2003-08-10 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez, stcarrez@nerim.fr
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "dwarf2-frame.h"
27 #include "trad-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdb_string.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41
42 #include "target.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
45 #include "elf-bfd.h"
46
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53 This field is already being used to store the symbol size, so the
54 assumption is that the symbol size cannot exceed 2^30.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol.
60 MSYMBOL_SIZE Returns the size of the minimal symbol,
61 i.e. the "info" field with the "special" bit
62 masked out. */
63
64 #define MSYMBOL_SET_RTC(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x80000000)
67
68 #define MSYMBOL_SET_RTI(msym) \
69 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
70 | 0x40000000)
71
72 #define MSYMBOL_IS_RTC(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
74
75 #define MSYMBOL_IS_RTI(msym) \
76 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
77
78 #define MSYMBOL_SIZE(msym) \
79 ((long) MSYMBOL_INFO (msym) & 0x3fffffff)
80
81 enum insn_return_kind {
82 RETURN_RTS,
83 RETURN_RTC,
84 RETURN_RTI
85 };
86
87
88 /* Register numbers of various important registers.
89 Note that some of these values are "real" register numbers,
90 and correspond to the general registers of the machine,
91 and some are "phony" register numbers which are too large
92 to be actual register numbers as far as the user is concerned
93 but do serve to get the desired values when passed to read_register. */
94
95 #define HARD_X_REGNUM 0
96 #define HARD_D_REGNUM 1
97 #define HARD_Y_REGNUM 2
98 #define HARD_SP_REGNUM 3
99 #define HARD_PC_REGNUM 4
100
101 #define HARD_A_REGNUM 5
102 #define HARD_B_REGNUM 6
103 #define HARD_CCR_REGNUM 7
104
105 /* 68HC12 page number register.
106 Note: to keep a compatibility with gcc register naming, we must
107 not have to rename FP and other soft registers. The page register
108 is a real hard register and must therefore be counted by NUM_REGS.
109 For this it has the same number as Z register (which is not used). */
110 #define HARD_PAGE_REGNUM 8
111 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
112
113 /* Z is replaced by X or Y by gcc during machine reorg.
114 ??? There is no way to get it and even know whether
115 it's in X or Y or in ZS. */
116 #define SOFT_Z_REGNUM 8
117
118 /* Soft registers. These registers are special. There are treated
119 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
120 They are physically located in memory. */
121 #define SOFT_FP_REGNUM 9
122 #define SOFT_TMP_REGNUM 10
123 #define SOFT_ZS_REGNUM 11
124 #define SOFT_XY_REGNUM 12
125 #define SOFT_UNUSED_REGNUM 13
126 #define SOFT_D1_REGNUM 14
127 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
128 #define M68HC11_MAX_SOFT_REGS 32
129
130 #define M68HC11_NUM_REGS (8)
131 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
132 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
133
134 #define M68HC11_REG_SIZE (2)
135
136 #define M68HC12_NUM_REGS (9)
137 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
138 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
139
140 struct insn_sequence;
141 struct gdbarch_tdep
142 {
143 /* Stack pointer correction value. For 68hc11, the stack pointer points
144 to the next push location. An offset of 1 must be applied to obtain
145 the address where the last value is saved. For 68hc12, the stack
146 pointer points to the last value pushed. No offset is necessary. */
147 int stack_correction;
148
149 /* Description of instructions in the prologue. */
150 struct insn_sequence *prologue;
151
152 /* True if the page memory bank register is available
153 and must be used. */
154 int use_page_register;
155
156 /* ELF flags for ABI. */
157 int elf_flags;
158 };
159
160 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
161 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
162 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
163
164 struct m68hc11_unwind_cache
165 {
166 /* The previous frame's inner most stack address. Used as this
167 frame ID's stack_addr. */
168 CORE_ADDR prev_sp;
169 /* The frame's base, optionally used by the high-level debug info. */
170 CORE_ADDR base;
171 CORE_ADDR pc;
172 int size;
173 int prologue_type;
174 CORE_ADDR return_pc;
175 CORE_ADDR sp_offset;
176 int frameless;
177 enum insn_return_kind return_kind;
178
179 /* Table indicating the location of each and every register. */
180 struct trad_frame_saved_reg *saved_regs;
181 };
182
183 /* Table of registers for 68HC11. This includes the hard registers
184 and the soft registers used by GCC. */
185 static char *
186 m68hc11_register_names[] =
187 {
188 "x", "d", "y", "sp", "pc", "a", "b",
189 "ccr", "page", "frame","tmp", "zs", "xy", 0,
190 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
191 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
192 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
193 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
194 "d29", "d30", "d31", "d32"
195 };
196
197 struct m68hc11_soft_reg
198 {
199 const char *name;
200 CORE_ADDR addr;
201 };
202
203 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
204
205 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
206
207 static int soft_min_addr;
208 static int soft_max_addr;
