Remove regcache_raw_read
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41
42 #include "target.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
45 #include "elf-bfd.h"
46
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
58
59 #define MSYMBOL_SET_RTC(msym) \
60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
61
62 #define MSYMBOL_SET_RTI(msym) \
63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
64
65 #define MSYMBOL_IS_RTC(msym) \
66 MSYMBOL_TARGET_FLAG_1 (msym)
67
68 #define MSYMBOL_IS_RTI(msym) \
69 MSYMBOL_TARGET_FLAG_2 (msym)
70
71 enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75 };
76
77
78 /* Register numbers of various important registers. */
79
80 #define HARD_X_REGNUM 0
81 #define HARD_D_REGNUM 1
82 #define HARD_Y_REGNUM 2
83 #define HARD_SP_REGNUM 3
84 #define HARD_PC_REGNUM 4
85
86 #define HARD_A_REGNUM 5
87 #define HARD_B_REGNUM 6
88 #define HARD_CCR_REGNUM 7
89
90 /* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
93 is a real hard register and must therefore be counted by gdbarch_num_regs.
94 For this it has the same number as Z register (which is not used). */
95 #define HARD_PAGE_REGNUM 8
96 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
97
98 /* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101 #define SOFT_Z_REGNUM 8
102
103 /* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106 #define SOFT_FP_REGNUM 9
107 #define SOFT_TMP_REGNUM 10
108 #define SOFT_ZS_REGNUM 11
109 #define SOFT_XY_REGNUM 12
110 #define SOFT_UNUSED_REGNUM 13
111 #define SOFT_D1_REGNUM 14
112 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113 #define M68HC11_MAX_SOFT_REGS 32
114
115 #define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
116 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119 #define M68HC11_REG_SIZE (2)
120
121 #define M68HC12_NUM_REGS (9)
122 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
125 struct insn_sequence;
126 struct gdbarch_tdep
127 {
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
136
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
141 /* ELF flags for ABI. */
142 int elf_flags;
143 };
144
145 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
147
148 struct m68hc11_unwind_cache
149 {
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165 };
166
167 /* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
169 static const char *
170 m68hc11_register_names[] =
171 {
172 "x", "d", "y", "sp", "pc", "a", "b",
173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179 };
180
181 struct m68hc11_soft_reg
182 {
183 const char *name;
184 CORE_ADDR addr;
185 };
186
187 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
188
189 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
190
191 static int soft_min_addr;
192 static int soft_max_addr;
193 static int soft_reg_initialized = 0;
194
195 /* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198 static void
199 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200 {
201 struct bound_minimal_symbol msymbol;
202
203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
204 if (msymbol.minsym)
205 {
206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220 }
221
222 /* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225 m68hc11_initialize_register_info (void)
226 {
227 int i;
228
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
244
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
248
249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
252
253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
256 soft_reg_initialized = 1;
257 }
258
259 /* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261 static int
262 m68hc11_which_soft_register (CORE_ADDR addr)
263 {
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275 }
276
277 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
280 static enum register_status
281 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
282 readable_regcache *regcache,
283 int regno, gdb_byte *buf)
284 {
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
291 ULONGEST pc;
292 const int regsize = 4;
293 enum register_status status;
294
295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
296 if (status != REG_VALID)
297 return status;
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
300 ULONGEST page;
301
302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, byte_order, pc);
308 return REG_VALID;
309 }
310
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
322
323 return REG_VALID;
324 }
325
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
