits, code_addr_reg_bits;
153 char type_name[50];
154
155 #if 0
156 /* This is used to clip CORE_ADDR values, so this value is
157 appropriate both on the m32c, where pointers are 32 bits long,
158 and on the m16c, where pointers are sixteen bits long, but there
159 may be code above the 64k boundary. */
160 set_gdbarch_addr_bit (arch, 24);
161 #else
162 /* GCC uses 32 bits for addrs in the dwarf info, even though
163 only 16/24 bits are used. Setting addr_bit to 24 causes
164 errors in reading the dwarf addresses. */
165 set_gdbarch_addr_bit (arch, 32);
166 #endif
167
168 set_gdbarch_int_bit (arch, 16);
169 switch (mach)
170 {
171 case bfd_mach_m16c:
172 data_addr_reg_bits = 16;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 16);
175 tdep->ret_addr_bytes = 3;
176 tdep->push_addr_bytes = 2;
177 break;
178
179 case bfd_mach_m32c:
180 data_addr_reg_bits = 24;
181 code_addr_reg_bits = 24;
182 set_gdbarch_ptr_bit (arch, 32);
183 tdep->ret_addr_bytes = 4;
184 tdep->push_addr_bytes = 4;
185 break;
186
187 default:
188 gdb_assert_not_reached ("unexpected mach");
189 }
190
191 /* The builtin_type_mumble variables are sometimes uninitialized when
192 this is called, so we avoid using them. */
193 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
194 tdep->ptr_voyd
195 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
196 NULL);
197 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
198 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
199 tdep->func_voyd = lookup_function_type (tdep->voyd);
200
201 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
202 gdbarch_bfd_arch_info (arch)->printable_name);
203 tdep->data_addr_reg_type
204 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
205 xstrdup (type_name));
206 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
207 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
208
209 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
210 gdbarch_bfd_arch_info (arch)->printable_name);
211 tdep->code_addr_reg_type
212 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
213 xstrdup (type_name));
214 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
215 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
216
217 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
218 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
219 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
220 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
221 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
222 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
223 }
224
225
226 \f
227 /* Register set. */
228
229 static const char *
230 m32c_register_name (struct gdbarch *gdbarch, int num)
231 {
232 return gdbarch_tdep (gdbarch)->regs[num].name;
233 }
234
235
236 static struct type *
237 m32c_register_type (struct gdbarch *arch, int reg_nr)
238 {
239 return gdbarch_tdep (arch)->regs[reg_nr].type;
240 }
241
242
243 static int
244 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
245 {
246 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
247 }
248
249
250 static int
251 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
252 {
253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
254 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
255 && tdep->dwarf_regs[reg_nr])
256 return tdep->dwarf_regs[reg_nr]->num;
257 else
258 /* The DWARF CFI code expects to see -1 for invalid register
259 numbers. */
260 return -1;
261 }
262
263
264 static int
265 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
266 struct reggroup *group)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269 struct m32c_reg *reg = &tdep->regs[regnum];
270
271 /* The anonymous raw registers aren't in any groups. */
272 if (! reg->name)
273 return 0;
274
275 if (group == all_reggroup)
276 return 1;
277
278 if (group == general_reggroup
279 && reg->general_p)
280 return 1;
281
282 if (group == m32c_dma_reggroup
283 && reg->dma_p)
284 return 1;
285
286 if (group == system_reggroup
287 && reg->system_p)
288 return 1;
289
290 /* Since the m32c DWARF register numbers refer to cooked registers, not
291 raw registers, and frame_pop depends on the save and restore groups
292 containing registers the DWARF CFI will actually mention, our save
293 and restore groups are cooked registers, not raw registers. (This is
294 why we can't use the default reggroup function.) */
295 if ((group == save_reggroup
296 || group == restore_reggroup)
297 && reg->save_restore_p)
298 return 1;
299
300 return 0;
301 }
302
303
304 /* Register move functions. We declare them here using
305 m32c_{read,write}_reg_t to check the types. */
306 static m32c_read_reg_t m32c_raw_read;
307 static m32c_read_reg_t m32c_banked_read;
308 static m32c_read_reg_t m32c_sb_read;
309 static m32c_read_reg_t m32c_part_read;
310 static m32c_read_reg_t m32c_cat_read;
311 static m32c_read_reg_t m32c_r3r2r1r0_read;
312
313 static m32c_write_reg_t m32c_raw_write;
314 static m32c_write_reg_t m32c_banked_write;
315 static m32c_write_reg_t m32c_sb_write;
316 static m32c_write_reg_t m32c_part_write;
317 static m32c_write_reg_t m32c_cat_write;
318 static m32c_write_reg_t m32c_r3r2r1r0_write;
319
320 /* Copy the value of the raw register REG from CACHE to BUF. */
321 static enum register_status
322 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
323 {
324 return regcache_raw_read (cache, reg->num, buf);
325 }
326
327
328 /* Copy the value of the raw register REG from BUF to CACHE. */
329 static enum register_status
330 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
331 const gdb_byte *buf)
332 {
333 regcache_raw_write (cache, reg->num, buf);
334
335 return REG_VALID;
336 }
337
338
339 /* Return the value of the 'flg' register in CACHE. */
340 static int
341 m32c_read_flg (struct regcache *cache)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
344 ULONGEST flg;
345 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
346 return flg & 0xffff;
347 }
348
349
350 /* Evaluate the real register number of a banked register. */
351 static struct m32c_reg *
352 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
353 {
354 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
355 }
356
357
358 /* Move the value of a banked register from CACHE to BUF.
359 If the value of the 'flg' register in CACHE has any of the bits
360 masked in REG->n set, then read REG->ry. Otherwise, read
361 REG->rx. */
362 static enum register_status
363 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
364 {
365 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
366 return regcache_raw_read (cache, bank_reg->num, buf);
367 }
368
369
370 /* Move the value of a banked register from BUF to CACHE.
371 If the value of the 'flg' register in CACHE has any of the bits
372 masked in REG->n set, then write REG->ry. Otherwise, write
373 REG->rx. */
374 static enum register_status
375 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
376 const gdb_byte *buf)
377 {
378 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
379 regcache_raw_write (cache, bank_reg->num, buf);
380
381 return REG_VALID;
382 }
383
384
385 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
386 banked register; on bfd_mach_m16c, it's not. */
387 static enum register_status
388 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
389 {
390 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
391 return m32c_raw_read (reg->rx, cache, buf);
392 else
393 return m32c_banked_read (reg, cache, buf);
394 }
395
396
397 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
398 banked register; on bfd_mach_m16c, it's not. */
399 static enum register_status
400 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
401 {
402 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
403 m32c_raw_write (reg->rx, cache, buf);
404 else
405 m32c_banked_write (reg, cache, buf);
406
407 return REG_VALID;
408 }
409
410
411 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
412 and *LEN_P to the offset and length, in bytes, of the part REG
413 occupies in its underlying register. The offset is from the
414 lower-addressed end, regardless of the architecture's endianness.
415 (The M32C family is always little-endian, but let's keep those
416 assumptions out of here.) */
417 static void
418 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
419 {
420 /* The length of the containing register, of which REG is one part. */
421 int containing_len = TYPE_LENGTH (reg->rx->type);
422
423 /* The length of one "element" in our imaginary array. */
424 int elt_len = TYPE_LENGTH (reg->type);
425
426 /* The offset of REG's "element" from the least significant end of
427 the containing register. */
428 int elt_offset = reg->n * elt_len;
429
430 /* If we extend off the end, trim the length of the element. */
431 if (elt_offset + elt_len > containing_len)
432 {
433 elt_len = containing_len - elt_offset;
434 /* We shouldn't be declaring partial registers that go off the
435 end of their containing registers. */
436 gdb_assert (elt_len > 0);
437 }
438
439 /* Flip the offset around if we're big-endian. */
440 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
441 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
442
443 *offset_p = elt_offset;
444 *len_p = elt_len;
445 }
446
447
448 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
449 to BUF. Treating the value of the register REG->rx as an array of
450 REG->type values, where higher indices refer to more significant
451 bits, read the value of the REG->n'th element. */
452 static enum register_status
453 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
454 {
455 int offset, len;
456
457 memset (buf, 0, TYPE_LENGTH (reg->type));
458 m32c_find_part (reg, &offset, &len);
459 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
460 }
461
462
463 /* Move the value of a banked register from BUF to CACHE.
