1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-unwind.h"
23 #include "frame-base.h"
35 #include "arch-utils.h"
37 #include "trad-frame.h"
41 #include "gdb_assert.h"
43 #include "m32r-tdep.h"
47 extern void _initialize_m32r_tdep (void);
50 m32r_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
52 /* Align to the size of an instruction (so that they can safely be
53 pushed onto the stack. */
60 The little endian mode of M32R is unique. In most of architectures,
61 two 16-bit instructions, A and B, are placed as the following:
69 In M32R, they are placed like this:
77 This is because M32R always fetches instructions in 32-bit.
79 The following functions take care of this behavior. */
82 m32r_memory_insert_breakpoint (struct gdbarch
*gdbarch
,
83 struct bp_target_info
*bp_tgt
)
85 CORE_ADDR addr
= bp_tgt
->placed_address
;
88 gdb_byte contents_cache
[4];
89 gdb_byte bp_entry
[] = { 0x10, 0xf1 }; /* dpt */
91 /* Save the memory contents. */
92 val
= target_read_memory (addr
& 0xfffffffc, contents_cache
, 4);
94 return val
; /* return error */
96 memcpy (bp_tgt
->shadow_contents
, contents_cache
, 4);
97 bp_tgt
->placed_size
= bp_tgt
->shadow_len
= 4;
99 /* Determine appropriate breakpoint contents and size for this address. */
100 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
104 buf
[0] = bp_entry
[0];
105 buf
[1] = bp_entry
[1];
106 buf
[2] = contents_cache
[2] & 0x7f;
107 buf
[3] = contents_cache
[3];
111 buf
[0] = contents_cache
[0];
112 buf
[1] = contents_cache
[1];
113 buf
[2] = bp_entry
[0];
114 buf
[3] = bp_entry
[1];
117 else /* little-endian */
121 buf
[0] = contents_cache
[0];
122 buf
[1] = contents_cache
[1] & 0x7f;
123 buf
[2] = bp_entry
[1];
124 buf
[3] = bp_entry
[0];
128 buf
[0] = bp_entry
[1];
129 buf
[1] = bp_entry
[0];
130 buf
[2] = contents_cache
[2];
131 buf
[3] = contents_cache
[3];
135 /* Write the breakpoint. */
136 val
= target_write_memory (addr
& 0xfffffffc, buf
, 4);
141 m32r_memory_remove_breakpoint (struct gdbarch
*gdbarch
,
142 struct bp_target_info
*bp_tgt
)
144 CORE_ADDR addr
= bp_tgt
->placed_address
;
147 gdb_byte
*contents_cache
= bp_tgt
->shadow_contents
;
149 buf
[0] = contents_cache
[0];
150 buf
[1] = contents_cache
[1];
151 buf
[2] = contents_cache
[2];
152 buf
[3] = contents_cache
[3];
154 /* Remove parallel bit. */
155 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
157 if ((buf
[0] & 0x80) == 0 && (buf
[2] & 0x80) != 0)
160 else /* little-endian */
162 if ((buf
[3] & 0x80) == 0 && (buf
[1] & 0x80) != 0)
166 /* Write contents. */
167 val
= target_write_raw_memory (addr
& 0xfffffffc, buf
, 4);
171 static const gdb_byte
*
172 m32r_breakpoint_from_pc (struct gdbarch
*gdbarch
,
173 CORE_ADDR
*pcptr
, int *lenptr
)
175 static gdb_byte be_bp_entry
[] = {
176 0x10, 0xf1, 0x70, 0x00
178 static gdb_byte le_bp_entry
[] = {
179 0x00, 0x70, 0xf1, 0x10
183 /* Determine appropriate breakpoint. */
184 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
186 if ((*pcptr
& 3) == 0)
199 if ((*pcptr
& 3) == 0)
206 bp
= le_bp_entry
+ 2;
215 char *m32r_register_names
[] = {
216 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
217 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
218 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
223 m32r_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
227 if (reg_nr
>= M32R_NUM_REGS
)
229 return m32r_register_names
[reg_nr
];
233 /* Return the GDB type object for the "standard" data type
234 of data in register N. */
237 m32r_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
239 if (reg_nr
== M32R_PC_REGNUM
)
240 return builtin_type (gdbarch
)->builtin_func_ptr
;
241 else if (reg_nr
== M32R_SP_REGNUM
|| reg_nr
== M32R_FP_REGNUM
)
242 return builtin_type (gdbarch
)->builtin_data_ptr
;
244 return builtin_type (gdbarch
)->builtin_int32
;
248 /* Write into appropriate registers a function return value
249 of type TYPE, given in virtual format.