328 static void
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
332 {
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
339 const int regsize = 4;
340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
350 pc &= 0x03fff;
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
353 }
354 else
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
356 return;
357 }
358
359 m68hc11_initialize_register_info ();
360
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
364 const int regsize = 2;
365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
368 }
369 }
370
371 static const char *
372 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
373 {
374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
375 return "pc";
376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
377 return "ppc";
378
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
384 m68hc11_initialize_register_info ();
385
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391 }
392
393 constexpr gdb_byte m68hc11_break_insn[] = {0x0};
394
395 typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
396 \f
397 /* 68HC11 & 68HC12 prologue analysis. */
398
399 #define MAX_CODES 12
400
401 /* 68HC11 opcodes. */
402 #undef M6811_OP_PAGE2
403 #define M6811_OP_PAGE2 (0x18)
404 #define M6811_OP_LDX (0xde)
405 #define M6811_OP_LDX_EXT (0xfe)
406 #define M6811_OP_PSHX (0x3c)
407 #define M6811_OP_STS (0x9f)
408 #define M6811_OP_STS_EXT (0xbf)
409 #define M6811_OP_TSX (0x30)
410 #define M6811_OP_XGDX (0x8f)
411 #define M6811_OP_ADDD (0xc3)
412 #define M6811_OP_TXS (0x35)
413 #define M6811_OP_DES (0x34)
414
415 /* 68HC12 opcodes. */
416 #define M6812_OP_PAGE2 (0x18)
417 #define M6812_OP_MOVW (0x01)
418 #define M6812_PB_PSHW (0xae)
419 #define M6812_OP_STS (0x5f)
420 #define M6812_OP_STS_EXT (0x7f)
421 #define M6812_OP_LEAS (0x1b)
422 #define M6812_OP_PSHX (0x34)
423 #define M6812_OP_PSHY (0x35)
424
425 /* Operand extraction. */
426 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431 /* Identification of the sequence. */
432 enum m6811_seq_type
433 {
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440 };
441
442 struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446 };
447
448 /* Sequence of instructions in the 68HC11 function prologue. */
449 static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
452 M6811_OP_PSHX } },
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
478 { P_LAST, 0, { 0 } }
479 };
480
481
482 /* Sequence of instructions in the 68HC12 function prologue. */
483 static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
491 { P_LAST, 0 }
492 };
493
494
495 /* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
497 the optional value (constant/address) associated with it. */
498 static struct insn_sequence *
499 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
501 CORE_ADDR *val)
502 {
503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
515 {
516 if (bufsize < j + 1)
517 {
518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
519 1, byte_order);
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
562 }
563 cur_val = v;
564 break;
565 }
566 }
567
568 /* We have a full match. */
569 if (j == seq->length)
570 {
571 *val = cur_val;
572 return seq;
573 }
574 }
575 return 0;
576 }
577
578 /* Return the instruction that the function at the PC is using. */
579 static enum insn_return_kind
580 m68hc11_get_return_insn (CORE_ADDR pc)
581 {
582 struct bound_minimal_symbol sym;
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
588 if (sym.minsym == 0)
589 return RETURN_RTS;
590
591 if (MSYMBOL_IS_RTC (sym.minsym))
592 return RETURN_RTC;
593 else if (MSYMBOL_IS_RTI (sym.minsym))
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597 }
598
599 /* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
604 static CORE_ADDR
605 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
607 {
608 LONGEST save_addr;
609 CORE_ADDR func_end;
610 int size;
611 int found_frame_point;
612 int saved_reg;
613 int done = 0;
614 struct insn_sequence *seq_table;
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
621 size = 0;
622
623 m68hc11_initialize_register_info ();
624 if (pc == 0)
625 {
626 info->size = 0;
627 return pc;
628 }
629
630 seq_table = gdbarch_tdep (gdbarch)->prologue;
631
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
671 prologue (as generated by gcc 2.95, 2.96). */
672
673 func_end = pc + 128;
674 found_frame_point = 0;
675 info->size = 0;
676 save_addr = 0;
677 while (!done && pc + 2 < func_end)
