gdb.ada/arraydim.exp: Fix directory layout
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39
40 #include "m32r-tdep.h"
41
42 /* Local functions */
43
44 extern void _initialize_m32r_tdep (void);
45
46 static CORE_ADDR
47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
48 {
49 /* Align to the size of an instruction (so that they can safely be
50 pushed onto the stack. */
51 return sp & ~3;
52 }
53
54
55 /* Breakpoints
56
57 The little endian mode of M32R is unique. In most of architectures,
58 two 16-bit instructions, A and B, are placed as the following:
59
60 Big endian:
61 A0 A1 B0 B1
62
63 Little endian:
64 A1 A0 B1 B0
65
66 In M32R, they are placed like this:
67
68 Big endian:
69 A0 A1 B0 B1
70
71 Little endian:
72 B1 B0 A1 A0
73
74 This is because M32R always fetches instructions in 32-bit.
75
76 The following functions take care of this behavior. */
77
78 static int
79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
80 struct bp_target_info *bp_tgt)
81 {
82 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
83 int val;
84 gdb_byte buf[4];
85 gdb_byte contents_cache[4];
86 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
87
88 /* Save the memory contents. */
89 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
90 if (val != 0)
91 return val; /* return error */
92
93 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
94 bp_tgt->placed_size = bp_tgt->shadow_len = 4;
95
96 /* Determine appropriate breakpoint contents and size for this address. */
97 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
98 {
99 if ((addr & 3) == 0)
100 {
101 buf[0] = bp_entry[0];
102 buf[1] = bp_entry[1];
103 buf[2] = contents_cache[2] & 0x7f;
104 buf[3] = contents_cache[3];
105 }
106 else
107 {
108 buf[0] = contents_cache[0];
109 buf[1] = contents_cache[1];
110 buf[2] = bp_entry[0];
111 buf[3] = bp_entry[1];
112 }
113 }
114 else /* little-endian */
115 {
116 if ((addr & 3) == 0)
117 {
118 buf[0] = contents_cache[0];
119 buf[1] = contents_cache[1] & 0x7f;
120 buf[2] = bp_entry[1];
121 buf[3] = bp_entry[0];
122 }
123 else
124 {
125 buf[0] = bp_entry[1];
126 buf[1] = bp_entry[0];
127 buf[2] = contents_cache[2];
128 buf[3] = contents_cache[3];
129 }
130 }
131
132 /* Write the breakpoint. */
133 val = target_write_memory (addr & 0xfffffffc, buf, 4);
134 return val;
135 }
136
137 static int
138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
139 struct bp_target_info *bp_tgt)
140 {
141 CORE_ADDR addr = bp_tgt->placed_address;
142 int val;
143 gdb_byte buf[4];
144 gdb_byte *contents_cache = bp_tgt->shadow_contents;
145
146 buf[0] = contents_cache[0];
147 buf[1] = contents_cache[1];
148 buf[2] = contents_cache[2];
149 buf[3] = contents_cache[3];
150
151 /* Remove parallel bit. */
152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
153 {
154 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
155 buf[2] &= 0x7f;
156 }
157 else /* little-endian */
158 {
159 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
160 buf[1] &= 0x7f;
161 }
162
163 /* Write contents. */
164 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
165 return val;
166 }
167
168 static const gdb_byte *
169 m32r_breakpoint_from_pc (struct gdbarch *gdbarch,
170 CORE_ADDR *pcptr, int *lenptr)
171 {
172 static gdb_byte be_bp_entry[] = {
173 0x10, 0xf1, 0x70, 0x00
174 }; /* dpt -> nop */
175 static gdb_byte le_bp_entry[] = {
176 0x00, 0x70, 0xf1, 0x10
177 }; /* dpt -> nop */
178 gdb_byte *bp;
179
180 /* Determine appropriate breakpoint. */
181 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
182 {
183 if ((*pcptr & 3) == 0)
184 {
185 bp = be_bp_entry;
186 *lenptr = 4;
187 }
188 else
189 {
190 bp = be_bp_entry;
191 *lenptr = 2;
192 }
193 }
194 else
195 {
196 if ((*pcptr & 3) == 0)
197 {
198 bp = le_bp_entry;
199 *lenptr = 4;
200 }
201 else
202 {
203 bp = le_bp_entry + 2;
204 *lenptr = 2;
205 }
206 }
207
208 return bp;
209 }
210
211
212 char *m32r_register_names[] = {
213 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
214 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
215 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
216 "evb"
217 };
218
219 static const char *
220 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
221 {
222 if (reg_nr < 0)
223 return NULL;
224 if (reg_nr >= M32R_NUM_REGS)
225 return NULL;
226 return m32r_register_names[reg_nr];
227 }
228
229
230 /* Return the GDB type object for the "standard" data type
231 of data in register N. */
232
233 static struct type *
234 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
235 {
236 if (reg_nr == M32R_PC_REGNUM)
237 return builtin_type (gdbarch)->builtin_func_ptr;
238 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
239 return builtin_type (gdbarch)->builtin_data_ptr;
240 else
241 return builtin_type (gdbarch)->builtin_int32;
242 }
243
244
245 /* Write into appropriate registers a function return value
246 of type TYPE, given in virtual format.
