* gdbtypes.h (builtin_type_int0, builtin_type_int8, builtin_type_uint8,
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "trad-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdb_string.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "reggroups.h"
43
44 #include "target.h"
45 #include "opcode/m68hc11.h"
46 #include "elf/m68hc11.h"
47 #include "elf-bfd.h"
48
49 /* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
60
61 #define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_TARGET_FLAG_1 (msym) = 1
63
64 #define MSYMBOL_SET_RTI(msym) \
65 MSYMBOL_TARGET_FLAG_2 (msym) = 1
66
67 #define MSYMBOL_IS_RTC(msym) \
68 MSYMBOL_TARGET_FLAG_1 (msym)
69
70 #define MSYMBOL_IS_RTI(msym) \
71 MSYMBOL_TARGET_FLAG_2 (msym)
72
73 enum insn_return_kind {
74 RETURN_RTS,
75 RETURN_RTC,
76 RETURN_RTI
77 };
78
79
80 /* Register numbers of various important registers. */
81
82 #define HARD_X_REGNUM 0
83 #define HARD_D_REGNUM 1
84 #define HARD_Y_REGNUM 2
85 #define HARD_SP_REGNUM 3
86 #define HARD_PC_REGNUM 4
87
88 #define HARD_A_REGNUM 5
89 #define HARD_B_REGNUM 6
90 #define HARD_CCR_REGNUM 7
91
92 /* 68HC12 page number register.
93 Note: to keep a compatibility with gcc register naming, we must
94 not have to rename FP and other soft registers. The page register
95 is a real hard register and must therefore be counted by gdbarch_num_regs.
96 For this it has the same number as Z register (which is not used). */
97 #define HARD_PAGE_REGNUM 8
98 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
99
100 /* Z is replaced by X or Y by gcc during machine reorg.
101 ??? There is no way to get it and even know whether
102 it's in X or Y or in ZS. */
103 #define SOFT_Z_REGNUM 8
104
105 /* Soft registers. These registers are special. There are treated
106 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
107 They are physically located in memory. */
108 #define SOFT_FP_REGNUM 9
109 #define SOFT_TMP_REGNUM 10
110 #define SOFT_ZS_REGNUM 11
111 #define SOFT_XY_REGNUM 12
112 #define SOFT_UNUSED_REGNUM 13
113 #define SOFT_D1_REGNUM 14
114 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
115 #define M68HC11_MAX_SOFT_REGS 32
116
117 #define M68HC11_NUM_REGS (8)
118 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
119 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
120
121 #define M68HC11_REG_SIZE (2)
122
123 #define M68HC12_NUM_REGS (9)
124 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
125 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
126
127 struct insn_sequence;
128 struct gdbarch_tdep
129 {
130 /* Stack pointer correction value. For 68hc11, the stack pointer points
131 to the next push location. An offset of 1 must be applied to obtain
132 the address where the last value is saved. For 68hc12, the stack
133 pointer points to the last value pushed. No offset is necessary. */
134 int stack_correction;
135
136 /* Description of instructions in the prologue. */
137 struct insn_sequence *prologue;
138
139 /* True if the page memory bank register is available
140 and must be used. */
141 int use_page_register;
142
143 /* ELF flags for ABI. */
144 int elf_flags;
145 };
146
147 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
148 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
149
150 struct m68hc11_unwind_cache
151 {
152 /* The previous frame's inner most stack address. Used as this
153 frame ID's stack_addr. */
154 CORE_ADDR prev_sp;
155 /* The frame's base, optionally used by the high-level debug info. */
156 CORE_ADDR base;
157 CORE_ADDR pc;
158 int size;
159 int prologue_type;
160 CORE_ADDR return_pc;
161 CORE_ADDR sp_offset;
162 int frameless;
163 enum insn_return_kind return_kind;
164
165 /* Table indicating the location of each and every register. */
166 struct trad_frame_saved_reg *saved_regs;
167 };
168
169 /* Table of registers for 68HC11. This includes the hard registers
170 and the soft registers used by GCC. */
171 static char *
172 m68hc11_register_names[] =
173 {
174 "x", "d", "y", "sp", "pc", "a", "b",
175 "ccr", "page", "frame","tmp", "zs", "xy", 0,
176 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
177 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
178 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
179 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
180 "d29", "d30", "d31", "d32"
181 };
182
183 struct m68hc11_soft_reg
184 {
185 const char *name;
186 CORE_ADDR addr;
187 };
188
189 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
190
191 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
192
193 static int soft_min_addr;
194 static int soft_max_addr;
195 static int soft_reg_initialized = 0;
196
197 /* Look in the symbol table for the address of a pseudo register
198 in memory. If we don't find it, pretend the register is not used
199 and not available. */
200 static void
201 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
202 {
203 struct minimal_symbol *msymbol;
204
205 msymbol = lookup_minimal_symbol (name, NULL, NULL);
