Fix gdb.trace/entry-values.exp for thumb mode
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include <string.h>
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "language.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "trad-frame.h"
38 #include "dis-asm.h"
39 #include "objfiles.h"
40
41 #include "gdb_assert.h"
42
43 #include "m32r-tdep.h"
44
45 /* Local functions */
46
47 extern void _initialize_m32r_tdep (void);
48
49 static CORE_ADDR
50 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
51 {
52 /* Align to the size of an instruction (so that they can safely be
53 pushed onto the stack. */
54 return sp & ~3;
55 }
56
57
58 /* Breakpoints
59
60 The little endian mode of M32R is unique. In most of architectures,
61 two 16-bit instructions, A and B, are placed as the following:
62
63 Big endian:
64 A0 A1 B0 B1
65
66 Little endian:
67 A1 A0 B1 B0
68
69 In M32R, they are placed like this:
70
71 Big endian:
72 A0 A1 B0 B1
73
74 Little endian:
75 B1 B0 A1 A0
76
77 This is because M32R always fetches instructions in 32-bit.
78
79 The following functions take care of this behavior. */
80
81 static int
82 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
83 struct bp_target_info *bp_tgt)
84 {
85 CORE_ADDR addr = bp_tgt->placed_address;
86 int val;
87 gdb_byte buf[4];
88 gdb_byte contents_cache[4];
89 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
90
91 /* Save the memory contents. */
92 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
93 if (val != 0)
94 return val; /* return error */
95
96 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
97 bp_tgt->placed_size = bp_tgt->shadow_len = 4;
98
99 /* Determine appropriate breakpoint contents and size for this address. */
100 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
101 {
102 if ((addr & 3) == 0)
103 {
104 buf[0] = bp_entry[0];
105 buf[1] = bp_entry[1];
106 buf[2] = contents_cache[2] & 0x7f;
107 buf[3] = contents_cache[3];
108 }
109 else
110 {
111 buf[0] = contents_cache[0];
112 buf[1] = contents_cache[1];
113 buf[2] = bp_entry[0];
114 buf[3] = bp_entry[1];
115 }
116 }
117 else /* little-endian */
118 {
119 if ((addr & 3) == 0)
120 {
121 buf[0] = contents_cache[0];
122 buf[1] = contents_cache[1] & 0x7f;
123 buf[2] = bp_entry[1];
124 buf[3] = bp_entry[0];
125 }
126 else
127 {
128 buf[0] = bp_entry[1];
129 buf[1] = bp_entry[0];
130 buf[2] = contents_cache[2];
131 buf[3] = contents_cache[3];
132 }
133 }
134
135 /* Write the breakpoint. */
136 val = target_write_memory (addr & 0xfffffffc, buf, 4);
137 return val;
138 }
139
140 static int
141 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
142 struct bp_target_info *bp_tgt)
143 {
144 CORE_ADDR addr = bp_tgt->placed_address;
145 int val;
146 gdb_byte buf[4];
147 gdb_byte *contents_cache = bp_tgt->shadow_contents;
148
149 buf[0] = contents_cache[0];
150 buf[1] = contents_cache[1];
151 buf[2] = contents_cache[2];
152 buf[3] = contents_cache[3];
153
154 /* Remove parallel bit. */
155 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
156 {
157 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
158 buf[2] &= 0x7f;
159 }
160 else /* little-endian */
161 {
162 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
163 buf[1] &= 0x7f;
164 }
165
166 /* Write contents. */
167 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
168 return val;
169 }
170
171 static const gdb_byte *
172 m32r_breakpoint_from_pc (struct gdbarch *gdbarch,
173 CORE_ADDR *pcptr, int *lenptr)
174 {
175 static gdb_byte be_bp_entry[] = {
176 0x10, 0xf1, 0x70, 0x00
177 }; /* dpt -> nop */
178 static gdb_byte le_bp_entry[] = {
179 0x00, 0x70, 0xf1, 0x10
180 }; /* dpt -> nop */
181 gdb_byte *bp;
182
183 /* Determine appropriate breakpoint. */
184 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
185 {
186 if ((*pcptr & 3) == 0)
187 {
188 bp = be_bp_entry;
189 *lenptr = 4;
190 }
191 else
192 {
193 bp = be_bp_entry;
194 *lenptr = 2;
195 }
196 }
197 else
198 {
199 if ((*pcptr & 3) == 0)
200 {
201 bp = le_bp_entry;
202 *lenptr = 4;
203 }
204 else
205 {
206 bp = le_bp_entry + 2;
207 *lenptr = 2;
208 }
209 }
210
211 return bp;
212 }
213
214
215 char *m32r_register_names[] = {
216 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
217 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
218 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
219 "evb"
220 };
221
222 static const char *
223 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
224 {
225 if (reg_nr < 0)
226 return NULL;
227 if (reg_nr >= M32R_NUM_REGS)
228 return NULL;
229 return m32r_register_names[reg_nr];
230 }
231
232
233 /* Return the GDB type object for the "standard" data type
234 of data in register N. */
235
236 static struct type *
237 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
238 {
239 if (reg_nr == M32R_PC_REGNUM)
240 return builtin_type (gdbarch)->builtin_func_ptr;
241 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
242 return builtin_type (gdbarch)->builtin_data_ptr;
243 else
244 return builtin_type (gdbarch)->builtin_int32;
245 }
246
247
248 /* Write into appropriate registers a function return value
249 of type TYPE, given in virtual format.