209 static int soft_reg_initialized = 0;
210
211 /* Look in the symbol table for the address of a pseudo register
212 in memory. If we don't find it, pretend the register is not used
213 and not available. */
214 static void
215 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
216 {
217 struct minimal_symbol *msymbol;
218
219 msymbol = lookup_minimal_symbol (name, NULL, NULL);
220 if (msymbol)
221 {
222 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
223 reg->name = xstrdup (name);
224
225 /* Keep track of the address range for soft registers. */
226 if (reg->addr < (CORE_ADDR) soft_min_addr)
227 soft_min_addr = reg->addr;
228 if (reg->addr > (CORE_ADDR) soft_max_addr)
229 soft_max_addr = reg->addr;
230 }
231 else
232 {
233 reg->name = 0;
234 reg->addr = 0;
235 }
236 }
237
238 /* Initialize the table of soft register addresses according
239 to the symbol table. */
240 static void
241 m68hc11_initialize_register_info (void)
242 {
243 int i;
244
245 if (soft_reg_initialized)
246 return;
247
248 soft_min_addr = INT_MAX;
249 soft_max_addr = 0;
250 for (i = 0; i < M68HC11_ALL_REGS; i++)
251 {
252 soft_regs[i].name = 0;
253 }
254
255 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
256 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
257 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
258 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
259 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
260
261 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
262 {
263 char buf[10];
264
265 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
266 m68hc11_get_register_info (&soft_regs[i], buf);
267 }
268
269 if (soft_regs[SOFT_FP_REGNUM].name == 0)
270 {
271 warning ("No frame soft register found in the symbol table.\n");
272 warning ("Stack backtrace will not work.\n");
273 }
274 soft_reg_initialized = 1;
275 }
276
277 /* Given an address in memory, return the soft register number if
278 that address corresponds to a soft register. Returns -1 if not. */
279 static int
280 m68hc11_which_soft_register (CORE_ADDR addr)
281 {
282 int i;
283
284 if (addr < soft_min_addr || addr > soft_max_addr)
285 return -1;
286
287 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
288 {
289 if (soft_regs[i].name && soft_regs[i].addr == addr)
290 return i;
291 }
292 return -1;
293 }
294
295 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
296 pseudo registers. They are located in memory. Translate the register
297 fetch into a memory read. */
298 static void
299 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
300 struct regcache *regcache,
301 int regno, void *buf)
302 {
303 /* The PC is a pseudo reg only for 68HC12 with the memory bank
304 addressing mode. */
305 if (regno == M68HC12_HARD_PC_REGNUM)
306 {
307 ULONGEST pc;
308 const int regsize = TYPE_LENGTH (builtin_type_uint32);
309
310 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
311 if (pc >= 0x8000 && pc < 0xc000)
312 {
313 ULONGEST page;
314
315 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
316 pc -= 0x8000;
317 pc += (page << 14);
318 pc += 0x1000000;
319 }
320 store_unsigned_integer (buf, regsize, pc);
321 return;
322 }
323
324 m68hc11_initialize_register_info ();
325
326 /* Fetch a soft register: translate into a memory read. */
327 if (soft_regs[regno].name)
328 {
329 target_read_memory (soft_regs[regno].addr, buf, 2);
330 }
331 else
332 {
333 memset (buf, 0, 2);
334 }
335 }
336
337 /* Store a pseudo register. Translate the register store
338 into a memory write. */
339 static void
340 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
341 struct regcache *regcache,
342 int regno, const void *buf)
343 {
344 /* The PC is a pseudo reg only for 68HC12 with the memory bank
345 addressing mode. */
346 if (regno == M68HC12_HARD_PC_REGNUM)
347 {
348 const int regsize = TYPE_LENGTH (builtin_type_uint32);
349 char *tmp = alloca (regsize);
350 CORE_ADDR pc;
351
352 memcpy (tmp, buf, regsize);
353 pc = extract_unsigned_integer (tmp, regsize);
354 if (pc >= 0x1000000)
355 {
356 pc -= 0x1000000;
357 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
358 (pc >> 14) & 0x0ff);
359 pc &= 0x03fff;
360 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
361 pc + 0x8000);
362 }
363 else
364 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
365 return;
366 }
367
368 m68hc11_initialize_register_info ();
369
370 /* Store a soft register: translate into a memory write. */
371 if (soft_regs[regno].name)
372 {
373 const int regsize = 2;
374 char *tmp = alloca (regsize);
375 memcpy (tmp, buf, regsize);
376 target_write_memory (soft_regs[regno].addr, tmp, regsize);
377 }
378 }
379
380 static const char *
381 m68hc11_register_name (int reg_nr)
382 {
383 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
384 return "pc";
385 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
386 return "ppc";
387
388 if (reg_nr < 0)
389 return NULL;
390 if (reg_nr >= M68HC11_ALL_REGS)
391 return NULL;
392
393 /* If we don't know the address of a soft register, pretend it
394 does not exist. */
395 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
396 return NULL;
397 return m68hc11_register_names[reg_nr];
398 }
399
400 static const unsigned char *
401 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
402 {
403 static unsigned char breakpoint[] = {0x0};
404
405 *lenptr = sizeof (breakpoint);
406 return breakpoint;
407 }
408
409 \f
410 /* 68HC11 & 68HC12 prologue analysis.
