*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "language.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "trad-frame.h"
41 #include "dis-asm.h"
42
43 #include "gdb_assert.h"
44
45 #include "m32r-tdep.h"
46
47 /* Local functions */
48
49 extern void _initialize_m32r_tdep (void);
50
51 static CORE_ADDR
52 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
53 {
54 /* Align to the size of an instruction (so that they can safely be
55 pushed onto the stack. */
56 return sp & ~3;
57 }
58
59
60 /* Breakpoints
61
62 The little endian mode of M32R is unique. In most of architectures,
63 two 16-bit instructions, A and B, are placed as the following:
64
65 Big endian:
66 A0 A1 B0 B1
67
68 Little endian:
69 A1 A0 B1 B0
70
71 In M32R, they are placed like this:
72
73 Big endian:
74 A0 A1 B0 B1
75
76 Little endian:
77 B1 B0 A1 A0
78
79 This is because M32R always fetches instructions in 32-bit.
80
81 The following functions take care of this behavior. */
82
83 static int
84 m32r_memory_insert_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
85 {
86 int val;
87 char buf[4];
88 char bp_entry[] = { 0x10, 0xf1 }; /* dpt */
89
90 /* Save the memory contents. */
91 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
92 if (val != 0)
93 return val; /* return error */
94
95 /* Determine appropriate breakpoint contents and size for this address. */
96 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
97 {
98 if ((addr & 3) == 0)
99 {
100 buf[0] = bp_entry[0];
101 buf[1] = bp_entry[1];
102 buf[2] = contents_cache[2] & 0x7f;
103 buf[3] = contents_cache[3];
104 }
105 else
106 {
107 buf[0] = contents_cache[0];
108 buf[1] = contents_cache[1];
109 buf[2] = bp_entry[0];
110 buf[3] = bp_entry[1];
111 }
112 }
113 else /* little-endian */
114 {
115 if ((addr & 3) == 0)
116 {
117 buf[0] = contents_cache[0];
118 buf[1] = contents_cache[1] & 0x7f;
119 buf[2] = bp_entry[1];
120 buf[3] = bp_entry[0];
121 }
122 else
123 {
124 buf[0] = bp_entry[1];
125 buf[1] = bp_entry[0];
126 buf[2] = contents_cache[2];
127 buf[3] = contents_cache[3];
128 }
129 }
130
131 /* Write the breakpoint. */
132 val = target_write_memory (addr & 0xfffffffc, buf, 4);
133 return val;
134 }
135
136 static int
137 m32r_memory_remove_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
138 {
139 int val;
140 char buf[4];
141
142 buf[0] = contents_cache[0];
143 buf[1] = contents_cache[1];
144 buf[2] = contents_cache[2];
145 buf[3] = contents_cache[3];
146
147 /* Remove parallel bit. */
148 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
149 {
150 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
151 buf[2] &= 0x7f;
152 }
153 else /* little-endian */
154 {
155 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
156 buf[1] &= 0x7f;
157 }
158
159 /* Write contents. */
160 val = target_write_memory (addr & 0xfffffffc, buf, 4);
161 return val;
162 }
163
164 static const unsigned char *
165 m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
166 {
167 static char be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */
168 static char le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */
169 unsigned char *bp;
170
171 /* Determine appropriate breakpoint. */
172 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
173 {
174 if ((*pcptr & 3) == 0)
175 {
176 bp = be_bp_entry;
177 *lenptr = 4;
178 }
179 else
180 {
181 bp = be_bp_entry;
182 *lenptr = 2;
183 }
184 }
185 else
186 {
187 if ((*pcptr & 3) == 0)
188 {
189 bp = le_bp_entry;
190 *lenptr = 4;
191 }
192 else
193 {
194 bp = le_bp_entry + 2;
195 *lenptr = 2;
196 }
197 }
198
199 return bp;
200 }
201
202
203 char *m32r_register_names[] = {
204 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
206 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
207 "evb"
208 };
209
210 static const char *
211 m32r_register_name (int reg_nr)
212 {
213 if (reg_nr < 0)
214 return NULL;
215 if (reg_nr >= M32R_NUM_REGS)
216 return NULL;
217 return m32r_register_names[reg_nr];
218 }
219
220
221 /* Return the GDB type object for the "standard" data type
222 of data in register N. */
223
224 static struct type *
225 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
226 {
227 if (reg_nr == M32R_PC_REGNUM)
228 return builtin_type_void_func_ptr;
229 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
230 return builtin_type_void_data_ptr;
231 else
232 return builtin_type_int32;
233 }
234
235
236 /* Write into appropriate registers a function return value
237 of type TYPE, given in virtual format.