250
251 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
252
253 static void
254 m32r_store_return_value (struct type *type, struct regcache *regcache,
255 const void *valbuf)
256 {
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
259 CORE_ADDR regval;
260 int len = TYPE_LENGTH (type);
261
262 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
263 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
264
265 if (len > 4)
266 {
267 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
268 len - 4, byte_order);
269 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
270 }
271 }
272
273 /* This is required by skip_prologue. The results of decoding a prologue
274 should be cached because this thrashing is getting nuts. */
275
276 static int
277 decode_prologue (struct gdbarch *gdbarch,
278 CORE_ADDR start_pc, CORE_ADDR scan_limit,
279 CORE_ADDR *pl_endptr, unsigned long *framelength)
280 {
281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
282 unsigned long framesize;
283 int insn;
284 int op1;
285 CORE_ADDR after_prologue = 0;
286 CORE_ADDR after_push = 0;
287 CORE_ADDR after_stack_adjust = 0;
288 CORE_ADDR current_pc;
289 LONGEST return_value;
290
291 framesize = 0;
292 after_prologue = 0;
293
294 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
295 {
296 /* Check if current pc's location is readable. */
297 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
298 return -1;
299
300 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
301
302 if (insn == 0x0000)
303 break;
304
305 /* If this is a 32 bit instruction, we dont want to examine its
306 immediate data as though it were an instruction. */
307 if (current_pc & 0x02)
308 {
309 /* Decode this instruction further. */
310 insn &= 0x7fff;
311 }
312 else
313 {
314 if (insn & 0x8000)
315 {
316 if (current_pc == scan_limit)
317 scan_limit += 2; /* extend the search */
318
319 current_pc += 2; /* skip the immediate data */
320
321 /* Check if current pc's location is readable. */
322 if (!safe_read_memory_integer (current_pc, 2, byte_order,
323 &return_value))
324 return -1;
325
326 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
327 /* add 16 bit sign-extended offset */
328 {
329 framesize +=
330 -((short) read_memory_unsigned_integer (current_pc,
331 2, byte_order));
332 }
333 else
334 {
335 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
336 && safe_read_memory_integer (current_pc + 2,
337 2, byte_order,
338 &return_value)
339 && read_memory_unsigned_integer (current_pc + 2,
340 2, byte_order)
341 == 0x0f24)
342 {
343 /* Subtract 24 bit sign-extended negative-offset. */
344 insn = read_memory_unsigned_integer (current_pc - 2,
345 4, byte_order);
346 if (insn & 0x00800000) /* sign extend */
347 insn |= 0xff000000; /* negative */
348 else
349 insn &= 0x00ffffff; /* positive */
350 framesize += insn;
351 }
352 }
353 after_push = current_pc + 2;
354 continue;
355 }
356 }
357 op1 = insn & 0xf000; /* Isolate just the first nibble. */
358
359 if ((insn & 0xf0ff) == 0x207f)
360 { /* st reg, @-sp */
361 int regno;
362 framesize += 4;
363 regno = ((insn >> 8) & 0xf);
364 after_prologue = 0;
365 continue;
366 }
367 if ((insn >> 8) == 0x4f) /* addi sp, xx */
368 /* Add 8 bit sign-extended offset. */
369 {
370 int stack_adjust = (signed char) (insn & 0xff);
371
372 /* there are probably two of these stack adjustments:
373 1) A negative one in the prologue, and
374 2) A positive one in the epilogue.
