* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
4 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "trad-frame.h"
39 #include "dis-asm.h"
40
41 #include "gdb_assert.h"
42
43 #include "m32r-tdep.h"
44
45 /* Local functions */
46
47 extern void _initialize_m32r_tdep (void);
48
49 static CORE_ADDR
50 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
51 {
52 /* Align to the size of an instruction (so that they can safely be
53 pushed onto the stack. */
54 return sp & ~3;
55 }
56
57
58 /* Breakpoints
59
60 The little endian mode of M32R is unique. In most of architectures,
61 two 16-bit instructions, A and B, are placed as the following:
62
63 Big endian:
64 A0 A1 B0 B1
65
66 Little endian:
67 A1 A0 B1 B0
68
69 In M32R, they are placed like this:
70
71 Big endian:
72 A0 A1 B0 B1
73
74 Little endian:
75 B1 B0 A1 A0
76
77 This is because M32R always fetches instructions in 32-bit.
78
79 The following functions take care of this behavior. */
80
81 static int
82 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
83 struct bp_target_info *bp_tgt)
84 {
85 CORE_ADDR addr = bp_tgt->placed_address;
86 int val;
87 gdb_byte buf[4];
88 gdb_byte *contents_cache = bp_tgt->shadow_contents;
89 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
90
91 /* Save the memory contents. */
92 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
93 if (val != 0)
94 return val; /* return error */
95
96 bp_tgt->placed_size = bp_tgt->shadow_len = 4;
97
98 /* Determine appropriate breakpoint contents and size for this address. */
99 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
100 {
101 if ((addr & 3) == 0)
102 {
103 buf[0] = bp_entry[0];
104 buf[1] = bp_entry[1];
105 buf[2] = contents_cache[2] & 0x7f;
106 buf[3] = contents_cache[3];
107 }
108 else
109 {
110 buf[0] = contents_cache[0];
111 buf[1] = contents_cache[1];
112 buf[2] = bp_entry[0];
113 buf[3] = bp_entry[1];
114 }
115 }
116 else /* little-endian */
117 {
118 if ((addr & 3) == 0)
119 {
120 buf[0] = contents_cache[0];
121 buf[1] = contents_cache[1] & 0x7f;
122 buf[2] = bp_entry[1];
123 buf[3] = bp_entry[0];
124 }
125 else
126 {
127 buf[0] = bp_entry[1];
128 buf[1] = bp_entry[0];
129 buf[2] = contents_cache[2];
130 buf[3] = contents_cache[3];
131 }
132 }
133
134 /* Write the breakpoint. */
135 val = target_write_memory (addr & 0xfffffffc, buf, 4);
136 return val;
137 }
138
139 static int
140 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
141 struct bp_target_info *bp_tgt)
142 {
143 CORE_ADDR addr = bp_tgt->placed_address;
144 int val;
145 gdb_byte buf[4];
146 gdb_byte *contents_cache = bp_tgt->shadow_contents;
147
148 buf[0] = contents_cache[0];
149 buf[1] = contents_cache[1];
150 buf[2] = contents_cache[2];
151 buf[3] = contents_cache[3];
152
153 /* Remove parallel bit. */
154 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
155 {
156 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
157 buf[2] &= 0x7f;
158 }
159 else /* little-endian */
160 {
161 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
162 buf[1] &= 0x7f;
163 }
164
165 /* Write contents. */
166 val = target_write_memory (addr & 0xfffffffc, buf, 4);
167 return val;
168 }
169
170 static const gdb_byte *
171 m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
172 {
173 static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */
174 static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */
175 gdb_byte *bp;
176
177 /* Determine appropriate breakpoint. */
178 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
179 {
180 if ((*pcptr & 3) == 0)
181 {
182 bp = be_bp_entry;
183 *lenptr = 4;
184 }
185 else
186 {
187 bp = be_bp_entry;
188 *lenptr = 2;
189 }
190 }
191 else
192 {
193 if ((*pcptr & 3) == 0)
194 {
195 bp = le_bp_entry;
196 *lenptr = 4;
197 }
198 else
199 {
200 bp = le_bp_entry + 2;
201 *lenptr = 2;
202 }
203 }
204
205 return bp;
206 }
207
208
209 char *m32r_register_names[] = {
210 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
211 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
212 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
213 "evb"
214 };
215
216 static const char *
217 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
218 {
219 if (reg_nr < 0)
220 return NULL;
221 if (reg_nr >= M32R_NUM_REGS)
222 return NULL;
223 return m32r_register_names[reg_nr];
224 }
225
226
227 /* Return the GDB type object for the "standard" data type
228 of data in register N. */
229
230 static struct type *
231 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
232 {
233 if (reg_nr == M32R_PC_REGNUM)
234 return builtin_type (gdbarch)->builtin_func_ptr;
235 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
236 return builtin_type (gdbarch)->builtin_data_ptr;
237 else
238 return builtin_type (gdbarch)->builtin_int32;
239 }
240
241
242 /* Write into appropriate registers a function return value
243 of type TYPE, given in virtual format.