251 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
254 m32r_store_return_value (struct type
*type
, struct regcache
*regcache
,
257 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
258 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
260 int len
= TYPE_LENGTH (type
);
262 regval
= extract_unsigned_integer (valbuf
, len
> 4 ? 4 : len
, byte_order
);
263 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
, regval
);
267 regval
= extract_unsigned_integer ((gdb_byte
*) valbuf
+ 4,
268 len
- 4, byte_order
);
269 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
+ 1, regval
);
273 /* This is required by skip_prologue. The results of decoding a prologue
274 should be cached because this thrashing is getting nuts. */
277 decode_prologue (struct gdbarch
*gdbarch
,
278 CORE_ADDR start_pc
, CORE_ADDR scan_limit
,
279 CORE_ADDR
*pl_endptr
, unsigned long *framelength
)
281 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
282 unsigned long framesize
;
285 CORE_ADDR after_prologue
= 0;
286 CORE_ADDR after_push
= 0;
287 CORE_ADDR after_stack_adjust
= 0;
288 CORE_ADDR current_pc
;
289 LONGEST return_value
;
294 for (current_pc
= start_pc
; current_pc
< scan_limit
; current_pc
+= 2)
296 /* Check if current pc's location is readable. */
297 if (!safe_read_memory_integer (current_pc
, 2, byte_order
, &return_value
))
300 insn
= read_memory_unsigned_integer (current_pc
, 2, byte_order
);
305 /* If this is a 32 bit instruction, we dont want to examine its
306 immediate data as though it were an instruction. */
307 if (current_pc
& 0x02)
309 /* Decode this instruction further. */
316 if (current_pc
== scan_limit
)
317 scan_limit
+= 2; /* extend the search */
319 current_pc
+= 2; /* skip the immediate data */
321 /* Check if current pc's location is readable. */
322 if (!safe_read_memory_integer (current_pc
, 2, byte_order
,
326 if (insn
== 0x8faf) /* add3 sp, sp, xxxx */
327 /* add 16 bit sign-extended offset */
330 -((short) read_memory_unsigned_integer (current_pc
,
335 if (((insn
>> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
336 && safe_read_memory_integer (current_pc
+ 2,
339 && read_memory_unsigned_integer (current_pc
+ 2,
343 /* Subtract 24 bit sign-extended negative-offset. */
344 insn
= read_memory_unsigned_integer (current_pc
- 2,
346 if (insn
& 0x00800000) /* sign extend */
347 insn
|= 0xff000000; /* negative */
349 insn
&= 0x00ffffff; /* positive */
353 after_push
= current_pc
+ 2;
357 op1
= insn
& 0xf000; /* Isolate just the first nibble. */
359 if ((insn
& 0xf0ff) == 0x207f)
363 regno
= ((insn
>> 8) & 0xf);
367 if ((insn
>> 8) == 0x4f) /* addi sp, xx */
368 /* Add 8 bit sign-extended offset. */
370 int stack_adjust
= (signed char) (insn
& 0xff);
372 /* there are probably two of these stack adjustments:
373 1) A negative one in the prologue, and
374 2) A positive one in the epilogue.
375 We are only interested in the first one. */
377 if (stack_adjust
< 0)
379 framesize
-= stack_adjust
;
381 /* A frameless function may have no "mv fp, sp".