238
239 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
240
241 static void
242 m32r_store_return_value (struct type *type, struct regcache *regcache,
243 const void *valbuf)
244 {
245 CORE_ADDR regval;
246 int len = TYPE_LENGTH (type);
247
248 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
249 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
250
251 if (len > 4)
252 {
253 regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4);
254 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
255 }
256 }
257
258 /* This is required by skip_prologue. The results of decoding a prologue
259 should be cached because this thrashing is getting nuts. */
260
261 static int
262 decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
263 CORE_ADDR *pl_endptr, unsigned long *framelength)
264 {
265 unsigned long framesize;
266 int insn;
267 int op1;
268 CORE_ADDR after_prologue = 0;
269 CORE_ADDR after_push = 0;
270 CORE_ADDR after_stack_adjust = 0;
271 CORE_ADDR current_pc;
272 LONGEST return_value;
273
274 framesize = 0;
275 after_prologue = 0;
276
277 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
278 {
279 /* Check if current pc's location is readable. */
280 if (!safe_read_memory_integer (current_pc, 2, &return_value))
281 return -1;
282
283 insn = read_memory_unsigned_integer (current_pc, 2);
284
285 if (insn == 0x0000)
286 break;
287
288 /* If this is a 32 bit instruction, we dont want to examine its
289 immediate data as though it were an instruction */
290 if (current_pc & 0x02)
291 {
292 /* decode this instruction further */
293 insn &= 0x7fff;
294 }
295 else
296 {
297 if (insn & 0x8000)
298 {
299 if (current_pc == scan_limit)
300 scan_limit += 2; /* extend the search */
301
302 current_pc += 2; /* skip the immediate data */
303
304 /* Check if current pc's location is readable. */
305 if (!safe_read_memory_integer (current_pc, 2, &return_value))
306 return -1;
307
308 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
309 /* add 16 bit sign-extended offset */
310 {
311 framesize +=
312 -((short) read_memory_unsigned_integer (current_pc, 2));
313 }
314 else
315 {
316 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
317 && safe_read_memory_integer (current_pc + 2, 2,
318 &return_value)
319 && read_memory_unsigned_integer (current_pc + 2,
320 2) == 0x0f24)
321 /* subtract 24 bit sign-extended negative-offset */
322 {
323 insn = read_memory_unsigned_integer (current_pc - 2, 4);
324 if (insn & 0x00800000) /* sign extend */
325 insn |= 0xff000000; /* negative */
326 else
327 insn &= 0x00ffffff; /* positive */
328 framesize += insn;
329 }
330 }
331 after_push = current_pc + 2;
332 continue;
333 }
334 }
335 op1 = insn & 0xf000; /* isolate just the first nibble */
336
337 if ((insn & 0xf0ff) == 0x207f)
338 { /* st reg, @-sp */
339 int regno;
340 framesize += 4;
341 regno = ((insn >> 8) & 0xf);
342 after_prologue = 0;
343 continue;
344 }
345 if ((insn >> 8) == 0x4f) /* addi sp, xx */
346 /* add 8 bit sign-extended offset */
347 {
348 int stack_adjust = (char) (insn & 0xff);
349
350 /* there are probably two of these stack adjustments:
351 1) A negative one in the prologue, and
352 2) A positive one in the epilogue.
353 We are only interested in the first one. */
354
355 if (stack_adjust < 0)
356 {
357 framesize -= stack_adjust;
358 after_prologue = 0;
359 /* A frameless function may have no "mv fp, sp".