206 if (msymbol)
207 {
208 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
209 reg->name = xstrdup (name);
210
211 /* Keep track of the address range for soft registers. */
212 if (reg->addr < (CORE_ADDR) soft_min_addr)
213 soft_min_addr = reg->addr;
214 if (reg->addr > (CORE_ADDR) soft_max_addr)
215 soft_max_addr = reg->addr;
216 }
217 else
218 {
219 reg->name = 0;
220 reg->addr = 0;
221 }
222 }
223
224 /* Initialize the table of soft register addresses according
225 to the symbol table. */
226 static void
227 m68hc11_initialize_register_info (void)
228 {
229 int i;
230
231 if (soft_reg_initialized)
232 return;
233
234 soft_min_addr = INT_MAX;
235 soft_max_addr = 0;
236 for (i = 0; i < M68HC11_ALL_REGS; i++)
237 {
238 soft_regs[i].name = 0;
239 }
240
241 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
242 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
243 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
244 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
245 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
246
247 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
248 {
249 char buf[10];
250
251 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
252 m68hc11_get_register_info (&soft_regs[i], buf);
253 }
254
255 if (soft_regs[SOFT_FP_REGNUM].name == 0)
256 warning (_("No frame soft register found in the symbol table.\n"
257 "Stack backtrace will not work."));
258 soft_reg_initialized = 1;
259 }
260
261 /* Given an address in memory, return the soft register number if
262 that address corresponds to a soft register. Returns -1 if not. */
263 static int
264 m68hc11_which_soft_register (CORE_ADDR addr)
265 {
266 int i;
267
268 if (addr < soft_min_addr || addr > soft_max_addr)
269 return -1;
270
271 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
272 {
273 if (soft_regs[i].name && soft_regs[i].addr == addr)
274 return i;
275 }
276 return -1;
277 }
278
279 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
280 pseudo registers. They are located in memory. Translate the register
281 fetch into a memory read. */
282 static void
283 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
284 struct regcache *regcache,
285 int regno, gdb_byte *buf)
286 {
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
291 ULONGEST pc;
292 const int regsize = 4;
293
294 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
295 if (pc >= 0x8000 && pc < 0xc000)
296 {
297 ULONGEST page;
298
299 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
300 pc -= 0x8000;
301 pc += (page << 14);
302 pc += 0x1000000;
303 }
304 store_unsigned_integer (buf, regsize, pc);
305 return;
306 }
307
308 m68hc11_initialize_register_info ();
309
310 /* Fetch a soft register: translate into a memory read. */
311 if (soft_regs[regno].name)
312 {
313 target_read_memory (soft_regs[regno].addr, buf, 2);
314 }
315 else
316 {
317 memset (buf, 0, 2);
318 }
319 }
320
321 /* Store a pseudo register. Translate the register store
322 into a memory write. */
323 static void
324 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
325 struct regcache *regcache,
326 int regno, const gdb_byte *buf)
327 {
328 /* The PC is a pseudo reg only for 68HC12 with the memory bank
329 addressing mode. */
330 if (regno == M68HC12_HARD_PC_REGNUM)
331 {
332 const int regsize = 4;
333 char *tmp = alloca (regsize);
334 CORE_ADDR pc;
335
336 memcpy (tmp, buf, regsize);
337 pc = extract_unsigned_integer (tmp, regsize);
338 if (pc >= 0x1000000)
339 {
340 pc -= 0x1000000;
341 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
342 (pc >> 14) & 0x0ff);
343 pc &= 0x03fff;
344 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
345 pc + 0x8000);
346 }
347 else
348 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
349 return;
350 }
351
352 m68hc11_initialize_register_info ();
353
354 /* Store a soft register: translate into a memory write. */
355 if (soft_regs[regno].name)
356 {
357 const int regsize = 2;
358 char *tmp = alloca (regsize);
359 memcpy (tmp, buf, regsize);
360 target_write_memory (soft_regs[regno].addr, tmp, regsize);
361 }
362 }
363
364 static const char *
365 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
366 {
367 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
368 return "pc";
369 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
370 return "ppc";
371
372 if (reg_nr < 0)
373 return NULL;
374 if (reg_nr >= M68HC11_ALL_REGS)
375 return NULL;
376
377 m68hc11_initialize_register_info ();
378
379 /* If we don't know the address of a soft register, pretend it
380 does not exist. */
381 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
382 return NULL;
383 return m68hc11_register_names[reg_nr];
384 }
385
386 static const unsigned char *
387 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
388 int *lenptr)
389 {
390 static unsigned char breakpoint[] = {0x0};
391
392 *lenptr = sizeof (breakpoint);
393 return breakpoint;
394 }
395
396 \f
397 /* 68HC11 & 68HC12 prologue analysis.
