Further fix the documentation in struct quick_symbol_functions
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "trad-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdb_string.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "reggroups.h"
43
44 #include "target.h"
45 #include "opcode/m68hc11.h"
46 #include "elf/m68hc11.h"
47 #include "elf-bfd.h"
48
49 /* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
60
61 #define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_TARGET_FLAG_1 (msym) = 1
63
64 #define MSYMBOL_SET_RTI(msym) \
65 MSYMBOL_TARGET_FLAG_2 (msym) = 1
66
67 #define MSYMBOL_IS_RTC(msym) \
68 MSYMBOL_TARGET_FLAG_1 (msym)
69
70 #define MSYMBOL_IS_RTI(msym) \
71 MSYMBOL_TARGET_FLAG_2 (msym)
72
73 enum insn_return_kind {
74 RETURN_RTS,
75 RETURN_RTC,
76 RETURN_RTI
77 };
78
79
80 /* Register numbers of various important registers. */
81
82 #define HARD_X_REGNUM 0
83 #define HARD_D_REGNUM 1
84 #define HARD_Y_REGNUM 2
85 #define HARD_SP_REGNUM 3
86 #define HARD_PC_REGNUM 4
87
88 #define HARD_A_REGNUM 5
89 #define HARD_B_REGNUM 6
90 #define HARD_CCR_REGNUM 7
91
92 /* 68HC12 page number register.
93 Note: to keep a compatibility with gcc register naming, we must
94 not have to rename FP and other soft registers. The page register
95 is a real hard register and must therefore be counted by gdbarch_num_regs.
96 For this it has the same number as Z register (which is not used). */
97 #define HARD_PAGE_REGNUM 8
98 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
99
100 /* Z is replaced by X or Y by gcc during machine reorg.
101 ??? There is no way to get it and even know whether
102 it's in X or Y or in ZS. */
103 #define SOFT_Z_REGNUM 8
104
105 /* Soft registers. These registers are special. There are treated
106 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
107 They are physically located in memory. */
108 #define SOFT_FP_REGNUM 9
109 #define SOFT_TMP_REGNUM 10
110 #define SOFT_ZS_REGNUM 11
111 #define SOFT_XY_REGNUM 12
112 #define SOFT_UNUSED_REGNUM 13
113 #define SOFT_D1_REGNUM 14
114 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
115 #define M68HC11_MAX_SOFT_REGS 32
116
117 #define M68HC11_NUM_REGS (8)
118 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
119 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
120
121 #define M68HC11_REG_SIZE (2)
122
123 #define M68HC12_NUM_REGS (9)
124 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
125 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
126
127 struct insn_sequence;
128 struct gdbarch_tdep
129 {
130 /* Stack pointer correction value. For 68hc11, the stack pointer points
131 to the next push location. An offset of 1 must be applied to obtain
132 the address where the last value is saved. For 68hc12, the stack
133 pointer points to the last value pushed. No offset is necessary. */
134 int stack_correction;
135
136 /* Description of instructions in the prologue. */
137 struct insn_sequence *prologue;
138
139 /* True if the page memory bank register is available
140 and must be used. */
141 int use_page_register;
142
143 /* ELF flags for ABI. */
144 int elf_flags;
145 };
146
147 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
148 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
149
150 struct m68hc11_unwind_cache
151 {
152 /* The previous frame's inner most stack address. Used as this
153 frame ID's stack_addr. */
154 CORE_ADDR prev_sp;
155 /* The frame's base, optionally used by the high-level debug info. */
156 CORE_ADDR base;
157 CORE_ADDR pc;
158 int size;
159 int prologue_type;
160 CORE_ADDR return_pc;
161 CORE_ADDR sp_offset;
162 int frameless;
163 enum insn_return_kind return_kind;
164
165 /* Table indicating the location of each and every register. */
166 struct trad_frame_saved_reg *saved_regs;
167 };
168
169 /* Table of registers for 68HC11. This includes the hard registers
170 and the soft registers used by GCC. */
171 static char *
172 m68hc11_register_names[] =
173 {
174 "x", "d", "y", "sp", "pc", "a", "b",
175 "ccr", "page", "frame","tmp", "zs", "xy", 0,
176 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
177 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
178 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
179 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
180 "d29", "d30", "d31", "d32"
181 };
182
183 struct m68hc11_soft_reg
184 {
185 const char *name;
186 CORE_ADDR addr;
187 };
188
189 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
190
191 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
192
193 static int soft_min_addr;
194 static int soft_max_addr;
195 static int soft_reg_initialized = 0;
196
197 /* Look in the symbol table for the address of a pseudo register
198 in memory. If we don't find it, pretend the register is not used
199 and not available. */
200 static void
201 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
202 {
203 struct minimal_symbol *msymbol;
204
205 msymbol = lookup_minimal_symbol (name, NULL, NULL);
206 if (msymbol)
207 {
208 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
209 reg->name = xstrdup (name);
210
211 /* Keep track of the address range for soft registers. */
212 if (reg->addr < (CORE_ADDR) soft_min_addr)
