PR 1150
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
4 Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "dwarf2-frame.h"
31 #include "trad-frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "gdb_string.h"
37 #include "value.h"
38 #include "inferior.h"
39 #include "dis-asm.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "reggroups.h"
45
46 #include "target.h"
47 #include "opcode/m68hc11.h"
48 #include "elf/m68hc11.h"
49 #include "elf-bfd.h"
50
51 /* Macros for setting and testing a bit in a minimal symbol.
52 For 68HC11/68HC12 we have two flags that tell which return
53 type the function is using. This is used for prologue and frame
54 analysis to compute correct stack frame layout.
55
56 The MSB of the minimal symbol's "info" field is used for this purpose.
57
58 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
59 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
60 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
61 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
62
63 #define MSYMBOL_SET_RTC(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67 #define MSYMBOL_SET_RTI(msym) \
68 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
69 | 0x40000000)
70
71 #define MSYMBOL_IS_RTC(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
73
74 #define MSYMBOL_IS_RTI(msym) \
75 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
76
77 enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81 };
82
83
84 /* Register numbers of various important registers.
85 Note that some of these values are "real" register numbers,
86 and correspond to the general registers of the machine,
87 and some are "phony" register numbers which are too large
88 to be actual register numbers as far as the user is concerned
89 but do serve to get the desired values when passed to read_register. */
90
91 #define HARD_X_REGNUM 0
92 #define HARD_D_REGNUM 1
93 #define HARD_Y_REGNUM 2
94 #define HARD_SP_REGNUM 3
95 #define HARD_PC_REGNUM 4
96
97 #define HARD_A_REGNUM 5
98 #define HARD_B_REGNUM 6
99 #define HARD_CCR_REGNUM 7
100
101 /* 68HC12 page number register.
102 Note: to keep a compatibility with gcc register naming, we must
103 not have to rename FP and other soft registers. The page register
104 is a real hard register and must therefore be counted by NUM_REGS.
105 For this it has the same number as Z register (which is not used). */
106 #define HARD_PAGE_REGNUM 8
107 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
108
109 /* Z is replaced by X or Y by gcc during machine reorg.
110 ??? There is no way to get it and even know whether
111 it's in X or Y or in ZS. */
112 #define SOFT_Z_REGNUM 8
113
114 /* Soft registers. These registers are special. There are treated
115 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
116 They are physically located in memory. */
117 #define SOFT_FP_REGNUM 9
118 #define SOFT_TMP_REGNUM 10
119 #define SOFT_ZS_REGNUM 11
120 #define SOFT_XY_REGNUM 12
121 #define SOFT_UNUSED_REGNUM 13
122 #define SOFT_D1_REGNUM 14
123 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
124 #define M68HC11_MAX_SOFT_REGS 32
125
126 #define M68HC11_NUM_REGS (8)
127 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
128 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
129
130 #define M68HC11_REG_SIZE (2)
131
132 #define M68HC12_NUM_REGS (9)
133 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
134 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
135
136 struct insn_sequence;
137 struct gdbarch_tdep
138 {
139 /* Stack pointer correction value. For 68hc11, the stack pointer points
140 to the next push location. An offset of 1 must be applied to obtain
141 the address where the last value is saved. For 68hc12, the stack
142 pointer points to the last value pushed. No offset is necessary. */
143 int stack_correction;
144
145 /* Description of instructions in the prologue. */
146 struct insn_sequence *prologue;
147
148 /* True if the page memory bank register is available
149 and must be used. */