247
248 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
249
250 static void
251 m32r_store_return_value (struct type *type, struct regcache *regcache,
252 const gdb_byte *valbuf)
253 {
254 struct gdbarch *gdbarch = get_regcache_arch (regcache);
255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
256 CORE_ADDR regval;
257 int len = TYPE_LENGTH (type);
258
259 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
260 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
261
262 if (len > 4)
263 {
264 regval = extract_unsigned_integer (valbuf + 4,
265 len - 4, byte_order);
266 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
267 }
268 }
269
270 /* This is required by skip_prologue. The results of decoding a prologue
271 should be cached because this thrashing is getting nuts. */
272
273 static int
274 decode_prologue (struct gdbarch *gdbarch,
275 CORE_ADDR start_pc, CORE_ADDR scan_limit,
276 CORE_ADDR *pl_endptr, unsigned long *framelength)
277 {
278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279 unsigned long framesize;
280 int insn;
281 int op1;
282 CORE_ADDR after_prologue = 0;
283 CORE_ADDR after_push = 0;
284 CORE_ADDR after_stack_adjust = 0;
285 CORE_ADDR current_pc;
286 LONGEST return_value;
287
288 framesize = 0;
289 after_prologue = 0;
290
291 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
292 {
293 /* Check if current pc's location is readable. */
294 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
295 return -1;
296
297 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
298
299 if (insn == 0x0000)
300 break;
301
302 /* If this is a 32 bit instruction, we dont want to examine its
303 immediate data as though it were an instruction. */
304 if (current_pc & 0x02)
305 {
306 /* Decode this instruction further. */
307 insn &= 0x7fff;
308 }
309 else
310 {
311 if (insn & 0x8000)
312 {
313 if (current_pc == scan_limit)
314 scan_limit += 2; /* extend the search */
315
316 current_pc += 2; /* skip the immediate data */
317
318 /* Check if current pc's location is readable. */
319 if (!safe_read_memory_integer (current_pc, 2, byte_order,
320 &return_value))
321 return -1;
322
323 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
324 /* add 16 bit sign-extended offset */
325 {
326 framesize +=
327 -((short) read_memory_unsigned_integer (current_pc,
328 2, byte_order));
329 }
330 else
331 {
332 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
333 && safe_read_memory_integer (current_pc + 2,
334 2, byte_order,
335 &return_value)
336 && read_memory_unsigned_integer (current_pc + 2,
337 2, byte_order)
338 == 0x0f24)
339 {
340 /* Subtract 24 bit sign-extended negative-offset. */
341 insn = read_memory_unsigned_integer (current_pc - 2,
342 4, byte_order);
343 if (insn & 0x00800000) /* sign extend */
344 insn |= 0xff000000; /* negative */
345 else
346 insn &= 0x00ffffff; /* positive */
347 framesize += insn;
348 }
349 }
350 after_push = current_pc + 2;
351 continue;
352 }
353 }
354 op1 = insn & 0xf000; /* Isolate just the first nibble. */
355
356 if ((insn & 0xf0ff) == 0x207f)
357 { /* st reg, @-sp */
358 framesize += 4;
359 after_prologue = 0;
360 continue;
361 }
362 if ((insn >> 8) == 0x4f) /* addi sp, xx */
363 /* Add 8 bit sign-extended offset. */
364 {
365 int stack_adjust = (signed char) (insn & 0xff);
366
367 /* there are probably two of these stack adjustments:
368 1) A negative one in the prologue, and
369 2) A positive one in the epilogue.