382 In that case, this is the end of the prologue. */
383 after_stack_adjust
= current_pc
+ 2;
389 after_prologue
= current_pc
+ 2;
390 break; /* end of stack adjustments */
393 /* Nop looks like a branch, continue explicitly. */
396 after_prologue
= current_pc
+ 2;
397 continue; /* nop occurs between pushes. */
399 /* End of prolog if any of these are trap instructions. */
400 if ((insn
& 0xfff0) == 0x10f0)
402 after_prologue
= current_pc
;
405 /* End of prolog if any of these are branch instructions. */
406 if ((op1
== 0x7000) || (op1
== 0xb000) || (op1
== 0xf000))
408 after_prologue
= current_pc
;
411 /* Some of the branch instructions are mixed with other types. */
414 int subop
= insn
& 0x0ff0;
415 if ((subop
== 0x0ec0) || (subop
== 0x0fc0))
417 after_prologue
= current_pc
;
418 continue; /* jmp , jl */
424 *framelength
= framesize
;
426 if (current_pc
>= scan_limit
)
430 if (after_stack_adjust
!= 0)
431 /* We did not find a "mv fp,sp", but we DID find
432 a stack_adjust. Is it safe to use that as the
433 end of the prologue? I just don't know. */
435 *pl_endptr
= after_stack_adjust
;
437 else if (after_push
!= 0)
438 /* We did not find a "mv fp,sp", but we DID find
439 a push. Is it safe to use that as the
440 end of the prologue? I just don't know. */
442 *pl_endptr
= after_push
;
445 /* We reached the end of the loop without finding the end
446 of the prologue. No way to win -- we should report
447 failure. The way we do that is to return the original
448 start_pc. GDB will set a breakpoint at the start of
449 the function (etc.) */
450 *pl_endptr
= start_pc
;
455 if (after_prologue
== 0)
456 after_prologue
= current_pc
;
459 *pl_endptr
= after_prologue
;
462 } /* decode_prologue */
464 /* Function: skip_prologue
465 Find end of function prologue. */
467 #define DEFAULT_SEARCH_LIMIT 128
470 m32r_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
472 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
473 CORE_ADDR func_addr
, func_end
;
474 struct symtab_and_line sal
;
475 LONGEST return_value
;
477 /* See what the symbol table says. */
479 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
481 sal
= find_pc_line (func_addr
, 0);
483 if (sal
.line
!= 0 && sal
.end
<= func_end
)
488 /* Either there's no line info, or the line after the prologue is after
489 the end of the function. In this case, there probably isn't a
492 func_end
= min (func_end
, func_addr
+ DEFAULT_SEARCH_LIMIT
);
496 func_end
= pc
+ DEFAULT_SEARCH_LIMIT
;
498 /* If pc's location is not readable, just quit. */
499 if (!safe_read_memory_integer (pc
, 4, byte_order
, &return_value
))
502 /* Find the end of prologue. */
503 if (decode_prologue (gdbarch
, pc
, func_end
, &sal
.end
, NULL
) < 0)
509 struct m32r_unwind_cache
511 /* The previous frame's inner most stack address. Used as this
512 frame ID's stack_addr. */
514 /* The frame's base, optionally used by the high-level debug info. */
517 /* How far the SP and r13 (FP) have been offset from the start of
518 the stack frame (as defined by the previous frame's stack
523 /* Table indicating the location of each and every register. */
524 struct trad_frame_saved_reg
*saved_regs
;
527 /* Put here the code to store, into fi->saved_regs, the addresses of
528 the saved registers of frame described by FRAME_INFO. This
529 includes special registers such as pc and fp saved in special ways
530 in the stack frame. sp is even more special: the address we return
531 for it IS the sp for the next frame. */
533 static struct m32r_unwind_cache
*
534 m32r_frame_unwind_cache (struct frame_info
*this_frame
,
535 void **this_prologue_cache
)
537 CORE_ADDR pc
, scan_limit
;
542 struct m32r_unwind_cache
*info
;
545 if ((*this_prologue_cache
))
546 return (*this_prologue_cache
);
548 info
= FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache
);
549 (*this_prologue_cache
) = info
;
550 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
