1 /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
2 Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
27 #include "gdb_string.h"
32 /* Function: m32r_use_struct_convention
33 Return nonzero if call_function should allocate stack space for a
36 m32r_use_struct_convention (int gcc_p
, struct type
*type
)
38 return (TYPE_LENGTH (type
) > 8);
41 /* Function: frame_find_saved_regs
42 Return the frame_saved_regs structure for the frame.
43 Doesn't really work for dummy frames, but it does pass back
44 an empty frame_saved_regs, so I guess that's better than total failure */
47 m32r_frame_find_saved_regs (struct frame_info
*fi
,
48 struct frame_saved_regs
*regaddr
)
50 memcpy (regaddr
, &fi
->fsr
, sizeof (struct frame_saved_regs
));
53 /* Turn this on if you want to see just how much instruction decoding
54 if being done, its quite a lot
58 dump_insn (char *commnt
, CORE_ADDR pc
, int insn
)
60 printf_filtered (" %s %08x %08x ",
61 commnt
, (unsigned int) pc
, (unsigned int) insn
);
62 TARGET_PRINT_INSN (pc
, &tm_print_insn_info
);
63 printf_filtered ("\n");
65 #define insn_debug(args) { printf_filtered args; }
67 #define dump_insn(a,b,c) {}
68 #define insn_debug(args) {}
71 #define DEFAULT_SEARCH_LIMIT 44
73 /* Function: scan_prologue
74 This function decodes the target function prologue to determine
75 1) the size of the stack frame, and 2) which registers are saved on it.
76 It saves the offsets of saved regs in the frame_saved_regs argument,
77 and returns the frame size. */
80 The sequence it currently generates is:
82 if (varargs function) { ddi sp,#n }
84 if (additional stack <= 256) { addi sp,#-stack }
85 else if (additional stack < 65k) { add3 sp,sp,#-stack
87 } else if (additional stack) {
88 seth sp,#(stack & 0xffff0000)
89 or3 sp,sp,#(stack & 0x0000ffff)
96 These instructions are scheduled like everything else, so you should stop at
97 the first branch instruction.
101 /* This is required by skip prologue and by m32r_init_extra_frame_info.
102 The results of decoding a prologue should be cached because this
103 thrashing is getting nuts.
104 I am thinking of making a container class with two indexes, name and
105 address. It may be better to extend the symbol table.
109 decode_prologue (CORE_ADDR start_pc
, CORE_ADDR scan_limit
, CORE_ADDR
*pl_endptr
, /* var parameter */
110 unsigned long *framelength
, struct frame_info
*fi
,
111 struct frame_saved_regs
*fsr
)
113 unsigned long framesize
;
116 int maybe_one_more
= 0;
117 CORE_ADDR after_prologue
= 0;
118 CORE_ADDR after_stack_adjust
= 0;
119 CORE_ADDR current_pc
;
124 insn_debug (("rd prolog l(%d)\n", scan_limit
- current_pc
));
126 for (current_pc
= start_pc
; current_pc
< scan_limit
; current_pc
+= 2)
129 insn
= read_memory_unsigned_integer (current_pc
, 2);
130 dump_insn ("insn-1", current_pc
, insn
); /* MTZ */
132 /* If this is a 32 bit instruction, we dont want to examine its
133 immediate data as though it were an instruction */
134 if (current_pc
& 0x02)
135 { /* Clear the parallel execution bit from 16 bit instruction */
137 { /* The last instruction was a branch, usually terminates
138 the series, but if this is a parallel instruction,
139 it may be a stack framing instruction */
140 if (!(insn
& 0x8000))
142 insn_debug (("Really done"));
143 break; /* nope, we are really done */
146 insn
&= 0x7fff; /* decode this instruction further */
151 break; /* This isnt the one more */
154 insn_debug (("32 bit insn\n"));
155 if (current_pc
== scan_limit
)
156 scan_limit
+= 2; /* extend the search */
157 current_pc
+= 2; /* skip the immediate data */
158 if (insn
== 0x8faf) /* add3 sp, sp, xxxx */
159 /* add 16 bit sign-extended offset */
161 insn_debug (("stack increment\n"));
162 framesize
+= -((short) read_memory_unsigned_integer (current_pc
, 2));
166 if (((insn
>> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
167 read_memory_unsigned_integer (current_pc
+ 2, 2) == 0x0f24)
168 { /* subtract 24 bit sign-extended negative-offset */
169 dump_insn ("insn-2", current_pc
+ 2, insn
);
170 insn
= read_memory_unsigned_integer (current_pc
- 2, 4);
171 dump_insn ("insn-3(l4)", current_pc
- 2, insn
);
172 if (insn
& 0x00800000) /* sign extend */
173 insn
|= 0xff000000; /* negative */
175 insn
&= 0x00ffffff; /* positive */
179 after_prologue
= current_pc
;
183 op1
= insn
& 0xf000; /* isolate just the first nibble */
185 if ((insn
& 0xf0ff) == 0x207f)
188 insn_debug (("push\n"));
189 #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
190 if (((insn
& 0xffff) == 0x2d7f) && fi
)
191 fi
->using_frame_pointer
= 1;
195 /* Why should we increase the scan limit, just because we did a push?
