1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-unwind.h"
23 #include "frame-base.h"
34 #include "arch-utils.h"
36 #include "trad-frame.h"
39 #include "m32r-tdep.h"
44 extern void _initialize_m32r_tdep (void);
47 m32r_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
49 /* Align to the size of an instruction (so that they can safely be
50 pushed onto the stack. */
57 The little endian mode of M32R is unique. In most of architectures,
58 two 16-bit instructions, A and B, are placed as the following:
66 In M32R, they are placed like this:
74 This is because M32R always fetches instructions in 32-bit.
76 The following functions take care of this behavior. */
79 m32r_memory_insert_breakpoint (struct gdbarch
*gdbarch
,
80 struct bp_target_info
*bp_tgt
)
82 CORE_ADDR addr
= bp_tgt
->placed_address
= bp_tgt
->reqstd_address
;
85 gdb_byte contents_cache
[4];
86 gdb_byte bp_entry
[] = { 0x10, 0xf1 }; /* dpt */
88 /* Save the memory contents. */
89 val
= target_read_memory (addr
& 0xfffffffc, contents_cache
, 4);
91 return val
; /* return error */
93 memcpy (bp_tgt
->shadow_contents
, contents_cache
, 4);
94 bp_tgt
->placed_size
= bp_tgt
->shadow_len
= 4;
96 /* Determine appropriate breakpoint contents and size for this address. */
97 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
101 buf
[0] = bp_entry
[0];
102 buf
[1] = bp_entry
[1];
103 buf
[2] = contents_cache
[2] & 0x7f;
104 buf
[3] = contents_cache
[3];
108 buf
[0] = contents_cache
[0];
109 buf
[1] = contents_cache
[1];
110 buf
[2] = bp_entry
[0];
111 buf
[3] = bp_entry
[1];
114 else /* little-endian */
118 buf
[0] = contents_cache
[0];
119 buf
[1] = contents_cache
[1] & 0x7f;
120 buf
[2] = bp_entry
[1];
121 buf
[3] = bp_entry
[0];
125 buf
[0] = bp_entry
[1];
126 buf
[1] = bp_entry
[0];
127 buf
[2] = contents_cache
[2];
128 buf
[3] = contents_cache
[3];
132 /* Write the breakpoint. */
133 val
= target_write_memory (addr
& 0xfffffffc, buf
, 4);
138 m32r_memory_remove_breakpoint (struct gdbarch
*gdbarch
,
139 struct bp_target_info
*bp_tgt
)
141 CORE_ADDR addr
= bp_tgt
->placed_address
;
144 gdb_byte
*contents_cache
= bp_tgt
->shadow_contents
;
146 buf
[0] = contents_cache
[0];
147 buf
[1] = contents_cache
[1];
148 buf
[2] = contents_cache
[2];
149 buf
[3] = contents_cache
[3];
151 /* Remove parallel bit. */
152 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
154 if ((buf
[0] & 0x80) == 0 && (buf
[2] & 0x80) != 0)
157 else /* little-endian */
159 if ((buf
[3] & 0x80) == 0 && (buf
[1] & 0x80) != 0)
163 /* Write contents. */
164 val
= target_write_raw_memory (addr
& 0xfffffffc, buf
, 4);
168 static const gdb_byte
*
169 m32r_breakpoint_from_pc (struct gdbarch
*gdbarch
,
170 CORE_ADDR
*pcptr
, int *lenptr
)
172 static gdb_byte be_bp_entry
[] = {
173 0x10, 0xf1, 0x70, 0x00
175 static gdb_byte le_bp_entry
[] = {
176 0x00, 0x70, 0xf1, 0x10
180 /* Determine appropriate breakpoint. */
181 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
183 if ((*pcptr
& 3) == 0)
196 if ((*pcptr
& 3) == 0)
203 bp
= le_bp_entry
+ 2;
212 char *m32r_register_names
[] = {
213 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
214 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
215 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
220 m32r_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
224 if (reg_nr
>= M32R_NUM_REGS
)
226 return m32r_register_names
[reg_nr
];
230 /* Return the GDB type object for the "standard" data type
231 of data in register N. */
234 m32r_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
236 if (reg_nr
== M32R_PC_REGNUM
)
237 return builtin_type (gdbarch
)->builtin_func_ptr
;
238 else if (reg_nr
== M32R_SP_REGNUM
|| reg_nr
== M32R_FP_REGNUM
)
239 return builtin_type (gdbarch
)->builtin_data_ptr
;
241 return builtin_type (gdbarch
)->builtin_int32
;
245 /* Write into appropriate registers a function return value
246 of type TYPE, given in virtual format.
