f5aecbd05a57bee3eb38f801b5999c18efa93cfe
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "m32r-tdep.h"
40 #include <algorithm>
41
42 /* Local functions */
43
44 extern void _initialize_m32r_tdep (void);
45
46 static CORE_ADDR
47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
48 {
49 /* Align to the size of an instruction (so that they can safely be
50 pushed onto the stack. */
51 return sp & ~3;
52 }
53
54
55 /* Breakpoints
56
57 The little endian mode of M32R is unique. In most of architectures,
58 two 16-bit instructions, A and B, are placed as the following:
59
60 Big endian:
61 A0 A1 B0 B1
62
63 Little endian:
64 A1 A0 B1 B0
65
66 In M32R, they are placed like this:
67
68 Big endian:
69 A0 A1 B0 B1
70
71 Little endian:
72 B1 B0 A1 A0
73
74 This is because M32R always fetches instructions in 32-bit.
75
76 The following functions take care of this behavior. */
77
78 static int
79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
80 struct bp_target_info *bp_tgt)
81 {
82 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
83 int val;
84 gdb_byte buf[4];
85 gdb_byte contents_cache[4];
86 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
87
88 /* Save the memory contents. */
89 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
90 if (val != 0)
91 return val; /* return error */
92
93 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
94 bp_tgt->shadow_len = 4;
95
96 /* Determine appropriate breakpoint contents and size for this address. */
97 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
98 {
99 if ((addr & 3) == 0)
100 {
101 buf[0] = bp_entry[0];
102 buf[1] = bp_entry[1];
103 buf[2] = contents_cache[2] & 0x7f;
104 buf[3] = contents_cache[3];
105 }
106 else
107 {
108 buf[0] = contents_cache[0];
109 buf[1] = contents_cache[1];
110 buf[2] = bp_entry[0];
111 buf[3] = bp_entry[1];
112 }
113 }
114 else /* little-endian */
115 {
116 if ((addr & 3) == 0)
117 {
118 buf[0] = contents_cache[0];
119 buf[1] = contents_cache[1] & 0x7f;
120 buf[2] = bp_entry[1];
121 buf[3] = bp_entry[0];
122 }
123 else
124 {
125 buf[0] = bp_entry[1];
126 buf[1] = bp_entry[0];
127 buf[2] = contents_cache[2];
128 buf[3] = contents_cache[3];
129 }
130 }
131
132 /* Write the breakpoint. */
133 val = target_write_memory (addr & 0xfffffffc, buf, 4);
134 return val;
135 }
136
137 static int
138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
139 struct bp_target_info *bp_tgt)
140 {
141 CORE_ADDR addr = bp_tgt->placed_address;
142 int val;
143 gdb_byte buf[4];
144 gdb_byte *contents_cache = bp_tgt->shadow_contents;
145
146 buf[0] = contents_cache[0];
147 buf[1] = contents_cache[1];
148 buf[2] = contents_cache[2];
149 buf[3] = contents_cache[3];
150
151 /* Remove parallel bit. */
152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
153 {
154 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
155 buf[2] &= 0x7f;
156 }
157 else /* little-endian */
158 {
159 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
160 buf[1] &= 0x7f;
161 }
162
163 /* Write contents. */
164 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
165 return val;
166 }
167
168 /* Implement the breakpoint_kind_from_pc gdbarch method. */
169
170 static int
171 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
172 {
173 if ((*pcptr & 3) == 0)
174 return 4;
175 else
176 return 2;
177 }
178
179 /* Implement the sw_breakpoint_from_kind gdbarch method. */
180
181 static const gdb_byte *
182 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
183 {
184 static gdb_byte be_bp_entry[] = {
185 0x10, 0xf1, 0x70, 0x00
186 }; /* dpt -> nop */
187 static gdb_byte le_bp_entry[] = {
188 0x00, 0x70, 0xf1, 0x10
189 }; /* dpt -> nop */
190
191 *size = kind;
192
193 /* Determine appropriate breakpoint. */
194 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
195 return be_bp_entry;
196 else
197 {
198 if (kind == 4)
199 return le_bp_entry;
200 else
201 return le_bp_entry + 2;
202 }
203 }
204
205 GDBARCH_BREAKPOINT_FROM_PC (m32r)
206
207 char *m32r_register_names[] = {
208 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
209 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
210 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
211 "evb"
212 };
213
214 static const char *
215 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
216 {
217 if (reg_nr < 0)
218 return NULL;
219 if (reg_nr >= M32R_NUM_REGS)
220 return NULL;
221 return m32r_register_names[reg_nr];
222 }
223
224
225 /* Return the GDB type object for the "standard" data type
226 of data in register N. */
227
228 static struct type *
229 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
230 {
231 if (reg_nr == M32R_PC_REGNUM)
232 return builtin_type (gdbarch)->builtin_func_ptr;
233 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
234 return builtin_type (gdbarch)->builtin_data_ptr;
235 else
236 return builtin_type (gdbarch)->builtin_int32;
237 }
238
239
240 /* Write into appropriate registers a function return value
241 of type TYPE, given in virtual format.