213 soft_min_addr = reg->addr;
214 if (reg->addr > (CORE_ADDR) soft_max_addr)
215 soft_max_addr = reg->addr;
216 }
217 else
218 {
219 reg->name = 0;
220 reg->addr = 0;
221 }
222 }
223
224 /* Initialize the table of soft register addresses according
225 to the symbol table. */
226 static void
227 m68hc11_initialize_register_info (void)
228 {
229 int i;
230
231 if (soft_reg_initialized)
232 return;
233
234 soft_min_addr = INT_MAX;
235 soft_max_addr = 0;
236 for (i = 0; i < M68HC11_ALL_REGS; i++)
237 {
238 soft_regs[i].name = 0;
239 }
240
241 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
242 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
243 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
244 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
245 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
246
247 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
248 {
249 char buf[10];
250
251 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
252 m68hc11_get_register_info (&soft_regs[i], buf);
253 }
254
255 if (soft_regs[SOFT_FP_REGNUM].name == 0)
256 warning (_("No frame soft register found in the symbol table.\n"
257 "Stack backtrace will not work."));
258 soft_reg_initialized = 1;
259 }
260
261 /* Given an address in memory, return the soft register number if
262 that address corresponds to a soft register. Returns -1 if not. */
263 static int
264 m68hc11_which_soft_register (CORE_ADDR addr)
265 {
266 int i;
267
268 if (addr < soft_min_addr || addr > soft_max_addr)
269 return -1;
270
271 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
272 {
273 if (soft_regs[i].name && soft_regs[i].addr == addr)
274 return i;
275 }
276 return -1;
277 }
278
279 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
280 pseudo registers. They are located in memory. Translate the register
281 fetch into a memory read. */
282 static enum register_status
283 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
284 struct regcache *regcache,
285 int regno, gdb_byte *buf)
286 {
287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
288
289 /* The PC is a pseudo reg only for 68HC12 with the memory bank
290 addressing mode. */
291 if (regno == M68HC12_HARD_PC_REGNUM)
292 {
293 ULONGEST pc;
294 const int regsize = 4;
295 enum register_status status;
296
297 status = regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
298 if (status != REG_VALID)
299 return status;
300 if (pc >= 0x8000 && pc < 0xc000)
301 {
302 ULONGEST page;
303
304 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
305 pc -= 0x8000;
306 pc += (page << 14);
307 pc += 0x1000000;
308 }
309 store_unsigned_integer (buf, regsize, byte_order, pc);
310 return REG_VALID;
311 }
312
313 m68hc11_initialize_register_info ();
314
315 /* Fetch a soft register: translate into a memory read. */
316 if (soft_regs[regno].name)
317 {
318 target_read_memory (soft_regs[regno].addr, buf, 2);
319 }
320 else
321 {
322 memset (buf, 0, 2);
323 }
324
325 return REG_VALID;
326 }
327
328 /* Store a pseudo register. Translate the register store
329 into a memory write. */
330 static void
331 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
332 struct regcache *regcache,
333 int regno, const gdb_byte *buf)
334 {
335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336
337 /* The PC is a pseudo reg only for 68HC12 with the memory bank
338 addressing mode. */
339 if (regno == M68HC12_HARD_PC_REGNUM)
340 {
341 const int regsize = 4;
342 char *tmp = alloca (regsize);
343 CORE_ADDR pc;
344
345 memcpy (tmp, buf, regsize);
346 pc = extract_unsigned_integer (tmp, regsize, byte_order);
347 if (pc >= 0x1000000)
348 {
349 pc -= 0x1000000;
350 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
351 (pc >> 14) & 0x0ff);
352 pc &= 0x03fff;
353 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
354 pc + 0x8000);
355 }
356 else
357 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
358 return;
359 }
360
361 m68hc11_initialize_register_info ();
362
363 /* Store a soft register: translate into a memory write. */
364 if (soft_regs[regno].name)
365 {
366 const int regsize = 2;
367 char *tmp = alloca (regsize);
368 memcpy (tmp, buf, regsize);
369 target_write_memory (soft_regs[regno].addr, tmp, regsize);
370 }
371 }
372
373 static const char *
374 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
375 {
376 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
377 return "pc";
378 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
379 return "ppc";
380
381 if (reg_nr < 0)
382 return NULL;
383 if (reg_nr >= M68HC11_ALL_REGS)
384 return NULL;
385
386 m68hc11_initialize_register_info ();
387
388 /* If we don't know the address of a soft register, pretend it
389 does not exist. */
390 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
391 return NULL;
392 return m68hc11_register_names[reg_nr];
393 }
394
395 static const unsigned char *
396 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
397 int *lenptr)
398 {
399 static unsigned char breakpoint[] = {0x0};
400
401 *lenptr = sizeof (breakpoint);
402 return breakpoint;
403 }
404
405 \f
406 /* 68HC11 & 68HC12 prologue analysis. */
407
408 #define MAX_CODES 12
409
410 /* 68HC11 opcodes. */
411 #undef M6811_OP_PAGE2
412 #define M6811_OP_PAGE2 (0x18)