360 In that case, this is the end of the prologue. */
361 after_stack_adjust = current_pc + 2;
362 }
363 continue;
364 }
365 if (insn == 0x1d8f)
366 { /* mv fp, sp */
367 after_prologue = current_pc + 2;
368 break; /* end of stack adjustments */
369 }
370
371 /* Nop looks like a branch, continue explicitly */
372 if (insn == 0x7000)
373 {
374 after_prologue = current_pc + 2;
375 continue; /* nop occurs between pushes */
376 }
377 /* End of prolog if any of these are trap instructions */
378 if ((insn & 0xfff0) == 0x10f0)
379 {
380 after_prologue = current_pc;
381 break;
382 }
383 /* End of prolog if any of these are branch instructions */
384 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
385 {
386 after_prologue = current_pc;
387 continue;
388 }
389 /* Some of the branch instructions are mixed with other types */
390 if (op1 == 0x1000)
391 {
392 int subop = insn & 0x0ff0;
393 if ((subop == 0x0ec0) || (subop == 0x0fc0))
394 {
395 after_prologue = current_pc;
396 continue; /* jmp , jl */
397 }
398 }
399 }
400
401 if (framelength)
402 *framelength = framesize;
403
404 if (current_pc >= scan_limit)
405 {
406 if (pl_endptr)
407 {
408 if (after_stack_adjust != 0)
409 /* We did not find a "mv fp,sp", but we DID find
410 a stack_adjust. Is it safe to use that as the
411 end of the prologue? I just don't know. */
412 {
413 *pl_endptr = after_stack_adjust;
414 }
415 else if (after_push != 0)
416 /* We did not find a "mv fp,sp", but we DID find
417 a push. Is it safe to use that as the
418 end of the prologue? I just don't know. */
419 {
420 *pl_endptr = after_push;
421 }
422 else
423 /* We reached the end of the loop without finding the end
424 of the prologue. No way to win -- we should report failure.
425 The way we do that is to return the original start_pc.
426 GDB will set a breakpoint at the start of the function (etc.) */
427 *pl_endptr = start_pc;
428 }
429 return 0;
430 }
431
432 if (after_prologue == 0)
433 after_prologue = current_pc;
434
435 if (pl_endptr)
436 *pl_endptr = after_prologue;
437
438 return 0;
439 } /* decode_prologue */
440
441 /* Function: skip_prologue
442 Find end of function prologue */
443
444 #define DEFAULT_SEARCH_LIMIT 128
445
446 CORE_ADDR
447 m32r_skip_prologue (CORE_ADDR pc)
448 {
449 CORE_ADDR func_addr, func_end;
450 struct symtab_and_line sal;
451 LONGEST return_value;
452
453 /* See what the symbol table says */
454
455 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
456 {
457 sal = find_pc_line (func_addr, 0);
458
459 if (sal.line != 0 && sal.end <= func_end)
460 {
461 func_end = sal.end;
462 }
463 else
464 /* Either there's no line info, or the line after the prologue is after
465 the end of the function. In this case, there probably isn't a
466 prologue. */
467 {
468 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
469 }
470 }
471 else
472 func_end = pc + DEFAULT_SEARCH_LIMIT;
473
474 /* If pc's location is not readable, just quit. */
475 if (!safe_read_memory_integer (pc, 4, &return_value))
476 return pc;
477
478 /* Find the end of prologue. */
479 if (decode_prologue (pc, func_end, &sal.end, NULL) < 0)
480 return pc;
481
482 return sal.end;
483 }
484
485 struct m32r_unwind_cache
486 {
487 /* The previous frame's inner most stack address. Used as this
488 frame ID's stack_addr. */
489 CORE_ADDR prev_sp;
490 /* The frame's base, optionally used by the high-level debug info. */
491 CORE_ADDR base;
492 int size;
493 /* How far the SP and r13 (FP) have been offset from the start of
494 the stack frame (as defined by the previous frame's stack
495 pointer). */
496 LONGEST sp_offset;
497 LONGEST r13_offset;
498 int uses_frame;
499 /* Table indicating the location of each and every register. */
500 struct trad_frame_saved_reg *saved_regs;
