* blockframe.c: Remove obsolete comments.
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "dwarf2-frame.h"
31 #include "trad-frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "gdb_string.h"
37 #include "value.h"
38 #include "inferior.h"
39 #include "dis-asm.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "reggroups.h"
45
46 #include "target.h"
47 #include "opcode/m68hc11.h"
48 #include "elf/m68hc11.h"
49 #include "elf-bfd.h"
50
51 /* Macros for setting and testing a bit in a minimal symbol.
52 For 68HC11/68HC12 we have two flags that tell which return
53 type the function is using. This is used for prologue and frame
54 analysis to compute correct stack frame layout.
55
56 The MSB of the minimal symbol's "info" field is used for this purpose.
57
58 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
59 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
60 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
61 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
62
63 #define MSYMBOL_SET_RTC(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67 #define MSYMBOL_SET_RTI(msym) \
68 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
69 | 0x40000000)
70
71 #define MSYMBOL_IS_RTC(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
73
74 #define MSYMBOL_IS_RTI(msym) \
75 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
76
77 enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81 };
82
83
84 /* Register numbers of various important registers. */
85
86 #define HARD_X_REGNUM 0
87 #define HARD_D_REGNUM 1
88 #define HARD_Y_REGNUM 2
89 #define HARD_SP_REGNUM 3
90 #define HARD_PC_REGNUM 4
91
92 #define HARD_A_REGNUM 5
93 #define HARD_B_REGNUM 6
94 #define HARD_CCR_REGNUM 7
95
96 /* 68HC12 page number register.
97 Note: to keep a compatibility with gcc register naming, we must
98 not have to rename FP and other soft registers. The page register
99 is a real hard register and must therefore be counted by NUM_REGS.
100 For this it has the same number as Z register (which is not used). */
101 #define HARD_PAGE_REGNUM 8
102 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
103
104 /* Z is replaced by X or Y by gcc during machine reorg.
105 ??? There is no way to get it and even know whether
106 it's in X or Y or in ZS. */
107 #define SOFT_Z_REGNUM 8
108
109 /* Soft registers. These registers are special. There are treated
110 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
111 They are physically located in memory. */
112 #define SOFT_FP_REGNUM 9
113 #define SOFT_TMP_REGNUM 10
114 #define SOFT_ZS_REGNUM 11
115 #define SOFT_XY_REGNUM 12
116 #define SOFT_UNUSED_REGNUM 13
117 #define SOFT_D1_REGNUM 14
118 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
119 #define M68HC11_MAX_SOFT_REGS 32
120
121 #define M68HC11_NUM_REGS (8)
122 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
123 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
124
125 #define M68HC11_REG_SIZE (2)
126
127 #define M68HC12_NUM_REGS (9)
128 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
129 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
130
131 struct insn_sequence;
132 struct gdbarch_tdep
133 {
134 /* Stack pointer correction value. For 68hc11, the stack pointer points
135 to the next push location. An offset of 1 must be applied to obtain
136 the address where the last value is saved. For 68hc12, the stack
137 pointer points to the last value pushed. No offset is necessary. */
138 int stack_correction;
139
140 /* Description of instructions in the prologue. */
141 struct insn_sequence *prologue;
142
143 /* True if the page memory bank register is available
144 and must be used. */
145 int use_page_register;
146
147 /* ELF flags for ABI. */
148 int elf_flags;
149 };
150
151 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
152 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
153 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
154
155 struct m68hc11_unwind_cache
156 {
157 /* The previous frame's inner most stack address. Used as this
158 frame ID's stack_addr. */
159 CORE_ADDR prev_sp;
160 /* The frame's base, optionally used by the high-level debug info. */
161 CORE_ADDR base;
162 CORE_ADDR pc;
163 int size;
164 int prologue_type;
165 CORE_ADDR return_pc;
166 CORE_ADDR sp_offset;
167 int frameless;
168 enum insn_return_kind return_kind;
169
170 /* Table indicating the location of each and every register. */
171 struct trad_frame_saved_reg *saved_regs;
172 };
173
174 /* Table of registers for 68HC11. This includes the hard registers
175 and the soft registers used by GCC. */
176 static char *
177 m68hc11_register_names[] =
178 {
179 "x", "d", "y", "sp", "pc", "a", "b",
180 "ccr", "page", "frame","tmp", "zs", "xy", 0,
181 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
182 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
183 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
184 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
185 "d29", "d30", "d31", "d32"
186 };
187
188 struct m68hc11_soft_reg
189 {
190 const char *name;
191 CORE_ADDR addr;
192 };
193
194 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
195
196 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
197
198 static int soft_min_addr;
199 static int soft_max_addr;
200 static int soft_reg_initialized = 0;