554 info
->uses_frame
= 0;
556 scan_limit
= get_frame_pc (this_frame
);
557 for (pc
= get_frame_func (this_frame
);
558 pc
> 0 && pc
< scan_limit
; pc
+= 2)
562 op
= get_frame_memory_unsigned (this_frame
, pc
, 4);
563 if ((op
& 0x80000000) == 0x80000000)
565 /* 32-bit instruction */
566 if ((op
& 0xffff0000) == 0x8faf0000)
568 /* add3 sp,sp,xxxx */
569 short n
= op
& 0xffff;
570 info
->sp_offset
+= n
;
572 else if (((op
>> 8) == 0xe4)
573 && get_frame_memory_unsigned (this_frame
, pc
+ 2,
576 /* ld24 r4, xxxxxx; sub sp, r4 */
577 unsigned long n
= op
& 0xffffff;
578 info
->sp_offset
+= n
;
579 pc
+= 2; /* skip sub instruction */
582 if (pc
== scan_limit
)
583 scan_limit
+= 2; /* extend the search */
584 pc
+= 2; /* skip the immediate data */
589 /* 16-bit instructions */
590 op
= get_frame_memory_unsigned (this_frame
, pc
, 2) & 0x7fff;
591 if ((op
& 0xf0ff) == 0x207f)
594 int regno
= ((op
>> 8) & 0xf);
595 info
->sp_offset
-= 4;
596 info
->saved_regs
[regno
].addr
= info
->sp_offset
;
598 else if ((op
& 0xff00) == 0x4f00)
601 int n
= (signed char) (op
& 0xff);
602 info
->sp_offset
+= n
;
604 else if (op
== 0x1d8f)
607 info
->uses_frame
= 1;
608 info
->r13_offset
= info
->sp_offset
;
609 break; /* end of stack adjustments */
611 else if ((op
& 0xfff0) == 0x10f0)
613 /* End of prologue if this is a trap instruction. */
614 break; /* End of stack adjustments. */
618 info
->size
= -info
->sp_offset
;
620 /* Compute the previous frame's stack pointer (which is also the
621 frame's ID's stack address), and this frame's base pointer. */
622 if (info
->uses_frame
)
624 /* The SP was moved to the FP. This indicates that a new frame
625 was created. Get THIS frame's FP value by unwinding it from
627 this_base
= get_frame_register_unsigned (this_frame
, M32R_FP_REGNUM
);
628 /* The FP points at the last saved register. Adjust the FP back
629 to before the first saved register giving the SP. */
630 prev_sp
= this_base
+ info
->size
;
634 /* Assume that the FP is this frame's SP but with that pushed
635 stack space added back. */
636 this_base
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
637 prev_sp
= this_base
+ info
->size
;
640 /* Convert that SP/BASE into real addresses. */
641 info
->prev_sp
= prev_sp
;
642 info
->base
= this_base
;
644 /* Adjust all the saved registers so that they contain addresses and
646 for (i
= 0; i
< gdbarch_num_regs (get_frame_arch (this_frame
)) - 1; i
++)
647 if (trad_frame_addr_p (info
->saved_regs
, i
))
648 info
->saved_regs
[i
].addr
= (info
->prev_sp
+ info
->saved_regs
[i
].addr
);
650 /* The call instruction moves the caller's PC in the callee's LR.
651 Since this is an unwind, do the reverse. Copy the location of LR
652 into PC (the address / regnum) so that a request for PC will be
653 converted into a request for the LR. */
654 info
->saved_regs
[M32R_PC_REGNUM
] = info
->saved_regs
[LR_REGNUM
];
656 /* The previous frame's SP needed to be computed. Save the computed
658 trad_frame_set_value (info
->saved_regs
, M32R_SP_REGNUM
, prev_sp
);
664 m32r_read_pc (struct regcache
*regcache
)
667 regcache_cooked_read_unsigned (regcache
, M32R_PC_REGNUM
, &pc
);
672 m32r_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
674 return frame_unwind_register_unsigned (next_frame
, M32R_SP_REGNUM
);
679 m32r_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
680 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
681 struct value
**args
, CORE_ADDR sp
, int struct_return
,
682 CORE_ADDR struct_addr
)
684 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
685 int stack_offset
, stack_alloc
;
686 int argreg
= ARG1_REGNUM
;
689 enum type_code typecode
;
692 gdb_byte valbuf
[MAX_REGISTER_SIZE
];
695 /* First force sp to a 4-byte alignment. */
698 /* Set the return address. For the m32r, the return breakpoint is
699 always at BP_ADDR. */
700 regcache_cooked_write_unsigned (regcache
, LR_REGNUM
, bp_addr
);