398
399 */
400 #define MAX_CODES 12
401
402 /* 68HC11 opcodes. */
403 #undef M6811_OP_PAGE2
404 #define M6811_OP_PAGE2 (0x18)
405 #define M6811_OP_LDX (0xde)
406 #define M6811_OP_LDX_EXT (0xfe)
407 #define M6811_OP_PSHX (0x3c)
408 #define M6811_OP_STS (0x9f)
409 #define M6811_OP_STS_EXT (0xbf)
410 #define M6811_OP_TSX (0x30)
411 #define M6811_OP_XGDX (0x8f)
412 #define M6811_OP_ADDD (0xc3)
413 #define M6811_OP_TXS (0x35)
414 #define M6811_OP_DES (0x34)
415
416 /* 68HC12 opcodes. */
417 #define M6812_OP_PAGE2 (0x18)
418 #define M6812_OP_MOVW (0x01)
419 #define M6812_PB_PSHW (0xae)
420 #define M6812_OP_STS (0x5f)
421 #define M6812_OP_STS_EXT (0x7f)
422 #define M6812_OP_LEAS (0x1b)
423 #define M6812_OP_PSHX (0x34)
424 #define M6812_OP_PSHY (0x35)
425
426 /* Operand extraction. */
427 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
428 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
429 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
430 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
431
432 /* Identification of the sequence. */
433 enum m6811_seq_type
434 {
435 P_LAST = 0,
436 P_SAVE_REG, /* Save a register on the stack. */
437 P_SET_FRAME, /* Setup the frame pointer. */
438 P_LOCAL_1, /* Allocate 1 byte for locals. */
439 P_LOCAL_2, /* Allocate 2 bytes for locals. */
440 P_LOCAL_N /* Allocate N bytes for locals. */
441 };
442
443 struct insn_sequence {
444 enum m6811_seq_type type;
445 unsigned length;
446 unsigned short code[MAX_CODES];
447 };
448
449 /* Sequence of instructions in the 68HC11 function prologue. */
450 static struct insn_sequence m6811_prologue[] = {
451 /* Sequences to save a soft-register. */
452 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
453 M6811_OP_PSHX } },
454 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
455 M6811_OP_PAGE2, M6811_OP_PSHX } },
456 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
457 M6811_OP_PSHX } },
458 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
459 M6811_OP_PAGE2, M6811_OP_PSHX } },
460
461 /* Sequences to allocate local variables. */
462 { P_LOCAL_N, 7, { M6811_OP_TSX,
463 M6811_OP_XGDX,
464 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
465 M6811_OP_XGDX,
466 M6811_OP_TXS } },
467 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
468 M6811_OP_PAGE2, M6811_OP_XGDX,
469 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
470 M6811_OP_PAGE2, M6811_OP_XGDX,
471 M6811_OP_PAGE2, M6811_OP_TXS } },
472 { P_LOCAL_1, 1, { M6811_OP_DES } },
473 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
474 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
475
476 /* Initialize the frame pointer. */
477 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
478 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
479 { P_LAST, 0, { 0 } }
480 };
481
482
483 /* Sequence of instructions in the 68HC12 function prologue. */
484 static struct insn_sequence m6812_prologue[] = {
485 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
486 OP_IMM_HIGH, OP_IMM_LOW } },
487 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
488 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
489 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
491 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
492 { P_LAST, 0 }
493 };
494
495
496 /* Analyze the sequence of instructions starting at the given address.
497 Returns a pointer to the sequence when it is recognized and
498 the optional value (constant/address) associated with it. */
499 static struct insn_sequence *
500 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
501 CORE_ADDR *val)
502 {
503 unsigned char buffer[MAX_CODES];
504 unsigned bufsize;
505 unsigned j;
506 CORE_ADDR cur_val;
507 short v = 0;
508
509 bufsize = 0;
510 for (; seq->type != P_LAST; seq++)
511 {
512 cur_val = 0;
513 for (j = 0; j < seq->length; j++)
514 {
515 if (bufsize < j + 1)
516 {
517 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
518 1);
519 bufsize++;
520 }
521 /* Continue while we match the opcode. */
522 if (seq->code[j] == buffer[j])
523 continue;
524
525 if ((seq->code[j] & 0xf00) == 0)
526 break;
527
528 /* Extract a sequence parameter (address or constant). */
529 switch (seq->code[j])
530 {
531 case OP_DIRECT:
532 cur_val = (CORE_ADDR) buffer[j];
533 break;
534
535 case OP_IMM_HIGH:
536 cur_val = cur_val & 0x0ff;
537 cur_val |= (buffer[j] << 8);
538 break;
539
540 case OP_IMM_LOW:
541 cur_val &= 0x0ff00;
542 cur_val |= buffer[j];
543 break;
544
545 case OP_PBYTE:
546 if ((buffer[j] & 0xE0) == 0x80)
547 {
548 v = buffer[j] & 0x1f;
549 if (v & 0x10)
550 v |= 0xfff0;
551 }
552 else if ((buffer[j] & 0xfe) == 0xf0)
553 {
554 v = read_memory_unsigned_integer (pc + j + 1, 1);
555 if (buffer[j] & 1)
556 v |= 0xff00;
557 }
558 else if (buffer[j] == 0xf2)
559 {
560 v = read_memory_unsigned_integer (pc + j + 1, 2);
561 }
562 cur_val = v;
563 break;
564 }
565 }
566
567 /* We have a full match. */
568 if (j == seq->length)
569 {
570 *val = cur_val;
571 return seq;
572 }
573 }
574 return 0;
575 }
576
577 /* Return the instruction that the function at the PC is using. */
578 static enum insn_return_kind
579 m68hc11_get_return_insn (CORE_ADDR pc)
580 {
581 struct minimal_symbol *sym;
582
583 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
584 function is stored by elfread.c in the high bit of the info field.