413 #define M6811_OP_LDX (0xde)
414 #define M6811_OP_LDX_EXT (0xfe)
415 #define M6811_OP_PSHX (0x3c)
416 #define M6811_OP_STS (0x9f)
417 #define M6811_OP_STS_EXT (0xbf)
418 #define M6811_OP_TSX (0x30)
419 #define M6811_OP_XGDX (0x8f)
420 #define M6811_OP_ADDD (0xc3)
421 #define M6811_OP_TXS (0x35)
422 #define M6811_OP_DES (0x34)
423
424 /* 68HC12 opcodes. */
425 #define M6812_OP_PAGE2 (0x18)
426 #define M6812_OP_MOVW (0x01)
427 #define M6812_PB_PSHW (0xae)
428 #define M6812_OP_STS (0x5f)
429 #define M6812_OP_STS_EXT (0x7f)
430 #define M6812_OP_LEAS (0x1b)
431 #define M6812_OP_PSHX (0x34)
432 #define M6812_OP_PSHY (0x35)
433
434 /* Operand extraction. */
435 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
436 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
437 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
438 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
439
440 /* Identification of the sequence. */
441 enum m6811_seq_type
442 {
443 P_LAST = 0,
444 P_SAVE_REG, /* Save a register on the stack. */
445 P_SET_FRAME, /* Setup the frame pointer. */
446 P_LOCAL_1, /* Allocate 1 byte for locals. */
447 P_LOCAL_2, /* Allocate 2 bytes for locals. */
448 P_LOCAL_N /* Allocate N bytes for locals. */
449 };
450
451 struct insn_sequence {
452 enum m6811_seq_type type;
453 unsigned length;
454 unsigned short code[MAX_CODES];
455 };
456
457 /* Sequence of instructions in the 68HC11 function prologue. */
458 static struct insn_sequence m6811_prologue[] = {
459 /* Sequences to save a soft-register. */
460 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
464 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
465 M6811_OP_PSHX } },
466 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PAGE2, M6811_OP_PSHX } },
468
469 /* Sequences to allocate local variables. */
470 { P_LOCAL_N, 7, { M6811_OP_TSX,
471 M6811_OP_XGDX,
472 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
473 M6811_OP_XGDX,
474 M6811_OP_TXS } },
475 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
476 M6811_OP_PAGE2, M6811_OP_XGDX,
477 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_PAGE2, M6811_OP_TXS } },
480 { P_LOCAL_1, 1, { M6811_OP_DES } },
481 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
482 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
483
484 /* Initialize the frame pointer. */
485 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
486 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
487 { P_LAST, 0, { 0 } }
488 };
489
490
491 /* Sequence of instructions in the 68HC12 function prologue. */
492 static struct insn_sequence m6812_prologue[] = {
493 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
494 OP_IMM_HIGH, OP_IMM_LOW } },
495 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
496 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
497 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
498 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
499 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
500 { P_LAST, 0 }
501 };
502
503
504 /* Analyze the sequence of instructions starting at the given address.
505 Returns a pointer to the sequence when it is recognized and
506 the optional value (constant/address) associated with it. */
507 static struct insn_sequence *
508 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
509 struct insn_sequence *seq, CORE_ADDR pc,
510 CORE_ADDR *val)
511 {
512 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
513 unsigned char buffer[MAX_CODES];
514 unsigned bufsize;
515 unsigned j;
516 CORE_ADDR cur_val;
517 short v = 0;
518
519 bufsize = 0;
520 for (; seq->type != P_LAST; seq++)
521 {
522 cur_val = 0;
523 for (j = 0; j < seq->length; j++)
524 {
525 if (bufsize < j + 1)
526 {
527 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
528 1, byte_order);
529 bufsize++;
530 }
531 /* Continue while we match the opcode. */
532 if (seq->code[j] == buffer[j])
533 continue;
534
535 if ((seq->code[j] & 0xf00) == 0)
536 break;
537
538 /* Extract a sequence parameter (address or constant). */
539 switch (seq->code[j])
540 {
541 case OP_DIRECT:
542 cur_val = (CORE_ADDR) buffer[j];
543 break;
544
545 case OP_IMM_HIGH:
546 cur_val = cur_val & 0x0ff;
547 cur_val |= (buffer[j] << 8);
548 break;
549
550 case OP_IMM_LOW:
551 cur_val &= 0x0ff00;
552 cur_val |= buffer[j];
553 break;
554
555 case OP_PBYTE:
556 if ((buffer[j] & 0xE0) == 0x80)
557 {
558 v = buffer[j] & 0x1f;
559 if (v & 0x10)
560 v |= 0xfff0;
561 }
562 else if ((buffer[j] & 0xfe) == 0xf0)
563 {
564 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
565 if (buffer[j] & 1)
566 v |= 0xff00;
567 }
568 else if (buffer[j] == 0xf2)
569 {
570 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
571 }
572 cur_val = v;
573 break;
574 }
575 }
576
577 /* We have a full match. */
578 if (j == seq->length)
579 {
580 *val = cur_val;
581 return seq;
582 }
583 }
584 return 0;
585 }
586
587 /* Return the instruction that the function at the PC is using. */
588 static enum insn_return_kind
589 m68hc11_get_return_insn (CORE_ADDR pc)
590 {
591 struct minimal_symbol *sym;
592
593 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
594 function is stored by elfread.c in the high bit of the info field.