201
202 /* Look in the symbol table for the address of a pseudo register
203 in memory. If we don't find it, pretend the register is not used
204 and not available. */
205 static void
206 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
207 {
208 struct minimal_symbol *msymbol;
209
210 msymbol = lookup_minimal_symbol (name, NULL, NULL);
211 if (msymbol)
212 {
213 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
214 reg->name = xstrdup (name);
215
216 /* Keep track of the address range for soft registers. */
217 if (reg->addr < (CORE_ADDR) soft_min_addr)
218 soft_min_addr = reg->addr;
219 if (reg->addr > (CORE_ADDR) soft_max_addr)
220 soft_max_addr = reg->addr;
221 }
222 else
223 {
224 reg->name = 0;
225 reg->addr = 0;
226 }
227 }
228
229 /* Initialize the table of soft register addresses according
230 to the symbol table. */
231 static void
232 m68hc11_initialize_register_info (void)
233 {
234 int i;
235
236 if (soft_reg_initialized)
237 return;
238
239 soft_min_addr = INT_MAX;
240 soft_max_addr = 0;
241 for (i = 0; i < M68HC11_ALL_REGS; i++)
242 {
243 soft_regs[i].name = 0;
244 }
245
246 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
247 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
248 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
249 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
250 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
251
252 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
253 {
254 char buf[10];
255
256 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
257 m68hc11_get_register_info (&soft_regs[i], buf);
258 }
259
260 if (soft_regs[SOFT_FP_REGNUM].name == 0)
261 warning (_("No frame soft register found in the symbol table.\n"
262 "Stack backtrace will not work."));
263 soft_reg_initialized = 1;
264 }
265
266 /* Given an address in memory, return the soft register number if
267 that address corresponds to a soft register. Returns -1 if not. */
268 static int
269 m68hc11_which_soft_register (CORE_ADDR addr)
270 {
271 int i;
272
273 if (addr < soft_min_addr || addr > soft_max_addr)
274 return -1;
275
276 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
277 {
278 if (soft_regs[i].name && soft_regs[i].addr == addr)
279 return i;
280 }
281 return -1;
282 }
283
284 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
285 pseudo registers. They are located in memory. Translate the register
286 fetch into a memory read. */
287 static void
288 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
289 struct regcache *regcache,
290 int regno, gdb_byte *buf)
291 {
292 /* The PC is a pseudo reg only for 68HC12 with the memory bank
293 addressing mode. */
294 if (regno == M68HC12_HARD_PC_REGNUM)
295 {
296 ULONGEST pc;
297 const int regsize = TYPE_LENGTH (builtin_type_uint32);
298
299 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
300 if (pc >= 0x8000 && pc < 0xc000)
301 {
302 ULONGEST page;
303
304 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
305 pc -= 0x8000;
306 pc += (page << 14);
307 pc += 0x1000000;
308 }
309 store_unsigned_integer (buf, regsize, pc);
310 return;
311 }
312
313 m68hc11_initialize_register_info ();
314
315 /* Fetch a soft register: translate into a memory read. */
316 if (soft_regs[regno].name)
317 {
318 target_read_memory (soft_regs[regno].addr, buf, 2);
319 }
320 else
321 {
322 memset (buf, 0, 2);
323 }
324 }
325
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
328 static void
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
332 {
333 /* The PC is a pseudo reg only for 68HC12 with the memory bank
334 addressing mode. */
335 if (regno == M68HC12_HARD_PC_REGNUM)
336 {
337 const int regsize = TYPE_LENGTH (builtin_type_uint32);
338 char *tmp = alloca (regsize);
339 CORE_ADDR pc;
340
341 memcpy (tmp, buf, regsize);
342 pc = extract_unsigned_integer (tmp, regsize);
343 if (pc >= 0x1000000)
344 {
345 pc -= 0x1000000;
346 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
347 (pc >> 14) & 0x0ff);
348 pc &= 0x03fff;
349 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
350 pc + 0x8000);
351 }
352 else
353 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
354 return;
355 }
356
357 m68hc11_initialize_register_info ();
358
359 /* Store a soft register: translate into a memory write. */
360 if (soft_regs[regno].name)
361 {
362 const int regsize = 2;
363 char *tmp = alloca (regsize);
364 memcpy (tmp, buf, regsize);
365 target_write_memory (soft_regs[regno].addr, tmp, regsize);
366 }
367 }
368
369 static const char *
370 m68hc11_register_name (int reg_nr)
371 {
372 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
373 return "pc";
374 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
375 return "ppc";
376
377 if (reg_nr < 0)
378 return NULL;
379 if (reg_nr >= M68HC11_ALL_REGS)
380 return NULL;
381
382 m68hc11_initialize_register_info ();
383
384 /* If we don't know the address of a soft register, pretend it
385 does not exist. */
386 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
387 return NULL;
388 return m68hc11_register_names[reg_nr];
389 }
390
391 static const unsigned char *
392 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
393 {
394 static unsigned char breakpoint[] = {0x0};
395
396 *lenptr = sizeof (breakpoint);
397 return breakpoint;
398 }
399
400 \f
401 /* 68HC11 & 68HC12 prologue analysis.