248 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
251 m32r_store_return_value (struct type
*type
, struct regcache
*regcache
,
252 const gdb_byte
*valbuf
)
254 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
255 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
257 int len
= TYPE_LENGTH (type
);
259 regval
= extract_unsigned_integer (valbuf
, len
> 4 ? 4 : len
, byte_order
);
260 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
, regval
);
264 regval
= extract_unsigned_integer (valbuf
+ 4,
265 len
- 4, byte_order
);
266 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
+ 1, regval
);
270 /* This is required by skip_prologue. The results of decoding a prologue
271 should be cached because this thrashing is getting nuts. */
274 decode_prologue (struct gdbarch
*gdbarch
,
275 CORE_ADDR start_pc
, CORE_ADDR scan_limit
,
276 CORE_ADDR
*pl_endptr
, unsigned long *framelength
)
278 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
279 unsigned long framesize
;
282 CORE_ADDR after_prologue
= 0;
283 CORE_ADDR after_push
= 0;
284 CORE_ADDR after_stack_adjust
= 0;
285 CORE_ADDR current_pc
;
286 LONGEST return_value
;
291 for (current_pc
= start_pc
; current_pc
< scan_limit
; current_pc
+= 2)
293 /* Check if current pc's location is readable. */
294 if (!safe_read_memory_integer (current_pc
, 2, byte_order
, &return_value
))
297 insn
= read_memory_unsigned_integer (current_pc
, 2, byte_order
);
302 /* If this is a 32 bit instruction, we dont want to examine its
303 immediate data as though it were an instruction. */
304 if (current_pc
& 0x02)
306 /* Decode this instruction further. */
313 if (current_pc
== scan_limit
)
314 scan_limit
+= 2; /* extend the search */
316 current_pc
+= 2; /* skip the immediate data */
318 /* Check if current pc's location is readable. */
319 if (!safe_read_memory_integer (current_pc
, 2, byte_order
,
323 if (insn
== 0x8faf) /* add3 sp, sp, xxxx */
324 /* add 16 bit sign-extended offset */
327 -((short) read_memory_unsigned_integer (current_pc
,
332 if (((insn
>> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
333 && safe_read_memory_integer (current_pc
+ 2,
336 && read_memory_unsigned_integer (current_pc
+ 2,
340 /* Subtract 24 bit sign-extended negative-offset. */
341 insn
= read_memory_unsigned_integer (current_pc
- 2,
343 if (insn
& 0x00800000) /* sign extend */
344 insn
|= 0xff000000; /* negative */
346 insn
&= 0x00ffffff; /* positive */
350 after_push
= current_pc
+ 2;
354 op1
= insn
& 0xf000; /* Isolate just the first nibble. */
356 if ((insn
& 0xf0ff) == 0x207f)
362 if ((insn
>> 8) == 0x4f) /* addi sp, xx */
363 /* Add 8 bit sign-extended offset. */
365 int stack_adjust
= (signed char) (insn
& 0xff);
367 /* there are probably two of these stack adjustments:
368 1) A negative one in the prologue, and
369 2) A positive one in the epilogue.
370 We are only interested in the first one. */
372 if (stack_adjust
< 0)
374 framesize
-= stack_adjust
;
376 /* A frameless function may have no "mv fp, sp".