242
243 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
244
245 static void
246 m32r_store_return_value (struct type *type, struct regcache *regcache,
247 const gdb_byte *valbuf)
248 {
249 struct gdbarch *gdbarch = get_regcache_arch (regcache);
250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
251 CORE_ADDR regval;
252 int len = TYPE_LENGTH (type);
253
254 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
255 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
256
257 if (len > 4)
258 {
259 regval = extract_unsigned_integer (valbuf + 4,
260 len - 4, byte_order);
261 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
262 }
263 }
264
265 /* This is required by skip_prologue. The results of decoding a prologue
266 should be cached because this thrashing is getting nuts. */
267
268 static int
269 decode_prologue (struct gdbarch *gdbarch,
270 CORE_ADDR start_pc, CORE_ADDR scan_limit,
271 CORE_ADDR *pl_endptr, unsigned long *framelength)
272 {
273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
274 unsigned long framesize;
275 int insn;
276 int op1;
277 CORE_ADDR after_prologue = 0;
278 CORE_ADDR after_push = 0;
279 CORE_ADDR after_stack_adjust = 0;
280 CORE_ADDR current_pc;
281 LONGEST return_value;
282
283 framesize = 0;
284 after_prologue = 0;
285
286 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
287 {
288 /* Check if current pc's location is readable. */
289 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
290 return -1;
291
292 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
293
294 if (insn == 0x0000)
295 break;
296
297 /* If this is a 32 bit instruction, we dont want to examine its
298 immediate data as though it were an instruction. */
299 if (current_pc & 0x02)
300 {
301 /* Decode this instruction further. */
302 insn &= 0x7fff;
303 }
304 else
305 {
306 if (insn & 0x8000)
307 {
308 if (current_pc == scan_limit)
309 scan_limit += 2; /* extend the search */
310
311 current_pc += 2; /* skip the immediate data */
312
313 /* Check if current pc's location is readable. */
314 if (!safe_read_memory_integer (current_pc, 2, byte_order,
315 &return_value))
316 return -1;
317
318 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
319 /* add 16 bit sign-extended offset */
320 {
321 framesize +=
322 -((short) read_memory_unsigned_integer (current_pc,
323 2, byte_order));
324 }
325 else
326 {
327 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
328 && safe_read_memory_integer (current_pc + 2,
329 2, byte_order,
330 &return_value)
331 && read_memory_unsigned_integer (current_pc + 2,
332 2, byte_order)
333 == 0x0f24)
334 {
335 /* Subtract 24 bit sign-extended negative-offset. */
336 insn = read_memory_unsigned_integer (current_pc - 2,
337 4, byte_order);
338 if (insn & 0x00800000) /* sign extend */
339 insn |= 0xff000000; /* negative */
340 else
341 insn &= 0x00ffffff; /* positive */
342 framesize += insn;
343 }
344 }
345 after_push = current_pc + 2;
346 continue;
347 }
348 }
349 op1 = insn & 0xf000; /* Isolate just the first nibble. */
350
351 if ((insn & 0xf0ff) == 0x207f)
352 { /* st reg, @-sp */
353 framesize += 4;
354 after_prologue = 0;
355 continue;
356 }
357 if ((insn >> 8) == 0x4f) /* addi sp, xx */
358 /* Add 8 bit sign-extended offset. */
359 {
360 int stack_adjust = (signed char) (insn & 0xff);
361
362 /* there are probably two of these stack adjustments:
363 1) A negative one in the prologue, and
364 2) A positive one in the epilogue.