196 And if there is a reason, surely we would only want to do it if we
197 had already reached the scan limit... */
198 if (current_pc
== scan_limit
)
201 regno
= ((insn
>> 8) & 0xf);
202 if (fsr
) /* save_regs offset */
203 fsr
->regs
[regno
] = framesize
;
207 if ((insn
>> 8) == 0x4f) /* addi sp, xx */
208 /* add 8 bit sign-extended offset */
210 int stack_adjust
= (char) (insn
& 0xff);
212 /* there are probably two of these stack adjustments:
213 1) A negative one in the prologue, and
214 2) A positive one in the epilogue.
215 We are only interested in the first one. */
217 if (stack_adjust
< 0)
219 framesize
-= stack_adjust
;
221 /* A frameless function may have no "mv fp, sp".
222 In that case, this is the end of the prologue. */
223 after_stack_adjust
= current_pc
+ 2;
230 fi
->using_frame_pointer
= 1; /* fp is now valid */
231 insn_debug (("done fp found\n"));
232 after_prologue
= current_pc
+ 2;
233 break; /* end of stack adjustments */
235 if (insn
== 0x7000) /* Nop looks like a branch, continue explicitly */
237 insn_debug (("nop\n"));
238 after_prologue
= current_pc
+ 2;
239 continue; /* nop occurs between pushes */
241 /* End of prolog if any of these are branch instructions */
246 after_prologue
= current_pc
;
247 insn_debug (("Done: branch\n"));
251 /* Some of the branch instructions are mixed with other types */
254 int subop
= insn
& 0x0ff0;
255 if ((subop
== 0x0ec0) || (subop
== 0x0fc0))
257 insn_debug (("done: jmp\n"));
258 after_prologue
= current_pc
;
260 continue; /* jmp , jl */
265 if (current_pc
>= scan_limit
)
270 if (after_stack_adjust
!= 0)
271 /* We did not find a "mv fp,sp", but we DID find
272 a stack_adjust. Is it safe to use that as the
273 end of the prologue? I just don't know. */
275 *pl_endptr
= after_stack_adjust
;
277 *framelength
= framesize
;
281 /* We reached the end of the loop without finding the end
282 of the prologue. No way to win -- we should report failure.