244
245 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
246
247 static void
248 m32r_store_return_value (struct type *type, struct regcache *regcache,
249 const void *valbuf)
250 {
251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
253 CORE_ADDR regval;
254 int len = TYPE_LENGTH (type);
255
256 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
257 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
258
259 if (len > 4)
260 {
261 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
262 len - 4, byte_order);
263 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
264 }
265 }
266
267 /* This is required by skip_prologue. The results of decoding a prologue
268 should be cached because this thrashing is getting nuts. */
269
270 static int
271 decode_prologue (struct gdbarch *gdbarch,
272 CORE_ADDR start_pc, CORE_ADDR scan_limit,
273 CORE_ADDR *pl_endptr, unsigned long *framelength)
274 {
275 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
276 unsigned long framesize;
277 int insn;
278 int op1;
279 CORE_ADDR after_prologue = 0;
280 CORE_ADDR after_push = 0;
281 CORE_ADDR after_stack_adjust = 0;
282 CORE_ADDR current_pc;
283 LONGEST return_value;
284
285 framesize = 0;
286 after_prologue = 0;
287
288 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
289 {
290 /* Check if current pc's location is readable. */
291 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
292 return -1;
293
294 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
295
296 if (insn == 0x0000)
297 break;
298
299 /* If this is a 32 bit instruction, we dont want to examine its
300 immediate data as though it were an instruction */
301 if (current_pc & 0x02)
302 {
303 /* decode this instruction further */
304 insn &= 0x7fff;
305 }
306 else
307 {
308 if (insn & 0x8000)
309 {
310 if (current_pc == scan_limit)
311 scan_limit += 2; /* extend the search */
312
313 current_pc += 2; /* skip the immediate data */
314
315 /* Check if current pc's location is readable. */
316 if (!safe_read_memory_integer (current_pc, 2, byte_order,
317 &return_value))
318 return -1;
319
320 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
321 /* add 16 bit sign-extended offset */
322 {
323 framesize +=
324 -((short) read_memory_unsigned_integer (current_pc,
325 2, byte_order));
326 }
327 else
328 {
329 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
330 && safe_read_memory_integer (current_pc + 2,
331 2, byte_order,
332 &return_value)
333 && read_memory_unsigned_integer (current_pc + 2,
334 2, byte_order)
335 == 0x0f24)
336 /* subtract 24 bit sign-extended negative-offset */
337 {
338 insn = read_memory_unsigned_integer (current_pc - 2,
339 4, byte_order);
340 if (insn & 0x00800000) /* sign extend */
341 insn |= 0xff000000; /* negative */
342 else
343 insn &= 0x00ffffff; /* positive */
344 framesize += insn;
345 }
346 }
347 after_push = current_pc + 2;
348 continue;
349 }
350 }
351 op1 = insn & 0xf000; /* isolate just the first nibble */
352
353 if ((insn & 0xf0ff) == 0x207f)
354 { /* st reg, @-sp */
355 int regno;
356 framesize += 4;
357 regno = ((insn >> 8) & 0xf);
358 after_prologue = 0;
359 continue;
360 }
361 if ((insn >> 8) == 0x4f) /* addi sp, xx */
362 /* add 8 bit sign-extended offset */
363 {
364 int stack_adjust = (signed char) (insn & 0xff);
365
366 /* there are probably two of these stack adjustments:
367 1) A negative one in the prologue, and
368 2) A positive one in the epilogue.