365 We are only interested in the first one. */
366
367 if (stack_adjust < 0)
368 {
369 framesize -= stack_adjust;
370 after_prologue = 0;
371 /* A frameless function may have no "mv fp, sp".
372 In that case, this is the end of the prologue. */
373 after_stack_adjust = current_pc + 2;
374 }
375 continue;
376 }
377 if (insn == 0x1d8f)
378 { /* mv fp, sp */
379 after_prologue = current_pc + 2;
380 break; /* end of stack adjustments */
381 }
382
383 /* Nop looks like a branch, continue explicitly. */
384 if (insn == 0x7000)
385 {
386 after_prologue = current_pc + 2;
387 continue; /* nop occurs between pushes. */
388 }
389 /* End of prolog if any of these are trap instructions. */
390 if ((insn & 0xfff0) == 0x10f0)
391 {
392 after_prologue = current_pc;
393 break;
394 }
395 /* End of prolog if any of these are branch instructions. */
396 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
397 {
398 after_prologue = current_pc;
399 continue;
400 }
401 /* Some of the branch instructions are mixed with other types. */
402 if (op1 == 0x1000)
403 {
404 int subop = insn & 0x0ff0;
405 if ((subop == 0x0ec0) || (subop == 0x0fc0))
406 {
407 after_prologue = current_pc;
408 continue; /* jmp , jl */
409 }
410 }
411 }
412
413 if (framelength)
414 *framelength = framesize;
415
416 if (current_pc >= scan_limit)
417 {
418 if (pl_endptr)
419 {
420 if (after_stack_adjust != 0)
421 /* We did not find a "mv fp,sp", but we DID find
422 a stack_adjust. Is it safe to use that as the
423 end of the prologue? I just don't know. */
424 {
425 *pl_endptr = after_stack_adjust;
426 }
427 else if (after_push != 0)
428 /* We did not find a "mv fp,sp", but we DID find
429 a push. Is it safe to use that as the
430 end of the prologue? I just don't know. */
431 {
432 *pl_endptr = after_push;
433 }
434 else
435 /* We reached the end of the loop without finding the end
436 of the prologue. No way to win -- we should report
437 failure. The way we do that is to return the original
438 start_pc. GDB will set a breakpoint at the start of
439 the function (etc.) */
440 *pl_endptr = start_pc;
441 }
442 return 0;
443 }
444
445 if (after_prologue == 0)
446 after_prologue = current_pc;
447
448 if (pl_endptr)
449 *pl_endptr = after_prologue;
450
451 return 0;
452 } /* decode_prologue */
453
454 /* Function: skip_prologue
455 Find end of function prologue. */
456
457 #define DEFAULT_SEARCH_LIMIT 128
458
459 static CORE_ADDR
460 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
461 {
462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
463 CORE_ADDR func_addr, func_end;
464 struct symtab_and_line sal;
465 LONGEST return_value;
466
467 /* See what the symbol table says. */
468
469 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
470 {
471 sal = find_pc_line (func_addr, 0);
472
473 if (sal.line != 0 && sal.end <= func_end)
474 {
475 func_end = sal.end;
476 }
477 else
478 /* Either there's no line info, or the line after the prologue is after
479 the end of the function. In this case, there probably isn't a
480 prologue. */
481 {
482 func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
483 }
484 }
485 else
486 func_end = pc + DEFAULT_SEARCH_LIMIT;
487
488 /* If pc's location is not readable, just quit. */
489 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
490 return pc;
491
492 /* Find the end of prologue. */
493 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
494 return pc;
495
496 return sal.end;
497 }
498
499 struct m32r_unwind_cache
500 {
501 /* The previous frame's inner most stack address. Used as this
502 frame ID's stack_addr. */
503 CORE_ADDR prev_sp;
504 /* The frame's base, optionally used by the high-level debug info. */
505 CORE_ADDR base;
506 int size;
507 /* How far the SP and r13 (FP) have been offset from the start of
508 the stack frame (as defined by the previous frame's stack
509 pointer). */
510 LONGEST sp_offset;
511 LONGEST r13_offset;