678 {
679 struct insn_sequence *seq;
680 CORE_ADDR val;
681
682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
683 if (seq == 0)
684 break;
685
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
690 break;
691
692 pc = pc + seq->length;
693 if (seq->type == P_SAVE_REG)
694 {
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
700
701 save_addr -= 2;
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].addr = save_addr;
704 }
705 else
706 {
707 size += 2;
708 }
709 }
710 else if (seq->type == P_SET_FRAME)
711 {
712 found_frame_point = 1;
713 info->size = size;
714 }
715 else if (seq->type == P_LOCAL_1)
716 {
717 size += 1;
718 }
719 else if (seq->type == P_LOCAL_2)
720 {
721 size += 2;
722 }
723 else if (seq->type == P_LOCAL_N)
724 {
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
730 }
731 }
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
737 }
738
739 static CORE_ADDR
740 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
741 {
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
744 struct m68hc11_unwind_cache tmp_cache = { 0 };
745
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
757 return pc;
758 }
759
760 static CORE_ADDR
761 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
762 {
763 ULONGEST pc;
764
765 pc = frame_unwind_register_unsigned (next_frame,
766 gdbarch_pc_regnum (gdbarch));
767 return pc;
768 }
769
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
775
776 static struct m68hc11_unwind_cache *
777 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
778 void **this_prologue_cache)
779 {
780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
788 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
793
794 info->pc = get_frame_func (this_frame);
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
802 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
809 current_pc = get_frame_pc (this_frame);
810 if (info->pc != 0)
811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
818 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += STACK_CORRECTION (gdbarch);
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
828 this_base += STACK_CORRECTION (gdbarch);
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
850 instruction. */
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
857 for (i = 0;
858 i < gdbarch_num_regs (gdbarch)
859 + gdbarch_num_pseudo_regs (gdbarch) - 1;
860 i++)
861 if (trad_frame_addr_p (info->saved_regs, i))
862 {
863 info->saved_regs[i].addr += this_base;
864 }
865
866 /* The previous frame's SP needed to be computed. Save the computed
867 value. */
868 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
869
870 return info;
871 }
872
873 /* Given a GDB frame, determine the address of the calling function's
874 frame. This will be used to create a new GDB frame struct. */
875
876 static void
877 m68hc11_frame_this_id (struct frame_info *this_frame,
878 void **this_prologue_cache,
879 struct frame_id *this_id)
880 {
881 struct m68hc11_unwind_cache *info
882 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
883 CORE_ADDR base;
884 CORE_ADDR func;
885 struct frame_id id;
886
887 /* The FUNC is easy. */
888 func = get_frame_func (this_frame);
889
890 /* Hopefully the prologue analysis either correctly determined the
891 frame's base (which is the SP from the previous frame), or set
892 that base to "NULL". */
893 base = info->prev_sp;
894 if (base == 0)
895 return;
896
897 id = frame_id_build (base, func);
898 (*this_id) = id;
899 }
900
901 static struct value *
902 m68hc11_frame_prev_register (struct frame_info *this_frame,
903 void **this_prologue_cache, int regnum)
904 {
905 struct value *value;
906 struct m68hc11_unwind_cache *info
907 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
908
909 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
910
911 /* Take into account the 68HC12 specific call (PC + page). */
912 if (regnum == HARD_PC_REGNUM
913 && info->return_kind == RETURN_RTC
914 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
915 {
916 CORE_ADDR pc = value_as_long (value);
917 if (pc >= 0x08000 && pc < 0x0c000)
918 {
919 CORE_ADDR page;
920
921 release_value (value);
922
923 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
924 HARD_PAGE_REGNUM);
925 page = value_as_long (value);
926 release_value (value);
927
928 pc -= 0x08000;
929 pc += ((page & 0x0ff) << 14);
930 pc += 0x1000000;
931
932 return frame_unwind_got_constant (this_frame, regnum, pc);
933 }
934 }
935
936 return value;
937 }
938