369 We are only interested in the first one. */
370
371 if (stack_adjust < 0)
372 {
373 framesize -= stack_adjust;
374 after_prologue = 0;
375 /* A frameless function may have no "mv fp, sp".
376 In that case, this is the end of the prologue. */
377 after_stack_adjust = current_pc + 2;
378 }
379 continue;
380 }
381 if (insn == 0x1d8f)
382 { /* mv fp, sp */
383 after_prologue = current_pc + 2;
384 break; /* end of stack adjustments */
385 }
386
387 /* Nop looks like a branch, continue explicitly */
388 if (insn == 0x7000)
389 {
390 after_prologue = current_pc + 2;
391 continue; /* nop occurs between pushes */
392 }
393 /* End of prolog if any of these are trap instructions */
394 if ((insn & 0xfff0) == 0x10f0)
395 {
396 after_prologue = current_pc;
397 break;
398 }
399 /* End of prolog if any of these are branch instructions */
400 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
401 {
402 after_prologue = current_pc;
403 continue;
404 }
405 /* Some of the branch instructions are mixed with other types */
406 if (op1 == 0x1000)
407 {
408 int subop = insn & 0x0ff0;
409 if ((subop == 0x0ec0) || (subop == 0x0fc0))
410 {
411 after_prologue = current_pc;
412 continue; /* jmp , jl */
413 }
414 }
415 }
416
417 if (framelength)
418 *framelength = framesize;
419
420 if (current_pc >= scan_limit)
421 {
422 if (pl_endptr)
423 {
424 if (after_stack_adjust != 0)
425 /* We did not find a "mv fp,sp", but we DID find
426 a stack_adjust. Is it safe to use that as the
427 end of the prologue? I just don't know. */
428 {
429 *pl_endptr = after_stack_adjust;
430 }
431 else if (after_push != 0)
432 /* We did not find a "mv fp,sp", but we DID find
433 a push. Is it safe to use that as the
434 end of the prologue? I just don't know. */
435 {
436 *pl_endptr = after_push;
437 }
438 else
439 /* We reached the end of the loop without finding the end
440 of the prologue. No way to win -- we should report failure.
441 The way we do that is to return the original start_pc.
442 GDB will set a breakpoint at the start of the function (etc.) */
443 *pl_endptr = start_pc;
444 }
445 return 0;
446 }
447
448 if (after_prologue == 0)
449 after_prologue = current_pc;
450
451 if (pl_endptr)
452 *pl_endptr = after_prologue;
453
454 return 0;
455 } /* decode_prologue */
456
457 /* Function: skip_prologue
458 Find end of function prologue */
459
460 #define DEFAULT_SEARCH_LIMIT 128
461
462 static CORE_ADDR
463 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
464 {
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 CORE_ADDR func_addr, func_end;
467 struct symtab_and_line sal;
468 LONGEST return_value;
469
470 /* See what the symbol table says */
471
472 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
473 {
474 sal = find_pc_line (func_addr, 0);
475
476 if (sal.line != 0 && sal.end <= func_end)
477 {
478 func_end = sal.end;
479 }
480 else
481 /* Either there's no line info, or the line after the prologue is after
482 the end of the function. In this case, there probably isn't a
483 prologue. */
484 {
485 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
486 }
487 }
488 else
489 func_end = pc + DEFAULT_SEARCH_LIMIT;
490
491 /* If pc's location is not readable, just quit. */
492 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
493 return pc;
494
495 /* Find the end of prologue. */
496 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
497 return pc;
498
499 return sal.end;
500 }
501
502 struct m32r_unwind_cache
503 {
504 /* The previous frame's inner most stack address. Used as this
505 frame ID's stack_addr. */
506 CORE_ADDR prev_sp;
507 /* The frame's base, optionally used by the high-level debug info. */
508 CORE_ADDR base;
509 int size;
510 /* How far the SP and r13 (FP) have been offset from the start of
511 the stack frame (as defined by the previous frame's stack
512 pointer). */
513 LONGEST sp_offset;
514 LONGEST r13_offset;