702 /* If STRUCT_RETURN is true, then the struct return address (in
703 STRUCT_ADDR) will consume the first argument-passing register.
704 Both adjust the register count and store that value. */
707 regcache_cooked_write_unsigned (regcache
, argreg
, struct_addr
);
711 /* Now make sure there's space on the stack. */
712 for (argnum
= 0, stack_alloc
= 0; argnum
< nargs
; argnum
++)
713 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[argnum
])) + 3) & ~3);
714 sp
-= stack_alloc
; /* Make room on stack for args. */
716 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
718 type
= value_type (args
[argnum
]);
719 typecode
= TYPE_CODE (type
);
720 len
= TYPE_LENGTH (type
);
722 memset (valbuf
, 0, sizeof (valbuf
));
724 /* Passes structures that do not fit in 2 registers by reference. */
726 && (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
))
728 store_unsigned_integer (valbuf
, 4, byte_order
,
729 value_address (args
[argnum
]));
730 typecode
= TYPE_CODE_PTR
;
736 /* Value gets right-justified in the register or stack word. */
737 memcpy (valbuf
+ (register_size (gdbarch
, argreg
) - len
),
738 (gdb_byte
*) value_contents (args
[argnum
]), len
);
742 val
= (gdb_byte
*) value_contents (args
[argnum
]);
746 if (argreg
> ARGN_REGNUM
)
748 /* Must go on the stack. */
749 write_memory (sp
+ stack_offset
, val
, 4);
752 else if (argreg
<= ARGN_REGNUM
)
754 /* There's room in a register. */
756 extract_unsigned_integer (val
,
757 register_size (gdbarch
, argreg
),
759 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
762 /* Store the value 4 bytes at a time. This means that things
763 larger than 4 bytes may go partly in registers and partly
765 len
-= register_size (gdbarch
, argreg
);
766 val
+= register_size (gdbarch
, argreg
);
770 /* Finally, update the SP register. */
771 regcache_cooked_write_unsigned (regcache
, M32R_SP_REGNUM
, sp
);
777 /* Given a return value in `regbuf' with a type `valtype',
778 extract and copy its value into `valbuf'. */
781 m32r_extract_return_value (struct type
*type
, struct regcache
*regcache
,
784 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
785 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
786 bfd_byte
*valbuf
= dst
;
787 int len
= TYPE_LENGTH (type
);
790 /* By using store_unsigned_integer we avoid having to do
791 anything special for small big-endian values. */
792 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
, &tmp
);
793 store_unsigned_integer (valbuf
, (len
> 4 ? len
- 4 : len
), byte_order
, tmp
);
795 /* Ignore return values more than 8 bytes in size because the m32r
796 returns anything more than 8 bytes in the stack. */
799 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
+ 1, &tmp
);
800 store_unsigned_integer (valbuf
+ len
- 4, 4, byte_order
, tmp
);
804 static enum return_value_convention
805 m32r_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
806 struct type
*valtype
, struct regcache
*regcache
,
807 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
809 if (TYPE_LENGTH (valtype
) > 8)
810 return RETURN_VALUE_STRUCT_CONVENTION
;
814 m32r_extract_return_value (valtype
, regcache
, readbuf
);
815 if (writebuf
!= NULL
)
816 m32r_store_return_value (valtype
, regcache
, writebuf
);
817 return RETURN_VALUE_REGISTER_CONVENTION
;
824 m32r_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
826 return frame_unwind_register_unsigned (next_frame
, M32R_PC_REGNUM
);
829 /* Given a GDB frame, determine the address of the calling function's
830 frame. This will be used to create a new GDB frame struct. */
833 m32r_frame_this_id (struct frame_info
*this_frame
,
834 void **this_prologue_cache
, struct frame_id
*this_id
)
836 struct m32r_unwind_cache
*info
837 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
840 struct bound_minimal_symbol msym_stack
;
843 /* The FUNC is easy. */
844 func
= get_frame_func (this_frame