411
412 */
413 #define MAX_CODES 12
414
415 /* 68HC11 opcodes. */
416 #undef M6811_OP_PAGE2
417 #define M6811_OP_PAGE2 (0x18)
418 #define M6811_OP_LDX (0xde)
419 #define M6811_OP_LDX_EXT (0xfe)
420 #define M6811_OP_PSHX (0x3c)
421 #define M6811_OP_STS (0x9f)
422 #define M6811_OP_STS_EXT (0xbf)
423 #define M6811_OP_TSX (0x30)
424 #define M6811_OP_XGDX (0x8f)
425 #define M6811_OP_ADDD (0xc3)
426 #define M6811_OP_TXS (0x35)
427 #define M6811_OP_DES (0x34)
428
429 /* 68HC12 opcodes. */
430 #define M6812_OP_PAGE2 (0x18)
431 #define M6812_OP_MOVW (0x01)
432 #define M6812_PB_PSHW (0xae)
433 #define M6812_OP_STS (0x5f)
434 #define M6812_OP_STS_EXT (0x7f)
435 #define M6812_OP_LEAS (0x1b)
436 #define M6812_OP_PSHX (0x34)
437 #define M6812_OP_PSHY (0x35)
438
439 /* Operand extraction. */
440 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
441 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
442 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
443 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
444
445 /* Identification of the sequence. */
446 enum m6811_seq_type
447 {
448 P_LAST = 0,
449 P_SAVE_REG, /* Save a register on the stack. */
450 P_SET_FRAME, /* Setup the frame pointer. */
451 P_LOCAL_1, /* Allocate 1 byte for locals. */
452 P_LOCAL_2, /* Allocate 2 bytes for locals. */
453 P_LOCAL_N /* Allocate N bytes for locals. */
454 };
455
456 struct insn_sequence {
457 enum m6811_seq_type type;
458 unsigned length;
459 unsigned short code[MAX_CODES];
460 };
461
462 /* Sequence of instructions in the 68HC11 function prologue. */
463 static struct insn_sequence m6811_prologue[] = {
464 /* Sequences to save a soft-register. */
465 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
466 M6811_OP_PSHX } },
467 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
468 M6811_OP_PAGE2, M6811_OP_PSHX } },
469 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
470 M6811_OP_PSHX } },
471 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
472 M6811_OP_PAGE2, M6811_OP_PSHX } },
473
474 /* Sequences to allocate local variables. */
475 { P_LOCAL_N, 7, { M6811_OP_TSX,
476 M6811_OP_XGDX,
477 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
478 M6811_OP_XGDX,
479 M6811_OP_TXS } },
480 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
481 M6811_OP_PAGE2, M6811_OP_XGDX,
482 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
483 M6811_OP_PAGE2, M6811_OP_XGDX,
484 M6811_OP_PAGE2, M6811_OP_TXS } },
485 { P_LOCAL_1, 1, { M6811_OP_DES } },
486 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
487 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
488
489 /* Initialize the frame pointer. */
490 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
491 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
492 { P_LAST, 0, { 0 } }
493 };
494
495
496 /* Sequence of instructions in the 68HC12 function prologue. */
497 static struct insn_sequence m6812_prologue[] = {
498 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
499 OP_IMM_HIGH, OP_IMM_LOW } },
500 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
501 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
502 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
503 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
504 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
505 { P_LAST, 0 }
506 };
507
508
509 /* Analyze the sequence of instructions starting at the given address.
510 Returns a pointer to the sequence when it is recognized and
511 the optional value (constant/address) associated with it. */
512 static struct insn_sequence *
513 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
514 CORE_ADDR *val)
515 {
516 unsigned char buffer[MAX_CODES];
517 unsigned bufsize;
518 unsigned j;
519 CORE_ADDR cur_val;
520 short v = 0;
521
522 bufsize = 0;
523 for (; seq->type != P_LAST; seq++)
524 {
525 cur_val = 0;
526 for (j = 0; j < seq->length; j++)
527 {
528 if (bufsize < j + 1)
529 {
530 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
531 1);
532 bufsize++;
533 }
534 /* Continue while we match the opcode. */
535 if (seq->code[j] == buffer[j])
536 continue;
537
538 if ((seq->code[j] & 0xf00) == 0)
539 break;
540
541 /* Extract a sequence parameter (address or constant). */
542 switch (seq->code[j])
543 {
544 case OP_DIRECT:
545 cur_val = (CORE_ADDR) buffer[j];
546 break;
547
548 case OP_IMM_HIGH:
549 cur_val = cur_val & 0x0ff;
550 cur_val |= (buffer[j] << 8);
551 break;
552
553 case OP_IMM_LOW:
554 cur_val &= 0x0ff00;
555 cur_val |= buffer[j];
556 break;
557
558 case OP_PBYTE:
559 if ((buffer[j] & 0xE0) == 0x80)
560 {
561 v = buffer[j] & 0x1f;
562 if (v & 0x10)
563 v |= 0xfff0;
564 }
565 else if ((buffer[j] & 0xfe) == 0xf0)
566 {
567 v = read_memory_unsigned_integer (pc + j + 1, 1);
568 if (buffer[j] & 1)
569 v |= 0xff00;
570 }
571 else if (buffer[j] == 0xf2)
572 {
573 v = read_memory_unsigned_integer (pc + j + 1, 2);
574 }
575 cur_val = v;
576 break;
577 }
578 }
579
580 /* We have a full match. */
581 if (j == seq->length)
582 {
583 *val = cur_val;
584 return seq;
585 }
586 }
587 return 0;
588 }
589
590 /* Return the instruction that the function at the PC is using. */
591 static enum insn_return_kind
592 m68hc11_get_return_insn (CORE_ADDR pc)
593 {
594 struct minimal_symbol *sym;
595
596 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
597 function is stored by elfread.c in the high bit of the info field.