464 Treating the value of the register REG->rx as an array of REG->type
465 values, where higher indices refer to more significant bits, write
466 the value of the REG->n'th element. */
467 static enum register_status
468 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
469 const gdb_byte *buf)
470 {
471 int offset, len;
472
473 m32c_find_part (reg, &offset, &len);
474 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
475
476 return REG_VALID;
477 }
478
479
480 /* Move the value of REG from CACHE to BUF. REG's value is the
481 concatenation of the values of the registers REG->rx and REG->ry,
482 with REG->rx contributing the more significant bits. */
483 static enum register_status
484 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
485 {
486 int high_bytes = TYPE_LENGTH (reg->rx->type);
487 int low_bytes = TYPE_LENGTH (reg->ry->type);
488 enum register_status status;
489
490 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
491
492 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
493 {
494 status = regcache_cooked_read (cache, reg->rx->num, buf);
495 if (status == REG_VALID)
496 status = regcache_cooked_read (cache, reg->ry->num, buf + high_bytes);
497 }
498 else
499 {
500 status = regcache_cooked_read (cache, reg->rx->num, buf + low_bytes);
501 if (status == REG_VALID)
502 status = regcache_cooked_read (cache, reg->ry->num, buf);
503 }
504
505 return status;
506 }
507
508
509 /* Move the value of REG from CACHE to BUF. REG's value is the
510 concatenation of the values of the registers REG->rx and REG->ry,
511 with REG->rx contributing the more significant bits. */
512 static enum register_status
513 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
514 const gdb_byte *buf)
515 {
516 int high_bytes = TYPE_LENGTH (reg->rx->type);
517 int low_bytes = TYPE_LENGTH (reg->ry->type);
518
519 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
520
521 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
522 {
523 regcache_cooked_write (cache, reg->rx->num, buf);
524 regcache_cooked_write (cache, reg->ry->num, buf + high_bytes);
525 }
526 else
527 {
528 regcache_cooked_write (cache, reg->rx->num, buf + low_bytes);
529 regcache_cooked_write (cache, reg->ry->num, buf);
530 }
531
532 return REG_VALID;
533 }
534
535
536 /* Copy the value of the raw register REG from CACHE to BUF. REG is
537 the concatenation (from most significant to least) of r3, r2, r1,
538 and r0. */
539 static enum register_status
540 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
541 {
542 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
543 int len = TYPE_LENGTH (tdep->r0->type);
544 enum register_status status;
545
546 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
547 {
548 status = regcache_cooked_read (cache, tdep->r0->num, buf + len * 3);
549 if (status == REG_VALID)
550 status = regcache_cooked_read (cache, tdep->r1->num, buf + len * 2);
551 if (status == REG_VALID)
552 status = regcache_cooked_read (cache, tdep->r2->num, buf + len * 1);
553 if (status == REG_VALID)
554 status = regcache_cooked_read (cache, tdep->r3->num, buf);
555 }
556 else
557 {
558 status = regcache_cooked_read (cache, tdep->r0->num, buf);
559 if (status == REG_VALID)
560 status = regcache_cooked_read (cache, tdep->r1->num, buf + len * 1);
561 if (status == REG_VALID)
562 status = regcache_cooked_read (cache, tdep->r2->num, buf + len * 2);
563 if (status == REG_VALID)
564 status = regcache_cooked_read (cache, tdep->r3->num, buf + len * 3);
565 }
566
567 return status;
568 }
569
570
571 /* Copy the value of the raw register REG from BUF to CACHE. REG is
572 the concatenation (from most significant to least) of r3, r2, r1,
573 and r0. */
574 static enum register_status
575 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
576 const gdb_byte *buf)
577 {
578 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
579 int len = TYPE_LENGTH (tdep->r0->type);
580
581 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
582 {
583 regcache_cooked_write (cache, tdep->r0->num, buf + len * 3);
584 regcache_cooked_write (cache, tdep->r1->num, buf + len * 2);
585 regcache_cooked_write (cache, tdep->r2->num, buf + len * 1);
586 regcache_cooked_write (cache, tdep->r3->num, buf);
587 }
588 else
589 {
590 regcache_cooked_write (cache, tdep->r0->num, buf);
591 regcache_cooked_write (cache, tdep->r1->num, buf + len * 1);
592 regcache_cooked_write (cache, tdep->r2->num, buf + len * 2);
593 regcache_cooked_write (cache, tdep->r3->num, buf + len * 3);
594 }
595
596 return REG_VALID;
597 }
598
599
600 static enum register_status
601 m32c_pseudo_register_read (struct gdbarch *arch,
602 struct regcache *cache,
603 int cookednum,
604 gdb_byte *buf)
605 {
606 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
607 struct m32c_reg *reg;
608
609 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
610 gdb_assert (arch == get_regcache_arch (cache));
611 gdb_assert (arch == tdep->regs[cookednum].arch);
612 reg = &tdep->regs[cookednum];
613
614 return reg->read (reg, cache, buf);
615 }
616
617
618 static void
619 m32c_pseudo_register_write (struct gdbarch *arch,
620 struct regcache *cache,
621 int cookednum,
622 const gdb_byte *buf)
623 {
624 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
625 struct m32c_reg *reg;
626
627 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
628 gdb_assert (arch == get_regcache_arch (cache));
629 gdb_assert (arch == tdep->regs[cookednum].arch);
630 reg = &tdep->regs[cookednum];
631
632 reg->write (reg, cache, buf);
633 }
634
635
636 /* Add a register with the given fields to the end of ARCH's table.
637 Return a pointer to the newly added register. */
638 static struct m32c_reg *
639 add_reg (struct gdbarch *arch,
640 const char *name,
641 struct type *type,
642 int sim_num,
643 m32c_read_reg_t *read,
644 m32c_write_reg_t *write,
645 struct m32c_reg *rx,
646 struct m32c_reg *ry,
647 int n)
648 {
649 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
650 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
651
652 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
653
654 r->name = name;
655 r->type = type;
656 r->arch = arch;
657 r->num = tdep->num_regs;
658 r->sim_num = sim_num;
659 r->dwarf_num = -1;
660 r->general_p = 0;
661 r->dma_p = 0;
662 r->system_p = 0;
663 r->save_restore_p = 0;
664 r->read = read;
665 r->write = write;
666 r->rx = rx;
667 r->ry = ry;
668 r->n = n;
669
670 tdep->num_regs++;
671
672 return r;
673 }
674
675
676 /* Record NUM as REG's DWARF register number. */
677 static void
678 set_dwarf_regnum (struct m32c_reg *reg, int num)
679 {
680 gdb_assert (num < M32C_MAX_NUM_REGS);
681
682 /* Update the reg->DWARF mapping. Only count the first number
683 assigned to this register. */
684 if (reg->dwarf_num == -1)
685 reg->dwarf_num = num;
686
687 /* Update the DWARF->reg mapping. */
688 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
689 }
690
691
692 /* Mark REG as a general-purpose register, and return it. */
693 static struct m32c_reg *
694 mark_general (struct m32c_reg *reg)
695 {
696 reg->general_p = 1;
697 return reg;
698 }
699
700
701 /* Mark REG as a DMA register, and return it. */
702 static struct m32c_reg *
703 mark_dma (struct m32c_reg *reg)
704 {
705 reg->dma_p = 1;
706 return reg;
707 }
708
709
710 /* Mark REG as a SYSTEM register, and return it. */
711 static struct m32c_reg *
712 mark_system (struct m32c_reg *reg)
713 {
714 reg->system_p = 1;
715 return reg;
716 }
717
718
719 /* Mark REG as a save-restore register, and return it. */
720 static struct m32c_reg *
721 mark_save_restore (struct m32c_reg *reg)
722 {
723 reg->save_restore_p = 1;
724 return reg;
725 }
726
727
728 #define FLAGBIT_B 0x0010
729 #define FLAGBIT_U 0x0080
730
731 /* Handy macros for declaring registers. These all evaluate to
732 pointers to the register declared. Macros that define two
733 registers evaluate to a pointer to the first. */
734
735 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
736 #define R(name, type, sim_num) \
737 (add_reg (arch, (name), (type), (sim_num), \
738 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
739
740 /* The simulator register number for a raw register named NAME. */
741 #define SIM(name) (m32c_sim_reg_ ## name)
742
743 /* A raw unsigned 16-bit data register named NAME.
744 NAME should be an identifier, not a string. */
745 #define R16U(name) \
746 (R(#name, tdep->uint16, SIM (name)))
747
748 /* A raw data address register named NAME.
749 NAME should be an identifier, not a string. */
750 #define RA(name) \
751 (R(#name, tdep->data_addr_reg_type, SIM (name)))
752
753 /* A raw code address register named NAME. NAME should
754 be an identifier, not a string. */
755 #define RC(name) \
756 (R(#name, tdep->code_addr_reg_type, SIM (name)))
757
758 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
759 NAME should be an identifier, not a string. */
760 #define RP(name, type) \
761 (R(#name "0", (type), SIM (name ## 0)), \
762 R(#name "1", (type), SIM (name ## 1)) - 1)
763
764 /* A raw banked general-purpose data register named NAME.
765 NAME should be an identifier, not a string. */
766 #define RBD(name) \
767 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
768 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
769
770 /* A raw banked data address register named NAME.
771 NAME should be an identifier, not a string. */
772 #define RBA(name) \
773 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
774 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
775
776 /* A cooked register named NAME referring to a raw banked register
777 from the bank selected by the current value of FLG. RAW_PAIR
778 should be a pointer to the first register in the banked pair.