375 We are only interested in the first one. */
376
377 if (stack_adjust < 0)
378 {
379 framesize -= stack_adjust;
380 after_prologue = 0;
381 /* A frameless function may have no "mv fp, sp".
382 In that case, this is the end of the prologue. */
383 after_stack_adjust = current_pc + 2;
384 }
385 continue;
386 }
387 if (insn == 0x1d8f)
388 { /* mv fp, sp */
389 after_prologue = current_pc + 2;
390 break; /* end of stack adjustments */
391 }
392
393 /* Nop looks like a branch, continue explicitly. */
394 if (insn == 0x7000)
395 {
396 after_prologue = current_pc + 2;
397 continue; /* nop occurs between pushes. */
398 }
399 /* End of prolog if any of these are trap instructions. */
400 if ((insn & 0xfff0) == 0x10f0)
401 {
402 after_prologue = current_pc;
403 break;
404 }
405 /* End of prolog if any of these are branch instructions. */
406 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
407 {
408 after_prologue = current_pc;
409 continue;
410 }
411 /* Some of the branch instructions are mixed with other types. */
412 if (op1 == 0x1000)
413 {
414 int subop = insn & 0x0ff0;
415 if ((subop == 0x0ec0) || (subop == 0x0fc0))
416 {
417 after_prologue = current_pc;
418 continue; /* jmp , jl */
419 }
420 }
421 }
422
423 if (framelength)
424 *framelength = framesize;
425
426 if (current_pc >= scan_limit)
427 {
428 if (pl_endptr)
429 {
430 if (after_stack_adjust != 0)
431 /* We did not find a "mv fp,sp", but we DID find
432 a stack_adjust. Is it safe to use that as the
433 end of the prologue? I just don't know. */
434 {
435 *pl_endptr = after_stack_adjust;
436 }
437 else if (after_push != 0)
438 /* We did not find a "mv fp,sp", but we DID find
439 a push. Is it safe to use that as the
440 end of the prologue? I just don't know. */
441 {
442 *pl_endptr = after_push;
443 }
444 else
445 /* We reached the end of the loop without finding the end
446 of the prologue. No way to win -- we should report
447 failure. The way we do that is to return the original
448 start_pc. GDB will set a breakpoint at the start of
449 the function (etc.) */
450 *pl_endptr = start_pc;
451 }
452 return 0;
453 }
454
455 if (after_prologue == 0)
456 after_prologue = current_pc;
457
458 if (pl_endptr)
459 *pl_endptr = after_prologue;
460
461 return 0;
462 } /* decode_prologue */
463
464 /* Function: skip_prologue
465 Find end of function prologue. */
466
467 #define DEFAULT_SEARCH_LIMIT 128
468
469 static CORE_ADDR
470 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
473 CORE_ADDR func_addr, func_end;
474 struct symtab_and_line sal;
475 LONGEST return_value;
476
477 /* See what the symbol table says. */
478
479 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
480 {
481 sal = find_pc_line (func_addr, 0);
482
483 if (sal.line != 0 && sal.end <= func_end)
484 {
485 func_end = sal.end;
486 }
487 else
488 /* Either there's no line info, or the line after the prologue is after
489 the end of the function. In this case, there probably isn't a
490 prologue. */
491 {
492 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
493 }
494 }
495 else
496 func_end = pc + DEFAULT_SEARCH_LIMIT;
497
498 /* If pc's location is not readable, just quit. */
499 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
500 return pc;
501
502 /* Find the end of prologue. */
503 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
504 return pc;
505
506 return sal.end;
507 }
508
509 struct m32r_unwind_cache
510 {
511 /* The previous frame's inner most stack address. Used as this
512 frame ID's stack_addr. */
513 CORE_ADDR prev_sp;
514 /* The frame's base, optionally used by the high-level debug info. */
515 CORE_ADDR base;
516 int size;
517 /* How far the SP and r13 (FP) have been offset from the start of
518 the stack frame (as defined by the previous frame's stack
519 pointer). */
520 LONGEST sp_offset;
521 LONGEST r13_offset;
522 int uses_frame;