512 int uses_frame;
513 /* Table indicating the location of each and every register. */
514 struct trad_frame_saved_reg *saved_regs;
515 };
516
517 /* Put here the code to store, into fi->saved_regs, the addresses of
518 the saved registers of frame described by FRAME_INFO. This
519 includes special registers such as pc and fp saved in special ways
520 in the stack frame. sp is even more special: the address we return
521 for it IS the sp for the next frame. */
522
523 static struct m32r_unwind_cache *
524 m32r_frame_unwind_cache (struct frame_info *this_frame,
525 void **this_prologue_cache)
526 {
527 CORE_ADDR pc, scan_limit;
528 ULONGEST prev_sp;
529 ULONGEST this_base;
530 unsigned long op;
531 int i;
532 struct m32r_unwind_cache *info;
533
534
535 if ((*this_prologue_cache))
536 return (struct m32r_unwind_cache *) (*this_prologue_cache);
537
538 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
539 (*this_prologue_cache) = info;
540 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
541
542 info->size = 0;
543 info->sp_offset = 0;
544 info->uses_frame = 0;
545
546 scan_limit = get_frame_pc (this_frame);
547 for (pc = get_frame_func (this_frame);
548 pc > 0 && pc < scan_limit; pc += 2)
549 {
550 if ((pc & 2) == 0)
551 {
552 op = get_frame_memory_unsigned (this_frame, pc, 4);
553 if ((op & 0x80000000) == 0x80000000)
554 {
555 /* 32-bit instruction */
556 if ((op & 0xffff0000) == 0x8faf0000)
557 {
558 /* add3 sp,sp,xxxx */
559 short n = op & 0xffff;
560 info->sp_offset += n;
561 }
562 else if (((op >> 8) == 0xe4)
563 && get_frame_memory_unsigned (this_frame, pc + 2,
564 2) == 0x0f24)
565 {
566 /* ld24 r4, xxxxxx; sub sp, r4 */
567 unsigned long n = op & 0xffffff;
568 info->sp_offset += n;
569 pc += 2; /* skip sub instruction */
570 }
571
572 if (pc == scan_limit)
573 scan_limit += 2; /* extend the search */
574 pc += 2; /* skip the immediate data */
575 continue;
576 }
577 }
578
579 /* 16-bit instructions */
580 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
581 if ((op & 0xf0ff) == 0x207f)
582 {
583 /* st rn, @-sp */
584 int regno = ((op >> 8) & 0xf);
585 info->sp_offset -= 4;
586 info->saved_regs[regno].addr = info->sp_offset;
587 }
588 else if ((op & 0xff00) == 0x4f00)
589 {
590 /* addi sp, xx */
591 int n = (signed char) (op & 0xff);
592 info->sp_offset += n;
593 }
594 else if (op == 0x1d8f)
595 {
596 /* mv fp, sp */
597 info->uses_frame = 1;
598 info->r13_offset = info->sp_offset;
599 break; /* end of stack adjustments */
600 }
601 else if ((op & 0xfff0) == 0x10f0)
602 {
603 /* End of prologue if this is a trap instruction. */
604 break; /* End of stack adjustments. */
605 }
606 }
607
608 info->size = -info->sp_offset;
609
610 /* Compute the previous frame's stack pointer (which is also the
611 frame's ID's stack address), and this frame's base pointer. */
612 if (info->uses_frame)
613 {
614 /* The SP was moved to the FP. This indicates that a new frame
615 was created. Get THIS frame's FP value by unwinding it from
616 the next frame. */
617 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
618 /* The FP points at the last saved register. Adjust the FP back
619 to before the first saved register giving the SP. */
620 prev_sp = this_base + info->size;
621 }
622 else
623 {
624 /* Assume that the FP is this frame's SP but with that pushed
625 stack space added back. */
626 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
627 prev_sp = this_base + info->size;
628 }
629
630 /* Convert that SP/BASE into real addresses. */
631 info->prev_sp = prev_sp;
632 info->base = this_base;
633
634 /* Adjust all the saved registers so that they contain addresses and
635 not offsets. */
636 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
637 if (trad_frame_addr_p (info->saved_regs, i))
638 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
639
640 /* The call instruction moves the caller's PC in the callee's LR.