779 NAME must be an identifier, not a string. */
780 #define CB(name, raw_pair) \
781 (add_reg (arch, #name, (raw_pair)->type, 0, \
782 m32c_banked_read, m32c_banked_write, \
783 (raw_pair), (raw_pair + 1), FLAGBIT_B))
784
785 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
786 access the top and bottom halves of the register pointed to by
787 NAME. NAME should be an identifier. */
788 #define CHL(name, type) \
789 (add_reg (arch, #name "h", (type), 0, \
790 m32c_part_read, m32c_part_write, name, NULL, 1), \
791 add_reg (arch, #name "l", (type), 0, \
792 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
793
794 /* A register constructed by concatenating the two registers HIGH and
795 LOW, whose name is HIGHLOW and whose type is TYPE. */
796 #define CCAT(high, low, type) \
797 (add_reg (arch, #high #low, (type), 0, \
798 m32c_cat_read, m32c_cat_write, (high), (low), 0))
799
800 /* Abbreviations for marking register group membership. */
801 #define G(reg) (mark_general (reg))
802 #define S(reg) (mark_system (reg))
803 #define DMA(reg) (mark_dma (reg))
804
805
806 /* Construct the register set for ARCH. */
807 static void
808 make_regs (struct gdbarch *arch)
809 {
810 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
811 int mach = gdbarch_bfd_arch_info (arch)->mach;
812 int num_raw_regs;
813 int num_cooked_regs;
814
815 struct m32c_reg *r0;
816 struct m32c_reg *r1;
817 struct m32c_reg *r2;
818 struct m32c_reg *r3;
819 struct m32c_reg *a0;
820 struct m32c_reg *a1;
821 struct m32c_reg *fb;
822 struct m32c_reg *sb;
823 struct m32c_reg *sp;
824 struct m32c_reg *r0hl;
825 struct m32c_reg *r1hl;
826 struct m32c_reg *r2hl;
827 struct m32c_reg *r3hl;
828 struct m32c_reg *intbhl;
829 struct m32c_reg *r2r0;
830 struct m32c_reg *r3r1;
831 struct m32c_reg *r3r1r2r0;
832 struct m32c_reg *r3r2r1r0;
833 struct m32c_reg *a1a0;
834
835 struct m32c_reg *raw_r0_pair = RBD (r0);
836 struct m32c_reg *raw_r1_pair = RBD (r1);
837 struct m32c_reg *raw_r2_pair = RBD (r2);
838 struct m32c_reg *raw_r3_pair = RBD (r3);
839 struct m32c_reg *raw_a0_pair = RBA (a0);
840 struct m32c_reg *raw_a1_pair = RBA (a1);
841 struct m32c_reg *raw_fb_pair = RBA (fb);
842
843 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
844 We always declare both raw registers, and deal with the distinction
845 in the pseudoregister. */
846 struct m32c_reg *raw_sb_pair = RBA (sb);
847
848 struct m32c_reg *usp = S (RA (usp));
849 struct m32c_reg *isp = S (RA (isp));
850 struct m32c_reg *intb = S (RC (intb));
851 struct m32c_reg *pc = G (RC (pc));
852 struct m32c_reg *flg = G (R16U (flg));
853
854 if (mach == bfd_mach_m32c)
855 {
856 struct m32c_reg *svf = S (R16U (svf));
857 struct m32c_reg *svp = S (RC (svp));
858 struct m32c_reg *vct = S (RC (vct));
859
860 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
861 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
862 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
863 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
864 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
865 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
866 }
867
868 num_raw_regs = tdep->num_regs;
869
870 r0 = G (CB (r0, raw_r0_pair));
871 r1 = G (CB (r1, raw_r1_pair));
872 r2 = G (CB (r2, raw_r2_pair));
873 r3 = G (CB (r3, raw_r3_pair));
874 a0 = G (CB (a0, raw_a0_pair));
875 a1 = G (CB (a1, raw_a1_pair));
876 fb = G (CB (fb, raw_fb_pair));
877
878 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
879 Specify custom read/write functions that do the right thing. */
880 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
881 m32c_sb_read, m32c_sb_write,
882 raw_sb_pair, raw_sb_pair + 1, 0));
883
884 /* The current sp is either usp or isp, depending on the value of
885 the FLG register's U bit. */
886 sp = G (add_reg (arch, "sp", usp->type, 0,
887 m32c_banked_read, m32c_banked_write,
888 isp, usp, FLAGBIT_U));
889
890 r0hl = CHL (r0, tdep->int8);
891 r1hl = CHL (r1, tdep->int8);
892 r2hl = CHL (r2, tdep->int8);
893 r3hl = CHL (r3, tdep->int8);
894 intbhl = CHL (intb, tdep->int16);
895
896 r2r0 = CCAT (r2, r0, tdep->int32);
897 r3r1 = CCAT (r3, r1, tdep->int32);
898 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
899
900 r3r2r1r0
901 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
902 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
903
904 if (mach == bfd_mach_m16c)
905 a1a0 = CCAT (a1, a0, tdep->int32);
906 else
907 a1a0 = NULL;
908
909 num_cooked_regs = tdep->num_regs - num_raw_regs;
910
911 tdep->pc = pc;
912 tdep->flg = flg;
913 tdep->r0 = r0;
914 tdep->r1 = r1;
915 tdep->r2 = r2;
916 tdep->r3 = r3;
917 tdep->r2r0 = r2r0;
918 tdep->r3r2r1r0 = r3r2r1r0;
919 tdep->r3r1r2r0 = r3r1r2r0;
920 tdep->a0 = a0;
921 tdep->a1 = a1;
922 tdep->sb = sb;
923 tdep->fb = fb;
924 tdep->sp = sp;
925
926 /* Set up the DWARF register table. */
927 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
928 set_dwarf_regnum (r0hl + 1, 0x01);
929 set_dwarf_regnum (r0hl + 0, 0x02);
930 set_dwarf_regnum (r1hl + 1, 0x03);
931 set_dwarf_regnum (r1hl + 0, 0x04);
932 set_dwarf_regnum (r0, 0x05);
933 set_dwarf_regnum (r1, 0x06);
934 set_dwarf_regnum (r2, 0x07);
935 set_dwarf_regnum (r3, 0x08);
936 set_dwarf_regnum (a0, 0x09);
937 set_dwarf_regnum (a1, 0x0a);
938 set_dwarf_regnum (fb, 0x0b);
939 set_dwarf_regnum (sp, 0x0c);
940 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
941 set_dwarf_regnum (sb, 0x13);
942 set_dwarf_regnum (r2r0, 0x15);
943 set_dwarf_regnum (r3r1, 0x16);
944 if (a1a0)
945 set_dwarf_regnum (a1a0, 0x17);
946
947 /* Enumerate the save/restore register group.
948
949 The regcache_save and regcache_restore functions apply their read
950 function to each register in this group.
951
952 Since frame_pop supplies frame_unwind_register as its read
953 function, the registers meaningful to the Dwarf unwinder need to
954 be in this group.
955
956 On the other hand, when we make inferior calls, save_inferior_status
957 and restore_inferior_status use them to preserve the current register
958 values across the inferior call. For this, you'd kind of like to
959 preserve all the raw registers, to protect the interrupted code from
960 any sort of bank switching the callee might have done. But we handle
961 those cases so badly anyway --- for example, it matters whether we
962 restore FLG before or after we restore the general-purpose registers,
963 but there's no way to express that --- that it isn't worth worrying
964 about.
965
966 We omit control registers like inthl: if you call a function that
967 changes those, it's probably because you wanted that change to be
968 visible to the interrupted code. */
969 mark_save_restore (r0);
970 mark_save_restore (r1);
971 mark_save_restore (r2);
972 mark_save_restore (r3);
973 mark_save_restore (a0);
974 mark_save_restore (a1);
975 mark_save_restore (sb);
976 mark_save_restore (fb);
977 mark_save_restore (sp);
978 mark_save_restore (pc);
979 mark_save_restore (flg);
980
981 set_gdbarch_num_regs (arch, num_raw_regs);
982 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
983 set_gdbarch_pc_regnum (arch, pc->num);
984 set_gdbarch_sp_regnum (arch, sp->num);
985 set_gdbarch_register_name (arch, m32c_register_name);
986 set_gdbarch_register_type (arch, m32c_register_type);
987 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
988 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
989 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
990 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
991 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
992 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
993
994 reggroup_add (arch, general_reggroup);
995 reggroup_add (arch, all_reggroup);
996 reggroup_add (arch, save_reggroup);
997 reggroup_add (arch, restore_reggroup);
998 reggroup_add (arch, system_reggroup);
999 reggroup_add (arch, m32c_dma_reggroup);
1000 }
1001
1002
1003 \f
1004 /* Breakpoints. */
1005
1006 static const unsigned char *
1007 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1008 {
1009 static unsigned char break_insn[] = { 0x00 }; /* brk */
1010
1011 *len = sizeof (break_insn);
1012 return break_insn;
1013 }
1014
1015
1016 \f
1017 /* Prologue analysis. */
1018
1019 enum m32c_prologue_kind
1020 {
1021 /* This function uses a frame pointer. */
1022 prologue_with_frame_ptr,
1023
1024 /* This function has no frame pointer. */
1025 prologue_sans_frame_ptr,
1026
1027 /* This function sets up the stack, so its frame is the first
1028 frame on the stack. */
1029 prologue_first_frame
1030 };
1031
1032 struct m32c_prologue
1033 {
1034 /* For consistency with the DWARF 2 .debug_frame info generated by
1035 GCC, a frame's CFA is the address immediately after the saved
1036 return address. */
1037
1038 /* The architecture for which we generated this prologue info. */
1039 struct gdbarch *arch;
1040
1041 enum m32c_prologue_kind kind;
1042
1043 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1044 CFA to where the frame pointer points. This is always zero or
1045 negative. */
1046 LONGEST frame_ptr_offset;
1047
1048 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1049 the stack pointer --- always zero or negative.
1050
1051 Calling this a "size" is a bit misleading, but given that the
1052 stack grows downwards, using offsets for everything keeps one
1053 from going completely sign-crazy: you never change anything's
1054 sign for an ADD instruction; always change the second operand's
1055 sign for a SUB instruction; and everything takes care of
1056 itself.