523 /* Table indicating the location of each and every register. */
524 struct trad_frame_saved_reg *saved_regs;
525 };
526
527 /* Put here the code to store, into fi->saved_regs, the addresses of
528 the saved registers of frame described by FRAME_INFO. This
529 includes special registers such as pc and fp saved in special ways
530 in the stack frame. sp is even more special: the address we return
531 for it IS the sp for the next frame. */
532
533 static struct m32r_unwind_cache *
534 m32r_frame_unwind_cache (struct frame_info *this_frame,
535 void **this_prologue_cache)
536 {
537 CORE_ADDR pc, scan_limit;
538 ULONGEST prev_sp;
539 ULONGEST this_base;
540 unsigned long op;
541 int i;
542 struct m32r_unwind_cache *info;
543
544
545 if ((*this_prologue_cache))
546 return (*this_prologue_cache);
547
548 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
549 (*this_prologue_cache) = info;
550 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
551
552 info->size = 0;
553 info->sp_offset = 0;
554 info->uses_frame = 0;
555
556 scan_limit = get_frame_pc (this_frame);
557 for (pc = get_frame_func (this_frame);
558 pc > 0 && pc < scan_limit; pc += 2)
559 {
560 if ((pc & 2) == 0)
561 {
562 op = get_frame_memory_unsigned (this_frame, pc, 4);
563 if ((op & 0x80000000) == 0x80000000)
564 {
565 /* 32-bit instruction */
566 if ((op & 0xffff0000) == 0x8faf0000)
567 {
568 /* add3 sp,sp,xxxx */
569 short n = op & 0xffff;
570 info->sp_offset += n;
571 }
572 else if (((op >> 8) == 0xe4)
573 && get_frame_memory_unsigned (this_frame, pc + 2,
574 2) == 0x0f24)
575 {
576 /* ld24 r4, xxxxxx; sub sp, r4 */
577 unsigned long n = op & 0xffffff;
578 info->sp_offset += n;
579 pc += 2; /* skip sub instruction */
580 }
581
582 if (pc == scan_limit)
583 scan_limit += 2; /* extend the search */
584 pc += 2; /* skip the immediate data */
585 continue;
586 }
587 }
588
589 /* 16-bit instructions */
590 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
591 if ((op & 0xf0ff) == 0x207f)
592 {
593 /* st rn, @-sp */
594 int regno = ((op >> 8) & 0xf);
595 info->sp_offset -= 4;
596 info->saved_regs[regno].addr = info->sp_offset;
597 }
598 else if ((op & 0xff00) == 0x4f00)
599 {
600 /* addi sp, xx */
601 int n = (signed char) (op & 0xff);
602 info->sp_offset += n;
603 }
604 else if (op == 0x1d8f)
605 {
606 /* mv fp, sp */
607 info->uses_frame = 1;
608 info->r13_offset = info->sp_offset;
609 break; /* end of stack adjustments */
610 }
611 else if ((op & 0xfff0) == 0x10f0)
612 {
613 /* End of prologue if this is a trap instruction. */
614 break; /* End of stack adjustments. */
615 }
616 }
617
618 info->size = -info->sp_offset;
619
620 /* Compute the previous frame's stack pointer (which is also the
621 frame's ID's stack address), and this frame's base pointer. */
622 if (info->uses_frame)
623 {
624 /* The SP was moved to the FP. This indicates that a new frame
625 was created. Get THIS frame's FP value by unwinding it from
626 the next frame. */
627 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
628 /* The FP points at the last saved register. Adjust the FP back
629 to before the first saved register giving the SP. */
630 prev_sp = this_base + info->size;
631 }
632 else
633 {
634 /* Assume that the FP is this frame's SP but with that pushed
635 stack space added back. */
636 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
637 prev_sp = this_base + info->size;
638 }
639
640 /* Convert that SP/BASE into real addresses. */
641 info->prev_sp = prev_sp;
642 info->base = this_base;
643
644 /* Adjust all the saved registers so that they contain addresses and
645 not offsets. */
646 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
647 if (trad_frame_addr_p (info->saved_regs, i))
648 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
649
650 /* The call instruction moves the caller's PC in the callee's LR.