402
403 */
404 #define MAX_CODES 12
405
406 /* 68HC11 opcodes. */
407 #undef M6811_OP_PAGE2
408 #define M6811_OP_PAGE2 (0x18)
409 #define M6811_OP_LDX (0xde)
410 #define M6811_OP_LDX_EXT (0xfe)
411 #define M6811_OP_PSHX (0x3c)
412 #define M6811_OP_STS (0x9f)
413 #define M6811_OP_STS_EXT (0xbf)
414 #define M6811_OP_TSX (0x30)
415 #define M6811_OP_XGDX (0x8f)
416 #define M6811_OP_ADDD (0xc3)
417 #define M6811_OP_TXS (0x35)
418 #define M6811_OP_DES (0x34)
419
420 /* 68HC12 opcodes. */
421 #define M6812_OP_PAGE2 (0x18)
422 #define M6812_OP_MOVW (0x01)
423 #define M6812_PB_PSHW (0xae)
424 #define M6812_OP_STS (0x5f)
425 #define M6812_OP_STS_EXT (0x7f)
426 #define M6812_OP_LEAS (0x1b)
427 #define M6812_OP_PSHX (0x34)
428 #define M6812_OP_PSHY (0x35)
429
430 /* Operand extraction. */
431 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
432 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
433 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
434 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
435
436 /* Identification of the sequence. */
437 enum m6811_seq_type
438 {
439 P_LAST = 0,
440 P_SAVE_REG, /* Save a register on the stack. */
441 P_SET_FRAME, /* Setup the frame pointer. */
442 P_LOCAL_1, /* Allocate 1 byte for locals. */
443 P_LOCAL_2, /* Allocate 2 bytes for locals. */
444 P_LOCAL_N /* Allocate N bytes for locals. */
445 };
446
447 struct insn_sequence {
448 enum m6811_seq_type type;
449 unsigned length;
450 unsigned short code[MAX_CODES];
451 };
452
453 /* Sequence of instructions in the 68HC11 function prologue. */
454 static struct insn_sequence m6811_prologue[] = {
455 /* Sequences to save a soft-register. */
456 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PSHX } },
458 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
459 M6811_OP_PAGE2, M6811_OP_PSHX } },
460 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
464
465 /* Sequences to allocate local variables. */
466 { P_LOCAL_N, 7, { M6811_OP_TSX,
467 M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_XGDX,
470 M6811_OP_TXS } },
471 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
474 M6811_OP_PAGE2, M6811_OP_XGDX,
475 M6811_OP_PAGE2, M6811_OP_TXS } },
476 { P_LOCAL_1, 1, { M6811_OP_DES } },
477 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
478 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
479
480 /* Initialize the frame pointer. */
481 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
482 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
483 { P_LAST, 0, { 0 } }
484 };
485
486
487 /* Sequence of instructions in the 68HC12 function prologue. */
488 static struct insn_sequence m6812_prologue[] = {
489 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
490 OP_IMM_HIGH, OP_IMM_LOW } },
491 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
492 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
493 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
494 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
495 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
496 { P_LAST, 0 }
497 };
498
499
500 /* Analyze the sequence of instructions starting at the given address.
501 Returns a pointer to the sequence when it is recognized and
502 the optional value (constant/address) associated with it. */
503 static struct insn_sequence *
504 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
505 CORE_ADDR *val)
506 {
507 unsigned char buffer[MAX_CODES];
508 unsigned bufsize;
509 unsigned j;
510 CORE_ADDR cur_val;
511 short v = 0;
512
513 bufsize = 0;
514 for (; seq->type != P_LAST; seq++)
515 {
516 cur_val = 0;
517 for (j = 0; j < seq->length; j++)
518 {
519 if (bufsize < j + 1)
520 {
521 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
522 1);
523 bufsize++;
524 }
525 /* Continue while we match the opcode. */
526 if (seq->code[j] == buffer[j])
527 continue;
528
529 if ((seq->code[j] & 0xf00) == 0)
530 break;
531
532 /* Extract a sequence parameter (address or constant). */
533 switch (seq->code[j])
534 {
535 case OP_DIRECT:
536 cur_val = (CORE_ADDR) buffer[j];
537 break;
538
539 case OP_IMM_HIGH:
540 cur_val = cur_val & 0x0ff;
541 cur_val |= (buffer[j] << 8);
542 break;
543
544 case OP_IMM_LOW:
545 cur_val &= 0x0ff00;
546 cur_val |= buffer[j];
547 break;
548
549 case OP_PBYTE:
550 if ((buffer[j] & 0xE0) == 0x80)
551 {
552 v = buffer[j] & 0x1f;
553 if (v & 0x10)
554 v |= 0xfff0;
555 }
556 else if ((buffer[j] & 0xfe) == 0xf0)
557 {
558 v = read_memory_unsigned_integer (pc + j + 1, 1);
559 if (buffer[j] & 1)
560 v |= 0xff00;
561 }
562 else if (buffer[j] == 0xf2)
563 {
564 v = read_memory_unsigned_integer (pc + j + 1, 2);
565 }
566 cur_val = v;
567 break;
568 }
569 }
570
571 /* We have a full match. */
572 if (j == seq->length)
573 {
574 *val = cur_val;
575 return seq;
576 }
577 }
578 return 0;
579 }
580
581 /* Return the instruction that the function at the PC is using. */
582 static enum insn_return_kind
583 m68hc11_get_return_insn (CORE_ADDR pc)
584 {
585 struct minimal_symbol *sym;
586
587 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
588 function is stored by elfread.c in the high bit of the info field.