515 int uses_frame;
516 /* Table indicating the location of each and every register. */
517 struct trad_frame_saved_reg *saved_regs;
518 };
519
520 /* Put here the code to store, into fi->saved_regs, the addresses of
521 the saved registers of frame described by FRAME_INFO. This
522 includes special registers such as pc and fp saved in special ways
523 in the stack frame. sp is even more special: the address we return
524 for it IS the sp for the next frame. */
525
526 static struct m32r_unwind_cache *
527 m32r_frame_unwind_cache (struct frame_info *this_frame,
528 void **this_prologue_cache)
529 {
530 CORE_ADDR pc, scan_limit;
531 ULONGEST prev_sp;
532 ULONGEST this_base;
533 unsigned long op, op2;
534 int i;
535 struct m32r_unwind_cache *info;
536
537
538 if ((*this_prologue_cache))
539 return (*this_prologue_cache);
540
541 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
542 (*this_prologue_cache) = info;
543 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
544
545 info->size = 0;
546 info->sp_offset = 0;
547 info->uses_frame = 0;
548
549 scan_limit = get_frame_pc (this_frame);
550 for (pc = get_frame_func (this_frame);
551 pc > 0 && pc < scan_limit; pc += 2)
552 {
553 if ((pc & 2) == 0)
554 {
555 op = get_frame_memory_unsigned (this_frame, pc, 4);
556 if ((op & 0x80000000) == 0x80000000)
557 {
558 /* 32-bit instruction */
559 if ((op & 0xffff0000) == 0x8faf0000)
560 {
561 /* add3 sp,sp,xxxx */
562 short n = op & 0xffff;
563 info->sp_offset += n;
564 }
565 else if (((op >> 8) == 0xe4)
566 && get_frame_memory_unsigned (this_frame, pc + 2,
567 2) == 0x0f24)
568 {
569 /* ld24 r4, xxxxxx; sub sp, r4 */
570 unsigned long n = op & 0xffffff;
571 info->sp_offset += n;
572 pc += 2; /* skip sub instruction */
573 }
574
575 if (pc == scan_limit)
576 scan_limit += 2; /* extend the search */
577 pc += 2; /* skip the immediate data */
578 continue;
579 }
580 }
581
582 /* 16-bit instructions */
583 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
584 if ((op & 0xf0ff) == 0x207f)
585 {
586 /* st rn, @-sp */
587 int regno = ((op >> 8) & 0xf);
588 info->sp_offset -= 4;
589 info->saved_regs[regno].addr = info->sp_offset;
590 }
591 else if ((op & 0xff00) == 0x4f00)
592 {
593 /* addi sp, xx */
594 int n = (signed char) (op & 0xff);
595 info->sp_offset += n;
596 }
597 else if (op == 0x1d8f)
598 {
599 /* mv fp, sp */
600 info->uses_frame = 1;
601 info->r13_offset = info->sp_offset;
602 break; /* end of stack adjustments */
603 }
604 else if ((op & 0xfff0) == 0x10f0)
605 {
606 /* end of prologue if this is a trap instruction */
607 break; /* end of stack adjustments */
608 }
609 }
610
611 info->size = -info->sp_offset;
612
613 /* Compute the previous frame's stack pointer (which is also the
614 frame's ID's stack address), and this frame's base pointer. */
615 if (info->uses_frame)
616 {
617 /* The SP was moved to the FP. This indicates that a new frame
618 was created. Get THIS frame's FP value by unwinding it from
619 the next frame. */
620 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
621 /* The FP points at the last saved register. Adjust the FP back
622 to before the first saved register giving the SP. */
623 prev_sp = this_base + info->size;
624 }
625 else
626 {
627 /* Assume that the FP is this frame's SP but with that pushed
628 stack space added back. */
629 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
630 prev_sp = this_base + info->size;
631 }
632
633 /* Convert that SP/BASE into real addresses. */
634 info->prev_sp = prev_sp;
635 info->base = this_base;
636
637 /* Adjust all the saved registers so that they contain addresses and
638 not offsets. */
639 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
640 if (trad_frame_addr_p (info->saved_regs, i))
641 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
642
643 /* The call instruction moves the caller's PC in the callee's LR.