598 Use this to decide which instruction the function uses to return. */
599 sym = lookup_minimal_symbol_by_pc (pc);
600 if (sym == 0)
601 return RETURN_RTS;
602
603 if (MSYMBOL_IS_RTC (sym))
604 return RETURN_RTC;
605 else if (MSYMBOL_IS_RTI (sym))
606 return RETURN_RTI;
607 else
608 return RETURN_RTS;
609 }
610
611 /* Analyze the function prologue to find some information
612 about the function:
613 - the PC of the first line (for m68hc11_skip_prologue)
614 - the offset of the previous frame saved address (from current frame)
615 - the soft registers which are pushed. */
616 static CORE_ADDR
617 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
618 struct m68hc11_unwind_cache *info)
619 {
620 LONGEST save_addr;
621 CORE_ADDR func_end;
622 int size;
623 int found_frame_point;
624 int saved_reg;
625 int done = 0;
626 struct insn_sequence *seq_table;
627
628 info->size = 0;
629 info->sp_offset = 0;
630 if (pc >= current_pc)
631 return current_pc;
632
633 size = 0;
634
635 m68hc11_initialize_register_info ();
636 if (pc == 0)
637 {
638 info->size = 0;
639 return pc;
640 }
641
642 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
643
644 /* The 68hc11 stack is as follows:
645
646
647 | |
648 +-----------+
649 | |
650 | args |
651 | |
652 +-----------+
653 | PC-return |
654 +-----------+
655 | Old frame |
656 +-----------+
657 | |
658 | Locals |
659 | |
660 +-----------+ <--- current frame
661 | |
662
663 With most processors (like 68K) the previous frame can be computed
664 easily because it is always at a fixed offset (see link/unlink).
665 That is, locals are accessed with negative offsets, arguments are
666 accessed with positive ones. Since 68hc11 only supports offsets
667 in the range [0..255], the frame is defined at the bottom of
668 locals (see picture).
669
670 The purpose of the analysis made here is to find out the size
671 of locals in this function. An alternative to this is to use
672 DWARF2 info. This would be better but I don't know how to
673 access dwarf2 debug from this function.
674
675 Walk from the function entry point to the point where we save
676 the frame. While walking instructions, compute the size of bytes
677 which are pushed. This gives us the index to access the previous
678 frame.
679
680 We limit the search to 128 bytes so that the algorithm is bounded
681 in case of random and wrong code. We also stop and abort if
682 we find an instruction which is not supposed to appear in the
683 prologue (as generated by gcc 2.95, 2.96).
684 */
685 func_end = pc + 128;
686 found_frame_point = 0;
687 info->size = 0;
688 save_addr = 0;
689 while (!done && pc + 2 < func_end)
690 {
691 struct insn_sequence *seq;
692 CORE_ADDR val;
693
694 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
695 if (seq == 0)
696 break;
697
698 /* If we are within the instruction group, we can't advance the
699 pc nor the stack offset. Otherwise the caller's stack computed
700 from the current stack can be wrong. */
701 if (pc + seq->length > current_pc)
702 break;
703
704 pc = pc + seq->length;
705 if (seq->type == P_SAVE_REG)
706 {
707 if (found_frame_point)
708 {
709 saved_reg = m68hc11_which_soft_register (val);
710 if (saved_reg < 0)
711 break;
712
713 save_addr -= 2;
714 info->saved_regs[saved_reg].addr = save_addr;
715 }
716 else
717 {
718 size += 2;
719 }
720 }
721 else if (seq->type == P_SET_FRAME)
722 {
723 found_frame_point = 1;
724 info->size = size;
725 }
726 else if (seq->type == P_LOCAL_1)
727 {
728 size += 1;
729 }
730 else if (seq->type == P_LOCAL_2)
731 {
732 size += 2;
733 }
734 else if (seq->type == P_LOCAL_N)
735 {
736 /* Stack pointer is decremented for the allocation. */
737 if (val & 0x8000)
738 size -= (int) (val) | 0xffff0000;
739 else
740 size -= val;
741 }
742 }
743 if (found_frame_point == 0)
744 info->sp_offset = size;
745 else
746 info->sp_offset = -1;
747 return pc;
748 }
749
750 static CORE_ADDR
751 m68hc11_skip_prologue (CORE_ADDR pc)
752 {
753 CORE_ADDR func_addr, func_end;
754 struct symtab_and_line sal;
755 struct m68hc11_unwind_cache tmp_cache = { 0 };
756
757 /* If we have line debugging information, then the end of the
758 prologue should be the first assembly instruction of the
759 first source line. */
760 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
761 {
762 sal = find_pc_line (func_addr, 0);
763 if (sal.end && sal.end < func_end)
764 return sal.end;
765 }
766
767 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
768 return pc;
769 }
770
771 static CORE_ADDR
772 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
773 {
774 ULONGEST pc;
775
776 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
777 &pc);
778 return pc;
779 }
780
781 /* Put here the code to store, into fi->saved_regs, the addresses of
782 the saved registers of frame described by FRAME_INFO. This
783 includes special registers such as pc and fp saved in special ways
784 in the stack frame. sp is even more special: the address we return
785 for it IS the sp for the next frame. */
786
787 struct m68hc11_unwind_cache *
788 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
789 void **this_prologue_cache)
790 {
791 ULONGEST prev_sp;
792 ULONGEST this_base;
793 struct m68hc11_unwind_cache *info;
794 CORE_ADDR current_pc;
795 int i;
796
797 if ((*this_prologue_cache))
798 return (*this_prologue_cache);
799
800 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
801 (*this_prologue_cache) = info;
802 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
803
804 info->pc = frame_func_unwind (next_frame);
805
806 info->size = 0;