589 Use this to decide which instruction the function uses to return. */
590 sym = lookup_minimal_symbol_by_pc (pc);
591 if (sym == 0)
592 return RETURN_RTS;
593
594 if (MSYMBOL_IS_RTC (sym))
595 return RETURN_RTC;
596 else if (MSYMBOL_IS_RTI (sym))
597 return RETURN_RTI;
598 else
599 return RETURN_RTS;
600 }
601
602 /* Analyze the function prologue to find some information
603 about the function:
604 - the PC of the first line (for m68hc11_skip_prologue)
605 - the offset of the previous frame saved address (from current frame)
606 - the soft registers which are pushed. */
607 static CORE_ADDR
608 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
609 struct m68hc11_unwind_cache *info)
610 {
611 LONGEST save_addr;
612 CORE_ADDR func_end;
613 int size;
614 int found_frame_point;
615 int saved_reg;
616 int done = 0;
617 struct insn_sequence *seq_table;
618
619 info->size = 0;
620 info->sp_offset = 0;
621 if (pc >= current_pc)
622 return current_pc;
623
624 size = 0;
625
626 m68hc11_initialize_register_info ();
627 if (pc == 0)
628 {
629 info->size = 0;
630 return pc;
631 }
632
633 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
634
635 /* The 68hc11 stack is as follows:
636
637
638 | |
639 +-----------+
640 | |
641 | args |
642 | |
643 +-----------+
644 | PC-return |
645 +-----------+
646 | Old frame |
647 +-----------+
648 | |
649 | Locals |
650 | |
651 +-----------+ <--- current frame
652 | |
653
654 With most processors (like 68K) the previous frame can be computed
655 easily because it is always at a fixed offset (see link/unlink).
656 That is, locals are accessed with negative offsets, arguments are
657 accessed with positive ones. Since 68hc11 only supports offsets
658 in the range [0..255], the frame is defined at the bottom of
659 locals (see picture).
660
661 The purpose of the analysis made here is to find out the size
662 of locals in this function. An alternative to this is to use
663 DWARF2 info. This would be better but I don't know how to
664 access dwarf2 debug from this function.
665
666 Walk from the function entry point to the point where we save
667 the frame. While walking instructions, compute the size of bytes
668 which are pushed. This gives us the index to access the previous
669 frame.
670
671 We limit the search to 128 bytes so that the algorithm is bounded
672 in case of random and wrong code. We also stop and abort if
673 we find an instruction which is not supposed to appear in the
674 prologue (as generated by gcc 2.95, 2.96).
675 */
676 func_end = pc + 128;
677 found_frame_point = 0;
678 info->size = 0;
679 save_addr = 0;
680 while (!done && pc + 2 < func_end)
681 {
682 struct insn_sequence *seq;
683 CORE_ADDR val;
684
685 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
686 if (seq == 0)
687 break;
688
689 /* If we are within the instruction group, we can't advance the
690 pc nor the stack offset. Otherwise the caller's stack computed
691 from the current stack can be wrong. */
692 if (pc + seq->length > current_pc)
693 break;
694
695 pc = pc + seq->length;
696 if (seq->type == P_SAVE_REG)
697 {
698 if (found_frame_point)
699 {
700 saved_reg = m68hc11_which_soft_register (val);
701 if (saved_reg < 0)
702 break;
703
704 save_addr -= 2;
705 if (info->saved_regs)
706 info->saved_regs[saved_reg].addr = save_addr;
707 }
708 else
709 {
710 size += 2;
711 }
712 }
713 else if (seq->type == P_SET_FRAME)
714 {
715 found_frame_point = 1;
716 info->size = size;
717 }
718 else if (seq->type == P_LOCAL_1)
719 {
720 size += 1;
721 }
722 else if (seq->type == P_LOCAL_2)
723 {
724 size += 2;
725 }
726 else if (seq->type == P_LOCAL_N)
727 {
728 /* Stack pointer is decremented for the allocation. */
729 if (val & 0x8000)
730 size -= (int) (val) | 0xffff0000;
731 else
732 size -= val;
733 }
734 }
735 if (found_frame_point == 0)
736 info->sp_offset = size;
737 else
738 info->sp_offset = -1;
739 return pc;
740 }
741
742 static CORE_ADDR
743 m68hc11_skip_prologue (CORE_ADDR pc)
744 {
745 CORE_ADDR func_addr, func_end;
746 struct symtab_and_line sal;
747 struct m68hc11_unwind_cache tmp_cache = { 0 };
748
749 /* If we have line debugging information, then the end of the
750 prologue should be the first assembly instruction of the
751 first source line. */
752 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
753 {
754 sal = find_pc_line (func_addr, 0);
755 if (sal.end && sal.end < func_end)
756 return sal.end;
757 }
758
759 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
760 return pc;
761 }
762
763 static CORE_ADDR
764 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
765 {
766 ULONGEST pc;
767
768 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
769 &pc);
770 return pc;
771 }
772
773 /* Put here the code to store, into fi->saved_regs, the addresses of
774 the saved registers of frame described by FRAME_INFO. This
775 includes special registers such as pc and fp saved in special ways
776 in the stack frame. sp is even more special: the address we return
777 for it IS the sp for the next frame. */
778
779 struct m68hc11_unwind_cache *
780 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
781 void **this_prologue_cache)
782 {
783 ULONGEST prev_sp;
784 ULONGEST this_base;
785 struct m68hc11_unwind_cache *info;