585 Use this to decide which instruction the function uses to return. */
586 sym = lookup_minimal_symbol_by_pc (pc);
587 if (sym == 0)
588 return RETURN_RTS;
589
590 if (MSYMBOL_IS_RTC (sym))
591 return RETURN_RTC;
592 else if (MSYMBOL_IS_RTI (sym))
593 return RETURN_RTI;
594 else
595 return RETURN_RTS;
596 }
597
598 /* Analyze the function prologue to find some information
599 about the function:
600 - the PC of the first line (for m68hc11_skip_prologue)
601 - the offset of the previous frame saved address (from current frame)
602 - the soft registers which are pushed. */
603 static CORE_ADDR
604 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
605 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
606 {
607 LONGEST save_addr;
608 CORE_ADDR func_end;
609 int size;
610 int found_frame_point;
611 int saved_reg;
612 int done = 0;
613 struct insn_sequence *seq_table;
614
615 info->size = 0;
616 info->sp_offset = 0;
617 if (pc >= current_pc)
618 return current_pc;
619
620 size = 0;
621
622 m68hc11_initialize_register_info ();
623 if (pc == 0)
624 {
625 info->size = 0;
626 return pc;
627 }
628
629 seq_table = gdbarch_tdep (gdbarch)->prologue;
630
631 /* The 68hc11 stack is as follows:
632
633
634 | |
635 +-----------+
636 | |
637 | args |
638 | |
639 +-----------+
640 | PC-return |
641 +-----------+
642 | Old frame |
643 +-----------+
644 | |
645 | Locals |
646 | |
647 +-----------+ <--- current frame
648 | |
649
650 With most processors (like 68K) the previous frame can be computed
651 easily because it is always at a fixed offset (see link/unlink).
652 That is, locals are accessed with negative offsets, arguments are
653 accessed with positive ones. Since 68hc11 only supports offsets
654 in the range [0..255], the frame is defined at the bottom of
655 locals (see picture).
656
657 The purpose of the analysis made here is to find out the size
658 of locals in this function. An alternative to this is to use
659 DWARF2 info. This would be better but I don't know how to
660 access dwarf2 debug from this function.
661
662 Walk from the function entry point to the point where we save
663 the frame. While walking instructions, compute the size of bytes
664 which are pushed. This gives us the index to access the previous
665 frame.
666
667 We limit the search to 128 bytes so that the algorithm is bounded
668 in case of random and wrong code. We also stop and abort if
669 we find an instruction which is not supposed to appear in the
670 prologue (as generated by gcc 2.95, 2.96).
671 */
672 func_end = pc + 128;
673 found_frame_point = 0;
674 info->size = 0;
675 save_addr = 0;
676 while (!done && pc + 2 < func_end)
677 {
678 struct insn_sequence *seq;
679 CORE_ADDR val;
680
681 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
682 if (seq == 0)
683 break;
684
685 /* If we are within the instruction group, we can't advance the
686 pc nor the stack offset. Otherwise the caller's stack computed
687 from the current stack can be wrong. */
688 if (pc + seq->length > current_pc)
689 break;
690
691 pc = pc + seq->length;
692 if (seq->type == P_SAVE_REG)
693 {
694 if (found_frame_point)
695 {
696 saved_reg = m68hc11_which_soft_register (val);
697 if (saved_reg < 0)
698 break;
699
700 save_addr -= 2;
701 if (info->saved_regs)
702 info->saved_regs[saved_reg].addr = save_addr;
703 }
704 else
705 {
706 size += 2;
707 }
708 }
709 else if (seq->type == P_SET_FRAME)
710 {
711 found_frame_point = 1;
712 info->size = size;
713 }
714 else if (seq->type == P_LOCAL_1)
715 {
716 size += 1;
717 }
718 else if (seq->type == P_LOCAL_2)
719 {
720 size += 2;
721 }
722 else if (seq->type == P_LOCAL_N)
723 {
724 /* Stack pointer is decremented for the allocation. */
725 if (val & 0x8000)
726 size -= (int) (val) | 0xffff0000;
727 else
728 size -= val;
729 }
730 }
731 if (found_frame_point == 0)
732 info->sp_offset = size;
733 else
734 info->sp_offset = -1;
735 return pc;
736 }
737
738 static CORE_ADDR
739 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
740 {
741 CORE_ADDR func_addr, func_end;
742 struct symtab_and_line sal;
743 struct m68hc11_unwind_cache tmp_cache = { 0 };
744
745 /* If we have line debugging information, then the end of the
746 prologue should be the first assembly instruction of the
747 first source line. */
748 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
749 {
750 sal = find_pc_line (func_addr, 0);
751 if (sal.end && sal.end < func_end)
752 return sal.end;
753 }
754
755 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
756 return pc;
757 }
758
759 static CORE_ADDR
760 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
761 {
762 ULONGEST pc;
763
764 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
765 return pc;
766 }
767
768 /* Put here the code to store, into fi->saved_regs, the addresses of
769 the saved registers of frame described by FRAME_INFO. This
770 includes special registers such as pc and fp saved in special ways
771 in the stack frame. sp is even more special: the address we return
772 for it IS the sp for the next frame. */
773
774 static struct m68hc11_unwind_cache *
775 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
776 void **this_prologue_cache)
777 {
778 struct gdbarch *gdbarch = get_frame_arch (this_frame);
779 ULONGEST prev_sp;
780 ULONGEST this_base;