807 info->return_kind = m68hc11_get_return_insn (info->pc);
808
809 /* The SP was moved to the FP. This indicates that a new frame
810 was created. Get THIS frame's FP value by unwinding it from
811 the next frame. */
812 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
813 if (this_base == 0)
814 {
815 info->base = 0;
816 return info;
817 }
818
819 current_pc = frame_pc_unwind (next_frame);
820 if (info->pc != 0)
821 m68hc11_scan_prologue (info->pc, current_pc, info);
822
823 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
824
825 if (info->sp_offset != (CORE_ADDR) -1)
826 {
827 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
828 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
829 prev_sp = this_base + info->sp_offset + 2;
830 this_base += STACK_CORRECTION;
831 }
832 else
833 {
834 /* The FP points at the last saved register. Adjust the FP back
835 to before the first saved register giving the SP. */
836 prev_sp = this_base + info->size + 2;
837
838 this_base += STACK_CORRECTION;
839 if (soft_regs[SOFT_FP_REGNUM].name)
840 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
841 }
842
843 if (info->return_kind == RETURN_RTC)
844 {
845 prev_sp += 1;
846 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
847 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
848 }
849 else if (info->return_kind == RETURN_RTI)
850 {
851 prev_sp += 7;
852 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
853 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
854 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
855 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
856 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
857 }
858
859 /* Add 1 here to adjust for the post-decrement nature of the push
860 instruction.*/
861 info->prev_sp = prev_sp;
862
863 info->base = this_base;
864
865 /* Adjust all the saved registers so that they contain addresses and not
866 offsets. */
867 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
868 if (trad_frame_addr_p (info->saved_regs, i))
869 {
870 info->saved_regs[i].addr += this_base;
871 }
872
873 /* The previous frame's SP needed to be computed. Save the computed
874 value. */
875 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
876
877 return info;
878 }
879
880 /* Given a GDB frame, determine the address of the calling function's
881 frame. This will be used to create a new GDB frame struct. */
882
883 static void
884 m68hc11_frame_this_id (struct frame_info *next_frame,
885 void **this_prologue_cache,
886 struct frame_id *this_id)
887 {
888 struct m68hc11_unwind_cache *info
889 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
890 CORE_ADDR base;
891 CORE_ADDR func;
892 struct frame_id id;
893
894 /* The FUNC is easy. */
895 func = frame_func_unwind (next_frame);
896
897 /* This is meant to halt the backtrace at "_start". Make sure we
898 don't halt it at a generic dummy frame. */
899 if (inside_entry_file (func))
900 return;
901
902 /* Hopefully the prologue analysis either correctly determined the
903 frame's base (which is the SP from the previous frame), or set
904 that base to "NULL". */
905 base = info->prev_sp;
906 if (base == 0)
907 return;
908
909 id = frame_id_build (base, func);
910 #if 0
911 /* Check that we're not going round in circles with the same frame
912 ID (but avoid applying the test to sentinel frames which do go
913 round in circles). Can't use frame_id_eq() as that doesn't yet
914 compare the frame's PC value. */
915 if (frame_relative_level (next_frame) >= 0
916 && get_frame_type (next_frame) != DUMMY_FRAME
917 && frame_id_eq (get_frame_id (next_frame), id))
918 return;
919 #endif
920 (*this_id) = id;
921 }
922
923 static void
924 m68hc11_frame_prev_register (struct frame_info *next_frame,
925 void **this_prologue_cache,
926 int regnum, int *optimizedp,
927 enum lval_type *lvalp, CORE_ADDR *addrp,
928 int *realnump, void *bufferp)
929 {
930 struct m68hc11_unwind_cache *info
931 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
932
933 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
934 optimizedp, lvalp, addrp, realnump, bufferp);
935
936 if (regnum == HARD_PC_REGNUM)
937 {
938 /* Take into account the 68HC12 specific call (PC + page). */
939 if (info->return_kind == RETURN_RTC
940 && *addrp >= 0x08000 && *addrp < 0x0c000
941 && USE_PAGE_REGISTER)
942 {
943 int page_optimized;
944
945 CORE_ADDR page;
946
947 trad_frame_prev_register (next_frame, info->saved_regs,
948 HARD_PAGE_REGNUM, &page_optimized,
949 0, &page, 0, 0);
950 *addrp -= 0x08000;
951 *addrp += ((page & 0x0ff) << 14);
952 *addrp += 0x1000000;
953 }
954 }
955 }
956
957 static const struct frame_unwind m68hc11_frame_unwind = {
958 NORMAL_FRAME,
959 m68hc11_frame_this_id,
960 m68hc11_frame_prev_register
961 };
962
963 const struct frame_unwind *
964 m68hc11_frame_p (CORE_ADDR pc)
965 {
966 return &m68hc11_frame_unwind;
967 }
968
969 static CORE_ADDR
970 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
971 {
972 struct m68hc11_unwind_cache *info
973 = m68hc11_frame_unwind_cache (next_frame, this_cache);
974
975 return info->base;
976 }
977
978 static CORE_ADDR
979 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
980 {
981 CORE_ADDR addr;
982 struct m68hc11_unwind_cache *info
983 = m68hc11_frame_unwind_cache (next_frame, this_cache);
984
985 addr = info->base + info->size;
986 if (info->return_kind == RETURN_RTC)
987 addr += 1;
988 else if (info->return_kind == RETURN_RTI)
989 addr += 7;
990
991 return addr;
992 }
993
994 static const struct frame_base m68hc11_frame_base = {
995 &m68hc11_frame_unwind,
996 m68hc11_frame_base_address,