377 In that case, this is the end of the prologue. */
378 after_stack_adjust
= current_pc
+ 2;
384 after_prologue
= current_pc
+ 2;
385 break; /* end of stack adjustments */
388 /* Nop looks like a branch, continue explicitly. */
391 after_prologue
= current_pc
+ 2;
392 continue; /* nop occurs between pushes. */
394 /* End of prolog if any of these are trap instructions. */
395 if ((insn
& 0xfff0) == 0x10f0)
397 after_prologue
= current_pc
;
400 /* End of prolog if any of these are branch instructions. */
401 if ((op1
== 0x7000) || (op1
== 0xb000) || (op1
== 0xf000))
403 after_prologue
= current_pc
;
406 /* Some of the branch instructions are mixed with other types. */
409 int subop
= insn
& 0x0ff0;
410 if ((subop
== 0x0ec0) || (subop
== 0x0fc0))
412 after_prologue
= current_pc
;
413 continue; /* jmp , jl */
419 *framelength
= framesize
;
421 if (current_pc
>= scan_limit
)
425 if (after_stack_adjust
!= 0)
426 /* We did not find a "mv fp,sp", but we DID find
427 a stack_adjust. Is it safe to use that as the
428 end of the prologue? I just don't know. */
430 *pl_endptr
= after_stack_adjust
;
432 else if (after_push
!= 0)
433 /* We did not find a "mv fp,sp", but we DID find
434 a push. Is it safe to use that as the
435 end of the prologue? I just don't know. */
437 *pl_endptr
= after_push
;
440 /* We reached the end of the loop without finding the end
441 of the prologue. No way to win -- we should report
442 failure. The way we do that is to return the original
443 start_pc. GDB will set a breakpoint at the start of
444 the function (etc.) */
445 *pl_endptr
= start_pc
;
450 if (after_prologue
== 0)
451 after_prologue
= current_pc
;
454 *pl_endptr
= after_prologue
;
457 } /* decode_prologue */
459 /* Function: skip_prologue
460 Find end of function prologue. */
462 #define DEFAULT_SEARCH_LIMIT 128
465 m32r_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
467 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
468 CORE_ADDR func_addr
, func_end
;
469 struct symtab_and_line sal
;
470 LONGEST return_value
;
472 /* See what the symbol table says. */
474 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
476 sal
= find_pc_line (func_addr
, 0);
478 if (sal
.line
!= 0 && sal
.end
<= func_end
)
483 /* Either there's no line info, or the line after the prologue is after
484 the end of the function. In this case, there probably isn't a
487 func_end
= std::min (func_end
, func_addr
+ DEFAULT_SEARCH_LIMIT
);
491 func_end
= pc
+ DEFAULT_SEARCH_LIMIT
;
493 /* If pc's location is not readable, just quit. */
494 if (!safe_read_memory_integer (pc
, 4, byte_order
, &return_value
))
497 /* Find the end of prologue. */
498 if (decode_prologue (gdbarch
, pc
, func_end
, &sal
.end
, NULL
) < 0)
504 struct m32r_unwind_cache
506 /* The previous frame's inner most stack address. Used as this
507 frame ID's stack_addr. */
509 /* The frame's base, optionally used by the high-level debug info. */
512 /* How far the SP and r13 (FP) have been offset from the start of
513 the stack frame (as defined by the previous frame's stack
518 /* Table indicating the location of each and every register. */
519 struct trad_frame_saved_reg
*saved_regs
;
522 /* Put here the code to store, into fi->saved_regs, the addresses of
523 the saved registers of frame described by FRAME_INFO. This
524 includes special registers such as pc and fp saved in special ways
525 in the stack frame. sp is even more special: the address we return
526 for it IS the sp for the next frame. */
528 static struct m32r_unwind_cache
*
529 m32r_frame_unwind_cache (struct frame_info
*this_frame
,
530 void **this_prologue_cache
)
532 CORE_ADDR pc
, scan_limit
;
537 struct m32r_unwind_cache
*info
;
540 if ((*this_prologue_cache
))
541 return (struct m32r_unwind_cache
*) (*this_prologue_cache
);
543 info
= FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache
);
544 (*this_prologue_cache
) = info
;
545 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