644 Since this is an unwind, do the reverse. Copy the location of LR
645 into PC (the address / regnum) so that a request for PC will be
646 converted into a request for the LR. */
647 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
648
649 /* The previous frame's SP needed to be computed. Save the computed
650 value. */
651 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
652
653 return info;
654 }
655
656 static CORE_ADDR
657 m32r_read_pc (struct regcache *regcache)
658 {
659 ULONGEST pc;
660 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
661 return pc;
662 }
663
664 static void
665 m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
666 {
667 regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
668 }
669
670 static CORE_ADDR
671 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
672 {
673 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
674 }
675
676
677 static CORE_ADDR
678 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
679 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
680 struct value **args, CORE_ADDR sp, int struct_return,
681 CORE_ADDR struct_addr)
682 {
683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
684 int stack_offset, stack_alloc;
685 int argreg = ARG1_REGNUM;
686 int argnum;
687 struct type *type;
688 enum type_code typecode;
689 CORE_ADDR regval;
690 gdb_byte *val;
691 gdb_byte valbuf[MAX_REGISTER_SIZE];
692 int len;
693 int odd_sized_struct;
694
695 /* first force sp to a 4-byte alignment */
696 sp = sp & ~3;
697
698 /* Set the return address. For the m32r, the return breakpoint is
699 always at BP_ADDR. */
700 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
701
702 /* If STRUCT_RETURN is true, then the struct return address (in
703 STRUCT_ADDR) will consume the first argument-passing register.
704 Both adjust the register count and store that value. */
705 if (struct_return)
706 {
707 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
708 argreg++;
709 }
710
711 /* Now make sure there's space on the stack */
712 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
713 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
714 sp -= stack_alloc; /* make room on stack for args */
715
716 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
717 {
718 type = value_type (args[argnum]);
719 typecode = TYPE_CODE (type);
720 len = TYPE_LENGTH (type);
721
722 memset (valbuf, 0, sizeof (valbuf));
723
724 /* Passes structures that do not fit in 2 registers by reference. */
725 if (len > 8
726 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
727 {
728 store_unsigned_integer (valbuf, 4, byte_order,
729 value_address (args[argnum]));
730 typecode = TYPE_CODE_PTR;
731 len = 4;
732 val = valbuf;
733 }
734 else if (len < 4)
735 {
736 /* value gets right-justified in the register or stack word */
737 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
738 (gdb_byte *) value_contents (args[argnum]), len);
739 val = valbuf;
740 }
741 else
742 val = (gdb_byte *) value_contents (args[argnum]);
743
744 while (len > 0)
745 {
746 if (argreg > ARGN_REGNUM)
747 {
748 /* must go on the stack */
749 write_memory (sp + stack_offset, val, 4);
750 stack_offset += 4;
751 }
752 else if (argreg <= ARGN_REGNUM)
753 {
754 /* there's room in a register */
755 regval =
756 extract_unsigned_integer (val,
757 register_size (gdbarch, argreg),
758 byte_order);
759 regcache_cooked_write_unsigned (regcache, argreg++, regval);
760 }
761
762 /* Store the value 4 bytes at a time. This means that things
763 larger than 4 bytes may go partly in registers and partly
764 on the stack. */
765 len -= register_size (gdbarch, argreg);
766 val += register_size (gdbarch, argreg);
767 }
768 }
769
770 /* Finally, update the SP register. */
771 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
772
773 return sp;
774 }
775
776
777 /* Given a return value in `regbuf' with a type `valtype',
778 extract and copy its value into `valbuf'. */
779
780 static void
781 m32r_extract_return_value (struct type *type, struct regcache *regcache,
782 void *dst)
783 {
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
786 bfd_byte *valbuf = dst;
787 int len = TYPE_LENGTH (type);
788 ULONGEST tmp;
789
790 /* By using store_unsigned_integer we avoid having to do
791 anything special for small big-endian values. */
792 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
793 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
794
795 /* Ignore return values more than 8 bytes in size because the m32r
796 returns anything more than 8 bytes in the stack. */
797 if (len > 4)
798 {
799 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
800 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
801 }
802 }
803
804 static enum return_value_convention
805 m32r_return_value (struct gdbarch *gdbarch, struct type *func_type,
806 struct type *valtype, struct regcache *regcache,
807 gdb_byte *readbuf, const gdb_byte *writebuf)
808 {
809 if (TYPE_LENGTH (valtype) > 8)
810 return RETURN_VALUE_STRUCT_CONVENTION;
811 else
812 {
813 if (readbuf != NULL)
814 m32r_extract_return_value (valtype, regcache, readbuf);