786 CORE_ADDR current_pc;
787 int i;
788
789 if ((*this_prologue_cache))
790 return (*this_prologue_cache);
791
792 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
793 (*this_prologue_cache) = info;
794 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
795
796 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
797
798 info->size = 0;
799 info->return_kind = m68hc11_get_return_insn (info->pc);
800
801 /* The SP was moved to the FP. This indicates that a new frame
802 was created. Get THIS frame's FP value by unwinding it from
803 the next frame. */
804 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
805 if (this_base == 0)
806 {
807 info->base = 0;
808 return info;
809 }
810
811 current_pc = frame_pc_unwind (next_frame);
812 if (info->pc != 0)
813 m68hc11_scan_prologue (info->pc, current_pc, info);
814
815 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
816
817 if (info->sp_offset != (CORE_ADDR) -1)
818 {
819 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
820 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
821 prev_sp = this_base + info->sp_offset + 2;
822 this_base += STACK_CORRECTION;
823 }
824 else
825 {
826 /* The FP points at the last saved register. Adjust the FP back
827 to before the first saved register giving the SP. */
828 prev_sp = this_base + info->size + 2;
829
830 this_base += STACK_CORRECTION;
831 if (soft_regs[SOFT_FP_REGNUM].name)
832 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
833 }
834
835 if (info->return_kind == RETURN_RTC)
836 {
837 prev_sp += 1;
838 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
839 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
840 }
841 else if (info->return_kind == RETURN_RTI)
842 {
843 prev_sp += 7;
844 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
845 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
846 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
847 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
848 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
849 }
850
851 /* Add 1 here to adjust for the post-decrement nature of the push
852 instruction.*/
853 info->prev_sp = prev_sp;
854
855 info->base = this_base;
856
857 /* Adjust all the saved registers so that they contain addresses and not
858 offsets. */
859 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
860 if (trad_frame_addr_p (info->saved_regs, i))
861 {
862 info->saved_regs[i].addr += this_base;
863 }
864
865 /* The previous frame's SP needed to be computed. Save the computed
866 value. */
867 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
868
869 return info;
870 }
871
872 /* Given a GDB frame, determine the address of the calling function's
873 frame. This will be used to create a new GDB frame struct. */
874
875 static void
876 m68hc11_frame_this_id (struct frame_info *next_frame,
877 void **this_prologue_cache,
878 struct frame_id *this_id)
879 {
880 struct m68hc11_unwind_cache *info
881 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
882 CORE_ADDR base;
883 CORE_ADDR func;
884 struct frame_id id;
885
886 /* The FUNC is easy. */
887 func = frame_func_unwind (next_frame, NORMAL_FRAME);
888
889 /* Hopefully the prologue analysis either correctly determined the
890 frame's base (which is the SP from the previous frame), or set
891 that base to "NULL". */
892 base = info->prev_sp;
893 if (base == 0)
894 return;
895
896 id = frame_id_build (base, func);
897 (*this_id) = id;
898 }
899
900 static void
901 m68hc11_frame_prev_register (struct frame_info *next_frame,
902 void **this_prologue_cache,
903 int regnum, int *optimizedp,
904 enum lval_type *lvalp, CORE_ADDR *addrp,
905 int *realnump, gdb_byte *bufferp)
906 {
907 struct m68hc11_unwind_cache *info
908 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
909
910 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
911 optimizedp, lvalp, addrp, realnump, bufferp);
912
913 if (regnum == HARD_PC_REGNUM)
914 {
915 /* Take into account the 68HC12 specific call (PC + page). */
916 if (info->return_kind == RETURN_RTC
917 && *addrp >= 0x08000 && *addrp < 0x0c000
918 && USE_PAGE_REGISTER)
919 {
920 int page_optimized;
921
922 CORE_ADDR page;
923
924 trad_frame_get_prev_register (next_frame, info->saved_regs,
925 HARD_PAGE_REGNUM, &page_optimized,
926 0, &page, 0, 0);
927 *addrp -= 0x08000;
928 *addrp += ((page & 0x0ff) << 14);
929 *addrp += 0x1000000;
930 }
931 }
932 }
933
934 static const struct frame_unwind m68hc11_frame_unwind = {
935 NORMAL_FRAME,
936 m68hc11_frame_this_id,
937 m68hc11_frame_prev_register
938 };
939
940 const struct frame_unwind *
941 m68hc11_frame_sniffer (struct frame_info *next_frame)
942 {
943 return &m68hc11_frame_unwind;
944 }
945
946 static CORE_ADDR
947 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
948 {
949 struct m68hc11_unwind_cache *info
950 = m68hc11_frame_unwind_cache (next_frame, this_cache);
951
952 return info->base;
953 }
954
955 static CORE_ADDR
956 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
957 {
958 CORE_ADDR addr;
959 struct m68hc11_unwind_cache *info
960 = m68hc11_frame_unwind_cache (next_frame, this_cache);
961
962 addr = info->base + info->size;
963 if (info->return_kind == RETURN_RTC)
964 addr += 1;