595 Use this to decide which instruction the function uses to return. */
596 sym = lookup_minimal_symbol_by_pc (pc);
597 if (sym == 0)
598 return RETURN_RTS;
599
600 if (MSYMBOL_IS_RTC (sym))
601 return RETURN_RTC;
602 else if (MSYMBOL_IS_RTI (sym))
603 return RETURN_RTI;
604 else
605 return RETURN_RTS;
606 }
607
608 /* Analyze the function prologue to find some information
609 about the function:
610 - the PC of the first line (for m68hc11_skip_prologue)
611 - the offset of the previous frame saved address (from current frame)
612 - the soft registers which are pushed. */
613 static CORE_ADDR
614 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
615 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
616 {
617 LONGEST save_addr;
618 CORE_ADDR func_end;
619 int size;
620 int found_frame_point;
621 int saved_reg;
622 int done = 0;
623 struct insn_sequence *seq_table;
624
625 info->size = 0;
626 info->sp_offset = 0;
627 if (pc >= current_pc)
628 return current_pc;
629
630 size = 0;
631
632 m68hc11_initialize_register_info ();
633 if (pc == 0)
634 {
635 info->size = 0;
636 return pc;
637 }
638
639 seq_table = gdbarch_tdep (gdbarch)->prologue;
640
641 /* The 68hc11 stack is as follows:
642
643
644 | |
645 +-----------+
646 | |
647 | args |
648 | |
649 +-----------+
650 | PC-return |
651 +-----------+
652 | Old frame |
653 +-----------+
654 | |
655 | Locals |
656 | |
657 +-----------+ <--- current frame
658 | |
659
660 With most processors (like 68K) the previous frame can be computed
661 easily because it is always at a fixed offset (see link/unlink).
662 That is, locals are accessed with negative offsets, arguments are
663 accessed with positive ones. Since 68hc11 only supports offsets
664 in the range [0..255], the frame is defined at the bottom of
665 locals (see picture).
666
667 The purpose of the analysis made here is to find out the size
668 of locals in this function. An alternative to this is to use
669 DWARF2 info. This would be better but I don't know how to
670 access dwarf2 debug from this function.
671
672 Walk from the function entry point to the point where we save
673 the frame. While walking instructions, compute the size of bytes
674 which are pushed. This gives us the index to access the previous
675 frame.
676
677 We limit the search to 128 bytes so that the algorithm is bounded
678 in case of random and wrong code. We also stop and abort if
679 we find an instruction which is not supposed to appear in the
680 prologue (as generated by gcc 2.95, 2.96). */
681
682 func_end = pc + 128;
683 found_frame_point = 0;
684 info->size = 0;
685 save_addr = 0;
686 while (!done && pc + 2 < func_end)
687 {
688 struct insn_sequence *seq;
689 CORE_ADDR val;
690
691 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
692 if (seq == 0)
693 break;
694
695 /* If we are within the instruction group, we can't advance the
696 pc nor the stack offset. Otherwise the caller's stack computed
697 from the current stack can be wrong. */
698 if (pc + seq->length > current_pc)
699 break;
700
701 pc = pc + seq->length;
702 if (seq->type == P_SAVE_REG)
703 {
704 if (found_frame_point)
705 {
706 saved_reg = m68hc11_which_soft_register (val);
707 if (saved_reg < 0)
708 break;
709
710 save_addr -= 2;
711 if (info->saved_regs)
712 info->saved_regs[saved_reg].addr = save_addr;
713 }
714 else
715 {
716 size += 2;
717 }
718 }
719 else if (seq->type == P_SET_FRAME)
720 {
721 found_frame_point = 1;
722 info->size = size;
723 }
724 else if (seq->type == P_LOCAL_1)
725 {
726 size += 1;
727 }
728 else if (seq->type == P_LOCAL_2)
729 {
730 size += 2;
731 }
732 else if (seq->type == P_LOCAL_N)
733 {
734 /* Stack pointer is decremented for the allocation. */
735 if (val & 0x8000)
736 size -= (int) (val) | 0xffff0000;
737 else
738 size -= val;
739 }
740 }
741 if (found_frame_point == 0)
742 info->sp_offset = size;
743 else
744 info->sp_offset = -1;
745 return pc;
746 }
747
748 static CORE_ADDR
749 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
750 {
751 CORE_ADDR func_addr, func_end;
752 struct symtab_and_line sal;
753 struct m68hc11_unwind_cache tmp_cache = { 0 };
754
755 /* If we have line debugging information, then the end of the
756 prologue should be the first assembly instruction of the
757 first source line. */
758 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
759 {
760 sal = find_pc_line (func_addr, 0);
761 if (sal.end && sal.end < func_end)
762 return sal.end;
763 }
764
765 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
766 return pc;
767 }
768
769 static CORE_ADDR
770 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
771 {
772 ULONGEST pc;
773
774 pc = frame_unwind_register_unsigned (next_frame,
775 gdbarch_pc_regnum (gdbarch));
776 return pc;
777 }
778
779 /* Put here the code to store, into fi->saved_regs, the addresses of
780 the saved registers of frame described by FRAME_INFO. This
781 includes special registers such as pc and fp saved in special ways
782 in the stack frame. sp is even more special: the address we return
783 for it IS the sp for the next frame. */
784
785 static struct m68hc11_unwind_cache *
786 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
787 void **this_prologue_cache)
788 {
789 struct gdbarch *gdbarch = get_frame_arch (this_frame);
790 ULONGEST prev_sp;
791 ULONGEST this_base;