1057
1058 Functions that use alloca don't have a constant frame size. But
1059 they always have frame pointers, so we must use that to find the
1060 CFA (and perhaps to unwind the stack pointer). */
1061 LONGEST frame_size;
1062
1063 /* The address of the first instruction at which the frame has been
1064 set up and the arguments are where the debug info says they are
1065 --- as best as we can tell. */
1066 CORE_ADDR prologue_end;
1067
1068 /* reg_offset[R] is the offset from the CFA at which register R is
1069 saved, or 1 if register R has not been saved. (Real values are
1070 always zero or negative.) */
1071 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1072 };
1073
1074
1075 /* The longest I've seen, anyway. */
1076 #define M32C_MAX_INSN_LEN (9)
1077
1078 /* Processor state, for the prologue analyzer. */
1079 struct m32c_pv_state
1080 {
1081 struct gdbarch *arch;
1082 pv_t r0, r1, r2, r3;
1083 pv_t a0, a1;
1084 pv_t sb, fb, sp;
1085 pv_t pc;
1086 struct pv_area *stack;
1087
1088 /* Bytes from the current PC, the address they were read from,
1089 and the address of the next unconsumed byte. */
1090 gdb_byte insn[M32C_MAX_INSN_LEN];
1091 CORE_ADDR scan_pc, next_addr;
1092 };
1093
1094
1095 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1096 all went well, or non-zero if simulating the action would trash our
1097 state. */
1098 static int
1099 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1100 {
1101 if (pv_area_store_would_trash (state->stack, state->sp))
1102 return 1;
1103
1104 state->sp = pv_add_constant (state->sp, -size);
1105 pv_area_store (state->stack, state->sp, size, value);
1106
1107 return 0;
1108 }
1109
1110
1111 enum srcdest_kind
1112 {
1113 srcdest_reg,
1114 srcdest_partial_reg,
1115 srcdest_mem
1116 };
1117
1118 /* A source or destination location for an m16c or m32c
1119 instruction. */
1120 struct srcdest
1121 {
1122 /* If srcdest_reg, the location is a register pointed to by REG.
1123 If srcdest_partial_reg, the location is part of a register pointed
1124 to by REG. We don't try to handle this too well.
1125 If srcdest_mem, the location is memory whose address is ADDR. */
1126 enum srcdest_kind kind;
1127 pv_t *reg, addr;
1128 };
1129
1130
1131 /* Return the SIZE-byte value at LOC in STATE. */
1132 static pv_t
1133 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1134 {
1135 if (loc.kind == srcdest_mem)
1136 return pv_area_fetch (state->stack, loc.addr, size);
1137 else if (loc.kind == srcdest_partial_reg)
1138 return pv_unknown ();
1139 else
1140 return *loc.reg;
1141 }
1142
1143
1144 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1145 all went well, or non-zero if simulating the store would trash our
1146 state. */
1147 static int
1148 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1149 pv_t value, int size)
1150 {
1151 if (loc.kind == srcdest_mem)
1152 {
1153 if (pv_area_store_would_trash (state->stack, loc.addr))
1154 return 1;
1155 pv_area_store (state->stack, loc.addr, size, value);
1156 }
1157 else if (loc.kind == srcdest_partial_reg)
1158 *loc.reg = pv_unknown ();
1159 else
1160 *loc.reg = value;
1161
1162 return 0;
1163 }
1164
1165
1166 static int
1167 m32c_sign_ext (int v, int bits)
1168 {
1169 int mask = 1 << (bits - 1);
1170 return (v ^ mask) - mask;
1171 }
1172
1173 static unsigned int
1174 m32c_next_byte (struct m32c_pv_state *st)
1175 {
1176 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1177 return st->insn[st->next_addr++ - st->scan_pc];
1178 }
1179
1180 static int
1181 m32c_udisp8 (struct m32c_pv_state *st)
1182 {
1183 return m32c_next_byte (st);
1184 }
1185
1186
1187 static int
1188 m32c_sdisp8 (struct m32c_pv_state *st)
1189 {
1190 return m32c_sign_ext (m32c_next_byte (st), 8);
1191 }
1192
1193
1194 static int
1195 m32c_udisp16 (struct m32c_pv_state *st)
1196 {
1197 int low = m32c_next_byte (st);
1198 int high = m32c_next_byte (st);
1199
1200 return low + (high << 8);
1201 }
1202
1203
1204 static int
1205 m32c_sdisp16 (struct m32c_pv_state *st)
1206 {
1207 int low = m32c_next_byte (st);
1208 int high = m32c_next_byte (st);
1209
1210 return m32c_sign_ext (low + (high << 8), 16);
1211 }
1212
1213
1214 static int
1215 m32c_udisp24 (struct m32c_pv_state *st)
1216 {
1217 int low = m32c_next_byte (st);
1218 int mid = m32c_next_byte (st);
1219 int high = m32c_next_byte (st);
1220
1221 return low + (mid << 8) + (high << 16);
1222 }
1223
1224
1225 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1226 static int
1227 m32c_get_src23 (unsigned char *i)
1228 {
1229 return (((i[0] & 0x70) >> 2)
1230 | ((i[1] & 0x30) >> 4));
1231 }
1232
1233
1234 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1235 static int
1236 m32c_get_dest23 (unsigned char *i)
1237 {
1238 return (((i[0] & 0x0e) << 1)
1239 | ((i[1] & 0xc0) >> 6));
1240 }
1241
1242
1243 static struct srcdest
1244 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1245 int code, int size)
1246 {
1247 struct srcdest sd;
1248
1249 if (code < 6)
1250 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1251 else
1252 sd.kind = srcdest_mem;
1253
1254 sd.addr = pv_unknown ();
1255 sd.reg = 0;
1256
1257 switch (code)
1258 {
1259 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1260 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1261 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1262 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1263
1264 case 0x4: sd.reg = &st->a0; break;
1265 case 0x5: sd.reg = &st->a1; break;
1266
1267 case 0x6: sd.addr = st->a0; break;
1268 case 0x7: sd.addr = st->a1; break;
1269
1270 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1271 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1272 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1273 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1274
1275 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1276 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1277 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1278 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1279
1280 default:
1281 gdb_assert_not_reached ("unexpected srcdest4");
1282 }
1283
1284 return sd;
1285 }
1286
1287
1288 static struct srcdest
1289 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1290 {
1291 struct srcdest sd;
1292
1293 sd.addr = pv_unknown ();
1294 sd.reg = 0;
1295
1296 switch (code)
1297 {
1298 case 0x12:
1299 case 0x13:
1300 case 0x10:
1301 case 0x11:
1302 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1303 break;
1304
1305 case 0x02:
1306 case 0x03:
1307 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1308 break;
1309
1310 default:
1311 sd.kind = srcdest_mem;
1312 break;
1313
1314 }
1315
1316 switch (code)
1317 {
1318 case 0x12: sd.reg = &st->r0; break;
1319 case 0x13: sd.reg = &st->r1; break;
1320 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1321 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1322 case 0x02: sd.reg = &st->a0; break;
1323 case 0x03: sd.reg = &st->a1; break;
1324
1325 case 0x00: sd.addr = st->a0; break;
1326 case 0x01: sd.addr = st->a1; break;
1327 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1328 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1329 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1330 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1331 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1332 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1333 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1334 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1335 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1336 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1337 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1338 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1339 default:
1340 gdb_assert_not_reached ("unexpected sd23");
1341 }
1342
1343 if (ind)
1344 {
1345 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1346 sd.kind = srcdest_mem;
1347 }
1348
1349 return sd;
1350 }
1351
1352
1353 /* The r16c and r32c machines have instructions with similar
1354 semantics, but completely different machine language encodings. So
1355 we break out the semantics into their own functions, and leave
1356 machine-specific decoding in m32c_analyze_prologue.
1357
1358 The following functions all expect their arguments already decoded,
1359 and they all return zero if analysis should continue past this
1360 instruction, or non-zero if analysis should stop. */
1361
1362
1363 /* Simulate an 'enter SIZE' instruction in STATE. */
1364 static int
1365 m32c_pv_enter (struct m32c_pv_state *state, int size)
1366 {
1367 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1368
1369 /* If simulating this store would require us to forget
1370 everything we know about the stack frame in the name of
1371 accuracy, it would be better to just quit now. */
1372 if (pv_area_store_would_trash (state->stack, state->sp))
1373 return 1;
1374
1375 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1376 return 1;
1377 state->fb = state->sp;
1378 state->sp = pv_add_constant (state->sp, -size);
1379
1380 return 0;
1381 }
1382
1383
1384 static int
1385 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1386 int bit, int src, int size)
1387 {
1388 if (bit & src)
1389 {
1390 if (m32c_pv_push (state, reg, size))
1391 return 1;
1392 }
1393
1394 return 0;
1395 }
1396
1397
1398 /* Simulate a 'pushm SRC' instruction in STATE. */
1399 static int
1400 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1401 {
1402 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1403
1404 /* The bits in SRC indicating which registers to save are:
1405 r0 r1 r2 r3 a0 a1 sb fb */
1406 return
1407 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1408 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1409 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1410 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1411 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1412 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1413 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1414 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1415 }
1416
1417 /* Return non-zero if VALUE is the first incoming argument register. */
1418
1419 static int
1420 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1421 {
1422 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1423 return (value.kind == pvk_register
1424 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1425 ? (value.reg == tdep->r1->num)
1426 : (value.reg == tdep->r0->num))
1427 && value.k == 0);
1428 }
1429
1430 /* Return non-zero if VALUE is an incoming argument register. */
1431
1432 static int
1433 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1434 {
1435 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1436 return (value.kind == pvk_register
1437 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1438 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1439 : (value.reg == tdep->r0->num))
1440 && value.k == 0);
1441 }
1442
1443 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1444 argument register to its stack slot in STATE. Such instructions
1445 should be included in the prologue, if possible.
1446
1447 The store is a spill if:
1448 - the value being stored is the original value of an argument register;
1449 - the value has not already been stored somewhere in STACK; and
1450 - LOC is a stack slot (e.g., a memory location whose address is
1451 relative to the original value of the SP). */
1452
1453 static int
1454 m32c_is_arg_spill (struct m32c_pv_state *st,
1455 struct srcdest loc,
1456 pv_t value)
1457 {
1458 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1459
1460 return (m32c_is_arg_reg (st, value)
1461 && loc.kind == srcdest_mem
1462 && pv_is_register (loc.addr, tdep->sp->num)
1463 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1464 }
1465
1466 /* Return non-zero if a store of VALUE to LOC is probably
1467 copying the struct return address into an address register
1468 for immediate use. This is basically a "spill" into the
1469 address register, instead of onto the stack.