781 struct m68hc11_unwind_cache *info;
782 CORE_ADDR current_pc;
783 int i;
784
785 if ((*this_prologue_cache))
786 return (*this_prologue_cache);
787
788 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
789 (*this_prologue_cache) = info;
790 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
791
792 info->pc = get_frame_func (this_frame);
793
794 info->size = 0;
795 info->return_kind = m68hc11_get_return_insn (info->pc);
796
797 /* The SP was moved to the FP. This indicates that a new frame
798 was created. Get THIS frame's FP value by unwinding it from
799 the next frame. */
800 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
801 if (this_base == 0)
802 {
803 info->base = 0;
804 return info;
805 }
806
807 current_pc = get_frame_pc (this_frame);
808 if (info->pc != 0)
809 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
810
811 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
812
813 if (info->sp_offset != (CORE_ADDR) -1)
814 {
815 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
816 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
817 prev_sp = this_base + info->sp_offset + 2;
818 this_base += STACK_CORRECTION (gdbarch);
819 }
820 else
821 {
822 /* The FP points at the last saved register. Adjust the FP back
823 to before the first saved register giving the SP. */
824 prev_sp = this_base + info->size + 2;
825
826 this_base += STACK_CORRECTION (gdbarch);
827 if (soft_regs[SOFT_FP_REGNUM].name)
828 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
829 }
830
831 if (info->return_kind == RETURN_RTC)
832 {
833 prev_sp += 1;
834 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
835 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
836 }
837 else if (info->return_kind == RETURN_RTI)
838 {
839 prev_sp += 7;
840 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
841 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
842 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
843 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
844 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
845 }
846
847 /* Add 1 here to adjust for the post-decrement nature of the push
848 instruction.*/
849 info->prev_sp = prev_sp;
850
851 info->base = this_base;
852
853 /* Adjust all the saved registers so that they contain addresses and not
854 offsets. */
855 for (i = 0;
856 i < gdbarch_num_regs (gdbarch)
857 + gdbarch_num_pseudo_regs (gdbarch) - 1;
858 i++)
859 if (trad_frame_addr_p (info->saved_regs, i))
860 {
861 info->saved_regs[i].addr += this_base;
862 }
863
864 /* The previous frame's SP needed to be computed. Save the computed
865 value. */
866 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
867
868 return info;
869 }
870
871 /* Given a GDB frame, determine the address of the calling function's
872 frame. This will be used to create a new GDB frame struct. */
873
874 static void
875 m68hc11_frame_this_id (struct frame_info *this_frame,
876 void **this_prologue_cache,
877 struct frame_id *this_id)
878 {
879 struct m68hc11_unwind_cache *info
880 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
881 CORE_ADDR base;
882 CORE_ADDR func;
883 struct frame_id id;
884
885 /* The FUNC is easy. */
886 func = get_frame_func (this_frame);
887
888 /* Hopefully the prologue analysis either correctly determined the
889 frame's base (which is the SP from the previous frame), or set
890 that base to "NULL". */
891 base = info->prev_sp;
892 if (base == 0)
893 return;
894
895 id = frame_id_build (base, func);
896 (*this_id) = id;
897 }
898
899 static struct value *
900 m68hc11_frame_prev_register (struct frame_info *this_frame,
901 void **this_prologue_cache, int regnum)
902 {
903 struct value *value;
904 struct m68hc11_unwind_cache *info
905 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
906
907 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
908
909 /* Take into account the 68HC12 specific call (PC + page). */
910 if (regnum == HARD_PC_REGNUM
911 && info->return_kind == RETURN_RTC
912 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
913 {
914 CORE_ADDR pc = value_as_long (value);
915 if (pc >= 0x08000 && pc < 0x0c000)
916 {
917 CORE_ADDR page;
918
919 release_value (value);
920 value_free (value);
921
922 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
923 HARD_PAGE_REGNUM);
924 page = value_as_long (value);
925 release_value (value);
926 value_free (value);
927
928 pc -= 0x08000;
929 pc += ((page & 0x0ff) << 14);
930 pc += 0x1000000;
931
932 return frame_unwind_got_constant (this_frame, regnum, pc);
933 }
934 }
935
936 return value;
937 }
938
939 static const struct frame_unwind m68hc11_frame_unwind = {
940 NORMAL_FRAME,
941 m68hc11_frame_this_id,
942 m68hc11_frame_prev_register,
943 NULL,
944 default_frame_sniffer
945 };
946
947 static CORE_ADDR
948 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
949 {
950 struct m68hc11_unwind_cache *info
951 = m68hc11_frame_unwind_cache (this_frame, this_cache);
952
953 return info->base;
954 }
955
956 static CORE_ADDR
957 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
958 {
959 CORE_ADDR addr;
960 struct m68hc11_unwind_cache *info
961 = m68hc11_frame_unwind_cache (this_frame, this_cache);
962
963 addr = info->base + info->size;
964 if (info->return_kind == RETURN_RTC)
965 addr += 1;