501 };
502
503 /* Put here the code to store, into fi->saved_regs, the addresses of
504 the saved registers of frame described by FRAME_INFO. This
505 includes special registers such as pc and fp saved in special ways
506 in the stack frame. sp is even more special: the address we return
507 for it IS the sp for the next frame. */
508
509 static struct m32r_unwind_cache *
510 m32r_frame_unwind_cache (struct frame_info *next_frame,
511 void **this_prologue_cache)
512 {
513 CORE_ADDR pc, scan_limit;
514 ULONGEST prev_sp;
515 ULONGEST this_base;
516 unsigned long op, op2;
517 int i;
518 struct m32r_unwind_cache *info;
519
520
521 if ((*this_prologue_cache))
522 return (*this_prologue_cache);
523
524 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
525 (*this_prologue_cache) = info;
526 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
527
528 info->size = 0;
529 info->sp_offset = 0;
530 info->uses_frame = 0;
531
532 scan_limit = frame_pc_unwind (next_frame);
533 for (pc = frame_func_unwind (next_frame);
534 pc > 0 && pc < scan_limit; pc += 2)
535 {
536 if ((pc & 2) == 0)
537 {
538 op = get_frame_memory_unsigned (next_frame, pc, 4);
539 if ((op & 0x80000000) == 0x80000000)
540 {
541 /* 32-bit instruction */
542 if ((op & 0xffff0000) == 0x8faf0000)
543 {
544 /* add3 sp,sp,xxxx */
545 short n = op & 0xffff;
546 info->sp_offset += n;
547 }
548 else if (((op >> 8) == 0xe4)
549 && get_frame_memory_unsigned (next_frame, pc + 2,
550 2) == 0x0f24)
551 {
552 /* ld24 r4, xxxxxx; sub sp, r4 */
553 unsigned long n = op & 0xffffff;
554 info->sp_offset += n;
555 pc += 2; /* skip sub instruction */
556 }
557
558 if (pc == scan_limit)
559 scan_limit += 2; /* extend the search */
560 pc += 2; /* skip the immediate data */
561 continue;
562 }
563 }
564
565 /* 16-bit instructions */
566 op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
567 if ((op & 0xf0ff) == 0x207f)
568 {
569 /* st rn, @-sp */
570 int regno = ((op >> 8) & 0xf);
571 info->sp_offset -= 4;
572 info->saved_regs[regno].addr = info->sp_offset;
573 }
574 else if ((op & 0xff00) == 0x4f00)
575 {
576 /* addi sp, xx */
577 int n = (char) (op & 0xff);
578 info->sp_offset += n;
579 }
580 else if (op == 0x1d8f)
581 {
582 /* mv fp, sp */
583 info->uses_frame = 1;
584 info->r13_offset = info->sp_offset;
585 break; /* end of stack adjustments */
586 }
587 else if ((op & 0xfff0) == 0x10f0)
588 {
589 /* end of prologue if this is a trap instruction */
590 break; /* end of stack adjustments */
591 }
592 }
593
594 info->size = -info->sp_offset;
595
596 /* Compute the previous frame's stack pointer (which is also the
597 frame's ID's stack address), and this frame's base pointer. */
598 if (info->uses_frame)
599 {
600 /* The SP was moved to the FP. This indicates that a new frame
601 was created. Get THIS frame's FP value by unwinding it from
602 the next frame. */
603 this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
604 /* The FP points at the last saved register. Adjust the FP back
605 to before the first saved register giving the SP. */
606 prev_sp = this_base + info->size;
607 }
608 else
609 {
610 /* Assume that the FP is this frame's SP but with that pushed
611 stack space added back. */
612 this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
613 prev_sp = this_base + info->size;
614 }
615
616 /* Convert that SP/BASE into real addresses. */
617 info->prev_sp = prev_sp;
618 info->base = this_base;
619
620 /* Adjust all the saved registers so that they contain addresses and
621 not offsets. */
622 for (i = 0; i < NUM_REGS - 1; i++)
623 if (trad_frame_addr_p (info->saved_regs, i))
624 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
625
626 /* The call instruction moves the caller's PC in the callee's LR.