283 The way we do that is to return the original start_pc.
284 GDB will set a breakpoint at the start of the function (etc.) */
285 *pl_endptr
= start_pc
;
289 if (after_prologue
== 0)
290 after_prologue
= current_pc
;
292 insn_debug ((" framesize %d, firstline %08x\n", framesize
, after_prologue
));
294 *framelength
= framesize
;
296 *pl_endptr
= after_prologue
;
297 } /* decode_prologue */
299 /* Function: skip_prologue
300 Find end of function prologue */
303 m32r_skip_prologue (CORE_ADDR pc
)
305 CORE_ADDR func_addr
, func_end
;
306 struct symtab_and_line sal
;
308 /* See what the symbol table says */
310 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
312 sal
= find_pc_line (func_addr
, 0);
314 if (sal
.line
!= 0 && sal
.end
<= func_end
)
317 insn_debug (("BP after prologue %08x\n", sal
.end
));
321 /* Either there's no line info, or the line after the prologue is after
322 the end of the function. In this case, there probably isn't a
325 insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
326 sal
.line
, sal
.end
, func_end
));
327 func_end
= min (func_end
, func_addr
+ DEFAULT_SEARCH_LIMIT
);
331 func_end
= pc
+ DEFAULT_SEARCH_LIMIT
;
332 decode_prologue (pc
, func_end
, &sal
.end
, 0, 0, 0);
337 m32r_scan_prologue (struct frame_info
*fi
, struct frame_saved_regs
*fsr
)
339 struct symtab_and_line sal
;
340 CORE_ADDR prologue_start
, prologue_end
, current_pc
;
341 unsigned long framesize
= 0;
343 /* this code essentially duplicates skip_prologue,
344 but we need the start address below. */
346 if (find_pc_partial_function (fi
->pc
, NULL
, &prologue_start
, &prologue_end
))
348 sal
= find_pc_line (prologue_start
, 0);
350 if (sal
.line
== 0) /* no line info, use current PC */
351 if (prologue_start
== entry_point_address ())
356 prologue_start
= fi
->pc
;
357 prologue_end
= prologue_start
+ 48; /* We're in the boondocks:
358 allow for 16 pushes, an add,
362 prologue_end
= min (prologue_end
, fi
->pc
);
364 insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
365 fi
->pc
, prologue_start
, prologue_end
));
366 prologue_end
= min (prologue_end
, prologue_start
+ DEFAULT_SEARCH_LIMIT
);
367 decode_prologue (prologue_start
, prologue_end
, &prologue_end
, &framesize
,
372 /* Function: init_extra_frame_info
373 This function actually figures out the frame address for a given pc and
374 sp. This is tricky on the m32r because we sometimes don't use an explicit
375 frame pointer, and the previous stack pointer isn't necessarily recorded
376 on the stack. The only reliable way to get this info is to
377 examine the prologue. */
380 m32r_init_extra_frame_info (struct frame_info
*fi
)
385 fi
->pc
= FRAME_SAVED_PC (fi
->next
);
387 memset (fi
->fsr
.regs
, '\000', sizeof fi
->fsr
.regs
);
389 if (PC_IN_CALL_DUMMY (fi
->pc
, fi
->frame
, fi
->frame
))
391 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
392 by assuming it's always FP. */
393 fi
->frame
= generic_read_register_dummy (fi
->pc
, fi
->frame
, SP_REGNUM
);
399 fi
->using_frame_pointer
= 0;
400 fi
->framesize
= m32r_scan_prologue (fi
, &fi
->fsr
);
403 if (fi
->using_frame_pointer
)
405 fi
->frame
= read_register (FP_REGNUM
);
408 fi
->frame
= read_register (SP_REGNUM
);
410 /* fi->next means this is not the innermost frame */ if (fi
->using_frame_pointer
)
412 if (fi
->next
->fsr
.regs
[FP_REGNUM
] != 0) /* caller saved our FP */
413 fi
->frame
= read_memory_integer (fi
->next
->fsr
.regs
[FP_REGNUM
], 4);
414 for (reg
= 0; reg
< NUM_REGS
; reg
++)
415 if (fi
->fsr
.regs
[reg
] != 0)
416 fi
->fsr
.regs
[reg
] = fi
->frame
+ fi
->framesize
- fi
->fsr
.regs
[reg
];
420 /* Function: m32r_virtual_frame_pointer
421 Return the register that the function uses for a frame pointer,
422 plus any necessary offset to be applied to the register before
423 any frame pointer offsets. */
426 m32r_virtual_frame_pointer (CORE_ADDR pc
, long *reg
, long *offset
)
428 struct frame_info fi
;
430 /* Set up a dummy frame_info. */
436 /* Analyze the prolog and fill in the extra info. */
437 m32r_init_extra_frame_info (&fi
);
440 /* Results will tell us which type of frame it uses. */
441 if (fi
.using_frame_pointer
)
453 /* Function: find_callers_reg
454 Find REGNUM on the stack. Otherwise, it's in an active register. One thing
455 we might want to do here is to check REGNUM against the clobber mask, and
456 somehow flag it as invalid if it isn't saved on the stack somewhere. This
457 would provide a graceful failure mode when trying to get the value of
458 caller-saves registers for an inner frame. */
461 m32r_find_callers_reg (struct frame_info
*fi
, int regnum
)
463 for (; fi
; fi
= fi
->next
)
464 if (PC_IN_CALL_DUMMY (fi
->pc
, fi
->frame
, fi
->frame
))
465 return generic_read_register_dummy (fi
->pc
, fi
->frame
, regnum
);
466 else if (fi
->fsr
.regs
[regnum
] != 0)
467 return read_memory_integer (fi
->fsr
.regs
[regnum
],
468 REGISTER_RAW_SIZE (regnum
));
469 return read_register (regnum
);