549 info
->uses_frame
= 0;
551 scan_limit
= get_frame_pc (this_frame
);
552 for (pc
= get_frame_func (this_frame
);
553 pc
> 0 && pc
< scan_limit
; pc
+= 2)
557 op
= get_frame_memory_unsigned (this_frame
, pc
, 4);
558 if ((op
& 0x80000000) == 0x80000000)
560 /* 32-bit instruction */
561 if ((op
& 0xffff0000) == 0x8faf0000)
563 /* add3 sp,sp,xxxx */
564 short n
= op
& 0xffff;
565 info
->sp_offset
+= n
;
567 else if (((op
>> 8) == 0xe4)
568 && get_frame_memory_unsigned (this_frame
, pc
+ 2,
571 /* ld24 r4, xxxxxx; sub sp, r4 */
572 unsigned long n
= op
& 0xffffff;
573 info
->sp_offset
+= n
;
574 pc
+= 2; /* skip sub instruction */
577 if (pc
== scan_limit
)
578 scan_limit
+= 2; /* extend the search */
579 pc
+= 2; /* skip the immediate data */
584 /* 16-bit instructions */
585 op
= get_frame_memory_unsigned (this_frame
, pc
, 2) & 0x7fff;
586 if ((op
& 0xf0ff) == 0x207f)
589 int regno
= ((op
>> 8) & 0xf);
590 info
->sp_offset
-= 4;
591 info
->saved_regs
[regno
].addr
= info
->sp_offset
;
593 else if ((op
& 0xff00) == 0x4f00)
596 int n
= (signed char) (op
& 0xff);
597 info
->sp_offset
+= n
;
599 else if (op
== 0x1d8f)
602 info
->uses_frame
= 1;
603 info
->r13_offset
= info
->sp_offset
;
604 break; /* end of stack adjustments */
606 else if ((op
& 0xfff0) == 0x10f0)
608 /* End of prologue if this is a trap instruction. */
609 break; /* End of stack adjustments. */
613 info
->size
= -info
->sp_offset
;
615 /* Compute the previous frame's stack pointer (which is also the
616 frame's ID's stack address), and this frame's base pointer. */
617 if (info
->uses_frame
)
619 /* The SP was moved to the FP. This indicates that a new frame
620 was created. Get THIS frame's FP value by unwinding it from
622 this_base
= get_frame_register_unsigned (this_frame
, M32R_FP_REGNUM
);
623 /* The FP points at the last saved register. Adjust the FP back
624 to before the first saved register giving the SP. */
625 prev_sp
= this_base
+ info
->size
;
629 /* Assume that the FP is this frame's SP but with that pushed
630 stack space added back. */
631 this_base
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
632 prev_sp
= this_base
+ info
->size
;
635 /* Convert that SP/BASE into real addresses. */
636 info
->prev_sp
= prev_sp
;
637 info
->base
= this_base
;
639 /* Adjust all the saved registers so that they contain addresses and
641 for (i
= 0; i
< gdbarch_num_regs (get_frame_arch (this_frame
)) - 1; i
++)
642 if (trad_frame_addr_p (info
->saved_regs
, i
))
643 info
->saved_regs
[i
].addr
= (info
->prev_sp
+ info
->saved_regs
[i
].addr
);
645 /* The call instruction moves the caller's PC in the callee's LR.
646 Since this is an unwind, do the reverse. Copy the location of LR
647 into PC (the address / regnum) so that a request for PC will be
648 converted into a request for the LR. */
649 info
->saved_regs
[M32R_PC_REGNUM
] = info
->saved_regs
[LR_REGNUM
];
651 /* The previous frame's SP needed to be computed. Save the computed
653 trad_frame_set_value (info
->saved_regs
, M32R_SP_REGNUM
, prev_sp
);
659 m32r_read_pc (struct regcache
*regcache
)
662 regcache_cooked_read_unsigned (regcache
, M32R_PC_REGNUM
, &pc
);
667 m32r_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
669 return frame_unwind_register_unsigned (next_frame
, M32R_SP_REGNUM
);
674 m32r_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
675 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
676 struct value
**args
, CORE_ADDR sp
, int struct_return
,
677 CORE_ADDR struct_addr
)
679 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
680 int stack_offset
, stack_alloc
;
681 int argreg
= ARG1_REGNUM
;
684 enum type_code typecode
;
687 gdb_byte valbuf
[MAX_REGISTER_SIZE
];
690 /* First force sp to a 4-byte alignment. */
693 /* Set the return address. For the m32r, the return breakpoint is
694 always at BP_ADDR. */
695 regcache_cooked_write_unsigned (regcache
, LR_REGNUM
, bp_addr
);