939 static const struct frame_unwind m68hc11_frame_unwind = {
940 NORMAL_FRAME,
941 default_frame_unwind_stop_reason,
942 m68hc11_frame_this_id,
943 m68hc11_frame_prev_register,
944 NULL,
945 default_frame_sniffer
946 };
947
948 static CORE_ADDR
949 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
950 {
951 struct m68hc11_unwind_cache *info
952 = m68hc11_frame_unwind_cache (this_frame, this_cache);
953
954 return info->base;
955 }
956
957 static CORE_ADDR
958 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
959 {
960 CORE_ADDR addr;
961 struct m68hc11_unwind_cache *info
962 = m68hc11_frame_unwind_cache (this_frame, this_cache);
963
964 addr = info->base + info->size;
965 if (info->return_kind == RETURN_RTC)
966 addr += 1;
967 else if (info->return_kind == RETURN_RTI)
968 addr += 7;
969
970 return addr;
971 }
972
973 static const struct frame_base m68hc11_frame_base = {
974 &m68hc11_frame_unwind,
975 m68hc11_frame_base_address,
976 m68hc11_frame_base_address,
977 m68hc11_frame_args_address
978 };
979
980 static CORE_ADDR
981 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
982 {
983 ULONGEST sp;
984 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
985 return sp;
986 }
987
988 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
989 frame. The frame ID's base needs to match the TOS value saved by
990 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
991
992 static struct frame_id
993 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
994 {
995 ULONGEST tos;
996 CORE_ADDR pc = get_frame_pc (this_frame);
997
998 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
999 tos += 2;
1000 return frame_id_build (tos, pc);
1001 }
1002
1003 \f
1004 /* Get and print the register from the given frame. */
1005 static void
1006 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
1008 {
1009 LONGEST rval;
1010
1011 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1012 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1013 rval = get_frame_register_unsigned (frame, regno);
1014 else
1015 rval = get_frame_register_signed (frame, regno);
1016
1017 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1018 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1019 {
1020 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1021 if (regno != HARD_CCR_REGNUM)
1022 print_longest (file, 'd', 1, rval);
1023 }
1024 else
1025 {
1026 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1027 {
1028 ULONGEST page;
1029
1030 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1031 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1032 (unsigned) rval);
1033 }
1034 else
1035 {
1036 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1037 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1038 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1039 print_longest (file, 'd', 1, rval);
1040 }
1041 }
1042
1043 if (regno == HARD_CCR_REGNUM)
1044 {
1045 /* CCR register */
1046 int C, Z, N, V;
1047 unsigned char l = rval & 0xff;
1048
1049 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1050 l & M6811_S_BIT ? 'S' : '-',
1051 l & M6811_X_BIT ? 'X' : '-',
1052 l & M6811_H_BIT ? 'H' : '-',
1053 l & M6811_I_BIT ? 'I' : '-',
1054 l & M6811_N_BIT ? 'N' : '-',
1055 l & M6811_Z_BIT ? 'Z' : '-',
1056 l & M6811_V_BIT ? 'V' : '-',
1057 l & M6811_C_BIT ? 'C' : '-');
1058 N = (l & M6811_N_BIT) != 0;
1059 Z = (l & M6811_Z_BIT) != 0;
1060 V = (l & M6811_V_BIT) != 0;
1061 C = (l & M6811_C_BIT) != 0;
1062
1063 /* Print flags following the h8300. */
1064 if ((C | Z) == 0)
1065 fprintf_filtered (file, "u> ");
1066 else if ((C | Z) == 1)
1067 fprintf_filtered (file, "u<= ");
1068 else if (C == 0)
1069 fprintf_filtered (file, "u< ");
1070
1071 if (Z == 0)
1072 fprintf_filtered (file, "!= ");
1073 else
1074 fprintf_filtered (file, "== ");
1075
1076 if ((N ^ V) == 0)
1077 fprintf_filtered (file, ">= ");
1078 else
1079 fprintf_filtered (file, "< ");
1080
1081 if ((Z | (N ^ V)) == 0)
1082 fprintf_filtered (file, "> ");
1083 else
1084 fprintf_filtered (file, "<= ");
1085 }
1086 }
1087
1088 /* Same as 'info reg' but prints the registers in a different way. */
1089 static void
1090 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1091 struct frame_info *frame, int regno, int cpregs)
1092 {
1093 if (regno >= 0)
1094 {
1095 const char *name = gdbarch_register_name (gdbarch, regno);
1096
1097 if (!name || !*name)
1098 return;
1099
1100 fprintf_filtered (file, "%-10s ", name);
1101 m68hc11_print_register (gdbarch, file, frame, regno);
1102 fprintf_filtered (file, "\n");
1103 }
1104 else