627 Since this is an unwind, do the reverse. Copy the location of LR
628 into PC (the address / regnum) so that a request for PC will be
629 converted into a request for the LR. */
630 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
631
632 /* The previous frame's SP needed to be computed. Save the computed
633 value. */
634 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
635
636 return info;
637 }
638
639 static CORE_ADDR
640 m32r_read_pc (ptid_t ptid)
641 {
642 ptid_t save_ptid;
643 ULONGEST pc;
644
645 save_ptid = inferior_ptid;
646 inferior_ptid = ptid;
647 regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc);
648 inferior_ptid = save_ptid;
649 return pc;
650 }
651
652 static void
653 m32r_write_pc (CORE_ADDR val, ptid_t ptid)
654 {
655 ptid_t save_ptid;
656
657 save_ptid = inferior_ptid;
658 inferior_ptid = ptid;
659 write_register (M32R_PC_REGNUM, val);
660 inferior_ptid = save_ptid;
661 }
662
663 static CORE_ADDR
664 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
665 {
666 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
667 }
668
669
670 static CORE_ADDR
671 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
672 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
673 struct value **args, CORE_ADDR sp, int struct_return,
674 CORE_ADDR struct_addr)
675 {
676 int stack_offset, stack_alloc;
677 int argreg = ARG1_REGNUM;
678 int argnum;
679 struct type *type;
680 enum type_code typecode;
681 CORE_ADDR regval;
682 char *val;
683 char valbuf[MAX_REGISTER_SIZE];
684 int len;
685 int odd_sized_struct;
686
687 /* first force sp to a 4-byte alignment */
688 sp = sp & ~3;
689
690 /* Set the return address. For the m32r, the return breakpoint is
691 always at BP_ADDR. */
692 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
693
694 /* If STRUCT_RETURN is true, then the struct return address (in
695 STRUCT_ADDR) will consume the first argument-passing register.
696 Both adjust the register count and store that value. */
697 if (struct_return)
698 {
699 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
700 argreg++;
701 }
702
703 /* Now make sure there's space on the stack */
704 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
705 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
706 sp -= stack_alloc; /* make room on stack for args */
707
708 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
709 {
710 type = value_type (args[argnum]);
711 typecode = TYPE_CODE (type);
712 len = TYPE_LENGTH (type);
713
714 memset (valbuf, 0, sizeof (valbuf));
715
716 /* Passes structures that do not fit in 2 registers by reference. */
717 if (len > 8
718 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
719 {
720 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
721 typecode = TYPE_CODE_PTR;
722 len = 4;
723 val = valbuf;
724 }
725 else if (len < 4)
726 {
727 /* value gets right-justified in the register or stack word */
728 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
729 (char *) value_contents (args[argnum]), len);
730 val = valbuf;
731 }
732 else
733 val = (char *) value_contents (args[argnum]);
734
735 while (len > 0)
736 {
737 if (argreg > ARGN_REGNUM)
738 {
739 /* must go on the stack */
740 write_memory (sp + stack_offset, val, 4);
741 stack_offset += 4;
742 }
743 else if (argreg <= ARGN_REGNUM)
744 {
745 /* there's room in a register */
746 regval =
747 extract_unsigned_integer (val,
748 register_size (gdbarch, argreg));
749 regcache_cooked_write_unsigned (regcache, argreg++, regval);
750 }
751
752 /* Store the value 4 bytes at a time. This means that things
753 larger than 4 bytes may go partly in registers and partly
754 on the stack. */
755 len -= register_size (gdbarch, argreg);
756 val += register_size (gdbarch, argreg);
757 }
758 }
759
760 /* Finally, update the SP register. */
761 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
762
763 return sp;
764 }
765
766
767 /* Given a return value in `regbuf' with a type `valtype',
768 extract and copy its value into `valbuf'. */
769
770 static void
771 m32r_extract_return_value (struct type *type, struct regcache *regcache,
772 void *dst)
773 {
774 bfd_byte *valbuf = dst;
775 int len = TYPE_LENGTH (type);
776 ULONGEST tmp;
777
778 /* By using store_unsigned_integer we avoid having to do
779 anything special for small big-endian values. */
780 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
781 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
782
783 /* Ignore return values more than 8 bytes in size because the m32r
784 returns anything more than 8 bytes in the stack. */
785 if (len > 4)
786 {
787 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
788 store_unsigned_integer (valbuf + len - 4, 4, tmp);
789 }
790 }
791
792 enum return_value_convention
793 m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
794 struct regcache *regcache, void *readbuf,
795 const void *writebuf)
796 {
797 if (TYPE_LENGTH (valtype) > 8)
798 return RETURN_VALUE_STRUCT_CONVENTION;
799 else
800 {
801 if (readbuf != NULL)
802 m32r_extract_return_value (valtype, regcache, readbuf);
803 if (writebuf != NULL)
804 m32r_store_return_value (valtype, regcache, writebuf);