965 else if (info->return_kind == RETURN_RTI)
966 addr += 7;
967
968 return addr;
969 }
970
971 static const struct frame_base m68hc11_frame_base = {
972 &m68hc11_frame_unwind,
973 m68hc11_frame_base_address,
974 m68hc11_frame_base_address,
975 m68hc11_frame_args_address
976 };
977
978 static CORE_ADDR
979 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
980 {
981 ULONGEST sp;
982 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
983 return sp;
984 }
985
986 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
987 dummy frame. The frame ID's base needs to match the TOS value
988 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
989 breakpoint. */
990
991 static struct frame_id
992 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
993 {
994 ULONGEST tos;
995 CORE_ADDR pc = frame_pc_unwind (next_frame);
996
997 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
998 tos += 2;
999 return frame_id_build (tos, pc);
1000 }
1001
1002 \f
1003 /* Get and print the register from the given frame. */
1004 static void
1005 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1006 struct frame_info *frame, int regno)
1007 {
1008 LONGEST rval;
1009
1010 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1011 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1012 rval = get_frame_register_unsigned (frame, regno);
1013 else
1014 rval = get_frame_register_signed (frame, regno);
1015
1016 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1017 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1018 {
1019 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1020 if (regno != HARD_CCR_REGNUM)
1021 print_longest (file, 'd', 1, rval);
1022 }
1023 else
1024 {
1025 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1026 {
1027 ULONGEST page;
1028
1029 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1030 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1031 (unsigned) rval);
1032 }
1033 else
1034 {
1035 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1036 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1037 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1038 print_longest (file, 'd', 1, rval);
1039 }
1040 }
1041
1042 if (regno == HARD_CCR_REGNUM)
1043 {
1044 /* CCR register */
1045 int C, Z, N, V;
1046 unsigned char l = rval & 0xff;
1047
1048 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1049 l & M6811_S_BIT ? 'S' : '-',
1050 l & M6811_X_BIT ? 'X' : '-',
1051 l & M6811_H_BIT ? 'H' : '-',
1052 l & M6811_I_BIT ? 'I' : '-',
1053 l & M6811_N_BIT ? 'N' : '-',
1054 l & M6811_Z_BIT ? 'Z' : '-',
1055 l & M6811_V_BIT ? 'V' : '-',
1056 l & M6811_C_BIT ? 'C' : '-');
1057 N = (l & M6811_N_BIT) != 0;
1058 Z = (l & M6811_Z_BIT) != 0;
1059 V = (l & M6811_V_BIT) != 0;
1060 C = (l & M6811_C_BIT) != 0;
1061
1062 /* Print flags following the h8300 */
1063 if ((C | Z) == 0)
1064 fprintf_filtered (file, "u> ");
1065 else if ((C | Z) == 1)
1066 fprintf_filtered (file, "u<= ");
1067 else if (C == 0)
1068 fprintf_filtered (file, "u< ");
1069
1070 if (Z == 0)
1071 fprintf_filtered (file, "!= ");
1072 else
1073 fprintf_filtered (file, "== ");
1074
1075 if ((N ^ V) == 0)
1076 fprintf_filtered (file, ">= ");
1077 else
1078 fprintf_filtered (file, "< ");
1079
1080 if ((Z | (N ^ V)) == 0)
1081 fprintf_filtered (file, "> ");
1082 else
1083 fprintf_filtered (file, "<= ");
1084 }
1085 }
1086
1087 /* Same as 'info reg' but prints the registers in a different way. */
1088 static void
1089 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1090 struct frame_info *frame, int regno, int cpregs)
1091 {
1092 if (regno >= 0)
1093 {
1094 const char *name = gdbarch_register_name (gdbarch, regno);
1095
1096 if (!name || !*name)
1097 return;
1098
1099 fprintf_filtered (file, "%-10s ", name);
1100 m68hc11_print_register (gdbarch, file, frame, regno);
1101 fprintf_filtered (file, "\n");
1102 }
1103 else
1104 {
1105 int i, nr;
1106
1107 fprintf_filtered (file, "PC=");
1108 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1109
1110 fprintf_filtered (file, " SP=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1112
1113 fprintf_filtered (file, " FP=");
1114 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1115
1116 fprintf_filtered (file, "\nCCR=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1118
1119 fprintf_filtered (file, "\nD=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1121
1122 fprintf_filtered (file, " X=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1124
1125 fprintf_filtered (file, " Y=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1127
1128 if (gdbarch_tdep (gdbarch)->use_page_register)
1129 {
1130 fprintf_filtered (file, "\nPage=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1132 }
1133 fprintf_filtered (file, "\n");
1134
1135 nr = 0;
1136 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1137 {
1138 /* Skip registers which are not defined in the symbol table. */
1139 if (soft_regs[i].name == 0)
1140 continue;
1141
1142 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1143 m68hc11_print_register (gdbarch, file, frame, i);
1144 nr++;
1145 if ((nr % 8) == 7)
1146 fprintf_filtered (file, "\n");
1147 else
1148 fprintf_filtered (file, " ");
1149 }
1150 if (nr && (nr % 8) != 7)
1151 fprintf_filtered (file, "\n");