641 Since this is an unwind, do the reverse. Copy the location of LR
642 into PC (the address / regnum) so that a request for PC will be
643 converted into a request for the LR. */
644 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
645
646 /* The previous frame's SP needed to be computed. Save the computed
647 value. */
648 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
649
650 return info;
651 }
652
653 static CORE_ADDR
654 m32r_read_pc (struct regcache *regcache)
655 {
656 ULONGEST pc;
657 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
658 return pc;
659 }
660
661 static CORE_ADDR
662 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
663 {
664 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
665 }
666
667
668 static CORE_ADDR
669 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
670 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
671 struct value **args, CORE_ADDR sp, int struct_return,
672 CORE_ADDR struct_addr)
673 {
674 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
675 int stack_offset, stack_alloc;
676 int argreg = ARG1_REGNUM;
677 int argnum;
678 struct type *type;
679 enum type_code typecode;
680 CORE_ADDR regval;
681 gdb_byte *val;
682 gdb_byte valbuf[MAX_REGISTER_SIZE];
683 int len;
684
685 /* First force sp to a 4-byte alignment. */
686 sp = sp & ~3;
687
688 /* Set the return address. For the m32r, the return breakpoint is
689 always at BP_ADDR. */
690 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
691
692 /* If STRUCT_RETURN is true, then the struct return address (in
693 STRUCT_ADDR) will consume the first argument-passing register.
694 Both adjust the register count and store that value. */
695 if (struct_return)
696 {
697 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
698 argreg++;
699 }
700
701 /* Now make sure there's space on the stack. */
702 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
703 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
704 sp -= stack_alloc; /* Make room on stack for args. */
705
706 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
707 {
708 type = value_type (args[argnum]);
709 typecode = TYPE_CODE (type);
710 len = TYPE_LENGTH (type);
711
712 memset (valbuf, 0, sizeof (valbuf));
713
714 /* Passes structures that do not fit in 2 registers by reference. */
715 if (len > 8
716 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
717 {
718 store_unsigned_integer (valbuf, 4, byte_order,
719 value_address (args[argnum]));
720 typecode = TYPE_CODE_PTR;
721 len = 4;
722 val = valbuf;
723 }
724 else if (len < 4)
725 {
726 /* Value gets right-justified in the register or stack word. */
727 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
728 (gdb_byte *) value_contents (args[argnum]), len);
729 val = valbuf;
730 }
731 else
732 val = (gdb_byte *) value_contents (args[argnum]);
733
734 while (len > 0)
735 {
736 if (argreg > ARGN_REGNUM)
737 {
738 /* Must go on the stack. */
739 write_memory (sp + stack_offset, val, 4);
740 stack_offset += 4;
741 }
742 else if (argreg <= ARGN_REGNUM)
743 {
744 /* There's room in a register. */
745 regval =
746 extract_unsigned_integer (val,
747 register_size (gdbarch, argreg),
748 byte_order);
749 regcache_cooked_write_unsigned (regcache, argreg++, regval);
750 }
751
752 /* Store the value 4 bytes at a time. This means that things
753 larger than 4 bytes may go partly in registers and partly
754 on the stack. */
755 len -= register_size (gdbarch, argreg);
756 val += register_size (gdbarch, argreg);
757 }
758 }
759
760 /* Finally, update the SP register. */
761 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
762
763 return sp;
764 }
765
766
767 /* Given a return value in `regbuf' with a type `valtype',
768 extract and copy its value into `valbuf'. */
769
770 static void
771 m32r_extract_return_value (struct type *type, struct regcache *regcache,
772 gdb_byte *dst)
773 {
774 struct gdbarch *gdbarch = get_regcache_arch (regcache);
775 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
776 int len = TYPE_LENGTH (type);
777 ULONGEST tmp;
778
779 /* By using store_unsigned_integer we avoid having to do
780 anything special for small big-endian values. */
781 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
782 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
783
784 /* Ignore return values more than 8 bytes in size because the m32r
785 returns anything more than 8 bytes in the stack. */
786 if (len > 4)
787 {
788 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
789 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
790 }
791 }
792
793 static enum return_value_convention
794 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
795 struct type *valtype, struct regcache *regcache,
796 gdb_byte *readbuf, const gdb_byte *writebuf)
797 {
798 if (TYPE_LENGTH (valtype) > 8)
799 return RETURN_VALUE_STRUCT_CONVENTION;
800 else
801 {
802 if (readbuf != NULL)
803 m32r_extract_return_value (valtype, regcache, readbuf);
804 if (writebuf != NULL)
805 m32r_store_return_value (valtype, regcache, writebuf);