1470
1471 The prerequisites are:
1472 - value being stored is original value of the FIRST arg register;
1473 - value has not already been stored on stack; and
1474 - LOC is an address register (a0 or a1). */
1475
1476 static int
1477 m32c_is_struct_return (struct m32c_pv_state *st,
1478 struct srcdest loc,
1479 pv_t value)
1480 {
1481 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1482
1483 return (m32c_is_1st_arg_reg (st, value)
1484 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1485 && loc.kind == srcdest_reg
1486 && (pv_is_register (*loc.reg, tdep->a0->num)
1487 || pv_is_register (*loc.reg, tdep->a1->num)));
1488 }
1489
1490 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1491 was a register save:
1492 - all the named registers should have their original values, and
1493 - the stack pointer should be at a constant offset from the
1494 original stack pointer. */
1495 static int
1496 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1497 {
1498 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1499 /* The bits in SRC indicating which registers to save are:
1500 r0 r1 r2 r3 a0 a1 sb fb */
1501 return
1502 (pv_is_register (st->sp, tdep->sp->num)
1503 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1504 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1505 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1506 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1507 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1508 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1509 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1510 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1511 }
1512
1513
1514 /* Function for finding saved registers in a 'struct pv_area'; we pass
1515 this to pv_area_scan.
1516
1517 If VALUE is a saved register, ADDR says it was saved at a constant
1518 offset from the frame base, and SIZE indicates that the whole
1519 register was saved, record its offset in RESULT_UNTYPED. */
1520 static void
1521 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1522 {
1523 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1524 struct gdbarch *arch = prologue->arch;
1525 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1526
1527 /* Is this the unchanged value of some register being saved on the
1528 stack? */
1529 if (value.kind == pvk_register
1530 && value.k == 0
1531 && pv_is_register (addr, tdep->sp->num))
1532 {
1533 /* Some registers require special handling: they're saved as a
1534 larger value than the register itself. */
1535 CORE_ADDR saved_size = register_size (arch, value.reg);
1536
1537 if (value.reg == tdep->pc->num)
1538 saved_size = tdep->ret_addr_bytes;
1539 else if (register_type (arch, value.reg)
1540 == tdep->data_addr_reg_type)
1541 saved_size = tdep->push_addr_bytes;
1542
1543 if (size == saved_size)
1544 {
1545 /* Find which end of the saved value corresponds to our
1546 register. */
1547 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1548 prologue->reg_offset[value.reg]
1549 = (addr.k + saved_size - register_size (arch, value.reg));
1550 else
1551 prologue->reg_offset[value.reg] = addr.k;
1552 }
1553 }
1554 }
1555
1556
1557 /* Analyze the function prologue for ARCH at START, going no further
1558 than LIMIT, and place a description of what we found in
1559 PROLOGUE. */
1560 static void
1561 m32c_analyze_prologue (struct gdbarch *arch,
1562 CORE_ADDR start, CORE_ADDR limit,
1563 struct m32c_prologue *prologue)
1564 {
1565 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1566 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1567 CORE_ADDR after_last_frame_related_insn;
1568 struct cleanup *back_to;
1569 struct m32c_pv_state st;
1570
1571 st.arch = arch;
1572 st.r0 = pv_register (tdep->r0->num, 0);
1573 st.r1 = pv_register (tdep->r1->num, 0);
1574 st.r2 = pv_register (tdep->r2->num, 0);
1575 st.r3 = pv_register (tdep->r3->num, 0);
1576 st.a0 = pv_register (tdep->a0->num, 0);
1577 st.a1 = pv_register (tdep->a1->num, 0);
1578 st.sb = pv_register (tdep->sb->num, 0);
1579 st.fb = pv_register (tdep->fb->num, 0);
1580 st.sp = pv_register (tdep->sp->num, 0);
1581 st.pc = pv_register (tdep->pc->num, 0);
1582 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1583 back_to = make_cleanup_free_pv_area (st.stack);
1584
1585 /* Record that the call instruction has saved the return address on
1586 the stack. */
1587 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1588
1589 memset (prologue, 0, sizeof (*prologue));
1590 prologue->arch = arch;
1591 {
1592 int i;
1593 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1594 prologue->reg_offset[i] = 1;
1595 }
1596
1597 st.scan_pc = after_last_frame_related_insn = start;
1598
1599 while (st.scan_pc < limit)
1600 {
1601 pv_t pre_insn_fb = st.fb;
1602 pv_t pre_insn_sp = st.sp;
1603
1604 /* In theory we could get in trouble by trying to read ahead
1605 here, when we only know we're expecting one byte. In
1606 practice I doubt anyone will care, and it makes the rest of
1607 the code easier. */
1608 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1609 /* If we can't fetch the instruction from memory, stop here
1610 and hope for the best. */
1611 break;
1612 st.next_addr = st.scan_pc;
1613
1614 /* The assembly instructions are written as they appear in the
1615 section of the processor manuals that describe the
1616 instruction encodings.
1617
1618 When a single assembly language instruction has several
1619 different machine-language encodings, the manual
1620 distinguishes them by a number in parens, before the
1621 mnemonic. Those numbers are included, as well.
1622
1623 The srcdest decoding instructions have the same names as the
1624 analogous functions in the simulator. */
1625 if (mach == bfd_mach_m16c)
1626 {
1627 /* (1) ENTER #imm8 */
1628 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1629 {
1630 if (m32c_pv_enter (&st, st.insn[2]))
1631 break;
1632 st.next_addr += 3;
1633 }
1634 /* (1) PUSHM src */
1635 else if (st.insn[0] == 0xec)
1636 {
1637 int src = st.insn[1];
1638 if (m32c_pv_pushm (&st, src))
1639 break;
1640 st.next_addr += 2;
1641
1642 if (m32c_pushm_is_reg_save (&st, src))
1643 after_last_frame_related_insn = st.next_addr;
1644 }
1645
1646 /* (6) MOV.size:G src, dest */
1647 else if ((st.insn[0] & 0xfe) == 0x72)
1648 {
1649 int size = (st.insn[0] & 0x01) ? 2 : 1;
1650 struct srcdest src;
1651 struct srcdest dest;
1652 pv_t src_value;
1653 st.next_addr += 2;
1654
1655 src
1656 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1657 dest
1658 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1659 src_value = m32c_srcdest_fetch (&st, src, size);
1660
1661 if (m32c_is_arg_spill (&st, dest, src_value))
1662 after_last_frame_related_insn = st.next_addr;
1663 else if (m32c_is_struct_return (&st, dest, src_value))
1664 after_last_frame_related_insn = st.next_addr;
1665
1666 if (m32c_srcdest_store (&st, dest, src_value, size))
1667 break;
1668 }
1669
1670 /* (1) LDC #IMM16, sp */
1671 else if (st.insn[0] == 0xeb
1672 && st.insn[1] == 0x50)
1673 {
1674 st.next_addr += 2;
1675 st.sp = pv_constant (m32c_udisp16 (&st));
1676 }
1677
1678 else
1679 /* We've hit some instruction we don't know how to simulate.
1680 Strictly speaking, we should set every value we're
1681 tracking to "unknown". But we'll be optimistic, assume
1682 that we have enough information already, and stop
1683 analysis here. */
1684 break;
1685 }
1686 else
1687 {
1688 int src_indirect = 0;
1689 int dest_indirect = 0;
1690 int i = 0;
1691
1692 gdb_assert (mach == bfd_mach_m32c);
1693
1694 /* Check for prefix bytes indicating indirect addressing. */
1695 if (st.insn[0] == 0x41)
1696 {
1697 src_indirect = 1;
1698 i++;
1699 }
1700 else if (st.insn[0] == 0x09)
1701 {
1702 dest_indirect = 1;
1703 i++;
1704 }
1705 else if (st.insn[0] == 0x49)
1706 {
1707 src_indirect = dest_indirect = 1;
1708 i++;
1709 }
1710
1711 /* (1) ENTER #imm8 */
1712 if (st.insn[i] == 0xec)
1713 {
1714 if (m32c_pv_enter (&st, st.insn[i + 1]))
1715 break;
1716 st.next_addr += 2;
1717 }
1718
1719 /* (1) PUSHM src */
1720 else if (st.insn[i] == 0x8f)
1721 {
1722 int src = st.insn[i + 1];
1723 if (m32c_pv_pushm (&st, src))
1724 break;
1725 st.next_addr += 2;
1726
1727 if (m32c_pushm_is_reg_save (&st, src))
1728 after_last_frame_related_insn = st.next_addr;
1729 }
1730
1731 /* (7) MOV.size:G src, dest */
1732 else if ((st.insn[i] & 0x80) == 0x80
1733 && (st.insn[i + 1] & 0x0f) == 0x0b
1734 && m32c_get_src23 (&st.insn[i]) < 20
1735 && m32c_get_dest23 (&st.insn[i]) < 20)
1736 {
1737 struct srcdest src;
1738 struct srcdest dest;
1739 pv_t src_value;
1740 int bw = st.insn[i] & 0x01;
1741 int size = bw ? 2 : 1;
1742 st.next_addr += 2;
1743
1744 src
1745 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1746 size, src_indirect);
1747 dest
1748 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1749 size, dest_indirect);
1750 src_value = m32c_srcdest_fetch (&st, src, size);
1751
1752 if (m32c_is_arg_spill (&st, dest, src_value))
1753 after_last_frame_related_insn = st.next_addr;
1754
1755 if (m32c_srcdest_store (&st, dest, src_value, size))
1756 break;
1757 }
1758 /* (2) LDC #IMM24, sp */
1759 else if (st.insn[i] == 0xd5
1760 && st.insn[i + 1] == 0x29)
1761 {
1762 st.next_addr += 2;
1763 st.sp = pv_constant (m32c_udisp24 (&st));
1764 }
1765 else
1766 /* We've hit some instruction we don't know how to simulate.