150 int use_page_register;
151
152 /* ELF flags for ABI. */
153 int elf_flags;
154 };
155
156 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
157 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
158 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
159
160 struct m68hc11_unwind_cache
161 {
162 /* The previous frame's inner most stack address. Used as this
163 frame ID's stack_addr. */
164 CORE_ADDR prev_sp;
165 /* The frame's base, optionally used by the high-level debug info. */
166 CORE_ADDR base;
167 CORE_ADDR pc;
168 int size;
169 int prologue_type;
170 CORE_ADDR return_pc;
171 CORE_ADDR sp_offset;
172 int frameless;
173 enum insn_return_kind return_kind;
174
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
177 };
178
179 /* Table of registers for 68HC11. This includes the hard registers
180 and the soft registers used by GCC. */
181 static char *
182 m68hc11_register_names[] =
183 {
184 "x", "d", "y", "sp", "pc", "a", "b",
185 "ccr", "page", "frame","tmp", "zs", "xy", 0,
186 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
187 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
188 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
189 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
190 "d29", "d30", "d31", "d32"
191 };
192
193 struct m68hc11_soft_reg
194 {
195 const char *name;
196 CORE_ADDR addr;
197 };
198
199 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
200
201 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
202
203 static int soft_min_addr;
204 static int soft_max_addr;
205 static int soft_reg_initialized = 0;
206
207 /* Look in the symbol table for the address of a pseudo register
208 in memory. If we don't find it, pretend the register is not used
209 and not available. */
210 static void
211 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
212 {
213 struct minimal_symbol *msymbol;
214
215 msymbol = lookup_minimal_symbol (name, NULL, NULL);
216 if (msymbol)
217 {
218 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
219 reg->name = xstrdup (name);
220
221 /* Keep track of the address range for soft registers. */
222 if (reg->addr < (CORE_ADDR) soft_min_addr)
223 soft_min_addr = reg->addr;
224 if (reg->addr > (CORE_ADDR) soft_max_addr)
225 soft_max_addr = reg->addr;
226 }
227 else
228 {
229 reg->name = 0;
230 reg->addr = 0;
231 }
232 }
233
234 /* Initialize the table of soft register addresses according
235 to the symbol table. */
236 static void
237 m68hc11_initialize_register_info (void)
238 {
239 int i;
240
241 if (soft_reg_initialized)
242 return;
243
244 soft_min_addr = INT_MAX;
245 soft_max_addr = 0;
246 for (i = 0; i < M68HC11_ALL_REGS; i++)
247 {
248 soft_regs[i].name = 0;
249 }
250
251 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
252 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
253 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
254 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
255 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
256
257 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
258 {
259 char buf[10];
260
261 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
262 m68hc11_get_register_info (&soft_regs[i], buf);
263 }
264
265 if (soft_regs[SOFT_FP_REGNUM].name == 0)
266 warning (_("No frame soft register found in the symbol table.\n"
267 "Stack backtrace will not work."));
268 soft_reg_initialized = 1;
269 }
270
271 /* Given an address in memory, return the soft register number if
272 that address corresponds to a soft register. Returns -1 if not. */
273 static int
274 m68hc11_which_soft_register (CORE_ADDR addr)
275 {
276 int i;
277
278 if (addr < soft_min_addr || addr > soft_max_addr)
279 return -1;
280
281 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
282 {
283 if (soft_regs[i].name && soft_regs[i].addr == addr)
284 return i;
285 }
286 return -1;
287 }
288
289 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
290 pseudo registers. They are located in memory. Translate the register
291 fetch into a memory read. */