1152 }
1153 }
1154
1155 static CORE_ADDR
1156 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1157 struct regcache *regcache, CORE_ADDR bp_addr,
1158 int nargs, struct value **args, CORE_ADDR sp,
1159 int struct_return, CORE_ADDR struct_addr)
1160 {
1161 int argnum;
1162 int first_stack_argnum;
1163 struct type *type;
1164 char *val;
1165 int len;
1166 char buf[2];
1167
1168 first_stack_argnum = 0;
1169 if (struct_return)
1170 {
1171 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1172 }
1173 else if (nargs > 0)
1174 {
1175 type = value_type (args[0]);
1176 len = TYPE_LENGTH (type);
1177
1178 /* First argument is passed in D and X registers. */
1179 if (len <= 4)
1180 {
1181 ULONGEST v;
1182
1183 v = extract_unsigned_integer (value_contents (args[0]), len);
1184 first_stack_argnum = 1;
1185
1186 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1187 if (len > 2)
1188 {
1189 v >>= 16;
1190 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1191 }
1192 }
1193 }
1194
1195 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1196 {
1197 type = value_type (args[argnum]);
1198 len = TYPE_LENGTH (type);
1199
1200 if (len & 1)
1201 {
1202 static char zero = 0;
1203
1204 sp--;
1205 write_memory (sp, &zero, 1);
1206 }
1207 val = (char*) value_contents (args[argnum]);
1208 sp -= len;
1209 write_memory (sp, val, len);
1210 }
1211
1212 /* Store return address. */
1213 sp -= 2;
1214 store_unsigned_integer (buf, 2, bp_addr);
1215 write_memory (sp, buf, 2);
1216
1217 /* Finally, update the stack pointer... */
1218 sp -= STACK_CORRECTION;
1219 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1220
1221 /* ...and fake a frame pointer. */
1222 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1223
1224 /* DWARF2/GCC uses the stack address *before* the function call as a
1225 frame's CFA. */
1226 return sp + 2;
1227 }
1228
1229
1230 /* Return the GDB type object for the "standard" data type
1231 of data in register N. */
1232
1233 static struct type *
1234 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1235 {
1236 switch (reg_nr)
1237 {
1238 case HARD_PAGE_REGNUM:
1239 case HARD_A_REGNUM:
1240 case HARD_B_REGNUM:
1241 case HARD_CCR_REGNUM:
1242 return builtin_type_uint8;
1243
1244 case M68HC12_HARD_PC_REGNUM:
1245 return builtin_type_uint32;
1246
1247 default:
1248 return builtin_type_uint16;
1249 }
1250 }
1251
1252 static void
1253 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1254 const void *valbuf)
1255 {
1256 int len;
1257
1258 len = TYPE_LENGTH (type);
1259
1260 /* First argument is passed in D and X registers. */
1261 if (len <= 2)
1262 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1263 else if (len <= 4)
1264 {
1265 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1266 len - 2, valbuf);
1267 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1268 }
1269 else
1270 error (_("return of value > 4 is not supported."));
1271 }
1272
1273
1274 /* Given a return value in `regcache' with a type `type',
1275 extract and copy its value into `valbuf'. */
1276
1277 static void
1278 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1279 void *valbuf)
1280 {
1281 int len = TYPE_LENGTH (type);
1282 char buf[M68HC11_REG_SIZE];
1283
1284 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1285 switch (len)
1286 {
1287 case 1:
1288 memcpy (valbuf, buf + 1, 1);
1289 break;
1290
1291 case 2:
1292 memcpy (valbuf, buf, 2);
1293 break;
1294
1295 case 3:
1296 memcpy ((char*) valbuf + 1, buf, 2);
1297 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1298 memcpy (valbuf, buf + 1, 1);
1299 break;
1300
1301 case 4:
1302 memcpy ((char*) valbuf + 2, buf, 2);
1303 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1304 memcpy (valbuf, buf, 2);
1305 break;
1306
1307 default:
1308 error (_("bad size for return value"));
1309 }
1310 }
1311
1312 enum return_value_convention
1313 m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1314 struct regcache *regcache, gdb_byte *readbuf,
1315 const gdb_byte *writebuf)
1316 {
1317 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1318 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1319 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1320 || TYPE_LENGTH (valtype) > 4)
1321 return RETURN_VALUE_STRUCT_CONVENTION;
1322 else
1323 {
1324 if (readbuf != NULL)
1325 m68hc11_extract_return_value (valtype, regcache, readbuf);
1326 if (writebuf != NULL)
1327 m68hc11_store_return_value (valtype, regcache, writebuf);
1328 return RETURN_VALUE_REGISTER_CONVENTION;
1329 }
1330 }
1331
1332 /* Test whether the ELF symbol corresponds to a function using rtc or
1333 rti to return. */
1334
1335 static void
1336 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1337 {
1338 unsigned char flags;
1339
1340 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1341 if (flags & STO_M68HC12_FAR)
1342 MSYMBOL_SET_RTC (msym);
1343 if (flags & STO_M68HC12_INTERRUPT)
1344 MSYMBOL_SET_RTI (msym);
1345 }
1346
1347 static int
1348 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1349 {
1350 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1351 return print_insn_m68hc11 (memaddr, info);
1352 else
1353 return print_insn_m68hc12 (memaddr, info);
1354 }
1355
1356 \f
1357
1358 /* 68HC11/68HC12 register groups.