370 We are only interested in the first one. */
371
372 if (stack_adjust < 0)
373 {
374 framesize -= stack_adjust;
375 after_prologue = 0;
376 /* A frameless function may have no "mv fp, sp".
377 In that case, this is the end of the prologue. */
378 after_stack_adjust = current_pc + 2;
379 }
380 continue;
381 }
382 if (insn == 0x1d8f)
383 { /* mv fp, sp */
384 after_prologue = current_pc + 2;
385 break; /* end of stack adjustments */
386 }
387
388 /* Nop looks like a branch, continue explicitly. */
389 if (insn == 0x7000)
390 {
391 after_prologue = current_pc + 2;
392 continue; /* nop occurs between pushes. */
393 }
394 /* End of prolog if any of these are trap instructions. */
395 if ((insn & 0xfff0) == 0x10f0)
396 {
397 after_prologue = current_pc;
398 break;
399 }
400 /* End of prolog if any of these are branch instructions. */
401 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
402 {
403 after_prologue = current_pc;
404 continue;
405 }
406 /* Some of the branch instructions are mixed with other types. */
407 if (op1 == 0x1000)
408 {
409 int subop = insn & 0x0ff0;
410 if ((subop == 0x0ec0) || (subop == 0x0fc0))
411 {
412 after_prologue = current_pc;
413 continue; /* jmp , jl */
414 }
415 }
416 }
417
418 if (framelength)
419 *framelength = framesize;
420
421 if (current_pc >= scan_limit)
422 {
423 if (pl_endptr)
424 {
425 if (after_stack_adjust != 0)
426 /* We did not find a "mv fp,sp", but we DID find
427 a stack_adjust. Is it safe to use that as the
428 end of the prologue? I just don't know. */
429 {
430 *pl_endptr = after_stack_adjust;
431 }
432 else if (after_push != 0)
433 /* We did not find a "mv fp,sp", but we DID find
434 a push. Is it safe to use that as the
435 end of the prologue? I just don't know. */
436 {
437 *pl_endptr = after_push;
438 }
439 else
440 /* We reached the end of the loop without finding the end
441 of the prologue. No way to win -- we should report
442 failure. The way we do that is to return the original
443 start_pc. GDB will set a breakpoint at the start of
444 the function (etc.) */
445 *pl_endptr = start_pc;
446 }
447 return 0;
448 }
449
450 if (after_prologue == 0)
451 after_prologue = current_pc;
452
453 if (pl_endptr)
454 *pl_endptr = after_prologue;
455
456 return 0;
457 } /* decode_prologue */
458
459 /* Function: skip_prologue
460 Find end of function prologue. */
461
462 #define DEFAULT_SEARCH_LIMIT 128
463
464 static CORE_ADDR
465 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
466 {
467 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
468 CORE_ADDR func_addr, func_end;
469 struct symtab_and_line sal;
470 LONGEST return_value;
471
472 /* See what the symbol table says. */
473
474 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
475 {
476 sal = find_pc_line (func_addr, 0);
477
478 if (sal.line != 0 && sal.end <= func_end)
479 {
480 func_end = sal.end;
481 }
482 else
483 /* Either there's no line info, or the line after the prologue is after
484 the end of the function. In this case, there probably isn't a
485 prologue. */
486 {
487 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
488 }
489 }
490 else
491 func_end = pc + DEFAULT_SEARCH_LIMIT;
492
493 /* If pc's location is not readable, just quit. */
494 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
495 return pc;
496
497 /* Find the end of prologue. */
498 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
499 return pc;
500
501 return sal.end;
502 }
503
504 struct m32r_unwind_cache
505 {
506 /* The previous frame's inner most stack address. Used as this
507 frame ID's stack_addr. */
508 CORE_ADDR prev_sp;
509 /* The frame's base, optionally used by the high-level debug info. */
510 CORE_ADDR base;
511 int size;
512 /* How far the SP and r13 (FP) have been offset from the start of
513 the stack frame (as defined by the previous frame's stack
514 pointer). */
515 LONGEST sp_offset;
516 LONGEST r13_offset;