997 m68hc11_frame_base_address,
998 m68hc11_frame_args_address
999 };
1000
1001 static CORE_ADDR
1002 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1003 {
1004 ULONGEST sp;
1005 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
1006 return sp;
1007 }
1008
1009 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1010 dummy frame. The frame ID's base needs to match the TOS value
1011 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1012 breakpoint. */
1013
1014 static struct frame_id
1015 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1016 {
1017 ULONGEST tos;
1018 CORE_ADDR pc = frame_pc_unwind (next_frame);
1019
1020 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1021 tos += 2;
1022 return frame_id_build (tos, pc);
1023 }
1024
1025 \f
1026 /* Get and print the register from the given frame. */
1027 static void
1028 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1029 struct frame_info *frame, int regno)
1030 {
1031 LONGEST rval;
1032
1033 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1034 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1035 frame_read_unsigned_register (frame, regno, &rval);
1036 else
1037 frame_read_signed_register (frame, regno, &rval);
1038
1039 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1040 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1041 {
1042 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1043 if (regno != HARD_CCR_REGNUM)
1044 print_longest (file, 'd', 1, rval);
1045 }
1046 else
1047 {
1048 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1049 {
1050 ULONGEST page;
1051
1052 frame_read_unsigned_register (frame, HARD_PAGE_REGNUM, &page);
1053 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1054 (unsigned) rval);
1055 }
1056 else
1057 {
1058 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1059 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1060 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1061 print_longest (file, 'd', 1, rval);
1062 }
1063 }
1064
1065 if (regno == HARD_CCR_REGNUM)
1066 {
1067 /* CCR register */
1068 int C, Z, N, V;
1069 unsigned char l = rval & 0xff;
1070
1071 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1072 l & M6811_S_BIT ? 'S' : '-',
1073 l & M6811_X_BIT ? 'X' : '-',
1074 l & M6811_H_BIT ? 'H' : '-',
1075 l & M6811_I_BIT ? 'I' : '-',
1076 l & M6811_N_BIT ? 'N' : '-',
1077 l & M6811_Z_BIT ? 'Z' : '-',
1078 l & M6811_V_BIT ? 'V' : '-',
1079 l & M6811_C_BIT ? 'C' : '-');
1080 N = (l & M6811_N_BIT) != 0;
1081 Z = (l & M6811_Z_BIT) != 0;
1082 V = (l & M6811_V_BIT) != 0;
1083 C = (l & M6811_C_BIT) != 0;
1084
1085 /* Print flags following the h8300 */
1086 if ((C | Z) == 0)
1087 fprintf_filtered (file, "u> ");
1088 else if ((C | Z) == 1)
1089 fprintf_filtered (file, "u<= ");
1090 else if (C == 0)
1091 fprintf_filtered (file, "u< ");
1092
1093 if (Z == 0)
1094 fprintf_filtered (file, "!= ");
1095 else
1096 fprintf_filtered (file, "== ");
1097
1098 if ((N ^ V) == 0)
1099 fprintf_filtered (file, ">= ");
1100 else
1101 fprintf_filtered (file, "< ");
1102
1103 if ((Z | (N ^ V)) == 0)
1104 fprintf_filtered (file, "> ");
1105 else
1106 fprintf_filtered (file, "<= ");
1107 }
1108 }
1109
1110 /* Same as 'info reg' but prints the registers in a different way. */
1111 static void
1112 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1113 struct frame_info *frame, int regno, int cpregs)
1114 {
1115 if (regno >= 0)
1116 {
1117 const char *name = gdbarch_register_name (gdbarch, regno);
1118
1119 if (!name || !*name)
1120 return;
1121
1122 fprintf_filtered (file, "%-10s ", name);
1123 m68hc11_print_register (gdbarch, file, frame, regno);
1124 fprintf_filtered (file, "\n");
1125 }
1126 else
1127 {
1128 int i, nr;
1129
1130 fprintf_filtered (file, "PC=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1132
1133 fprintf_filtered (file, " SP=");
1134 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1135
1136 fprintf_filtered (file, " FP=");
1137 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1138
1139 fprintf_filtered (file, "\nCCR=");
1140 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1141
1142 fprintf_filtered (file, "\nD=");
1143 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1144
1145 fprintf_filtered (file, " X=");
1146 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1147
1148 fprintf_filtered (file, " Y=");
1149 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1150
1151 if (gdbarch_tdep (gdbarch)->use_page_register)
1152 {
1153 fprintf_filtered (file, "\nPage=");
1154 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1155 }
1156 fprintf_filtered (file, "\n");
1157
1158 nr = 0;
1159 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1160 {
1161 /* Skip registers which are not defined in the symbol table. */
1162 if (soft_regs[i].name == 0)
1163 continue;
1164
1165 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1166 m68hc11_print_register (gdbarch, file, frame, i);
1167 nr++;
1168 if ((nr % 8) == 7)
1169 fprintf_filtered (file, "\n");
1170 else
1171 fprintf_filtered (file, " ");
1172 }
1173 if (nr && (nr % 8) != 7)
1174 fprintf_filtered (file, "\n");
1175 }
1176 }
1177
1178 /* Same as 'info reg' but prints the registers in a different way. */
1179 static void
1180 show_regs (char *args, int from_tty)
1181 {
1182 m68hc11_print_registers_info (current_gdbarch, gdb_stdout,
1183 get_current_frame (), -1, 1);
1184 }
1185
1186 static CORE_ADDR
1187 m68hc11_stack_align (CORE_ADDR addr)
1188 {
1189 return ((addr + 1) & -2);
1190 }
1191
1192 static CORE_ADDR