815 if (writebuf != NULL)
816 m32r_store_return_value (valtype, regcache, writebuf);
817 return RETURN_VALUE_REGISTER_CONVENTION;
818 }
819 }
820
821
822
823 static CORE_ADDR
824 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
825 {
826 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
827 }
828
829 /* Given a GDB frame, determine the address of the calling function's
830 frame. This will be used to create a new GDB frame struct. */
831
832 static void
833 m32r_frame_this_id (struct frame_info *this_frame,
834 void **this_prologue_cache, struct frame_id *this_id)
835 {
836 struct m32r_unwind_cache *info
837 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
838 CORE_ADDR base;
839 CORE_ADDR func;
840 struct minimal_symbol *msym_stack;
841 struct frame_id id;
842
843 /* The FUNC is easy. */
844 func = get_frame_func (this_frame);
845
846 /* Check if the stack is empty. */
847 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
848 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
849 return;
850
851 /* Hopefully the prologue analysis either correctly determined the
852 frame's base (which is the SP from the previous frame), or set
853 that base to "NULL". */
854 base = info->prev_sp;
855 if (base == 0)
856 return;
857
858 id = frame_id_build (base, func);
859 (*this_id) = id;
860 }
861
862 static struct value *
863 m32r_frame_prev_register (struct frame_info *this_frame,
864 void **this_prologue_cache, int regnum)
865 {
866 struct m32r_unwind_cache *info
867 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
868 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
869 }
870
871 static const struct frame_unwind m32r_frame_unwind = {
872 NORMAL_FRAME,
873 m32r_frame_this_id,
874 m32r_frame_prev_register,
875 NULL,
876 default_frame_sniffer
877 };
878
879 static CORE_ADDR
880 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
881 {
882 struct m32r_unwind_cache *info
883 = m32r_frame_unwind_cache (this_frame, this_cache);
884 return info->base;
885 }
886
887 static const struct frame_base m32r_frame_base = {
888 &m32r_frame_unwind,
889 m32r_frame_base_address,
890 m32r_frame_base_address,
891 m32r_frame_base_address
892 };
893
894 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
895 frame. The frame ID's base needs to match the TOS value saved by
896 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
897
898 static struct frame_id
899 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
900 {
901 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
902 return frame_id_build (sp, get_frame_pc (this_frame));
903 }
904
905
906 static gdbarch_init_ftype m32r_gdbarch_init;
907
908 static struct gdbarch *
909 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
910 {
911 struct gdbarch *gdbarch;
912 struct gdbarch_tdep *tdep;
913
914 /* If there is already a candidate, use it. */
915 arches = gdbarch_list_lookup_by_info (arches, &info);
916 if (arches != NULL)
917 return arches->gdbarch;
918
919 /* Allocate space for the new architecture. */
920 tdep = XMALLOC (struct gdbarch_tdep);
921 gdbarch = gdbarch_alloc (&info, tdep);
922
923 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
924 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
925 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
926
927 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
928 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
929 set_gdbarch_register_name (gdbarch, m32r_register_name);
930 set_gdbarch_register_type (gdbarch, m32r_register_type);
931
932 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
933 set_gdbarch_return_value (gdbarch, m32r_return_value);
934
935 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
936 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
937 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
938 set_gdbarch_memory_insert_breakpoint (gdbarch,
939 m32r_memory_insert_breakpoint);
940 set_gdbarch_memory_remove_breakpoint (gdbarch,
941 m32r_memory_remove_breakpoint);
942
943 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
944
945 frame_base_set_default (gdbarch, &m32r_frame_base);
946
947 /* Methods for saving / extracting a dummy frame's ID. The ID's
948 stack address must match the SP value returned by
949 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
950 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
951
952 /* Return the unwound PC value. */
953 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
954
955 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
956
957 /* Hook in ABI-specific overrides, if they have been registered. */
958 gdbarch_init_osabi (info, gdbarch);
959
960 /* Hook in the default unwinders. */
961 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
962
963 /* Support simple overlay manager. */
964 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
965
966 return gdbarch;
967 }
968
969 void
970 _initialize_m32r_tdep (void)
971 {
972 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
973 }
This page took 0.056216 seconds and 4 git commands to generate.