697 /* If STRUCT_RETURN is true, then the struct return address (in
698 STRUCT_ADDR) will consume the first argument-passing register.
699 Both adjust the register count and store that value. */
702 regcache_cooked_write_unsigned (regcache
, argreg
, struct_addr
);
706 /* Now make sure there's space on the stack. */
707 for (argnum
= 0, stack_alloc
= 0; argnum
< nargs
; argnum
++)
708 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[argnum
])) + 3) & ~3);
709 sp
-= stack_alloc
; /* Make room on stack for args. */
711 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
713 type
= value_type (args
[argnum
]);
714 typecode
= TYPE_CODE (type
);
715 len
= TYPE_LENGTH (type
);
717 memset (valbuf
, 0, sizeof (valbuf
));
719 /* Passes structures that do not fit in 2 registers by reference. */
721 && (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
))
723 store_unsigned_integer (valbuf
, 4, byte_order
,
724 value_address (args
[argnum
]));
725 typecode
= TYPE_CODE_PTR
;
731 /* Value gets right-justified in the register or stack word. */
732 memcpy (valbuf
+ (register_size (gdbarch
, argreg
) - len
),
733 (gdb_byte
*) value_contents (args
[argnum
]), len
);
737 val
= (gdb_byte
*) value_contents (args
[argnum
]);
741 if (argreg
> ARGN_REGNUM
)
743 /* Must go on the stack. */
744 write_memory (sp
+ stack_offset
, val
, 4);
747 else if (argreg
<= ARGN_REGNUM
)
749 /* There's room in a register. */
751 extract_unsigned_integer (val
,
752 register_size (gdbarch
, argreg
),
754 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
757 /* Store the value 4 bytes at a time. This means that things
758 larger than 4 bytes may go partly in registers and partly
760 len
-= register_size (gdbarch
, argreg
);
761 val
+= register_size (gdbarch
, argreg
);
765 /* Finally, update the SP register. */
766 regcache_cooked_write_unsigned (regcache
, M32R_SP_REGNUM
, sp
);
772 /* Given a return value in `regbuf' with a type `valtype',
773 extract and copy its value into `valbuf'. */
776 m32r_extract_return_value (struct type
*type
, struct regcache
*regcache
,
779 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
780 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
781 int len
= TYPE_LENGTH (type
);
784 /* By using store_unsigned_integer we avoid having to do
785 anything special for small big-endian values. */
786 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
, &tmp
);
787 store_unsigned_integer (dst
, (len
> 4 ? len
- 4 : len
), byte_order
, tmp
);
789 /* Ignore return values more than 8 bytes in size because the m32r
790 returns anything more than 8 bytes in the stack. */
793 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
+ 1, &tmp
);
794 store_unsigned_integer (dst
+ len
- 4, 4, byte_order
, tmp
);
798 static enum return_value_convention
799 m32r_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
800 struct type
*valtype
, struct regcache
*regcache
,
801 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
803 if (TYPE_LENGTH (valtype
) > 8)
804 return RETURN_VALUE_STRUCT_CONVENTION
;
808 m32r_extract_return_value (valtype
, regcache
, readbuf
);
809 if (writebuf
!= NULL
)
810 m32r_store_return_value (valtype
, regcache
, writebuf
);
811 return RETURN_VALUE_REGISTER_CONVENTION
;
818 m32r_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
820 return frame_unwind_register_unsigned (next_frame
, M32R_PC_REGNUM
);
823 /* Given a GDB frame, determine the address of the calling function's
824 frame. This will be used to create a new GDB frame struct. */
827 m32r_frame_this_id (struct frame_info
*this_frame
,
828 void **this_prologue_cache
, struct frame_id
*this_id
)
830 struct m32r_unwind_cache
*info
831 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
834 struct bound_minimal_symbol msym_stack
;
837 /* The FUNC is easy. */
838 func
= get_frame_func (this_frame
);