966 else if (info->return_kind == RETURN_RTI)
967 addr += 7;
968
969 return addr;
970 }
971
972 static const struct frame_base m68hc11_frame_base = {
973 &m68hc11_frame_unwind,
974 m68hc11_frame_base_address,
975 m68hc11_frame_base_address,
976 m68hc11_frame_args_address
977 };
978
979 static CORE_ADDR
980 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
981 {
982 ULONGEST sp;
983 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
984 return sp;
985 }
986
987 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
988 frame. The frame ID's base needs to match the TOS value saved by
989 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
990
991 static struct frame_id
992 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
993 {
994 ULONGEST tos;
995 CORE_ADDR pc = get_frame_pc (this_frame);
996
997 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
998 tos += 2;
999 return frame_id_build (tos, pc);
1000 }
1001
1002 \f
1003 /* Get and print the register from the given frame. */
1004 static void
1005 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1006 struct frame_info *frame, int regno)
1007 {
1008 LONGEST rval;
1009
1010 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1011 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1012 rval = get_frame_register_unsigned (frame, regno);
1013 else
1014 rval = get_frame_register_signed (frame, regno);
1015
1016 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1017 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1018 {
1019 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1020 if (regno != HARD_CCR_REGNUM)
1021 print_longest (file, 'd', 1, rval);
1022 }
1023 else
1024 {
1025 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1026 {
1027 ULONGEST page;
1028
1029 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1030 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1031 (unsigned) rval);
1032 }
1033 else
1034 {
1035 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1036 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1037 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1038 print_longest (file, 'd', 1, rval);
1039 }
1040 }
1041
1042 if (regno == HARD_CCR_REGNUM)
1043 {
1044 /* CCR register */
1045 int C, Z, N, V;
1046 unsigned char l = rval & 0xff;
1047
1048 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1049 l & M6811_S_BIT ? 'S' : '-',
1050 l & M6811_X_BIT ? 'X' : '-',
1051 l & M6811_H_BIT ? 'H' : '-',
1052 l & M6811_I_BIT ? 'I' : '-',
1053 l & M6811_N_BIT ? 'N' : '-',
1054 l & M6811_Z_BIT ? 'Z' : '-',
1055 l & M6811_V_BIT ? 'V' : '-',
1056 l & M6811_C_BIT ? 'C' : '-');
1057 N = (l & M6811_N_BIT) != 0;
1058 Z = (l & M6811_Z_BIT) != 0;
1059 V = (l & M6811_V_BIT) != 0;
1060 C = (l & M6811_C_BIT) != 0;
1061
1062 /* Print flags following the h8300 */
1063 if ((C | Z) == 0)
1064 fprintf_filtered (file, "u> ");
1065 else if ((C | Z) == 1)
1066 fprintf_filtered (file, "u<= ");
1067 else if (C == 0)
1068 fprintf_filtered (file, "u< ");
1069
1070 if (Z == 0)
1071 fprintf_filtered (file, "!= ");
1072 else
1073 fprintf_filtered (file, "== ");
1074
1075 if ((N ^ V) == 0)
1076 fprintf_filtered (file, ">= ");
1077 else
1078 fprintf_filtered (file, "< ");
1079
1080 if ((Z | (N ^ V)) == 0)
1081 fprintf_filtered (file, "> ");
1082 else
1083 fprintf_filtered (file, "<= ");
1084 }
1085 }
1086
1087 /* Same as 'info reg' but prints the registers in a different way. */
1088 static void
1089 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1090 struct frame_info *frame, int regno, int cpregs)
1091 {
1092 if (regno >= 0)
1093 {
1094 const char *name = gdbarch_register_name (gdbarch, regno);
1095
1096 if (!name || !*name)
1097 return;
1098
1099 fprintf_filtered (file, "%-10s ", name);
1100 m68hc11_print_register (gdbarch, file, frame, regno);
1101 fprintf_filtered (file, "\n");
1102 }
1103 else
1104 {
1105 int i, nr;
1106
1107 fprintf_filtered (file, "PC=");
1108 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1109
1110 fprintf_filtered (file, " SP=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1112
1113 fprintf_filtered (file, " FP=");
1114 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1115
1116 fprintf_filtered (file, "\nCCR=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1118
1119 fprintf_filtered (file, "\nD=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1121
1122 fprintf_filtered (file, " X=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1124
1125 fprintf_filtered (file, " Y=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1127
1128 if (gdbarch_tdep (gdbarch)->use_page_register)
1129 {
1130 fprintf_filtered (file, "\nPage=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1132 }
1133 fprintf_filtered (file, "\n");
1134
1135 nr = 0;
1136 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1137 {
1138 /* Skip registers which are not defined in the symbol table. */
1139 if (soft_regs[i].name == 0)
1140 continue;
1141
1142 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1143 m68hc11_print_register (gdbarch, file, frame, i);
1144 nr++;
1145 if ((nr % 8) == 7)
1146 fprintf_filtered (file, "\n");
1147 else
1148 fprintf_filtered (file, " ");
1149 }
1150 if (nr && (nr % 8) != 7)
1151 fprintf_filtered (file, "\n");
1152 }
1153 }
1154
1155 static CORE_ADDR