792 struct m68hc11_unwind_cache *info;
793 CORE_ADDR current_pc;
794 int i;
795
796 if ((*this_prologue_cache))
797 return (*this_prologue_cache);
798
799 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
800 (*this_prologue_cache) = info;
801 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
802
803 info->pc = get_frame_func (this_frame);
804
805 info->size = 0;
806 info->return_kind = m68hc11_get_return_insn (info->pc);
807
808 /* The SP was moved to the FP. This indicates that a new frame
809 was created. Get THIS frame's FP value by unwinding it from
810 the next frame. */
811 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
812 if (this_base == 0)
813 {
814 info->base = 0;
815 return info;
816 }
817
818 current_pc = get_frame_pc (this_frame);
819 if (info->pc != 0)
820 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
821
822 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
823
824 if (info->sp_offset != (CORE_ADDR) -1)
825 {
826 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
827 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
828 prev_sp = this_base + info->sp_offset + 2;
829 this_base += STACK_CORRECTION (gdbarch);
830 }
831 else
832 {
833 /* The FP points at the last saved register. Adjust the FP back
834 to before the first saved register giving the SP. */
835 prev_sp = this_base + info->size + 2;
836
837 this_base += STACK_CORRECTION (gdbarch);
838 if (soft_regs[SOFT_FP_REGNUM].name)
839 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
840 }
841
842 if (info->return_kind == RETURN_RTC)
843 {
844 prev_sp += 1;
845 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
847 }
848 else if (info->return_kind == RETURN_RTI)
849 {
850 prev_sp += 7;
851 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
852 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
853 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
854 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
855 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
856 }
857
858 /* Add 1 here to adjust for the post-decrement nature of the push
859 instruction. */
860 info->prev_sp = prev_sp;
861
862 info->base = this_base;
863
864 /* Adjust all the saved registers so that they contain addresses and not
865 offsets. */
866 for (i = 0;
867 i < gdbarch_num_regs (gdbarch)
868 + gdbarch_num_pseudo_regs (gdbarch) - 1;
869 i++)
870 if (trad_frame_addr_p (info->saved_regs, i))
871 {
872 info->saved_regs[i].addr += this_base;
873 }
874
875 /* The previous frame's SP needed to be computed. Save the computed
876 value. */
877 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
878
879 return info;
880 }
881
882 /* Given a GDB frame, determine the address of the calling function's
883 frame. This will be used to create a new GDB frame struct. */
884
885 static void
886 m68hc11_frame_this_id (struct frame_info *this_frame,
887 void **this_prologue_cache,
888 struct frame_id *this_id)
889 {
890 struct m68hc11_unwind_cache *info
891 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
892 CORE_ADDR base;
893 CORE_ADDR func;
894 struct frame_id id;
895
896 /* The FUNC is easy. */
897 func = get_frame_func (this_frame);
898
899 /* Hopefully the prologue analysis either correctly determined the
900 frame's base (which is the SP from the previous frame), or set
901 that base to "NULL". */
902 base = info->prev_sp;
903 if (base == 0)
904 return;
905
906 id = frame_id_build (base, func);
907 (*this_id) = id;
908 }
909
910 static struct value *
911 m68hc11_frame_prev_register (struct frame_info *this_frame,
912 void **this_prologue_cache, int regnum)
913 {
914 struct value *value;
915 struct m68hc11_unwind_cache *info
916 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
917
918 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
919
920 /* Take into account the 68HC12 specific call (PC + page). */
921 if (regnum == HARD_PC_REGNUM
922 && info->return_kind == RETURN_RTC
923 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
924 {
925 CORE_ADDR pc = value_as_long (value);
926 if (pc >= 0x08000 && pc < 0x0c000)
927 {
928 CORE_ADDR page;
929
930 release_value (value);
931 value_free (value);
932
933 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
934 HARD_PAGE_REGNUM);
935 page = value_as_long (value);
936 release_value (value);
937 value_free (value);
938
939 pc -= 0x08000;
940 pc += ((page & 0x0ff) << 14);
941 pc += 0x1000000;
942
943 return frame_unwind_got_constant (this_frame, regnum, pc);
944 }
945 }
946
947 return value;
948 }
949
950 static const struct frame_unwind m68hc11_frame_unwind = {
951 NORMAL_FRAME,
952 default_frame_unwind_stop_reason,
953 m68hc11_frame_this_id,
954 m68hc11_frame_prev_register,
955 NULL,
956 default_frame_sniffer
957 };
958
959 static CORE_ADDR
960 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
961 {
962 struct m68hc11_unwind_cache *info
963 = m68hc11_frame_unwind_cache (this_frame, this_cache);
964
965 return info->base;
966 }
967
968 static CORE_ADDR
969 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
970 {
971 CORE_ADDR addr;
972 struct m68hc11_unwind_cache *info
973 = m68hc11_frame_unwind_cache (this_frame, this_cache);
974
975 addr = info->base + info->size;
976 if (info->return_kind == RETURN_RTC)
977 addr += 1;
978 else if (info->return_kind == RETURN_RTI)