472 /* Function: frame_chain
473 Given a GDB frame, determine the address of the calling function's frame.
474 This will be used to create a new GDB frame struct, and then
475 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
476 For m32r, we save the frame size when we initialize the frame_info. */
479 m32r_frame_chain (struct frame_info
*fi
)
481 CORE_ADDR fn_start
, callers_pc
, fp
;
483 /* is this a dummy frame? */
484 if (PC_IN_CALL_DUMMY (fi
->pc
, fi
->frame
, fi
->frame
))
485 return fi
->frame
; /* dummy frame same as caller's frame */
487 /* is caller-of-this a dummy frame? */
488 callers_pc
= FRAME_SAVED_PC (fi
); /* find out who called us: */
489 fp
= m32r_find_callers_reg (fi
, FP_REGNUM
);
490 if (PC_IN_CALL_DUMMY (callers_pc
, fp
, fp
))
491 return fp
; /* dummy frame's frame may bear no relation to ours */
493 if (find_pc_partial_function (fi
->pc
, 0, &fn_start
, 0))
494 if (fn_start
== entry_point_address ())
495 return 0; /* in _start fn, don't chain further */
496 if (fi
->framesize
== 0)
498 printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
503 insn_debug (("m32rx frame %08x\n", fi
->frame
+ fi
->framesize
));
504 return fi
->frame
+ fi
->framesize
;
507 /* Function: push_return_address (pc)
508 Set up the return address for the inferior function call.
509 Necessary for targets that don't actually execute a JSR/BSR instruction
510 (ie. when using an empty CALL_DUMMY) */
513 m32r_push_return_address (CORE_ADDR pc
, CORE_ADDR sp
)
515 write_register (RP_REGNUM
, CALL_DUMMY_ADDRESS ());
520 /* Function: pop_frame
521 Discard from the stack the innermost frame,
522 restoring all saved registers. */
525 m32r_pop_frame (struct frame_info
*frame
)
529 if (PC_IN_CALL_DUMMY (frame
->pc
, frame
->frame
, frame
->frame
))
530 generic_pop_dummy_frame ();
533 for (regnum
= 0; regnum
< NUM_REGS
; regnum
++)
534 if (frame
->fsr
.regs
[regnum
] != 0)
535 write_register (regnum
,
536 read_memory_integer (frame
->fsr
.regs
[regnum
], 4));
538 write_register (PC_REGNUM
, FRAME_SAVED_PC (frame
));
539 write_register (SP_REGNUM
, read_register (FP_REGNUM
));
540 if (read_register (PSW_REGNUM
) & 0x80)
541 write_register (SPU_REGNUM
, read_register (SP_REGNUM
));
543 write_register (SPI_REGNUM
, read_register (SP_REGNUM
));
545 flush_cached_frames ();
549 /* Function: frame_saved_pc
550 Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
551 in the stack anywhere, otherwise we get it from the registers. */
554 m32r_frame_saved_pc (struct frame_info
*fi
)
556 if (PC_IN_CALL_DUMMY (fi
->pc
, fi
->frame
, fi
->frame
))
557 return generic_read_register_dummy (fi
->pc
, fi
->frame
, PC_REGNUM
);
559 return m32r_find_callers_reg (fi
, RP_REGNUM
);
562 /* Function: push_arguments
563 Setup the function arguments for calling a function in the inferior.
565 On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
566 which are dedicated for passing function arguments. Up to the first
567 four arguments (depending on size) may go into these registers.
568 The rest go on the stack.
570 Arguments that are smaller than 4 bytes will still take up a whole
571 register or a whole 32-bit word on the stack, and will be
572 right-justified in the register or the stack word. This includes
573 chars, shorts, and small aggregate types.