651 Since this is an unwind, do the reverse. Copy the location of LR
652 into PC (the address / regnum) so that a request for PC will be
653 converted into a request for the LR. */
654 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
655
656 /* The previous frame's SP needed to be computed. Save the computed
657 value. */
658 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
659
660 return info;
661 }
662
663 static CORE_ADDR
664 m32r_read_pc (struct regcache *regcache)
665 {
666 ULONGEST pc;
667 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
668 return pc;
669 }
670
671 static CORE_ADDR
672 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
673 {
674 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
675 }
676
677
678 static CORE_ADDR
679 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
680 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
681 struct value **args, CORE_ADDR sp, int struct_return,
682 CORE_ADDR struct_addr)
683 {
684 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
685 int stack_offset, stack_alloc;
686 int argreg = ARG1_REGNUM;
687 int argnum;
688 struct type *type;
689 enum type_code typecode;
690 CORE_ADDR regval;
691 gdb_byte *val;
692 gdb_byte valbuf[MAX_REGISTER_SIZE];
693 int len;
694
695 /* First force sp to a 4-byte alignment. */
696 sp = sp & ~3;
697
698 /* Set the return address. For the m32r, the return breakpoint is
699 always at BP_ADDR. */
700 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
701
702 /* If STRUCT_RETURN is true, then the struct return address (in
703 STRUCT_ADDR) will consume the first argument-passing register.
704 Both adjust the register count and store that value. */
705 if (struct_return)
706 {
707 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
708 argreg++;
709 }
710
711 /* Now make sure there's space on the stack. */
712 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
713 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
714 sp -= stack_alloc; /* Make room on stack for args. */
715
716 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
717 {
718 type = value_type (args[argnum]);
719 typecode = TYPE_CODE (type);
720 len = TYPE_LENGTH (type);
721
722 memset (valbuf, 0, sizeof (valbuf));
723
724 /* Passes structures that do not fit in 2 registers by reference. */
725 if (len > 8
726 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
727 {
728 store_unsigned_integer (valbuf, 4, byte_order,
729 value_address (args[argnum]));
730 typecode = TYPE_CODE_PTR;
731 len = 4;
732 val = valbuf;
733 }
734 else if (len < 4)
735 {
736 /* Value gets right-justified in the register or stack word. */
737 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
738 (gdb_byte *) value_contents (args[argnum]), len);
739 val = valbuf;
740 }
741 else
742 val = (gdb_byte *) value_contents (args[argnum]);
743
744 while (len > 0)
745 {
746 if (argreg > ARGN_REGNUM)
747 {
748 /* Must go on the stack. */
749 write_memory (sp + stack_offset, val, 4);
750 stack_offset += 4;
751 }
752 else if (argreg <= ARGN_REGNUM)
753 {
754 /* There's room in a register. */
755 regval =
756 extract_unsigned_integer (val,
757 register_size (gdbarch, argreg),
758 byte_order);
759 regcache_cooked_write_unsigned (regcache, argreg++, regval);
760 }
761
762 /* Store the value 4 bytes at a time. This means that things
763 larger than 4 bytes may go partly in registers and partly
764 on the stack. */
765 len -= register_size (gdbarch, argreg);
766 val += register_size (gdbarch, argreg);
767 }
768 }
769
770 /* Finally, update the SP register. */
771 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
772
773 return sp;
774 }
775
776
777 /* Given a return value in `regbuf' with a type `valtype',
778 extract and copy its value into `valbuf'. */
779
780 static void
781 m32r_extract_return_value (struct type *type, struct regcache *regcache,
782 void *dst)
783 {
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
786 bfd_byte *valbuf = dst;
787 int len = TYPE_LENGTH (type);
788 ULONGEST tmp;
789
790 /* By using store_unsigned_integer we avoid having to do
791 anything special for small big-endian values. */
792 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
793 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
794
795 /* Ignore return values more than 8 bytes in size because the m32r
796 returns anything more than 8 bytes in the stack. */
797 if (len > 4)
798 {
799 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
800 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
801 }
802 }
803
804 static enum return_value_convention
805 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
806 struct type *valtype, struct regcache *regcache,
807 gdb_byte *readbuf, const gdb_byte *writebuf)
808 {
809 if (TYPE_LENGTH (valtype) > 8)
810 return RETURN_VALUE_STRUCT_CONVENTION;
811 else
812 {
813 if (readbuf != NULL)
814 m32r_extract_return_value (valtype, regcache, readbuf);
815 if (writebuf != NULL)
816 m32r_store_return_value (valtype, regcache, writebuf);