1105 {
1106 int i, nr;
1107
1108 fprintf_filtered (file, "PC=");
1109 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1110
1111 fprintf_filtered (file, " SP=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1113
1114 fprintf_filtered (file, " FP=");
1115 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1116
1117 fprintf_filtered (file, "\nCCR=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1119
1120 fprintf_filtered (file, "\nD=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1122
1123 fprintf_filtered (file, " X=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1125
1126 fprintf_filtered (file, " Y=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1128
1129 if (gdbarch_tdep (gdbarch)->use_page_register)
1130 {
1131 fprintf_filtered (file, "\nPage=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1133 }
1134 fprintf_filtered (file, "\n");
1135
1136 nr = 0;
1137 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1138 {
1139 /* Skip registers which are not defined in the symbol table. */
1140 if (soft_regs[i].name == 0)
1141 continue;
1142
1143 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1144 m68hc11_print_register (gdbarch, file, frame, i);
1145 nr++;
1146 if ((nr % 8) == 7)
1147 fprintf_filtered (file, "\n");
1148 else
1149 fprintf_filtered (file, " ");
1150 }
1151 if (nr && (nr % 8) != 7)
1152 fprintf_filtered (file, "\n");
1153 }
1154 }
1155
1156 static CORE_ADDR
1157 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1158 struct regcache *regcache, CORE_ADDR bp_addr,
1159 int nargs, struct value **args, CORE_ADDR sp,
1160 int struct_return, CORE_ADDR struct_addr)
1161 {
1162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1163 int argnum;
1164 int first_stack_argnum;
1165 struct type *type;
1166 const gdb_byte *val;
1167 gdb_byte buf[2];
1168
1169 first_stack_argnum = 0;
1170 if (struct_return)
1171 {
1172 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1173 }
1174 else if (nargs > 0)
1175 {
1176 type = value_type (args[0]);
1177
1178 /* First argument is passed in D and X registers. */
1179 if (TYPE_LENGTH (type) <= 4)
1180 {
1181 ULONGEST v;
1182
1183 v = extract_unsigned_integer (value_contents (args[0]),
1184 TYPE_LENGTH (type), byte_order);
1185 first_stack_argnum = 1;
1186
1187 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1188 if (TYPE_LENGTH (type) > 2)
1189 {
1190 v >>= 16;
1191 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1192 }
1193 }
1194 }
1195
1196 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1197 {
1198 type = value_type (args[argnum]);
1199
1200 if (TYPE_LENGTH (type) & 1)
1201 {
1202 static gdb_byte zero = 0;
1203
1204 sp--;
1205 write_memory (sp, &zero, 1);
1206 }
1207 val = value_contents (args[argnum]);
1208 sp -= TYPE_LENGTH (type);
1209 write_memory (sp, val, TYPE_LENGTH (type));
1210 }
1211
1212 /* Store return address. */
1213 sp -= 2;
1214 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1215 write_memory (sp, buf, 2);
1216
1217 /* Finally, update the stack pointer... */
1218 sp -= STACK_CORRECTION (gdbarch);
1219 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1220
1221 /* ...and fake a frame pointer. */
1222 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1223
1224 /* DWARF2/GCC uses the stack address *before* the function call as a
1225 frame's CFA. */
1226 return sp + 2;
1227 }
1228
1229
1230 /* Return the GDB type object for the "standard" data type
1231 of data in register N. */
1232
1233 static struct type *
1234 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1235 {
1236 switch (reg_nr)
1237 {
1238 case HARD_PAGE_REGNUM:
1239 case HARD_A_REGNUM:
1240 case HARD_B_REGNUM:
1241 case HARD_CCR_REGNUM:
1242 return builtin_type (gdbarch)->builtin_uint8;
1243
1244 case M68HC12_HARD_PC_REGNUM:
1245 return builtin_type (gdbarch)->builtin_uint32;
1246
1247 default:
1248 return builtin_type (gdbarch)->builtin_uint16;
1249 }
1250 }
1251
1252 static void
1253 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1254 const gdb_byte *valbuf)
1255 {
1256 int len;
1257
1258 len = TYPE_LENGTH (type);
1259
1260 /* First argument is passed in D and X registers. */
1261 if (len <= 2)
1262 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1263 else if (len <= 4)
1264 {
1265 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1266 len - 2, valbuf);
1267 regcache_raw_write (regcache, HARD_D_REGNUM, valbuf + (len - 2));
1268 }
1269 else
1270 error (_("return of value > 4 is not supported."));
1271 }
1272
1273