806 return RETURN_VALUE_REGISTER_CONVENTION;
807 }
808 }
809
810
811
812 static CORE_ADDR
813 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
814 {
815 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
816 }
817
818 /* Given a GDB frame, determine the address of the calling function's
819 frame. This will be used to create a new GDB frame struct. */
820
821 static void
822 m32r_frame_this_id (struct frame_info *this_frame,
823 void **this_prologue_cache, struct frame_id *this_id)
824 {
825 struct m32r_unwind_cache *info
826 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
827 CORE_ADDR base;
828 CORE_ADDR func;
829 struct bound_minimal_symbol msym_stack;
830 struct frame_id id;
831
832 /* The FUNC is easy. */
833 func = get_frame_func (this_frame);
834
835 /* Check if the stack is empty. */
836 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
837 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
838 return;
839
840 /* Hopefully the prologue analysis either correctly determined the
841 frame's base (which is the SP from the previous frame), or set
842 that base to "NULL". */
843 base = info->prev_sp;
844 if (base == 0)
845 return;
846
847 id = frame_id_build (base, func);
848 (*this_id) = id;
849 }
850
851 static struct value *
852 m32r_frame_prev_register (struct frame_info *this_frame,
853 void **this_prologue_cache, int regnum)
854 {
855 struct m32r_unwind_cache *info
856 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
857 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
858 }
859
860 static const struct frame_unwind m32r_frame_unwind = {
861 NORMAL_FRAME,
862 default_frame_unwind_stop_reason,
863 m32r_frame_this_id,
864 m32r_frame_prev_register,
865 NULL,
866 default_frame_sniffer
867 };
868
869 static CORE_ADDR
870 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
871 {
872 struct m32r_unwind_cache *info
873 = m32r_frame_unwind_cache (this_frame, this_cache);
874 return info->base;
875 }
876
877 static const struct frame_base m32r_frame_base = {
878 &m32r_frame_unwind,
879 m32r_frame_base_address,
880 m32r_frame_base_address,
881 m32r_frame_base_address
882 };
883
884 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
885 frame. The frame ID's base needs to match the TOS value saved by
886 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
887
888 static struct frame_id
889 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
890 {
891 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
892 return frame_id_build (sp, get_frame_pc (this_frame));
893 }
894
895
896 static gdbarch_init_ftype m32r_gdbarch_init;
897
898 static struct gdbarch *
899 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
900 {
901 struct gdbarch *gdbarch;
902 struct gdbarch_tdep *tdep;
903
904 /* If there is already a candidate, use it. */
905 arches = gdbarch_list_lookup_by_info (arches, &info);
906 if (arches != NULL)
907 return arches->gdbarch;
908
909 /* Allocate space for the new architecture. */
910 tdep = XNEW (struct gdbarch_tdep);
911 gdbarch = gdbarch_alloc (&info, tdep);
912
913 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
914 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
915
916 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
917 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
918 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
919 set_gdbarch_register_name (gdbarch, m32r_register_name);
920 set_gdbarch_register_type (gdbarch, m32r_register_type);
921
922 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
923 set_gdbarch_return_value (gdbarch, m32r_return_value);
924
925 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
926 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
927 SET_GDBARCH_BREAKPOINT_MANIPULATION (m32r);
928 set_gdbarch_memory_insert_breakpoint (gdbarch,
929 m32r_memory_insert_breakpoint);
930 set_gdbarch_memory_remove_breakpoint (gdbarch,
931 m32r_memory_remove_breakpoint);
932
933 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
934
935 frame_base_set_default (gdbarch, &m32r_frame_base);
936
937 /* Methods for saving / extracting a dummy frame's ID. The ID's
938 stack address must match the SP value returned by
939 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
940 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
941
942 /* Return the unwound PC value. */
943 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
944
945 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
946
947 /* Hook in ABI-specific overrides, if they have been registered. */
948 gdbarch_init_osabi (info, gdbarch);
949
950 /* Hook in the default unwinders. */
951 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
952
953 /* Support simple overlay manager. */
954 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
955
956 return gdbarch;
957 }
958
959 void
960 _initialize_m32r_tdep (void)
961 {
962 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
963 }
This page took 0.047692 seconds and 3 git commands to generate.