1767 Strictly speaking, we should set every value we're
1768 tracking to "unknown". But we'll be optimistic, assume
1769 that we have enough information already, and stop
1770 analysis here. */
1771 break;
1772 }
1773
1774 /* If this instruction changed the FB or decreased the SP (i.e.,
1775 allocated more stack space), then this may be a good place to
1776 declare the prologue finished. However, there are some
1777 exceptions:
1778
1779 - If the instruction just changed the FB back to its original
1780 value, then that's probably a restore instruction. The
1781 prologue should definitely end before that.
1782
1783 - If the instruction increased the value of the SP (that is,
1784 shrunk the frame), then it's probably part of a frame
1785 teardown sequence, and the prologue should end before
1786 that. */
1787
1788 if (! pv_is_identical (st.fb, pre_insn_fb))
1789 {
1790 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1791 after_last_frame_related_insn = st.next_addr;
1792 }
1793 else if (! pv_is_identical (st.sp, pre_insn_sp))
1794 {
1795 /* The comparison of the constants looks odd, there, because
1796 .k is unsigned. All it really means is that the SP is
1797 lower than it was before the instruction. */
1798 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1799 && pv_is_register (st.sp, tdep->sp->num)
1800 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1801 after_last_frame_related_insn = st.next_addr;
1802 }
1803
1804 st.scan_pc = st.next_addr;
1805 }
1806
1807 /* Did we load a constant value into the stack pointer? */
1808 if (pv_is_constant (st.sp))
1809 prologue->kind = prologue_first_frame;
1810
1811 /* Alternatively, did we initialize the frame pointer? Remember
1812 that the CFA is the address after the return address. */
1813 if (pv_is_register (st.fb, tdep->sp->num))
1814 {
1815 prologue->kind = prologue_with_frame_ptr;
1816 prologue->frame_ptr_offset = st.fb.k;
1817 }
1818
1819 /* Is the frame size a known constant? Remember that frame_size is
1820 actually the offset from the CFA to the SP (i.e., a negative
1821 value). */
1822 else if (pv_is_register (st.sp, tdep->sp->num))
1823 {
1824 prologue->kind = prologue_sans_frame_ptr;
1825 prologue->frame_size = st.sp.k;
1826 }
1827
1828 /* We haven't been able to make sense of this function's frame. Treat
1829 it as the first frame. */
1830 else
1831 prologue->kind = prologue_first_frame;
1832
1833 /* Record where all the registers were saved. */
1834 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1835
1836 prologue->prologue_end = after_last_frame_related_insn;
1837
1838 do_cleanups (back_to);
1839 }
1840
1841
1842 static CORE_ADDR
1843 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1844 {
1845 const char *name;
1846 CORE_ADDR func_addr, func_end, sal_end;
1847 struct m32c_prologue p;
1848
1849 /* Try to find the extent of the function that contains IP. */
1850 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1851 return ip;
1852
1853 /* Find end by prologue analysis. */
1854 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1855 /* Find end by line info. */
1856 sal_end = skip_prologue_using_sal (gdbarch, ip);
1857 /* Return whichever is lower. */
1858 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1859 return sal_end;
1860 else
1861 return p.prologue_end;
1862 }
1863
1864
1865 \f
1866 /* Stack unwinding. */
1867
1868 static struct m32c_prologue *
1869 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1870 void **this_prologue_cache)
1871 {
1872 if (! *this_prologue_cache)
1873 {
1874 CORE_ADDR func_start = get_frame_func (this_frame);
1875 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1876
1877 /* If we couldn't find any function containing the PC, then
1878 just initialize the prologue cache, but don't do anything. */
1879 if (! func_start)
1880 stop_addr = func_start;
1881
1882 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1883 m32c_analyze_prologue (get_frame_arch (this_frame),
1884 func_start, stop_addr,
1885 (struct m32c_prologue *) *this_prologue_cache);
1886 }
1887
1888 return (struct m32c_prologue *) *this_prologue_cache;
1889 }
1890
1891
1892 static CORE_ADDR
1893 m32c_frame_base (struct frame_info *this_frame,
1894 void **this_prologue_cache)
1895 {
1896 struct m32c_prologue *p
1897 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1898 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1899
1900 /* In functions that use alloca, the distance between the stack
1901 pointer and the frame base varies dynamically, so we can't use
1902 the SP plus static information like prologue analysis to find the
1903 frame base. However, such functions must have a frame pointer,
1904 to be able to restore the SP on exit. So whenever we do have a
1905 frame pointer, use that to find the base. */
1906 switch (p->kind)
1907 {
1908 case prologue_with_frame_ptr:
1909 {
1910 CORE_ADDR fb
1911 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1912 return fb - p->frame_ptr_offset;
1913 }
1914
1915 case prologue_sans_frame_ptr:
1916 {
1917 CORE_ADDR sp
1918 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1919 return sp - p->frame_size;
1920 }
1921
1922 case prologue_first_frame:
1923 return 0;
1924
1925 default:
1926 gdb_assert_not_reached ("unexpected prologue kind");
1927 }
1928 }
1929
1930
1931 static void
1932 m32c_this_id (struct frame_info *this_frame,
1933 void **this_prologue_cache,
1934 struct frame_id *this_id)
1935 {
1936 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1937
1938 if (base)
1939 *this_id = frame_id_build (base, get_frame_func (this_frame));
1940 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1941 }
1942
1943
1944 static struct value *
1945 m32c_prev_register (struct frame_info *this_frame,
1946 void **this_prologue_cache, int regnum)
1947 {
1948 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1949 struct m32c_prologue *p
1950 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1951 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1952 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1953
1954 if (regnum == tdep->sp->num)
1955 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1956
1957 /* If prologue analysis says we saved this register somewhere,
1958 return a description of the stack slot holding it. */
1959 if (p->reg_offset[regnum] != 1)
1960 return frame_unwind_got_memory (this_frame, regnum,
1961 frame_base + p->reg_offset[regnum]);
1962
1963 /* Otherwise, presume we haven't changed the value of this
1964 register, and get it from the next frame. */
1965 return frame_unwind_got_register (this_frame, regnum, regnum);
1966 }
1967
1968
1969 static const struct frame_unwind m32c_unwind = {
1970 NORMAL_FRAME,
1971 default_frame_unwind_stop_reason,
1972 m32c_this_id,
1973 m32c_prev_register,
1974 NULL,
1975 default_frame_sniffer
1976 };
1977
1978
1979 static CORE_ADDR
1980 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1981 {
1982 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1983 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1984 }
1985
1986
1987 static CORE_ADDR
1988 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1989 {
1990 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1991 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1992 }
1993
1994 \f
1995 /* Inferior calls. */
1996
1997 /* The calling conventions, according to GCC:
1998
1999 r8c, m16c
2000 ---------
2001 First arg may be passed in r1l or r1 if it (1) fits (QImode or
2002 HImode), (2) is named, and (3) is an integer or pointer type (no
2003 structs, floats, etc). Otherwise, it's passed on the stack.
2004
2005 Second arg may be passed in r2, same restrictions (but not QImode),
2006 even if the first arg is passed on the stack.
2007
2008 Third and further args are passed on the stack. No padding is
2009 used, stack "alignment" is 8 bits.
2010
2011 m32cm, m32c
2012 -----------
2013
2014 First arg may be passed in r0l or r0, same restrictions as above.
2015
2016 Second and further args are passed on the stack. Padding is used
2017 after QImode parameters (i.e. lower-addressed byte is the value,
2018 higher-addressed byte is the padding), stack "alignment" is 16
2019 bits. */
2020
2021
2022 /* Return true if TYPE is a type that can be passed in registers. (We
2023 ignore the size, and pay attention only to the type code;
2024 acceptable sizes depends on which register is being considered to
2025 hold it.) */
2026 static int
2027 m32c_reg_arg_type (struct type *type)
2028 {
2029 enum type_code code = TYPE_CODE (type);
2030
2031 return (code == TYPE_CODE_INT
2032 || code == TYPE_CODE_ENUM
2033 || code == TYPE_CODE_PTR
2034 || code == TYPE_CODE_REF
2035 || code == TYPE_CODE_BOOL
2036 || code == TYPE_CODE_CHAR);
2037 }
2038
2039
2040 static CORE_ADDR
2041 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2042 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2043 struct value **args, CORE_ADDR sp, int struct_return,
2044 CORE_ADDR struct_addr)
2045 {
2046 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2048 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2049 CORE_ADDR cfa;
2050 int i;
2051
2052 /* The number of arguments given in this function's prototype, or
2053 zero if it has a non-prototyped function type. The m32c ABI
2054 passes arguments mentioned in the prototype differently from
2055 those in the ellipsis of a varargs function, or from those passed
2056 to a non-prototyped function. */
2057 int num_prototyped_args = 0;
2058
2059 {
2060 struct type *func_type = value_type (function);
2061
2062 /* Dereference function pointer types. */
2063 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2064 func_type = TYPE_TARGET_TYPE (func_type);
2065
2066 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2067 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2068
2069 #if 0
2070 /* The ABI description in gcc/config/m32c/m32c.abi says that
2071 we need to handle prototyped and non-prototyped functions
2072 separately, but the code in GCC doesn't actually do so. */
2073 if (TYPE_PROTOTYPED (func_type))
2074 #endif
2075 num_prototyped_args = TYPE_NFIELDS (func_type);
2076 }
2077
2078 /* First, if the function returns an aggregate by value, push a
2079 pointer to a buffer for it. This doesn't affect the way
2080 subsequent arguments are allocated to registers. */
2081 if (struct_return)
2082 {
2083 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2084 sp -= ptr_len;
2085 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2086 }
2087
2088 /* Push the arguments. */
2089 for (i = nargs - 1; i >= 0; i--)
2090 {
2091 struct value *arg = args[i];
2092 const gdb_byte *arg_bits = value_contents (arg);
2093 struct type *arg_type = value_type (arg);
2094 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2095
2096 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2097 if (i == 0
2098 && arg_size <= 2
2099 && i < num_prototyped_args
2100 && m32c_reg_arg_type (arg_type))
2101 {
2102 /* Extract and re-store as an integer as a terse way to make
2103 sure it ends up in the least significant end of r1. (GDB
2104 should avoid assuming endianness, even on uni-endian
2105 processors.) */
2106 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2107 byte_order);
2108 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2109 regcache_cooked_write_unsigned (regcache, reg->num, u);
2110 }
2111
2112 /* Can it go in r2? */
2113 else if (mach == bfd_mach_m16c
2114 && i == 1
2115 && arg_size == 2
2116 && i < num_prototyped_args
2117 && m32c_reg_arg_type (arg_type))
2118 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2119
2120 /* Everything else goes on the stack. */
2121 else
2122 {
2123 sp -= arg_size;
2124
2125 /* Align the stack. */
2126 if (mach == bfd_mach_m32c)
2127 sp &= ~1;
2128
2129 write_memory (sp, arg_bits, arg_size);
2130 }
2131 }
2132
2133 /* This is the CFA we use to identify the dummy frame. */
2134 cfa = sp;
2135
2136 /* Push the return address. */
2137 sp -= tdep->ret_addr_bytes;
2138 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2139 bp_addr);
2140
2141 /* Update the stack pointer. */
2142 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2143
2144 /* We need to borrow an odd trick from the i386 target here.