979 addr += 7;
980
981 return addr;
982 }
983
984 static const struct frame_base m68hc11_frame_base = {
985 &m68hc11_frame_unwind,
986 m68hc11_frame_base_address,
987 m68hc11_frame_base_address,
988 m68hc11_frame_args_address
989 };
990
991 static CORE_ADDR
992 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
993 {
994 ULONGEST sp;
995 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
996 return sp;
997 }
998
999 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1000 frame. The frame ID's base needs to match the TOS value saved by
1001 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1002
1003 static struct frame_id
1004 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1005 {
1006 ULONGEST tos;
1007 CORE_ADDR pc = get_frame_pc (this_frame);
1008
1009 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1010 tos += 2;
1011 return frame_id_build (tos, pc);
1012 }
1013
1014 \f
1015 /* Get and print the register from the given frame. */
1016 static void
1017 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1018 struct frame_info *frame, int regno)
1019 {
1020 LONGEST rval;
1021
1022 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1023 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1024 rval = get_frame_register_unsigned (frame, regno);
1025 else
1026 rval = get_frame_register_signed (frame, regno);
1027
1028 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1029 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1030 {
1031 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1032 if (regno != HARD_CCR_REGNUM)
1033 print_longest (file, 'd', 1, rval);
1034 }
1035 else
1036 {
1037 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1038 {
1039 ULONGEST page;
1040
1041 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1042 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1043 (unsigned) rval);
1044 }
1045 else
1046 {
1047 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1048 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1049 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1050 print_longest (file, 'd', 1, rval);
1051 }
1052 }
1053
1054 if (regno == HARD_CCR_REGNUM)
1055 {
1056 /* CCR register */
1057 int C, Z, N, V;
1058 unsigned char l = rval & 0xff;
1059
1060 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1061 l & M6811_S_BIT ? 'S' : '-',
1062 l & M6811_X_BIT ? 'X' : '-',
1063 l & M6811_H_BIT ? 'H' : '-',
1064 l & M6811_I_BIT ? 'I' : '-',
1065 l & M6811_N_BIT ? 'N' : '-',
1066 l & M6811_Z_BIT ? 'Z' : '-',
1067 l & M6811_V_BIT ? 'V' : '-',
1068 l & M6811_C_BIT ? 'C' : '-');
1069 N = (l & M6811_N_BIT) != 0;
1070 Z = (l & M6811_Z_BIT) != 0;
1071 V = (l & M6811_V_BIT) != 0;
1072 C = (l & M6811_C_BIT) != 0;
1073
1074 /* Print flags following the h8300. */
1075 if ((C | Z) == 0)
1076 fprintf_filtered (file, "u> ");
1077 else if ((C | Z) == 1)
1078 fprintf_filtered (file, "u<= ");
1079 else if (C == 0)
1080 fprintf_filtered (file, "u< ");
1081
1082 if (Z == 0)
1083 fprintf_filtered (file, "!= ");
1084 else
1085 fprintf_filtered (file, "== ");
1086
1087 if ((N ^ V) == 0)
1088 fprintf_filtered (file, ">= ");
1089 else
1090 fprintf_filtered (file, "< ");
1091
1092 if ((Z | (N ^ V)) == 0)
1093 fprintf_filtered (file, "> ");
1094 else
1095 fprintf_filtered (file, "<= ");
1096 }
1097 }
1098
1099 /* Same as 'info reg' but prints the registers in a different way. */
1100 static void
1101 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1102 struct frame_info *frame, int regno, int cpregs)
1103 {
1104 if (regno >= 0)
1105 {
1106 const char *name = gdbarch_register_name (gdbarch, regno);
1107
1108 if (!name || !*name)
1109 return;
1110
1111 fprintf_filtered (file, "%-10s ", name);
1112 m68hc11_print_register (gdbarch, file, frame, regno);
1113 fprintf_filtered (file, "\n");
1114 }
1115 else
1116 {
1117 int i, nr;
1118
1119 fprintf_filtered (file, "PC=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1121
1122 fprintf_filtered (file, " SP=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1124
1125 fprintf_filtered (file, " FP=");
1126 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1127
1128 fprintf_filtered (file, "\nCCR=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1130
1131 fprintf_filtered (file, "\nD=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1133
1134 fprintf_filtered (file, " X=");
1135 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1136
1137 fprintf_filtered (file, " Y=");
1138 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1139
1140 if (gdbarch_tdep (gdbarch)->use_page_register)
1141 {
1142 fprintf_filtered (file, "\nPage=");
1143 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1144 }
1145 fprintf_filtered (file, "\n");
1146
1147 nr = 0;
1148 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1149 {
1150 /* Skip registers which are not defined in the symbol table. */
1151 if (soft_regs[i].name == 0)
1152 continue;
1153
1154 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1155 m68hc11_print_register (gdbarch, file, frame, i);
1156 nr++;
1157 if ((nr % 8) == 7)
1158 fprintf_filtered (file, "\n");
1159 else
1160 fprintf_filtered (file, " ");
1161 }
1162 if (nr && (nr % 8) != 7)
1163 fprintf_filtered (file, "\n");
1164 }
1165 }
1166
1167 static CORE_ADDR
1168 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1169 struct regcache *regcache, CORE_ADDR bp_addr,