292 static void
293 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
294 struct regcache *regcache,
295 int regno, gdb_byte *buf)
296 {
297 /* The PC is a pseudo reg only for 68HC12 with the memory bank
298 addressing mode. */
299 if (regno == M68HC12_HARD_PC_REGNUM)
300 {
301 ULONGEST pc;
302 const int regsize = TYPE_LENGTH (builtin_type_uint32);
303
304 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
305 if (pc >= 0x8000 && pc < 0xc000)
306 {
307 ULONGEST page;
308
309 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
310 pc -= 0x8000;
311 pc += (page << 14);
312 pc += 0x1000000;
313 }
314 store_unsigned_integer (buf, regsize, pc);
315 return;
316 }
317
318 m68hc11_initialize_register_info ();
319
320 /* Fetch a soft register: translate into a memory read. */
321 if (soft_regs[regno].name)
322 {
323 target_read_memory (soft_regs[regno].addr, buf, 2);
324 }
325 else
326 {
327 memset (buf, 0, 2);
328 }
329 }
330
331 /* Store a pseudo register. Translate the register store
332 into a memory write. */
333 static void
334 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
335 struct regcache *regcache,
336 int regno, const gdb_byte *buf)
337 {
338 /* The PC is a pseudo reg only for 68HC12 with the memory bank
339 addressing mode. */
340 if (regno == M68HC12_HARD_PC_REGNUM)
341 {
342 const int regsize = TYPE_LENGTH (builtin_type_uint32);
343 char *tmp = alloca (regsize);
344 CORE_ADDR pc;
345
346 memcpy (tmp, buf, regsize);
347 pc = extract_unsigned_integer (tmp, regsize);
348 if (pc >= 0x1000000)
349 {
350 pc -= 0x1000000;
351 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
352 (pc >> 14) & 0x0ff);
353 pc &= 0x03fff;
354 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
355 pc + 0x8000);
356 }
357 else
358 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
359 return;
360 }
361
362 m68hc11_initialize_register_info ();
363
364 /* Store a soft register: translate into a memory write. */
365 if (soft_regs[regno].name)
366 {
367 const int regsize = 2;
368 char *tmp = alloca (regsize);
369 memcpy (tmp, buf, regsize);
370 target_write_memory (soft_regs[regno].addr, tmp, regsize);
371 }
372 }
373
374 static const char *
375 m68hc11_register_name (int reg_nr)
376 {
377 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
378 return "pc";
379 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
380 return "ppc";
381
382 if (reg_nr < 0)
383 return NULL;
384 if (reg_nr >= M68HC11_ALL_REGS)
385 return NULL;
386
387 m68hc11_initialize_register_info ();
388
389 /* If we don't know the address of a soft register, pretend it
390 does not exist. */
391 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
392 return NULL;
393 return m68hc11_register_names[reg_nr];
394 }
395
396 static const unsigned char *
397 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
398 {
399 static unsigned char breakpoint[] = {0x0};
400
401 *lenptr = sizeof (breakpoint);
402 return breakpoint;
403 }
404
405 \f
406 /* 68HC11 & 68HC12 prologue analysis.
407
408 */
409 #define MAX_CODES 12
410
411 /* 68HC11 opcodes. */
412 #undef M6811_OP_PAGE2
413 #define M6811_OP_PAGE2 (0x18)
414 #define M6811_OP_LDX (0xde)
415 #define M6811_OP_LDX_EXT (0xfe)
416 #define M6811_OP_PSHX (0x3c)
417 #define M6811_OP_STS (0x9f)
418 #define M6811_OP_STS_EXT (0xbf)
419 #define M6811_OP_TSX (0x30)
420 #define M6811_OP_XGDX (0x8f)
421 #define M6811_OP_ADDD (0xc3)
422 #define M6811_OP_TXS (0x35)
423 #define M6811_OP_DES (0x34)
424
425 /* 68HC12 opcodes. */
426 #define M6812_OP_PAGE2 (0x18)
427 #define M6812_OP_MOVW (0x01)
428 #define M6812_PB_PSHW (0xae)
429 #define M6812_OP_STS (0x5f)
430 #define M6812_OP_STS_EXT (0x7f)
431 #define M6812_OP_LEAS (0x1b)
432 #define M6812_OP_PSHX (0x34)
433 #define M6812_OP_PSHY (0x35)
434
435 /* Operand extraction. */
436 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
437 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
438 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
439 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