2145
2146 The value we return from this function gets used as the stack
2147 address (the CFA) for the dummy frame's ID. The obvious thing is
2148 to return the new TOS. However, that points at the return
2149 address, saved on the stack, which is inconsistent with the CFA's
2150 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2151 .debug_frame info uses the address immediately after the saved
2152 return address. So you end up with a dummy frame whose CFA
2153 points at the return address, but the frame for the function
2154 being called has a CFA pointing after the return address: the
2155 younger CFA is *greater than* the older CFA. The sanity checks
2156 in frame.c don't like that.
2157
2158 So we try to be consistent with the CFA's used by DWARF 2.
2159 Having a dummy frame and a real frame with the *same* CFA is
2160 tolerable. */
2161 return cfa;
2162 }
2163
2164
2165 static struct frame_id
2166 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2167 {
2168 /* This needs to return a frame ID whose PC is the return address
2169 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2170 m32c_push_dummy_call returned.
2171
2172 m32c_unwind_sp gives us the CFA, which is the value the SP had
2173 before the return address was pushed. */
2174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2175 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2176 return frame_id_build (sp, get_frame_pc (this_frame));
2177 }
2178
2179
2180 \f
2181 /* Return values. */
2182
2183 /* Return value conventions, according to GCC:
2184
2185 r8c, m16c
2186 ---------
2187
2188 QImode in r0l
2189 HImode in r0
2190 SImode in r2r0
2191 near pointer in r0
2192 far pointer in r2r0
2193
2194 Aggregate values (regardless of size) are returned by pushing a
2195 pointer to a temporary area on the stack after the args are pushed.
2196 The function fills in this area with the value. Note that this
2197 pointer on the stack does not affect how register arguments, if any,
2198 are configured.
2199
2200 m32cm, m32c
2201 -----------
2202 Same. */
2203
2204 /* Return non-zero if values of type TYPE are returned by storing them
2205 in a buffer whose address is passed on the stack, ahead of the
2206 other arguments. */
2207 static int
2208 m32c_return_by_passed_buf (struct type *type)
2209 {
2210 enum type_code code = TYPE_CODE (type);
2211
2212 return (code == TYPE_CODE_STRUCT
2213 || code == TYPE_CODE_UNION);
2214 }
2215
2216 static enum return_value_convention
2217 m32c_return_value (struct gdbarch *gdbarch,
2218 struct value *function,
2219 struct type *valtype,
2220 struct regcache *regcache,
2221 gdb_byte *readbuf,
2222 const gdb_byte *writebuf)
2223 {
2224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2225 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2226 enum return_value_convention conv;
2227 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2228
2229 if (m32c_return_by_passed_buf (valtype))
2230 conv = RETURN_VALUE_STRUCT_CONVENTION;
2231 else
2232 conv = RETURN_VALUE_REGISTER_CONVENTION;
2233
2234 if (readbuf)
2235 {
2236 /* We should never be called to find values being returned by
2237 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2238 unless we made the call ourselves. */
2239 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2240
2241 gdb_assert (valtype_len <= 8);
2242
2243 /* Anything that fits in r0 is returned there. */
2244 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2245 {
2246 ULONGEST u;
2247 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2248 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2249 }
2250 else
2251 {
2252 /* Everything else is passed in mem0, using as many bytes as
2253 needed. This is not what the Renesas tools do, but it's
2254 what GCC does at the moment. */
2255 struct bound_minimal_symbol mem0
2256 = lookup_minimal_symbol ("mem0", NULL, NULL);
2257
2258 if (! mem0.minsym)
2259 error (_("The return value is stored in memory at 'mem0', "
2260 "but GDB cannot find\n"
2261 "its address."));
2262 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2263 }
2264 }
2265
2266 if (writebuf)
2267 {
2268 /* We should never be called to store values to be returned
2269 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2270 finding the buffer, unless we made the call ourselves. */
2271 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2272
2273 gdb_assert (valtype_len <= 8);
2274
2275 /* Anything that fits in r0 is returned there. */
2276 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2277 {
2278 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2279 byte_order);
2280 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2281 }
2282 else
2283 {
2284 /* Everything else is passed in mem0, using as many bytes as
2285 needed. This is not what the Renesas tools do, but it's
2286 what GCC does at the moment. */
2287 struct bound_minimal_symbol mem0
2288 = lookup_minimal_symbol ("mem0", NULL, NULL);
2289
2290 if (! mem0.minsym)
2291 error (_("The return value is stored in memory at 'mem0', "
2292 "but GDB cannot find\n"
2293 " its address."));
2294 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2295 }
2296 }
2297
2298 return conv;
2299 }
2300
2301
2302 \f
2303 /* Trampolines. */
2304
2305 /* The m16c and m32c use a trampoline function for indirect function
2306 calls. An indirect call looks like this:
2307
2308 ... push arguments ...
2309 ... push target function address ...
2310 jsr.a m32c_jsri16
2311
2312 The code for m32c_jsri16 looks like this:
2313
2314 m32c_jsri16:
2315
2316 # Save return address.
2317 pop.w m32c_jsri_ret
2318 pop.b m32c_jsri_ret+2
2319
2320 # Store target function address.
2321 pop.w m32c_jsri_addr
2322
2323 # Re-push return address.
2324 push.b m32c_jsri_ret+2
2325 push.w m32c_jsri_ret
2326
2327 # Call the target function.
2328 jmpi.a m32c_jsri_addr
2329
2330 Without further information, GDB will treat calls to m32c_jsri16
2331 like calls to any other function. Since m32c_jsri16 doesn't have
2332 debugging information, that normally means that GDB sets a step-
2333 resume breakpoint and lets the program continue --- which is not
2334 what the user wanted. (Giving the trampoline debugging info
2335 doesn't help: the user expects the program to stop in the function
2336 their program is calling, not in some trampoline code they've never
2337 seen before.)
2338
2339 The gdbarch_skip_trampoline_code method tells GDB how to step
2340 through such trampoline functions transparently to the user. When
2341 given the address of a trampoline function's first instruction,
2342 gdbarch_skip_trampoline_code should return the address of the first
2343 instruction of the function really being called. If GDB decides it
2344 wants to step into that function, it will set a breakpoint there
2345 and silently continue to it.
2346
2347 We recognize the trampoline by name, and extract the target address
2348 directly from the stack. This isn't great, but recognizing by its
2349 code sequence seems more fragile. */
2350
2351 static CORE_ADDR
2352 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2353 {
2354 struct gdbarch *gdbarch = get_frame_arch (frame);
2355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2356 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2357
2358 /* It would be nicer to simply look up the addresses of known
2359 trampolines once, and then compare stop_pc with them. However,
2360 we'd need to ensure that that cached address got invalidated when
2361 someone loaded a new executable, and I'm not quite sure of the
2362 best way to do that. find_pc_partial_function does do some
2363 caching, so we'll see how this goes. */
2364 const char *name;
2365 CORE_ADDR start, end;
2366
2367 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2368 {
2369 /* Are we stopped at the beginning of the trampoline function? */
2370 if (strcmp (name, "m32c_jsri16") == 0
2371 && stop_pc == start)
2372 {
2373 /* Get the stack pointer. The return address is at the top,
2374 and the target function's address is just below that. We
2375 know it's a two-byte address, since the trampoline is
2376 m32c_jsri*16*. */
2377 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2378 CORE_ADDR target
2379 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2380 2, byte_order);
2381
2382 /* What we have now is the address of a jump instruction.
2383 What we need is the destination of that jump.
2384 The opcode is 1 byte, and the destination is the next 3 bytes. */
2385
2386 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2387 return target;
2388 }
2389 }
2390
2391 return 0;
2392 }
2393
2394
2395 /* Address/pointer conversions. */
2396
2397 /* On the m16c, there is a 24-bit address space, but only a very few
2398 instructions can generate addresses larger than 0xffff: jumps,
2399 jumps to subroutines, and the lde/std (load/store extended)
2400 instructions.