1170 int nargs, struct value **args, CORE_ADDR sp,
1171 int struct_return, CORE_ADDR struct_addr)
1172 {
1173 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1174 int argnum;
1175 int first_stack_argnum;
1176 struct type *type;
1177 char *val;
1178 int len;
1179 char buf[2];
1180
1181 first_stack_argnum = 0;
1182 if (struct_return)
1183 {
1184 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1185 }
1186 else if (nargs > 0)
1187 {
1188 type = value_type (args[0]);
1189 len = TYPE_LENGTH (type);
1190
1191 /* First argument is passed in D and X registers. */
1192 if (len <= 4)
1193 {
1194 ULONGEST v;
1195
1196 v = extract_unsigned_integer (value_contents (args[0]),
1197 len, byte_order);
1198 first_stack_argnum = 1;
1199
1200 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1201 if (len > 2)
1202 {
1203 v >>= 16;
1204 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1205 }
1206 }
1207 }
1208
1209 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1210 {
1211 type = value_type (args[argnum]);
1212 len = TYPE_LENGTH (type);
1213
1214 if (len & 1)
1215 {
1216 static char zero = 0;
1217
1218 sp--;
1219 write_memory (sp, &zero, 1);
1220 }
1221 val = (char*) value_contents (args[argnum]);
1222 sp -= len;
1223 write_memory (sp, val, len);
1224 }
1225
1226 /* Store return address. */
1227 sp -= 2;
1228 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1229 write_memory (sp, buf, 2);
1230
1231 /* Finally, update the stack pointer... */
1232 sp -= STACK_CORRECTION (gdbarch);
1233 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1234
1235 /* ...and fake a frame pointer. */
1236 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1237
1238 /* DWARF2/GCC uses the stack address *before* the function call as a
1239 frame's CFA. */
1240 return sp + 2;
1241 }
1242
1243
1244 /* Return the GDB type object for the "standard" data type
1245 of data in register N. */
1246
1247 static struct type *
1248 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1249 {
1250 switch (reg_nr)
1251 {
1252 case HARD_PAGE_REGNUM:
1253 case HARD_A_REGNUM:
1254 case HARD_B_REGNUM:
1255 case HARD_CCR_REGNUM:
1256 return builtin_type (gdbarch)->builtin_uint8;
1257
1258 case M68HC12_HARD_PC_REGNUM:
1259 return builtin_type (gdbarch)->builtin_uint32;
1260
1261 default:
1262 return builtin_type (gdbarch)->builtin_uint16;
1263 }
1264 }
1265
1266 static void
1267 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1268 const void *valbuf)
1269 {
1270 int len;
1271
1272 len = TYPE_LENGTH (type);
1273
1274 /* First argument is passed in D and X registers. */
1275 if (len <= 2)
1276 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1277 else if (len <= 4)
1278 {
1279 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1280 len - 2, valbuf);
1281 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1282 }
1283 else
1284 error (_("return of value > 4 is not supported."));
1285 }
1286
1287
1288 /* Given a return value in `regcache' with a type `type',
1289 extract and copy its value into `valbuf'. */
1290
1291 static void
1292 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1293 void *valbuf)
1294 {
1295 int len = TYPE_LENGTH (type);
1296 char buf[M68HC11_REG_SIZE];
1297
1298 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1299 switch (len)
1300 {
1301 case 1:
1302 memcpy (valbuf, buf + 1, 1);
1303 break;
1304
1305 case 2:
1306 memcpy (valbuf, buf, 2);
1307 break;
1308
1309 case 3:
1310 memcpy ((char*) valbuf + 1, buf, 2);
1311 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1312 memcpy (valbuf, buf + 1, 1);
1313 break;
1314
1315 case 4:
1316 memcpy ((char*) valbuf + 2, buf, 2);
1317 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1318 memcpy (valbuf, buf, 2);
1319 break;
1320
1321 default:
1322 error (_("bad size for return value"));
1323 }
1324 }
1325
1326 static enum return_value_convention
1327 m68hc11_return_value (struct gdbarch *gdbarch, struct type *func_type,
1328 struct type *valtype, struct regcache *regcache,
1329 gdb_byte *readbuf, const gdb_byte *writebuf)
1330 {
1331 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1332 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1333 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1334 || TYPE_LENGTH (valtype) > 4)
1335 return RETURN_VALUE_STRUCT_CONVENTION;
1336 else
1337 {
1338 if (readbuf != NULL)
1339 m68hc11_extract_return_value (valtype, regcache, readbuf);
1340 if (writebuf != NULL)
1341 m68hc11_store_return_value (valtype, regcache, writebuf);
1342 return RETURN_VALUE_REGISTER_CONVENTION;
1343 }
1344 }
1345
1346 /* Test whether the ELF symbol corresponds to a function using rtc or
1347 rti to return. */
1348
1349 static void
1350 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1351 {
1352 unsigned char flags;
1353
1354 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1355 if (flags & STO_M68HC12_FAR)
1356 MSYMBOL_SET_RTC (msym);
1357 if (flags & STO_M68HC12_INTERRUPT)
1358 MSYMBOL_SET_RTI (msym);
1359 }
1360
1361 static int
1362 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1363 {
1364 if (info->arch == bfd_arch_m68hc11)
1365 return print_insn_m68hc11 (memaddr, info);
1366 else
1367 return print_insn_m68hc12 (memaddr, info);
1368 }
1369
1370 \f
1371
1372 /* 68HC11/68HC12 register groups.