1193 m68hc11_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1194 struct regcache *regcache, CORE_ADDR bp_addr,
1195 int nargs, struct value **args, CORE_ADDR sp,
1196 int struct_return, CORE_ADDR struct_addr)
1197 {
1198 int argnum;
1199 int first_stack_argnum;
1200 struct type *type;
1201 char *val;
1202 int len;
1203 char buf[2];
1204
1205 first_stack_argnum = 0;
1206 if (struct_return)
1207 {
1208 /* The struct is allocated on the stack and gdb used the stack
1209 pointer for the address of that struct. We must apply the
1210 stack offset on the address. */
1211 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
1212 struct_addr + STACK_CORRECTION);
1213 }
1214 else if (nargs > 0)
1215 {
1216 type = VALUE_TYPE (args[0]);
1217 len = TYPE_LENGTH (type);
1218
1219 /* First argument is passed in D and X registers. */
1220 if (len <= 4)
1221 {
1222 ULONGEST v;
1223
1224 v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1225 first_stack_argnum = 1;
1226
1227 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1228 if (len > 2)
1229 {
1230 v >>= 16;
1231 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1232 }
1233 }
1234 }
1235
1236 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1237 {
1238 type = VALUE_TYPE (args[argnum]);
1239 len = TYPE_LENGTH (type);
1240
1241 if (len & 1)
1242 {
1243 static char zero = 0;
1244
1245 sp--;
1246 write_memory (sp, &zero, 1);
1247 }
1248 val = (char*) VALUE_CONTENTS (args[argnum]);
1249 sp -= len;
1250 write_memory (sp, val, len);
1251 }
1252
1253 /* Store return address. */
1254 sp -= 2;
1255 store_unsigned_integer (buf, 2, bp_addr);
1256 write_memory (sp, buf, 2);
1257
1258 /* Finally, update the stack pointer... */
1259 sp -= STACK_CORRECTION;
1260 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1261
1262 /* ...and fake a frame pointer. */
1263 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1264
1265 /* DWARF2/GCC uses the stack address *before* the function call as a
1266 frame's CFA. */
1267 return sp + 2;
1268 }
1269
1270
1271 /* Return the GDB type object for the "standard" data type
1272 of data in register N. */
1273
1274 static struct type *
1275 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1276 {
1277 switch (reg_nr)
1278 {
1279 case HARD_PAGE_REGNUM:
1280 case HARD_A_REGNUM:
1281 case HARD_B_REGNUM:
1282 case HARD_CCR_REGNUM:
1283 return builtin_type_uint8;
1284
1285 case M68HC12_HARD_PC_REGNUM:
1286 return builtin_type_uint32;
1287
1288 default:
1289 return builtin_type_uint16;
1290 }
1291 }
1292
1293 static void
1294 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1295 const void *valbuf)
1296 {
1297 int len;
1298
1299 len = TYPE_LENGTH (type);
1300
1301 /* First argument is passed in D and X registers. */
1302 if (len <= 2)
1303 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1304 else if (len <= 4)
1305 {
1306 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1307 len - 2, valbuf);
1308 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1309 }
1310 else
1311 error ("return of value > 4 is not supported.");
1312 }
1313
1314
1315 /* Given a return value in `regcache' with a type `type',
1316 extract and copy its value into `valbuf'. */
1317
1318 static void
1319 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1320 void *valbuf)
1321 {
1322 int len = TYPE_LENGTH (type);
1323 char buf[M68HC11_REG_SIZE];
1324
1325 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1326 switch (len)
1327 {
1328 case 1:
1329 memcpy (valbuf, buf + 1, 1);
1330 break;
1331
1332 case 2:
1333 memcpy (valbuf, buf, 2);
1334 break;
1335
1336 case 3:
1337 memcpy ((char*) valbuf + 1, buf, 2);
1338 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1339 memcpy (valbuf, buf + 1, 1);
1340 break;
1341
1342 case 4:
1343 memcpy ((char*) valbuf + 2, buf, 2);
1344 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1345 memcpy (valbuf, buf, 2);
1346 break;
1347
1348 default:
1349 error ("bad size for return value");
1350 }
1351 }
1352
1353 /* Should call_function allocate stack space for a struct return? */
1354 static int
1355 m68hc11_use_struct_convention (int gcc_p, struct type *type)
1356 {
1357 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1358 || TYPE_CODE (type) == TYPE_CODE_UNION
1359 || TYPE_LENGTH (type) > 4);
1360 }
1361
1362 static int
1363 m68hc11_return_value_on_stack (struct type *type)
1364 {
1365 return TYPE_LENGTH (type) > 4;
1366 }
1367
1368 /* Extract from an array REGBUF containing the (raw) register state
1369 the address in which a function should return its structure value,
1370 as a CORE_ADDR (or an expression that can be used as one). */
1371 static CORE_ADDR
1372 m68hc11_extract_struct_value_address (struct regcache *regcache)
1373 {
1374 char buf[M68HC11_REG_SIZE];
1375
1376 regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
1377 return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
1378 }
1379
1380 /* Test whether the ELF symbol corresponds to a function using rtc or
1381 rti to return. */
1382
1383 static void
1384 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1385 {
1386 unsigned char flags;
1387
1388 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1389 if (flags & STO_M68HC12_FAR)
1390 MSYMBOL_SET_RTC (msym);
1391 if (flags & STO_M68HC12_INTERRUPT)
1392 MSYMBOL_SET_RTI (msym);
1393 }
1394
1395 static int
1396 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1397 {
1398 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1399 return print_insn_m68hc11 (memaddr, info);
1400 else
1401 return print_insn_m68hc12 (memaddr, info);
1402 }
1403
1404 \f
1405
1406 /* 68HC11/68HC12 register groups.