517 int uses_frame;
518 /* Table indicating the location of each and every register. */
519 struct trad_frame_saved_reg *saved_regs;
520 };
521
522 /* Put here the code to store, into fi->saved_regs, the addresses of
523 the saved registers of frame described by FRAME_INFO. This
524 includes special registers such as pc and fp saved in special ways
525 in the stack frame. sp is even more special: the address we return
526 for it IS the sp for the next frame. */
527
528 static struct m32r_unwind_cache *
529 m32r_frame_unwind_cache (struct frame_info *this_frame,
530 void **this_prologue_cache)
531 {
532 CORE_ADDR pc, scan_limit;
533 ULONGEST prev_sp;
534 ULONGEST this_base;
535 unsigned long op;
536 int i;
537 struct m32r_unwind_cache *info;
538
539
540 if ((*this_prologue_cache))
541 return (struct m32r_unwind_cache *) (*this_prologue_cache);
542
543 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
544 (*this_prologue_cache) = info;
545 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
546
547 info->size = 0;
548 info->sp_offset = 0;
549 info->uses_frame = 0;
550
551 scan_limit = get_frame_pc (this_frame);
552 for (pc = get_frame_func (this_frame);
553 pc > 0 && pc < scan_limit; pc += 2)
554 {
555 if ((pc & 2) == 0)
556 {
557 op = get_frame_memory_unsigned (this_frame, pc, 4);
558 if ((op & 0x80000000) == 0x80000000)
559 {
560 /* 32-bit instruction */
561 if ((op & 0xffff0000) == 0x8faf0000)
562 {
563 /* add3 sp,sp,xxxx */
564 short n = op & 0xffff;
565 info->sp_offset += n;
566 }
567 else if (((op >> 8) == 0xe4)
568 && get_frame_memory_unsigned (this_frame, pc + 2,
569 2) == 0x0f24)
570 {
571 /* ld24 r4, xxxxxx; sub sp, r4 */
572 unsigned long n = op & 0xffffff;
573 info->sp_offset += n;
574 pc += 2; /* skip sub instruction */
575 }
576
577 if (pc == scan_limit)
578 scan_limit += 2; /* extend the search */
579 pc += 2; /* skip the immediate data */
580 continue;
581 }
582 }
583
584 /* 16-bit instructions */
585 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
586 if ((op & 0xf0ff) == 0x207f)
587 {
588 /* st rn, @-sp */
589 int regno = ((op >> 8) & 0xf);
590 info->sp_offset -= 4;
591 info->saved_regs[regno].addr = info->sp_offset;
592 }
593 else if ((op & 0xff00) == 0x4f00)
594 {
595 /* addi sp, xx */
596 int n = (signed char) (op & 0xff);
597 info->sp_offset += n;
598 }
599 else if (op == 0x1d8f)
600 {
601 /* mv fp, sp */
602 info->uses_frame = 1;
603 info->r13_offset = info->sp_offset;
604 break; /* end of stack adjustments */
605 }
606 else if ((op & 0xfff0) == 0x10f0)
607 {
608 /* End of prologue if this is a trap instruction. */
609 break; /* End of stack adjustments. */
610 }
611 }
612
613 info->size = -info->sp_offset;
614
615 /* Compute the previous frame's stack pointer (which is also the
616 frame's ID's stack address), and this frame's base pointer. */
617 if (info->uses_frame)
618 {
619 /* The SP was moved to the FP. This indicates that a new frame
620 was created. Get THIS frame's FP value by unwinding it from
621 the next frame. */
622 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
623 /* The FP points at the last saved register. Adjust the FP back
624 to before the first saved register giving the SP. */
625 prev_sp = this_base + info->size;
626 }
627 else
628 {
629 /* Assume that the FP is this frame's SP but with that pushed
630 stack space added back. */
631 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
632 prev_sp = this_base + info->size;
633 }
634
635 /* Convert that SP/BASE into real addresses. */
636 info->prev_sp = prev_sp;
637 info->base = this_base;
638
639 /* Adjust all the saved registers so that they contain addresses and
640 not offsets. */
641 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
642 if (trad_frame_addr_p (info->saved_regs, i))
643 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
644
645 /* The call instruction moves the caller's PC in the callee's LR.