1274 /* Given a return value in `regcache' with a type `type',
1275 extract and copy its value into `valbuf'. */
1276
1277 static void
1278 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1279 void *valbuf)
1280 {
1281 gdb_byte buf[M68HC11_REG_SIZE];
1282
1283 regcache->raw_read (HARD_D_REGNUM, buf);
1284 switch (TYPE_LENGTH (type))
1285 {
1286 case 1:
1287 memcpy (valbuf, buf + 1, 1);
1288 break;
1289
1290 case 2:
1291 memcpy (valbuf, buf, 2);
1292 break;
1293
1294 case 3:
1295 memcpy ((char*) valbuf + 1, buf, 2);
1296 regcache->raw_read (HARD_X_REGNUM, buf);
1297 memcpy (valbuf, buf + 1, 1);
1298 break;
1299
1300 case 4:
1301 memcpy ((char*) valbuf + 2, buf, 2);
1302 regcache->raw_read (HARD_X_REGNUM, buf);
1303 memcpy (valbuf, buf, 2);
1304 break;
1305
1306 default:
1307 error (_("bad size for return value"));
1308 }
1309 }
1310
1311 static enum return_value_convention
1312 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1313 struct type *valtype, struct regcache *regcache,
1314 gdb_byte *readbuf, const gdb_byte *writebuf)
1315 {
1316 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1317 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1318 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1319 || TYPE_LENGTH (valtype) > 4)
1320 return RETURN_VALUE_STRUCT_CONVENTION;
1321 else
1322 {
1323 if (readbuf != NULL)
1324 m68hc11_extract_return_value (valtype, regcache, readbuf);
1325 if (writebuf != NULL)
1326 m68hc11_store_return_value (valtype, regcache, writebuf);
1327 return RETURN_VALUE_REGISTER_CONVENTION;
1328 }
1329 }
1330
1331 /* Test whether the ELF symbol corresponds to a function using rtc or
1332 rti to return. */
1333
1334 static void
1335 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1336 {
1337 unsigned char flags;
1338
1339 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1340 if (flags & STO_M68HC12_FAR)
1341 MSYMBOL_SET_RTC (msym);
1342 if (flags & STO_M68HC12_INTERRUPT)
1343 MSYMBOL_SET_RTI (msym);
1344 }
1345 \f
1346
1347 /* 68HC11/68HC12 register groups.
1348 Identify real hard registers and soft registers used by gcc. */
1349
1350 static struct reggroup *m68hc11_soft_reggroup;
1351 static struct reggroup *m68hc11_hard_reggroup;
1352
1353 static void
1354 m68hc11_init_reggroups (void)
1355 {
1356 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1357 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1358 }
1359
1360 static void
1361 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1362 {
1363 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1364 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1365 reggroup_add (gdbarch, general_reggroup);
1366 reggroup_add (gdbarch, float_reggroup);
1367 reggroup_add (gdbarch, all_reggroup);
1368 reggroup_add (gdbarch, save_reggroup);
1369 reggroup_add (gdbarch, restore_reggroup);
1370 reggroup_add (gdbarch, vector_reggroup);
1371 reggroup_add (gdbarch, system_reggroup);
1372 }
1373
1374 static int
1375 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1376 struct reggroup *group)
1377 {
1378 /* We must save the real hard register as well as gcc
1379 soft registers including the frame pointer. */
1380 if (group == save_reggroup || group == restore_reggroup)
1381 {
1382 return (regnum <= gdbarch_num_regs (gdbarch)
1383 || ((regnum == SOFT_FP_REGNUM
1384 || regnum == SOFT_TMP_REGNUM
1385 || regnum == SOFT_ZS_REGNUM
1386 || regnum == SOFT_XY_REGNUM)
1387 && m68hc11_register_name (gdbarch, regnum)));
1388 }
1389
1390 /* Group to identify gcc soft registers (d1..dN). */
1391 if (group == m68hc11_soft_reggroup)
1392 {
1393 return regnum >= SOFT_D1_REGNUM
1394 && m68hc11_register_name (gdbarch, regnum);
1395 }
1396
1397 if (group == m68hc11_hard_reggroup)
1398 {
1399 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1400 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1401 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1402 }
1403 return default_register_reggroup_p (gdbarch, regnum, group);
1404 }
1405
1406 static struct gdbarch *
1407 m68hc11_gdbarch_init (struct gdbarch_info info,
1408 struct gdbarch_list *arches)
1409 {
1410 struct gdbarch *gdbarch;
1411 struct gdbarch_tdep *tdep;
1412 int elf_flags;
1413
1414 soft_reg_initialized = 0;
1415
1416 /* Extract the elf_flags if available. */
1417 if (info.abfd != NULL
1418 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1419 elf_flags = elf_elfheader (info.abfd)->e_flags;
1420 else
1421 elf_flags = 0;
1422
1423 /* Try to find a pre-existing architecture. */
1424 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1425 arches != NULL;