1156 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1157 struct regcache *regcache, CORE_ADDR bp_addr,
1158 int nargs, struct value **args, CORE_ADDR sp,
1159 int struct_return, CORE_ADDR struct_addr)
1160 {
1161 int argnum;
1162 int first_stack_argnum;
1163 struct type *type;
1164 char *val;
1165 int len;
1166 char buf[2];
1167
1168 first_stack_argnum = 0;
1169 if (struct_return)
1170 {
1171 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1172 }
1173 else if (nargs > 0)
1174 {
1175 type = value_type (args[0]);
1176 len = TYPE_LENGTH (type);
1177
1178 /* First argument is passed in D and X registers. */
1179 if (len <= 4)
1180 {
1181 ULONGEST v;
1182
1183 v = extract_unsigned_integer (value_contents (args[0]), len);
1184 first_stack_argnum = 1;
1185
1186 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1187 if (len > 2)
1188 {
1189 v >>= 16;
1190 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1191 }
1192 }
1193 }
1194
1195 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1196 {
1197 type = value_type (args[argnum]);
1198 len = TYPE_LENGTH (type);
1199
1200 if (len & 1)
1201 {
1202 static char zero = 0;
1203
1204 sp--;
1205 write_memory (sp, &zero, 1);
1206 }
1207 val = (char*) value_contents (args[argnum]);
1208 sp -= len;
1209 write_memory (sp, val, len);
1210 }
1211
1212 /* Store return address. */
1213 sp -= 2;
1214 store_unsigned_integer (buf, 2, bp_addr);
1215 write_memory (sp, buf, 2);
1216
1217 /* Finally, update the stack pointer... */
1218 sp -= STACK_CORRECTION (gdbarch);
1219 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1220
1221 /* ...and fake a frame pointer. */
1222 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1223
1224 /* DWARF2/GCC uses the stack address *before* the function call as a
1225 frame's CFA. */
1226 return sp + 2;
1227 }
1228
1229
1230 /* Return the GDB type object for the "standard" data type
1231 of data in register N. */
1232
1233 static struct type *
1234 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1235 {
1236 switch (reg_nr)
1237 {
1238 case HARD_PAGE_REGNUM:
1239 case HARD_A_REGNUM:
1240 case HARD_B_REGNUM:
1241 case HARD_CCR_REGNUM:
1242 return builtin_type (gdbarch)->builtin_uint8;
1243
1244 case M68HC12_HARD_PC_REGNUM:
1245 return builtin_type (gdbarch)->builtin_uint32;
1246
1247 default:
1248 return builtin_type (gdbarch)->builtin_uint16;
1249 }
1250 }
1251
1252 static void
1253 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1254 const void *valbuf)
1255 {
1256 int len;
1257
1258 len = TYPE_LENGTH (type);
1259
1260 /* First argument is passed in D and X registers. */
1261 if (len <= 2)
1262 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1263 else if (len <= 4)
1264 {
1265 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1266 len - 2, valbuf);
1267 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1268 }
1269 else
1270 error (_("return of value > 4 is not supported."));
1271 }
1272
1273
1274 /* Given a return value in `regcache' with a type `type',
1275 extract and copy its value into `valbuf'. */
1276
1277 static void
1278 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1279 void *valbuf)
1280 {
1281 int len = TYPE_LENGTH (type);
1282 char buf[M68HC11_REG_SIZE];
1283
1284 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1285 switch (len)
1286 {
1287 case 1:
1288 memcpy (valbuf, buf + 1, 1);
1289 break;
1290
1291 case 2:
1292 memcpy (valbuf, buf, 2);
1293 break;
1294
1295 case 3:
1296 memcpy ((char*) valbuf + 1, buf, 2);
1297 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1298 memcpy (valbuf, buf + 1, 1);
1299 break;
1300
1301 case 4:
1302 memcpy ((char*) valbuf + 2, buf, 2);
1303 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1304 memcpy (valbuf, buf, 2);
1305 break;
1306
1307 default:
1308 error (_("bad size for return value"));
1309 }
1310 }
1311
1312 static enum return_value_convention
1313 m68hc11_return_value (struct gdbarch *gdbarch, struct type *func_type,
1314 struct type *valtype, struct regcache *regcache,
1315 gdb_byte *readbuf, const gdb_byte *writebuf)
1316 {
1317 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1318 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1319 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1320 || TYPE_LENGTH (valtype) > 4)
1321 return RETURN_VALUE_STRUCT_CONVENTION;
1322 else
1323 {
1324 if (readbuf != NULL)
1325 m68hc11_extract_return_value (valtype, regcache, readbuf);
1326 if (writebuf != NULL)
1327 m68hc11_store_return_value (valtype, regcache, writebuf);
1328 return RETURN_VALUE_REGISTER_CONVENTION;
1329 }
1330 }
1331
1332 /* Test whether the ELF symbol corresponds to a function using rtc or
1333 rti to return. */
1334
1335 static void
1336 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1337 {
1338 unsigned char flags;
1339
1340 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1341 if (flags & STO_M68HC12_FAR)
1342 MSYMBOL_SET_RTC (msym);
1343 if (flags & STO_M68HC12_INTERRUPT)
1344 MSYMBOL_SET_RTI (msym);
1345 }
1346
1347 static int
1348 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1349 {
1350 if (info->arch == bfd_arch_m68hc11)
1351 return print_insn_m68hc11 (memaddr, info);
1352 else
1353 return print_insn_m68hc12 (memaddr, info);
1354 }
1355
1356 \f
1357
1358 /* 68HC11/68HC12 register groups.