1407 Identify real hard registers and soft registers used by gcc. */
1408
1409 static struct reggroup *m68hc11_soft_reggroup;
1410 static struct reggroup *m68hc11_hard_reggroup;
1411
1412 static void
1413 m68hc11_init_reggroups (void)
1414 {
1415 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1416 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1417 }
1418
1419 static void
1420 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1421 {
1422 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1423 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1424 reggroup_add (gdbarch, general_reggroup);
1425 reggroup_add (gdbarch, float_reggroup);
1426 reggroup_add (gdbarch, all_reggroup);
1427 reggroup_add (gdbarch, save_reggroup);
1428 reggroup_add (gdbarch, restore_reggroup);
1429 reggroup_add (gdbarch, vector_reggroup);
1430 reggroup_add (gdbarch, system_reggroup);
1431 }
1432
1433 static int
1434 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1435 struct reggroup *group)
1436 {
1437 /* We must save the real hard register as well as gcc
1438 soft registers including the frame pointer. */
1439 if (group == save_reggroup || group == restore_reggroup)
1440 {
1441 return (regnum <= gdbarch_num_regs (gdbarch)
1442 || ((regnum == SOFT_FP_REGNUM
1443 || regnum == SOFT_TMP_REGNUM
1444 || regnum == SOFT_ZS_REGNUM
1445 || regnum == SOFT_XY_REGNUM)
1446 && m68hc11_register_name (regnum)));
1447 }
1448
1449 /* Group to identify gcc soft registers (d1..dN). */
1450 if (group == m68hc11_soft_reggroup)
1451 {
1452 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1453 }
1454
1455 if (group == m68hc11_hard_reggroup)
1456 {
1457 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1458 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1459 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1460 }
1461 return default_register_reggroup_p (gdbarch, regnum, group);
1462 }
1463
1464 static struct gdbarch *
1465 m68hc11_gdbarch_init (struct gdbarch_info info,
1466 struct gdbarch_list *arches)
1467 {
1468 struct gdbarch *gdbarch;
1469 struct gdbarch_tdep *tdep;
1470 int elf_flags;
1471
1472 soft_reg_initialized = 0;
1473
1474 /* Extract the elf_flags if available. */
1475 if (info.abfd != NULL
1476 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1477 elf_flags = elf_elfheader (info.abfd)->e_flags;
1478 else
1479 elf_flags = 0;
1480
1481 /* try to find a pre-existing architecture */
1482 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1483 arches != NULL;
1484 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1485 {
1486 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1487 continue;
1488
1489 return arches->gdbarch;
1490 }
1491
1492 /* Need a new architecture. Fill in a target specific vector. */
1493 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1494 gdbarch = gdbarch_alloc (&info, tdep);
1495 tdep->elf_flags = elf_flags;
1496
1497 switch (info.bfd_arch_info->arch)
1498 {
1499 case bfd_arch_m68hc11:
1500 tdep->stack_correction = 1;
1501 tdep->use_page_register = 0;
1502 tdep->prologue = m6811_prologue;
1503 set_gdbarch_addr_bit (gdbarch, 16);
1504 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1505 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1506 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1507 break;
1508
1509 case bfd_arch_m68hc12:
1510 tdep->stack_correction = 0;
1511 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1512 tdep->prologue = m6812_prologue;
1513 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1514 set_gdbarch_num_pseudo_regs (gdbarch,
1515 elf_flags & E_M68HC12_BANKS
1516 ? M68HC12_NUM_PSEUDO_REGS
1517 : M68HC11_NUM_PSEUDO_REGS);
1518 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1519 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1520 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1521 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1522 break;
1523
1524 default:
1525 break;
1526 }
1527
1528 /* Initially set everything according to the ABI.
1529 Use 16-bit integers since it will be the case for most
1530 programs. The size of these types should normally be set
1531 according to the dwarf2 debug information. */
1532 set_gdbarch_short_bit (gdbarch, 16);
1533 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1534 set_gdbarch_float_bit (gdbarch, 32);
1535 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1536 set_gdbarch_long_double_bit (gdbarch, 64);
1537 set_gdbarch_long_bit (gdbarch, 32);
1538 set_gdbarch_ptr_bit (gdbarch, 16);
1539 set_gdbarch_long_long_bit (gdbarch, 64);
1540
1541 /* Characters are unsigned. */
1542 set_gdbarch_char_signed (gdbarch, 0);
1543
1544 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1545 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1546
1547 /* Set register info. */
1548 set_gdbarch_fp0_regnum (gdbarch, -1);
1549 set_gdbarch_frame_args_skip (gdbarch, 0);
1550
1551 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1552
1553 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1554 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1555 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1556 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1557 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1558
1559 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1560
1561 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1562 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1563
1564 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1565 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1566
1567 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1568 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1569 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1570 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1571 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1572 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1573 set_gdbarch_function_start_offset (gdbarch, 0);
1574 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1575 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
1576 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1577
1578 m68hc11_add_reggroups (gdbarch);
1579 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1580 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1581
1582 /* Hook in the DWARF CFI frame unwinder. */
1583 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1584 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1585
1586 frame_unwind_append_predicate (gdbarch, m68hc11_frame_p);
1587 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1588
1589 /* Methods for saving / extracting a dummy frame's ID. The ID's
1590 stack address must match the SP value returned by
1591 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1592 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1593
1594 /* Return the unwound PC value. */
1595 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1596
1597 /* Minsymbol frobbing. */
1598 set_gdbarch_elf_make_msymbol_special (gdbarch,
1599 m68hc11_elf_make_msymbol_special);
1600
1601 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1602
1603 return gdbarch;
1604 }
1605
1606 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1607
1608 void
1609 _initialize_m68hc11_tdep (void)
1610 {
1611 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1612 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1613 m68hc11_init_reggroups ();
1614
1615 deprecate_cmd (add_com ("regs", class_vars, show_regs,
1616 "Print all registers"),
1617 "info registers");
1618 }
1619
This page took 0.078373 seconds and 4 git commands to generate.