);
846 /* Check if the stack is empty. */
847 msym_stack
= lookup_minimal_symbol ("_stack", NULL
, NULL
);
848 if (msym_stack
.minsym
&& info
->base
== BMSYMBOL_VALUE_ADDRESS (msym_stack
))
851 /* Hopefully the prologue analysis either correctly determined the
852 frame's base (which is the SP from the previous frame), or set
853 that base to "NULL". */
854 base
= info
->prev_sp
;
858 id
= frame_id_build (base
, func
);
862 static struct value
*
863 m32r_frame_prev_register (struct frame_info
*this_frame
,
864 void **this_prologue_cache
, int regnum
)
866 struct m32r_unwind_cache
*info
867 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
868 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
871 static const struct frame_unwind m32r_frame_unwind
= {
873 default_frame_unwind_stop_reason
,
875 m32r_frame_prev_register
,
877 default_frame_sniffer
881 m32r_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
883 struct m32r_unwind_cache
*info
884 = m32r_frame_unwind_cache (this_frame
, this_cache
);
888 static const struct frame_base m32r_frame_base
= {
890 m32r_frame_base_address
,
891 m32r_frame_base_address
,
892 m32r_frame_base_address
895 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
896 frame. The frame ID's base needs to match the TOS value saved by
897 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
899 static struct frame_id
900 m32r_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
902 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
903 return frame_id_build (sp
, get_frame_pc (this_frame
));
907 static gdbarch_init_ftype m32r_gdbarch_init
;
909 static struct gdbarch
*
910 m32r_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
912 struct gdbarch
*gdbarch
;
913 struct gdbarch_tdep
*tdep
;
915 /* If there is already a candidate, use it. */
916 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
918 return arches
->gdbarch
;
920 /* Allocate space for the new architecture. */
921 tdep
= XNEW (struct gdbarch_tdep
);
922 gdbarch
= gdbarch_alloc (&info
, tdep
);
924 set_gdbarch_read_pc (gdbarch
, m32r_read_pc
);
925 set_gdbarch_unwind_sp (gdbarch
, m32r_unwind_sp
);
927 set_gdbarch_num_regs (gdbarch
, M32R_NUM_REGS
);
928 set_gdbarch_pc_regnum (gdbarch
, M32R_PC_REGNUM
);
929 set_gdbarch_sp_regnum (gdbarch
, M32R_SP_REGNUM
);
930 set_gdbarch_register_name (gdbarch
, m32r_register_name
);
931 set_gdbarch_register_type (gdbarch
, m32r_register_type
);
933 set_gdbarch_push_dummy_call (gdbarch
, m32r_push_dummy_call
);
934 set_gdbarch_return_value (gdbarch
, m32r_return_value
);
936 set_gdbarch_skip_prologue (gdbarch
, m32r_skip_prologue
);
937 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
938 set_gdbarch_breakpoint_from_pc (gdbarch
, m32r_breakpoint_from_pc
);
939 set_gdbarch_memory_insert_breakpoint (gdbarch
,
940 m32r_memory_insert_breakpoint
);
941 set_gdbarch_memory_remove_breakpoint (gdbarch
,
942 m32r_memory_remove_breakpoint
);
944 set_gdbarch_frame_align (gdbarch
, m32r_frame_align
);
946 frame_base_set_default (gdbarch
, &m32r_frame_base
);
948 /* Methods for saving / extracting a dummy frame's ID. The ID's
949 stack address must match the SP value returned by
950 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
951 set_gdbarch_dummy_id (gdbarch
, m32r_dummy_id
);
953 /* Return the unwound PC value. */
954 set_gdbarch_unwind_pc (gdbarch
, m32r_unwind_pc
);
956 set_gdbarch_print_insn (gdbarch
, print_insn_m32r
);
958 /* Hook in ABI-specific overrides, if they have been registered. */
959 gdbarch_init_osabi (info
, gdbarch
);
961 /* Hook in the default unwinders. */
962 frame_unwind_append_unwinder (gdbarch
, &m32r_frame_unwind
);
964 /* Support simple overlay manager. */
965 set_gdbarch_overlay_update (gdbarch
, simple_overlay_update
);
971 _initialize_m32r_tdep (void)
973 register_gdbarch_init (bfd_arch_m32r
, m32r_gdbarch_init
);