575 Arguments of 8 bytes size are split between two registers, if
576 available. If only one register is available, the argument will
577 be split between the register and the stack. Otherwise it is
578 passed entirely on the stack. Aggregate types with sizes between
579 4 and 8 bytes are passed entirely on the stack, and are left-justified
580 within the double-word (as opposed to aggregates smaller than 4 bytes
581 which are right-justified).
583 Aggregates of greater than 8 bytes are first copied onto the stack,
584 and then a pointer to the copy is passed in the place of the normal
585 argument (either in a register if available, or on the stack).
587 Functions that must return an aggregate type can return it in the
588 normal return value registers (R0 and R1) if its size is 8 bytes or
589 less. For larger return values, the caller must allocate space for
590 the callee to copy the return value to. A pointer to this space is
591 passed as an implicit first argument, always in R0. */
594 m32r_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
595 unsigned char struct_return
, CORE_ADDR struct_addr
)
597 int stack_offset
, stack_alloc
;
605 int odd_sized_struct
;
607 /* first force sp to a 4-byte alignment */
610 argreg
= ARG0_REGNUM
;
611 /* The "struct return pointer" pseudo-argument goes in R0 */
613 write_register (argreg
++, struct_addr
);
615 /* Now make sure there's space on the stack */
616 for (argnum
= 0, stack_alloc
= 0;
617 argnum
< nargs
; argnum
++)
618 stack_alloc
+= ((TYPE_LENGTH (VALUE_TYPE (args
[argnum
])) + 3) & ~3);
619 sp
-= stack_alloc
; /* make room on stack for args */
622 /* Now load as many as possible of the first arguments into
623 registers, and push the rest onto the stack. There are 16 bytes
624 in four registers available. Loop thru args from first to last. */
626 argreg
= ARG0_REGNUM
;
627 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
629 type
= VALUE_TYPE (args
[argnum
]);
630 len
= TYPE_LENGTH (type
);
631 memset (valbuf
, 0, sizeof (valbuf
));
633 { /* value gets right-justified in the register or stack word */
634 memcpy (valbuf
+ (4 - len
),
635 (char *) VALUE_CONTENTS (args
[argnum
]), len
);
639 val
= (char *) VALUE_CONTENTS (args
[argnum
]);
641 if (len
> 4 && (len
& 3) != 0)
642 odd_sized_struct
= 1; /* such structs go entirely on stack */
644 odd_sized_struct
= 0;
647 if (argreg
> ARGLAST_REGNUM
|| odd_sized_struct
)
648 { /* must go on the stack */
649 write_memory (sp
+ stack_offset
, val
, 4);
652 /* NOTE WELL!!!!! This is not an "else if" clause!!!
653 That's because some *&^%$ things get passed on the stack
654 AND in the registers! */
655 if (argreg
<= ARGLAST_REGNUM
)
656 { /* there's room in a register */
657 regval
= extract_address (val
, REGISTER_RAW_SIZE (argreg
));
658 write_register (argreg
++, regval
);
660 /* Store the value 4 bytes at a time. This means that things
661 larger than 4 bytes may go partly in registers and partly
663 len
-= REGISTER_RAW_SIZE (argreg
);
664 val
+= REGISTER_RAW_SIZE (argreg
);
670 /* Function: fix_call_dummy
671 If there is real CALL_DUMMY code (eg. on the stack), this function
672 has the responsability to insert the address of the actual code that
673 is the target of the target function call. */
676 m32r_fix_call_dummy (char *dummy
, CORE_ADDR pc
, CORE_ADDR fun
, int nargs
,
677 struct value
**args
, struct type
*type
, int gcc_p
)
679 /* ld24 r8, <(imm24) fun> */
680 *(unsigned long *) (dummy
) = (fun
& 0x00ffffff) | 0xe8000000;
684 /* Function: m32r_write_sp
685 Because SP is really a read-only register that mirrors either SPU or SPI,
686 we must actually write one of those two as well, depending on PSW. */
689 m32r_write_sp (CORE_ADDR val
)
691 unsigned long psw
= read_register (PSW_REGNUM
);
693 if (psw
& 0x80) /* stack mode: user or interrupt */
694 write_register (SPU_REGNUM
, val
);
696 write_register (SPI_REGNUM
, val
);
697 write_register (SP_REGNUM
, val
);
701 _initialize_m32r_tdep (void)
703 tm_print_insn
= print_insn_m32r
;