1359 Identify real hard registers and soft registers used by gcc. */
1360
1361 static struct reggroup *m68hc11_soft_reggroup;
1362 static struct reggroup *m68hc11_hard_reggroup;
1363
1364 static void
1365 m68hc11_init_reggroups (void)
1366 {
1367 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1368 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1369 }
1370
1371 static void
1372 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1373 {
1374 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1375 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1376 reggroup_add (gdbarch, general_reggroup);
1377 reggroup_add (gdbarch, float_reggroup);
1378 reggroup_add (gdbarch, all_reggroup);
1379 reggroup_add (gdbarch, save_reggroup);
1380 reggroup_add (gdbarch, restore_reggroup);
1381 reggroup_add (gdbarch, vector_reggroup);
1382 reggroup_add (gdbarch, system_reggroup);
1383 }
1384
1385 static int
1386 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1387 struct reggroup *group)
1388 {
1389 /* We must save the real hard register as well as gcc
1390 soft registers including the frame pointer. */
1391 if (group == save_reggroup || group == restore_reggroup)
1392 {
1393 return (regnum <= gdbarch_num_regs (gdbarch)
1394 || ((regnum == SOFT_FP_REGNUM
1395 || regnum == SOFT_TMP_REGNUM
1396 || regnum == SOFT_ZS_REGNUM
1397 || regnum == SOFT_XY_REGNUM)
1398 && m68hc11_register_name (regnum)));
1399 }
1400
1401 /* Group to identify gcc soft registers (d1..dN). */
1402 if (group == m68hc11_soft_reggroup)
1403 {
1404 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1405 }
1406
1407 if (group == m68hc11_hard_reggroup)
1408 {
1409 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1410 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1411 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1412 }
1413 return default_register_reggroup_p (gdbarch, regnum, group);
1414 }
1415
1416 static struct gdbarch *
1417 m68hc11_gdbarch_init (struct gdbarch_info info,
1418 struct gdbarch_list *arches)
1419 {
1420 struct gdbarch *gdbarch;
1421 struct gdbarch_tdep *tdep;
1422 int elf_flags;
1423
1424 soft_reg_initialized = 0;
1425
1426 /* Extract the elf_flags if available. */
1427 if (info.abfd != NULL
1428 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1429 elf_flags = elf_elfheader (info.abfd)->e_flags;
1430 else
1431 elf_flags = 0;
1432
1433 /* try to find a pre-existing architecture */
1434 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1435 arches != NULL;
1436 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1437 {
1438 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1439 continue;
1440
1441 return arches->gdbarch;
1442 }
1443
1444 /* Need a new architecture. Fill in a target specific vector. */
1445 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1446 gdbarch = gdbarch_alloc (&info, tdep);
1447 tdep->elf_flags = elf_flags;
1448
1449 switch (info.bfd_arch_info->arch)
1450 {
1451 case bfd_arch_m68hc11:
1452 tdep->stack_correction = 1;
1453 tdep->use_page_register = 0;
1454 tdep->prologue = m6811_prologue;
1455 set_gdbarch_addr_bit (gdbarch, 16);
1456 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1457 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1458 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1459 break;
1460
1461 case bfd_arch_m68hc12:
1462 tdep->stack_correction = 0;
1463 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1464 tdep->prologue = m6812_prologue;
1465 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1466 set_gdbarch_num_pseudo_regs (gdbarch,
1467 elf_flags & E_M68HC12_BANKS
1468 ? M68HC12_NUM_PSEUDO_REGS
1469 : M68HC11_NUM_PSEUDO_REGS);
1470 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1471 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1472 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1473 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1474 break;
1475
1476 default:
1477 break;
1478 }
1479
1480 /* Initially set everything according to the ABI.
1481 Use 16-bit integers since it will be the case for most
1482 programs. The size of these types should normally be set
1483 according to the dwarf2 debug information. */
1484 set_gdbarch_short_bit (gdbarch, 16);
1485 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1486 set_gdbarch_float_bit (gdbarch, 32);
1487 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1488 set_gdbarch_long_double_bit (gdbarch, 64);
1489 set_gdbarch_long_bit (gdbarch, 32);
1490 set_gdbarch_ptr_bit (gdbarch, 16);
1491 set_gdbarch_long_long_bit (gdbarch, 64);
1492
1493 /* Characters are unsigned. */
1494 set_gdbarch_char_signed (gdbarch, 0);
1495
1496 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1497 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1498
1499 /* Set register info. */
1500 set_gdbarch_fp0_regnum (gdbarch, -1);
1501
1502 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1503
1504 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1505 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1506 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1507 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1508 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1509
1510 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1511
1512 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1513 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1514 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1515 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1516 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1517
1518 m68hc11_add_reggroups (gdbarch);
1519 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1520 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1521
1522 /* Hook in the DWARF CFI frame unwinder. */
1523 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1524
1525 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1526 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1527
1528 /* Methods for saving / extracting a dummy frame's ID. The ID's
1529 stack address must match the SP value returned by
1530 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1531 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1532
1533 /* Return the unwound PC value. */
1534 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1535
1536 /* Minsymbol frobbing. */
1537 set_gdbarch_elf_make_msymbol_special (gdbarch,
1538 m68hc11_elf_make_msymbol_special);
1539
1540 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1541
1542 return gdbarch;
1543 }
1544
1545 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1546
1547 void
1548 _initialize_m68hc11_tdep (void)
1549 {
1550 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1551 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1552 m68hc11_init_reggroups ();
1553 }
1554
This page took 0.087379 seconds and 4 git commands to generate.