2401
2402 Since GCC can only support one size of pointer, we can't have
2403 distinct 'near' and 'far' pointer types; we have to pick one size
2404 for everything. If we wanted to use 24-bit pointers, then GCC
2405 would have to use lde and ste for all memory references, which
2406 would be terrible for performance and code size. So the GNU
2407 toolchain uses 16-bit pointers for everything, and gives up the
2408 ability to have pointers point outside the first 64k of memory.
2409
2410 However, as a special hack, we let the linker place functions at
2411 addresses above 0xffff, as long as it also places a trampoline in
2412 the low 64k for every function whose address is taken. Each
2413 trampoline consists of a single jmp.a instruction that jumps to the
2414 function's real entry point. Pointers to functions can be 16 bits
2415 long, even though the functions themselves are at higher addresses:
2416 the pointers refer to the trampolines, not the functions.
2417
2418 This complicates things for GDB, however: given the address of a
2419 function (from debug info or linker symbols, say) which could be
2420 anywhere in the 24-bit address space, how can we find an
2421 appropriate 16-bit value to use as a pointer to it?
2422
2423 If the linker has not generated a trampoline for the function,
2424 we're out of luck. Well, I guess we could malloc some space and
2425 write a jmp.a instruction to it, but I'm not going to get into that
2426 at the moment.
2427
2428 If the linker has generated a trampoline for the function, then it
2429 also emitted a symbol for the trampoline: if the function's linker
2430 symbol is named NAME, then the function's trampoline's linker
2431 symbol is named NAME.plt.
2432
2433 So, given a code address:
2434 - We try to find a linker symbol at that address.
2435 - If we find such a symbol named NAME, we look for a linker symbol
2436 named NAME.plt.
2437 - If we find such a symbol, we assume it is a trampoline, and use
2438 its address as the pointer value.
2439
2440 And, given a function pointer:
2441 - We try to find a linker symbol at that address named NAME.plt.
2442 - If we find such a symbol, we look for a linker symbol named NAME.
2443 - If we find that, we provide that as the function's address.
2444 - If any of the above steps fail, we return the original address
2445 unchanged; it might really be a function in the low 64k.
2446
2447 See? You *knew* there was a reason you wanted to be a computer
2448 programmer! :) */
2449
2450 static void
2451 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2452 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2453 {
2454 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2455 enum type_code target_code;
2456 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2457 TYPE_CODE (type) == TYPE_CODE_REF);
2458
2459 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2460
2461 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2462 {
2463 const char *func_name;
2464 char *tramp_name;
2465 struct bound_minimal_symbol tramp_msym;
2466
2467 /* Try to find a linker symbol at this address. */
2468 struct bound_minimal_symbol func_msym
2469 = lookup_minimal_symbol_by_pc (addr);
2470
2471 if (! func_msym.minsym)
2472 error (_("Cannot convert code address %s to function pointer:\n"
2473 "couldn't find a symbol at that address, to find trampoline."),
2474 paddress (gdbarch, addr));
2475
2476 func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2477 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2478 strcpy (tramp_name, func_name);
2479 strcat (tramp_name, ".plt");
2480
2481 /* Try to find a linker symbol for the trampoline. */
2482 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2483
2484 /* We've either got another copy of the name now, or don't need
2485 the name any more. */
2486 xfree (tramp_name);
2487
2488 if (! tramp_msym.minsym)
2489 {
2490 CORE_ADDR ptrval;
2491
2492 /* No PLT entry found. Mask off the upper bits of the address
2493 to make a pointer. As noted in the warning to the user
2494 below, this value might be useful if converted back into
2495 an address by GDB, but will otherwise, almost certainly,
2496 be garbage.
2497
2498 Using this masked result does seem to be useful
2499 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2500 PASSes. These results appear to be correct as well.
2501
2502 We print a warning here so that the user can make a
2503 determination about whether the result is useful or not. */
2504 ptrval = addr & 0xffff;
2505
2506 warning (_("Cannot convert code address %s to function pointer:\n"
2507 "couldn't find trampoline named '%s.plt'.\n"
2508 "Returning pointer value %s instead; this may produce\n"
2509 "a useful result if converted back into an address by GDB,\n"
2510 "but will most likely not be useful otherwise.\n"),
2511 paddress (gdbarch, addr), func_name,
2512 paddress (gdbarch, ptrval));
2513
2514 addr = ptrval;
2515
2516 }
2517 else
2518 {
2519 /* The trampoline's address is our pointer. */
2520 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2521 }
2522 }
2523
2524 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2525 }
2526
2527
2528 static CORE_ADDR
2529 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2530 struct type *type, const gdb_byte *buf)
2531 {
2532 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2533 CORE_ADDR ptr;
2534 enum type_code target_code;
2535
2536 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2537 TYPE_CODE (type) == TYPE_CODE_REF);
2538
2539 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2540
2541 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2542
2543 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2544 {
2545 /* See if there is a minimal symbol at that address whose name is
2546 "NAME.plt". */
2547 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2548
2549 if (ptr_msym.minsym)
2550 {
2551 const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2552 int len = strlen (ptr_msym_name);
2553
2554 if (len > 4
2555 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2556 {
2557 struct bound_minimal_symbol func_msym;
2558 /* We have a .plt symbol; try to find the symbol for the
2559 corresponding function.
2560
2561 Since the trampoline contains a jump instruction, we
2562 could also just extract the jump's target address. I
2563 don't see much advantage one way or the other. */
2564 char *func_name = (char *) xmalloc (len - 4 + 1);
2565 memcpy (func_name, ptr_msym_name, len - 4);
2566 func_name[len - 4] = '\0';
2567 func_msym
2568 = lookup_minimal_symbol (func_name, NULL, NULL);
2569
2570 /* If we do have such a symbol, return its value as the
2571 function's true address. */
2572 if (func_msym.minsym)
2573 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2574 }
2575 }
2576 else
2577 {
2578 int aspace;
2579
2580 for (aspace = 1; aspace <= 15; aspace++)
2581 {
2582 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2583
2584 if (ptr_msym.minsym)
2585 ptr |= aspace << 16;
2586 }
2587 }
2588 }
2589
2590 return ptr;
2591 }
2592
2593 static void
2594 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2595 int *frame_regnum,
2596 LONGEST *frame_offset)
2597 {
2598 const char *name;
2599 CORE_ADDR func_addr, func_end;
2600 struct m32c_prologue p;
2601
2602 struct regcache *regcache = get_current_regcache ();
2603 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2604
2605 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2606 internal_error (__FILE__, __LINE__,
2607 _("No virtual frame pointer available"));
2608
2609 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2610 switch (p.kind)
2611 {
2612 case prologue_with_frame_ptr:
2613 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2614 *frame_offset = p.frame_ptr_offset;
2615 break;
2616 case prologue_sans_frame_ptr:
2617 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2618 *frame_offset = p.frame_size;
2619 break;
2620 default:
2621 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2622 *frame_offset = 0;
2623 break;
2624 }
2625 /* Sanity check */
2626 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2627 internal_error (__FILE__, __LINE__,
2628 _("No virtual frame pointer available"));
2629 }
2630
2631 \f
2632 /* Initialization. */
2633
2634 static struct gdbarch *
2635 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2636 {
2637 struct gdbarch *arch;
2638 struct gdbarch_tdep *tdep;
2639 unsigned long mach = info.bfd_arch_info->mach;
2640
2641 /* Find a candidate among the list of architectures we've created
2642 already. */
2643 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2644 arches != NULL;
2645 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2646 return arches->gdbarch;
2647
2648 tdep = XCNEW (struct gdbarch_tdep);
2649 arch = gdbarch_alloc (&info, tdep);
2650
2651 /* Essential types. */
2652 make_types (arch);
2653
2654 /* Address/pointer conversions. */
2655 if (mach == bfd_mach_m16c)
2656 {
2657 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2658 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2659 }
2660
2661 /* Register set. */
2662 make_regs (arch);
2663
2664 /* Disassembly. */
2665 set_gdbarch_print_insn (arch, print_insn_m32c);
2666
2667 /* Breakpoints. */
2668 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2669
2670 /* Prologue analysis and unwinding. */
2671 set_gdbarch_inner_than (arch, core_addr_lessthan);
2672 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2673 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2674 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2675 #if 0
2676 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2677 They may be in the dwarf2 cfi code in GDB, or they may be in
2678 the debug info emitted by the upstream toolchain. I don't
2679 know which, but I do know that the prologue analyzer works better.
2680 MVS 04/13/06 */
2681 dwarf2_append_sniffers (arch);
2682 #endif
2683 frame_unwind_append_unwinder (arch, &m32c_unwind);
2684
2685 /* Inferior calls. */
2686 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2687 set_gdbarch_return_value (arch, m32c_return_value);
2688 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2689
2690 /* Trampolines. */
2691 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2692
2693 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2694
2695 /* m32c function boundary addresses are not necessarily even.
2696 Therefore, the `vbit', which indicates a pointer to a virtual
2697 member function, is stored in the delta field, rather than as
2698 the low bit of a function pointer address.
2699
2700 In order to verify this, see the definition of
2701 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2702 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2703 set_gdbarch_vbit_in_delta (arch, 1);
2704
2705 return arch;
2706 }
2707
2708 /* Provide a prototype to silence -Wmissing-prototypes. */
2709 extern initialize_file_ftype _initialize_m32c_tdep;
2710
2711 void
2712 _initialize_m32c_tdep (void)
2713 {
2714 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2715
2716 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2717 }
This page took 0.086303 seconds and 4 git commands to generate.