840 /* Check if the stack is empty. */
841 msym_stack
= lookup_minimal_symbol ("_stack", NULL
, NULL
);
842 if (msym_stack
.minsym
&& info
->base
== BMSYMBOL_VALUE_ADDRESS (msym_stack
))
845 /* Hopefully the prologue analysis either correctly determined the
846 frame's base (which is the SP from the previous frame), or set
847 that base to "NULL". */
848 base
= info
->prev_sp
;
852 id
= frame_id_build (base
, func
);
856 static struct value
*
857 m32r_frame_prev_register (struct frame_info
*this_frame
,
858 void **this_prologue_cache
, int regnum
)
860 struct m32r_unwind_cache
*info
861 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
862 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
865 static const struct frame_unwind m32r_frame_unwind
= {
867 default_frame_unwind_stop_reason
,
869 m32r_frame_prev_register
,
871 default_frame_sniffer
875 m32r_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
877 struct m32r_unwind_cache
*info
878 = m32r_frame_unwind_cache (this_frame
, this_cache
);
882 static const struct frame_base m32r_frame_base
= {
884 m32r_frame_base_address
,
885 m32r_frame_base_address
,
886 m32r_frame_base_address
889 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
890 frame. The frame ID's base needs to match the TOS value saved by
891 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
893 static struct frame_id
894 m32r_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
896 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
897 return frame_id_build (sp
, get_frame_pc (this_frame
));
901 static gdbarch_init_ftype m32r_gdbarch_init
;
903 static struct gdbarch
*
904 m32r_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
906 struct gdbarch
*gdbarch
;
907 struct gdbarch_tdep
*tdep
;
909 /* If there is already a candidate, use it. */
910 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
912 return arches
->gdbarch
;
914 /* Allocate space for the new architecture. */
915 tdep
= XNEW (struct gdbarch_tdep
);
916 gdbarch
= gdbarch_alloc (&info
, tdep
);
918 set_gdbarch_read_pc (gdbarch
, m32r_read_pc
);
919 set_gdbarch_unwind_sp (gdbarch
, m32r_unwind_sp
);
921 set_gdbarch_num_regs (gdbarch
, M32R_NUM_REGS
);
922 set_gdbarch_pc_regnum (gdbarch
, M32R_PC_REGNUM
);
923 set_gdbarch_sp_regnum (gdbarch
, M32R_SP_REGNUM
);
924 set_gdbarch_register_name (gdbarch
, m32r_register_name
);
925 set_gdbarch_register_type (gdbarch
, m32r_register_type
);
927 set_gdbarch_push_dummy_call (gdbarch
, m32r_push_dummy_call
);
928 set_gdbarch_return_value (gdbarch
, m32r_return_value
);
930 set_gdbarch_skip_prologue (gdbarch
, m32r_skip_prologue
);
931 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
932 set_gdbarch_breakpoint_from_pc (gdbarch
, m32r_breakpoint_from_pc
);
933 set_gdbarch_memory_insert_breakpoint (gdbarch
,
934 m32r_memory_insert_breakpoint
);
935 set_gdbarch_memory_remove_breakpoint (gdbarch
,
936 m32r_memory_remove_breakpoint
);
938 set_gdbarch_frame_align (gdbarch
, m32r_frame_align
);
940 frame_base_set_default (gdbarch
, &m32r_frame_base
);
942 /* Methods for saving / extracting a dummy frame's ID. The ID's
943 stack address must match the SP value returned by
944 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
945 set_gdbarch_dummy_id (gdbarch
, m32r_dummy_id
);
947 /* Return the unwound PC value. */
948 set_gdbarch_unwind_pc (gdbarch
, m32r_unwind_pc
);
950 set_gdbarch_print_insn (gdbarch
, print_insn_m32r
);
952 /* Hook in ABI-specific overrides, if they have been registered. */
953 gdbarch_init_osabi (info
, gdbarch
);
955 /* Hook in the default unwinders. */
956 frame_unwind_append_unwinder (gdbarch
, &m32r_frame_unwind
);
958 /* Support simple overlay manager. */
959 set_gdbarch_overlay_update (gdbarch
, simple_overlay_update
);
965 _initialize_m32r_tdep (void)
967 register_gdbarch_init (bfd_arch_m32r
, m32r_gdbarch_init
);