817 return RETURN_VALUE_REGISTER_CONVENTION;
818 }
819 }
820
821
822
823 static CORE_ADDR
824 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
825 {
826 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
827 }
828
829 /* Given a GDB frame, determine the address of the calling function's
830 frame. This will be used to create a new GDB frame struct. */
831
832 static void
833 m32r_frame_this_id (struct frame_info *this_frame,
834 void **this_prologue_cache, struct frame_id *this_id)
835 {
836 struct m32r_unwind_cache *info
837 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
838 CORE_ADDR base;
839 CORE_ADDR func;
840 struct bound_minimal_symbol msym_stack;
841 struct frame_id id;
842
843 /* The FUNC is easy. */
844 func = get_frame_func (this_frame);
845
846 /* Check if the stack is empty. */
847 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
848 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
849 return;
850
851 /* Hopefully the prologue analysis either correctly determined the
852 frame's base (which is the SP from the previous frame), or set
853 that base to "NULL". */
854 base = info->prev_sp;
855 if (base == 0)
856 return;
857
858 id = frame_id_build (base, func);
859 (*this_id) = id;
860 }
861
862 static struct value *
863 m32r_frame_prev_register (struct frame_info *this_frame,
864 void **this_prologue_cache, int regnum)
865 {
866 struct m32r_unwind_cache *info
867 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
868 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
869 }
870
871 static const struct frame_unwind m32r_frame_unwind = {
872 NORMAL_FRAME,
873 default_frame_unwind_stop_reason,
874 m32r_frame_this_id,
875 m32r_frame_prev_register,
876 NULL,
877 default_frame_sniffer
878 };
879
880 static CORE_ADDR
881 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
882 {
883 struct m32r_unwind_cache *info
884 = m32r_frame_unwind_cache (this_frame, this_cache);
885 return info->base;
886 }
887
888 static const struct frame_base m32r_frame_base = {
889 &m32r_frame_unwind,
890 m32r_frame_base_address,
891 m32r_frame_base_address,
892 m32r_frame_base_address
893 };
894
895 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
896 frame. The frame ID's base needs to match the TOS value saved by
897 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
898
899 static struct frame_id
900 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
901 {
902 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
903 return frame_id_build (sp, get_frame_pc (this_frame));
904 }
905
906
907 static gdbarch_init_ftype m32r_gdbarch_init;
908
909 static struct gdbarch *
910 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
911 {
912 struct gdbarch *gdbarch;
913 struct gdbarch_tdep *tdep;
914
915 /* If there is already a candidate, use it. */
916 arches = gdbarch_list_lookup_by_info (arches, &info);
917 if (arches != NULL)
918 return arches->gdbarch;
919
920 /* Allocate space for the new architecture. */
921 tdep = XNEW (struct gdbarch_tdep);
922 gdbarch = gdbarch_alloc (&info, tdep);
923
924 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
925 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
926
927 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
928 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
929 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
930 set_gdbarch_register_name (gdbarch, m32r_register_name);
931 set_gdbarch_register_type (gdbarch, m32r_register_type);
932
933 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
934 set_gdbarch_return_value (gdbarch, m32r_return_value);
935
936 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
937 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
938 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
939 set_gdbarch_memory_insert_breakpoint (gdbarch,
940 m32r_memory_insert_breakpoint);
941 set_gdbarch_memory_remove_breakpoint (gdbarch,
942 m32r_memory_remove_breakpoint);
943
944 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
945
946 frame_base_set_default (gdbarch, &m32r_frame_base);
947
948 /* Methods for saving / extracting a dummy frame's ID. The ID's
949 stack address must match the SP value returned by
950 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
951 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
952
953 /* Return the unwound PC value. */
954 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
955
956 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
957
958 /* Hook in ABI-specific overrides, if they have been registered. */
959 gdbarch_init_osabi (info, gdbarch);
960
961 /* Hook in the default unwinders. */
962 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
963
964 /* Support simple overlay manager. */
965 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
966
967 return gdbarch;
968 }
969
970 void
971 _initialize_m32r_tdep (void)
972 {
973 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
974 }
This page took 0.049864 seconds and 4 git commands to generate.