646 Since this is an unwind, do the reverse. Copy the location of LR
647 into PC (the address / regnum) so that a request for PC will be
648 converted into a request for the LR. */
649 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
650
651 /* The previous frame's SP needed to be computed. Save the computed
652 value. */
653 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
654
655 return info;
656 }
657
658 static CORE_ADDR
659 m32r_read_pc (struct regcache *regcache)
660 {
661 ULONGEST pc;
662 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
663 return pc;
664 }
665
666 static CORE_ADDR
667 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
668 {
669 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
670 }
671
672
673 static CORE_ADDR
674 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
675 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
676 struct value **args, CORE_ADDR sp, int struct_return,
677 CORE_ADDR struct_addr)
678 {
679 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
680 int stack_offset, stack_alloc;
681 int argreg = ARG1_REGNUM;
682 int argnum;
683 struct type *type;
684 enum type_code typecode;
685 CORE_ADDR regval;
686 gdb_byte *val;
687 gdb_byte valbuf[MAX_REGISTER_SIZE];
688 int len;
689
690 /* First force sp to a 4-byte alignment. */
691 sp = sp & ~3;
692
693 /* Set the return address. For the m32r, the return breakpoint is
694 always at BP_ADDR. */
695 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
696
697 /* If STRUCT_RETURN is true, then the struct return address (in
698 STRUCT_ADDR) will consume the first argument-passing register.
699 Both adjust the register count and store that value. */
700 if (struct_return)
701 {
702 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
703 argreg++;
704 }
705
706 /* Now make sure there's space on the stack. */
707 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
708 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
709 sp -= stack_alloc; /* Make room on stack for args. */
710
711 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
712 {
713 type = value_type (args[argnum]);
714 typecode = TYPE_CODE (type);
715 len = TYPE_LENGTH (type);
716
717 memset (valbuf, 0, sizeof (valbuf));
718
719 /* Passes structures that do not fit in 2 registers by reference. */
720 if (len > 8
721 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
722 {
723 store_unsigned_integer (valbuf, 4, byte_order,
724 value_address (args[argnum]));
725 typecode = TYPE_CODE_PTR;
726 len = 4;
727 val = valbuf;
728 }
729 else if (len < 4)
730 {
731 /* Value gets right-justified in the register or stack word. */
732 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
733 (gdb_byte *) value_contents (args[argnum]), len);
734 val = valbuf;
735 }
736 else
737 val = (gdb_byte *) value_contents (args[argnum]);
738
739 while (len > 0)
740 {
741 if (argreg > ARGN_REGNUM)
742 {
743 /* Must go on the stack. */
744 write_memory (sp + stack_offset, val, 4);
745 stack_offset += 4;
746 }
747 else if (argreg <= ARGN_REGNUM)
748 {
749 /* There's room in a register. */
750 regval =
751 extract_unsigned_integer (val,
752 register_size (gdbarch, argreg),
753 byte_order);
754 regcache_cooked_write_unsigned (regcache, argreg++, regval);
755 }
756
757 /* Store the value 4 bytes at a time. This means that things
758 larger than 4 bytes may go partly in registers and partly
759 on the stack. */
760 len -= register_size (gdbarch, argreg);
761 val += register_size (gdbarch, argreg);
762 }
763 }
764
765 /* Finally, update the SP register. */
766 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
767
768 return sp;
769 }
770
771
772 /* Given a return value in `regbuf' with a type `valtype',
773 extract and copy its value into `valbuf'. */
774
775 static void
776 m32r_extract_return_value (struct type *type, struct regcache *regcache,
777 gdb_byte *dst)
778 {
779 struct gdbarch *gdbarch = get_regcache_arch (regcache);
780 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
781 int len = TYPE_LENGTH (type);
782 ULONGEST tmp;
783
784 /* By using store_unsigned_integer we avoid having to do
785 anything special for small big-endian values. */
786 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
787 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
788
789 /* Ignore return values more than 8 bytes in size because the m32r
790 returns anything more than 8 bytes in the stack. */
791 if (len > 4)
792 {
793 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
794 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
795 }
796 }
797
798 static enum return_value_convention
799 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
800 struct type *valtype, struct regcache *regcache,
801 gdb_byte *readbuf, const gdb_byte *writebuf)
802 {
803 if (TYPE_LENGTH (valtype) > 8)
804 return RETURN_VALUE_STRUCT_CONVENTION;
805 else
806 {
807 if (readbuf != NULL)
808 m32r_extract_return_value (valtype, regcache, readbuf);
809 if (writebuf != NULL)
810 m32r_store_return_value (valtype, regcache, writebuf);