1373 Identify real hard registers and soft registers used by gcc. */
1374
1375 static struct reggroup *m68hc11_soft_reggroup;
1376 static struct reggroup *m68hc11_hard_reggroup;
1377
1378 static void
1379 m68hc11_init_reggroups (void)
1380 {
1381 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1382 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1383 }
1384
1385 static void
1386 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1387 {
1388 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1389 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1390 reggroup_add (gdbarch, general_reggroup);
1391 reggroup_add (gdbarch, float_reggroup);
1392 reggroup_add (gdbarch, all_reggroup);
1393 reggroup_add (gdbarch, save_reggroup);
1394 reggroup_add (gdbarch, restore_reggroup);
1395 reggroup_add (gdbarch, vector_reggroup);
1396 reggroup_add (gdbarch, system_reggroup);
1397 }
1398
1399 static int
1400 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1401 struct reggroup *group)
1402 {
1403 /* We must save the real hard register as well as gcc
1404 soft registers including the frame pointer. */
1405 if (group == save_reggroup || group == restore_reggroup)
1406 {
1407 return (regnum <= gdbarch_num_regs (gdbarch)
1408 || ((regnum == SOFT_FP_REGNUM
1409 || regnum == SOFT_TMP_REGNUM
1410 || regnum == SOFT_ZS_REGNUM
1411 || regnum == SOFT_XY_REGNUM)
1412 && m68hc11_register_name (gdbarch, regnum)));
1413 }
1414
1415 /* Group to identify gcc soft registers (d1..dN). */
1416 if (group == m68hc11_soft_reggroup)
1417 {
1418 return regnum >= SOFT_D1_REGNUM
1419 && m68hc11_register_name (gdbarch, regnum);
1420 }
1421
1422 if (group == m68hc11_hard_reggroup)
1423 {
1424 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1425 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1426 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1427 }
1428 return default_register_reggroup_p (gdbarch, regnum, group);
1429 }
1430
1431 static struct gdbarch *
1432 m68hc11_gdbarch_init (struct gdbarch_info info,
1433 struct gdbarch_list *arches)
1434 {
1435 struct gdbarch *gdbarch;
1436 struct gdbarch_tdep *tdep;
1437 int elf_flags;
1438
1439 soft_reg_initialized = 0;
1440
1441 /* Extract the elf_flags if available. */
1442 if (info.abfd != NULL
1443 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1444 elf_flags = elf_elfheader (info.abfd)->e_flags;
1445 else
1446 elf_flags = 0;
1447
1448 /* Try to find a pre-existing architecture. */
1449 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1450 arches != NULL;
1451 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1452 {
1453 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1454 continue;
1455
1456 return arches->gdbarch;
1457 }
1458
1459 /* Need a new architecture. Fill in a target specific vector. */
1460 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1461 gdbarch = gdbarch_alloc (&info, tdep);
1462 tdep->elf_flags = elf_flags;
1463
1464 switch (info.bfd_arch_info->arch)
1465 {
1466 case bfd_arch_m68hc11:
1467 tdep->stack_correction = 1;
1468 tdep->use_page_register = 0;
1469 tdep->prologue = m6811_prologue;
1470 set_gdbarch_addr_bit (gdbarch, 16);
1471 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1472 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1473 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1474 break;
1475
1476 case bfd_arch_m68hc12:
1477 tdep->stack_correction = 0;
1478 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1479 tdep->prologue = m6812_prologue;
1480 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1481 set_gdbarch_num_pseudo_regs (gdbarch,
1482 elf_flags & E_M68HC12_BANKS
1483 ? M68HC12_NUM_PSEUDO_REGS
1484 : M68HC11_NUM_PSEUDO_REGS);
1485 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1486 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1487 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1488 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1489 break;
1490
1491 default:
1492 break;
1493 }
1494
1495 /* Initially set everything according to the ABI.
1496 Use 16-bit integers since it will be the case for most
1497 programs. The size of these types should normally be set
1498 according to the dwarf2 debug information. */
1499 set_gdbarch_short_bit (gdbarch, 16);
1500 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1501 set_gdbarch_float_bit (gdbarch, 32);
1502 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1503 set_gdbarch_long_double_bit (gdbarch, 64);
1504 set_gdbarch_long_bit (gdbarch, 32);
1505 set_gdbarch_ptr_bit (gdbarch, 16);
1506 set_gdbarch_long_long_bit (gdbarch, 64);
1507
1508 /* Characters are unsigned. */
1509 set_gdbarch_char_signed (gdbarch, 0);
1510
1511 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1512 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1513
1514 /* Set register info. */
1515 set_gdbarch_fp0_regnum (gdbarch, -1);
1516
1517 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1518 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1519 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1520 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1521 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1522
1523 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1524
1525 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1526 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1527 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1528 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1529 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1530
1531 m68hc11_add_reggroups (gdbarch);
1532 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1533 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1534
1535 /* Hook in the DWARF CFI frame unwinder. */
1536 dwarf2_append_unwinders (gdbarch);
1537
1538 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1539 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1540
1541 /* Methods for saving / extracting a dummy frame's ID. The ID's
1542 stack address must match the SP value returned by
1543 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1544 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1545
1546 /* Return the unwound PC value. */
1547 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1548
1549 /* Minsymbol frobbing. */
1550 set_gdbarch_elf_make_msymbol_special (gdbarch,
1551 m68hc11_elf_make_msymbol_special);
1552
1553 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1554
1555 return gdbarch;
1556 }
1557
1558 /* -Wmissing-prototypes */
1559 extern initialize_file_ftype _initialize_m68hc11_tdep;
1560
1561 void
1562 _initialize_m68hc11_tdep (void)
1563 {
1564 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1565 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1566 m68hc11_init_reggroups ();
1567 }
1568
This page took 0.062275 seconds and 4 git commands to generate.