805 return RETURN_VALUE_REGISTER_CONVENTION;
806 }
807 }
808
809
810
811 static CORE_ADDR
812 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
813 {
814 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
815 }
816
817 /* Given a GDB frame, determine the address of the calling function's
818 frame. This will be used to create a new GDB frame struct. */
819
820 static void
821 m32r_frame_this_id (struct frame_info *next_frame,
822 void **this_prologue_cache, struct frame_id *this_id)
823 {
824 struct m32r_unwind_cache *info
825 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
826 CORE_ADDR base;
827 CORE_ADDR func;
828 struct minimal_symbol *msym_stack;
829 struct frame_id id;
830
831 /* The FUNC is easy. */
832 func = frame_func_unwind (next_frame);
833
834 /* Check if the stack is empty. */
835 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
836 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
837 return;
838
839 /* Hopefully the prologue analysis either correctly determined the
840 frame's base (which is the SP from the previous frame), or set
841 that base to "NULL". */
842 base = info->prev_sp;
843 if (base == 0)
844 return;
845
846 id = frame_id_build (base, func);
847 (*this_id) = id;
848 }
849
850 static void
851 m32r_frame_prev_register (struct frame_info *next_frame,
852 void **this_prologue_cache,
853 int regnum, int *optimizedp,
854 enum lval_type *lvalp, CORE_ADDR *addrp,
855 int *realnump, void *bufferp)
856 {
857 struct m32r_unwind_cache *info
858 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
859 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
860 optimizedp, lvalp, addrp, realnump, bufferp);
861 }
862
863 static const struct frame_unwind m32r_frame_unwind = {
864 NORMAL_FRAME,
865 m32r_frame_this_id,
866 m32r_frame_prev_register
867 };
868
869 static const struct frame_unwind *
870 m32r_frame_sniffer (struct frame_info *next_frame)
871 {
872 return &m32r_frame_unwind;
873 }
874
875 static CORE_ADDR
876 m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
877 {
878 struct m32r_unwind_cache *info
879 = m32r_frame_unwind_cache (next_frame, this_cache);
880 return info->base;
881 }
882
883 static const struct frame_base m32r_frame_base = {
884 &m32r_frame_unwind,
885 m32r_frame_base_address,
886 m32r_frame_base_address,
887 m32r_frame_base_address
888 };
889
890 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
891 dummy frame. The frame ID's base needs to match the TOS value
892 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
893 breakpoint. */
894
895 static struct frame_id
896 m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
897 {
898 return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
899 frame_pc_unwind (next_frame));
900 }
901
902
903 static gdbarch_init_ftype m32r_gdbarch_init;
904
905 static struct gdbarch *
906 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
907 {
908 struct gdbarch *gdbarch;
909 struct gdbarch_tdep *tdep;
910
911 /* If there is already a candidate, use it. */
912 arches = gdbarch_list_lookup_by_info (arches, &info);
913 if (arches != NULL)
914 return arches->gdbarch;
915
916 /* Allocate space for the new architecture. */
917 tdep = XMALLOC (struct gdbarch_tdep);
918 gdbarch = gdbarch_alloc (&info, tdep);
919
920 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
921 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
922 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
923
924 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
925 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
926 set_gdbarch_register_name (gdbarch, m32r_register_name);
927 set_gdbarch_register_type (gdbarch, m32r_register_type);
928
929 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
930 set_gdbarch_return_value (gdbarch, m32r_return_value);
931
932 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
933 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
934 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
935 set_gdbarch_memory_insert_breakpoint (gdbarch,
936 m32r_memory_insert_breakpoint);
937 set_gdbarch_memory_remove_breakpoint (gdbarch,
938 m32r_memory_remove_breakpoint);
939
940 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
941
942 frame_base_set_default (gdbarch, &m32r_frame_base);
943
944 /* Methods for saving / extracting a dummy frame's ID. The ID's
945 stack address must match the SP value returned by
946 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
947 set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
948
949 /* Return the unwound PC value. */
950 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
951
952 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
953
954 /* Hook in ABI-specific overrides, if they have been registered. */
955 gdbarch_init_osabi (info, gdbarch);
956
957 /* Hook in the default unwinders. */
958 frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
959
960 return gdbarch;
961 }
962
963 void
964 _initialize_m32r_tdep (void)
965 {
966 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
967 }
This page took 0.054116 seconds and 4 git commands to generate.