811 return RETURN_VALUE_REGISTER_CONVENTION;
812 }
813 }
814
815
816
817 static CORE_ADDR
818 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
819 {
820 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
821 }
822
823 /* Given a GDB frame, determine the address of the calling function's
824 frame. This will be used to create a new GDB frame struct. */
825
826 static void
827 m32r_frame_this_id (struct frame_info *this_frame,
828 void **this_prologue_cache, struct frame_id *this_id)
829 {
830 struct m32r_unwind_cache *info
831 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
832 CORE_ADDR base;
833 CORE_ADDR func;
834 struct bound_minimal_symbol msym_stack;
835 struct frame_id id;
836
837 /* The FUNC is easy. */
838 func = get_frame_func (this_frame);
839
840 /* Check if the stack is empty. */
841 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
842 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
843 return;
844
845 /* Hopefully the prologue analysis either correctly determined the
846 frame's base (which is the SP from the previous frame), or set
847 that base to "NULL". */
848 base = info->prev_sp;
849 if (base == 0)
850 return;
851
852 id = frame_id_build (base, func);
853 (*this_id) = id;
854 }
855
856 static struct value *
857 m32r_frame_prev_register (struct frame_info *this_frame,
858 void **this_prologue_cache, int regnum)
859 {
860 struct m32r_unwind_cache *info
861 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
862 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
863 }
864
865 static const struct frame_unwind m32r_frame_unwind = {
866 NORMAL_FRAME,
867 default_frame_unwind_stop_reason,
868 m32r_frame_this_id,
869 m32r_frame_prev_register,
870 NULL,
871 default_frame_sniffer
872 };
873
874 static CORE_ADDR
875 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
876 {
877 struct m32r_unwind_cache *info
878 = m32r_frame_unwind_cache (this_frame, this_cache);
879 return info->base;
880 }
881
882 static const struct frame_base m32r_frame_base = {
883 &m32r_frame_unwind,
884 m32r_frame_base_address,
885 m32r_frame_base_address,
886 m32r_frame_base_address
887 };
888
889 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
890 frame. The frame ID's base needs to match the TOS value saved by
891 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
892
893 static struct frame_id
894 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
895 {
896 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
897 return frame_id_build (sp, get_frame_pc (this_frame));
898 }
899
900
901 static gdbarch_init_ftype m32r_gdbarch_init;
902
903 static struct gdbarch *
904 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
905 {
906 struct gdbarch *gdbarch;
907 struct gdbarch_tdep *tdep;
908
909 /* If there is already a candidate, use it. */
910 arches = gdbarch_list_lookup_by_info (arches, &info);
911 if (arches != NULL)
912 return arches->gdbarch;
913
914 /* Allocate space for the new architecture. */
915 tdep = XNEW (struct gdbarch_tdep);
916 gdbarch = gdbarch_alloc (&info, tdep);
917
918 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
919 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
920
921 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
922 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
923 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
924 set_gdbarch_register_name (gdbarch, m32r_register_name);
925 set_gdbarch_register_type (gdbarch, m32r_register_type);
926
927 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
928 set_gdbarch_return_value (gdbarch, m32r_return_value);
929
930 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
931 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
932 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
933 set_gdbarch_memory_insert_breakpoint (gdbarch,
934 m32r_memory_insert_breakpoint);
935 set_gdbarch_memory_remove_breakpoint (gdbarch,
936 m32r_memory_remove_breakpoint);
937
938 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
939
940 frame_base_set_default (gdbarch, &m32r_frame_base);
941
942 /* Methods for saving / extracting a dummy frame's ID. The ID's
943 stack address must match the SP value returned by
944 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
945 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
946
947 /* Return the unwound PC value. */
948 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
949
950 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
951
952 /* Hook in ABI-specific overrides, if they have been registered. */
953 gdbarch_init_osabi (info, gdbarch);
954
955 /* Hook in the default unwinders. */
956 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
957
958 /* Support simple overlay manager. */
959 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
960
961 return gdbarch;
962 }
963
964 void
965 _initialize_m32r_tdep (void)
966 {
967 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
968 }
This page took 0.056345 seconds and 4 git commands to generate.