1426 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1427 {
1428 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1429 continue;
1430
1431 return arches->gdbarch;
1432 }
1433
1434 /* Need a new architecture. Fill in a target specific vector. */
1435 tdep = XCNEW (struct gdbarch_tdep);
1436 gdbarch = gdbarch_alloc (&info, tdep);
1437 tdep->elf_flags = elf_flags;
1438
1439 switch (info.bfd_arch_info->arch)
1440 {
1441 case bfd_arch_m68hc11:
1442 tdep->stack_correction = 1;
1443 tdep->use_page_register = 0;
1444 tdep->prologue = m6811_prologue;
1445 set_gdbarch_addr_bit (gdbarch, 16);
1446 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1447 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1448 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1449 break;
1450
1451 case bfd_arch_m68hc12:
1452 tdep->stack_correction = 0;
1453 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1454 tdep->prologue = m6812_prologue;
1455 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1456 set_gdbarch_num_pseudo_regs (gdbarch,
1457 elf_flags & E_M68HC12_BANKS
1458 ? M68HC12_NUM_PSEUDO_REGS
1459 : M68HC11_NUM_PSEUDO_REGS);
1460 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1461 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1462 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1463 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1464 break;
1465
1466 default:
1467 break;
1468 }
1469
1470 /* Initially set everything according to the ABI.
1471 Use 16-bit integers since it will be the case for most
1472 programs. The size of these types should normally be set
1473 according to the dwarf2 debug information. */
1474 set_gdbarch_short_bit (gdbarch, 16);
1475 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1476 set_gdbarch_float_bit (gdbarch, 32);
1477 if (elf_flags & E_M68HC11_F64)
1478 {
1479 set_gdbarch_double_bit (gdbarch, 64);
1480 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1481 }
1482 else
1483 {
1484 set_gdbarch_double_bit (gdbarch, 32);
1485 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1486 }
1487 set_gdbarch_long_double_bit (gdbarch, 64);
1488 set_gdbarch_long_bit (gdbarch, 32);
1489 set_gdbarch_ptr_bit (gdbarch, 16);
1490 set_gdbarch_long_long_bit (gdbarch, 64);
1491
1492 /* Characters are unsigned. */
1493 set_gdbarch_char_signed (gdbarch, 0);
1494
1495 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1496 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1497
1498 /* Set register info. */
1499 set_gdbarch_fp0_regnum (gdbarch, -1);
1500
1501 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1502 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1503 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1504 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1505 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1506
1507 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1508
1509 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1510 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1511 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1512 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1513 m68hc11_breakpoint::kind_from_pc);
1514 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1515 m68hc11_breakpoint::bp_from_kind);
1516
1517 m68hc11_add_reggroups (gdbarch);
1518 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1519 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1520
1521 /* Hook in the DWARF CFI frame unwinder. */
1522 dwarf2_append_unwinders (gdbarch);
1523
1524 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1525 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1526
1527 /* Methods for saving / extracting a dummy frame's ID. The ID's
1528 stack address must match the SP value returned by
1529 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1530 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1531
1532 /* Return the unwound PC value. */
1533 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1534
1535 /* Minsymbol frobbing. */
1536 set_gdbarch_elf_make_msymbol_special (gdbarch,
1537 m68hc11_elf_make_msymbol_special);
1538
1539 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1540
1541 return gdbarch;
1542 }
1543
1544 void
1545 _initialize_m68hc11_tdep (void)
1546 {
1547 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1548 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1549 m68hc11_init_reggroups ();
1550 }
1551
This page took 0.061443 seconds and 4 git commands to generate.