1359 Identify real hard registers and soft registers used by gcc. */
1360
1361 static struct reggroup *m68hc11_soft_reggroup;
1362 static struct reggroup *m68hc11_hard_reggroup;
1363
1364 static void
1365 m68hc11_init_reggroups (void)
1366 {
1367 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1368 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1369 }
1370
1371 static void
1372 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1373 {
1374 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1375 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1376 reggroup_add (gdbarch, general_reggroup);
1377 reggroup_add (gdbarch, float_reggroup);
1378 reggroup_add (gdbarch, all_reggroup);
1379 reggroup_add (gdbarch, save_reggroup);
1380 reggroup_add (gdbarch, restore_reggroup);
1381 reggroup_add (gdbarch, vector_reggroup);
1382 reggroup_add (gdbarch, system_reggroup);
1383 }
1384
1385 static int
1386 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1387 struct reggroup *group)
1388 {
1389 /* We must save the real hard register as well as gcc
1390 soft registers including the frame pointer. */
1391 if (group == save_reggroup || group == restore_reggroup)
1392 {
1393 return (regnum <= gdbarch_num_regs (gdbarch)
1394 || ((regnum == SOFT_FP_REGNUM
1395 || regnum == SOFT_TMP_REGNUM
1396 || regnum == SOFT_ZS_REGNUM
1397 || regnum == SOFT_XY_REGNUM)
1398 && m68hc11_register_name (gdbarch, regnum)));
1399 }
1400
1401 /* Group to identify gcc soft registers (d1..dN). */
1402 if (group == m68hc11_soft_reggroup)
1403 {
1404 return regnum >= SOFT_D1_REGNUM
1405 && m68hc11_register_name (gdbarch, regnum);
1406 }
1407
1408 if (group == m68hc11_hard_reggroup)
1409 {
1410 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1411 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1412 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1413 }
1414 return default_register_reggroup_p (gdbarch, regnum, group);
1415 }
1416
1417 static struct gdbarch *
1418 m68hc11_gdbarch_init (struct gdbarch_info info,
1419 struct gdbarch_list *arches)
1420 {
1421 struct gdbarch *gdbarch;
1422 struct gdbarch_tdep *tdep;
1423 int elf_flags;
1424
1425 soft_reg_initialized = 0;
1426
1427 /* Extract the elf_flags if available. */
1428 if (info.abfd != NULL
1429 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1430 elf_flags = elf_elfheader (info.abfd)->e_flags;
1431 else
1432 elf_flags = 0;
1433
1434 /* try to find a pre-existing architecture */
1435 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1436 arches != NULL;
1437 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1438 {
1439 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1440 continue;
1441
1442 return arches->gdbarch;
1443 }
1444
1445 /* Need a new architecture. Fill in a target specific vector. */
1446 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1447 gdbarch = gdbarch_alloc (&info, tdep);
1448 tdep->elf_flags = elf_flags;
1449
1450 switch (info.bfd_arch_info->arch)
1451 {
1452 case bfd_arch_m68hc11:
1453 tdep->stack_correction = 1;
1454 tdep->use_page_register = 0;
1455 tdep->prologue = m6811_prologue;
1456 set_gdbarch_addr_bit (gdbarch, 16);
1457 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1458 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1459 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1460 break;
1461
1462 case bfd_arch_m68hc12:
1463 tdep->stack_correction = 0;
1464 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1465 tdep->prologue = m6812_prologue;
1466 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1467 set_gdbarch_num_pseudo_regs (gdbarch,
1468 elf_flags & E_M68HC12_BANKS
1469 ? M68HC12_NUM_PSEUDO_REGS
1470 : M68HC11_NUM_PSEUDO_REGS);
1471 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1472 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1473 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1474 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1475 break;
1476
1477 default:
1478 break;
1479 }
1480
1481 /* Initially set everything according to the ABI.
1482 Use 16-bit integers since it will be the case for most
1483 programs. The size of these types should normally be set
1484 according to the dwarf2 debug information. */
1485 set_gdbarch_short_bit (gdbarch, 16);
1486 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1487 set_gdbarch_float_bit (gdbarch, 32);
1488 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1489 set_gdbarch_long_double_bit (gdbarch, 64);
1490 set_gdbarch_long_bit (gdbarch, 32);
1491 set_gdbarch_ptr_bit (gdbarch, 16);
1492 set_gdbarch_long_long_bit (gdbarch, 64);
1493
1494 /* Characters are unsigned. */
1495 set_gdbarch_char_signed (gdbarch, 0);
1496
1497 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1498 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1499
1500 /* Set register info. */
1501 set_gdbarch_fp0_regnum (gdbarch, -1);
1502
1503 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1504 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1505 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1506 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1507 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1508
1509 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1510
1511 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1512 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1513 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1514 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1515 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1516
1517 m68hc11_add_reggroups (gdbarch);
1518 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1519 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1520
1521 /* Hook in the DWARF CFI frame unwinder. */
1522 dwarf2_append_unwinders (gdbarch);
1523
1524 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1525 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1526
1527 /* Methods for saving / extracting a dummy frame's ID. The ID's
1528 stack address must match the SP value returned by
1529 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1530 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1531
1532 /* Return the unwound PC value. */
1533 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1534
1535 /* Minsymbol frobbing. */
1536 set_gdbarch_elf_make_msymbol_special (gdbarch,
1537 m68hc11_elf_make_msymbol_special);
1538
1539 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1540
1541 return gdbarch;
1542 }
1543
1544 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1545
1546 void
1547 _initialize_m68hc11_tdep (void)
1548 {
1549 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1550 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1551 m68hc11_init_reggroups ();
1552 }
1553
This page took 0.064738 seconds and 4 git commands to generate.