440
441 /* Identification of the sequence. */
442 enum m6811_seq_type
443 {
444 P_LAST = 0,
445 P_SAVE_REG, /* Save a register on the stack. */
446 P_SET_FRAME, /* Setup the frame pointer. */
447 P_LOCAL_1, /* Allocate 1 byte for locals. */
448 P_LOCAL_2, /* Allocate 2 bytes for locals. */
449 P_LOCAL_N /* Allocate N bytes for locals. */
450 };
451
452 struct insn_sequence {
453 enum m6811_seq_type type;
454 unsigned length;
455 unsigned short code[MAX_CODES];
456 };
457
458 /* Sequence of instructions in the 68HC11 function prologue. */
459 static struct insn_sequence m6811_prologue[] = {
460 /* Sequences to save a soft-register. */
461 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
462 M6811_OP_PSHX } },
463 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
464 M6811_OP_PAGE2, M6811_OP_PSHX } },
465 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
466 M6811_OP_PSHX } },
467 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
468 M6811_OP_PAGE2, M6811_OP_PSHX } },
469
470 /* Sequences to allocate local variables. */
471 { P_LOCAL_N, 7, { M6811_OP_TSX,
472 M6811_OP_XGDX,
473 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
474 M6811_OP_XGDX,
475 M6811_OP_TXS } },
476 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
477 M6811_OP_PAGE2, M6811_OP_XGDX,
478 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
479 M6811_OP_PAGE2, M6811_OP_XGDX,
480 M6811_OP_PAGE2, M6811_OP_TXS } },
481 { P_LOCAL_1, 1, { M6811_OP_DES } },
482 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
483 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
484
485 /* Initialize the frame pointer. */
486 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
488 { P_LAST, 0, { 0 } }
489 };
490
491
492 /* Sequence of instructions in the 68HC12 function prologue. */
493 static struct insn_sequence m6812_prologue[] = {
494 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
495 OP_IMM_HIGH, OP_IMM_LOW } },
496 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
497 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
498 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
499 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
500 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
501 { P_LAST, 0 }
502 };
503
504
505 /* Analyze the sequence of instructions starting at the given address.
506 Returns a pointer to the sequence when it is recognized and
507 the optional value (constant/address) associated with it. */
508 static struct insn_sequence *
509 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
510 CORE_ADDR *val)
511 {
512 unsigned char buffer[MAX_CODES];
513 unsigned bufsize;
514 unsigned j;
515 CORE_ADDR cur_val;
516 short v = 0;
517
518 bufsize = 0;
519 for (; seq->type != P_LAST; seq++)
520 {
521 cur_val = 0;
522 for (j = 0; j < seq->length; j++)
523 {
524 if (bufsize < j + 1)
525 {
526 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
527 1);
528 bufsize++;
529 }
530 /* Continue while we match the opcode. */
531 if (seq->code[j] == buffer[j])
532 continue;
533
534 if ((seq->code[j] & 0xf00) == 0)
535 break;
536
537 /* Extract a sequence parameter (address or constant). */
538 switch (seq->code[j])
539 {
540 case OP_DIRECT:
541 cur_val = (CORE_ADDR) buffer[j];
542 break;
543
544 case OP_IMM_HIGH:
545 cur_val = cur_val & 0x0ff;
546 cur_val |= (buffer[j] << 8);
547 break;
548
549 case OP_IMM_LOW:
550 cur_val &= 0x0ff00;
551 cur_val |= buffer[j];
552 break;
553
554 case OP_PBYTE:
555 if ((buffer[j] & 0xE0) == 0x80)
556 {
557 v = buffer[j] & 0x1f;
558 if (v & 0x10)
559 v |= 0xfff0;
560 }
561 else if ((buffer[j] & 0xfe) == 0xf0)
562 {
563 v = read_memory_unsigned_integer (pc + j + 1, 1);
564 if (buffer[j] & 1)
565 v |= 0xff00;
566 }
567 else if (buffer[j] == 0xf2)
568 {
569 v = read_memory_unsigned_integer (pc + j + 1, 2);
570 }
571 cur_val = v;
572 break;
573 }
574 }
575
576 /* We have a full match. */
577 if (j == seq->length)
578 {
579 *val = cur_val;
580 return seq;
581 }
582 }
583 return 0;
584 }
585
586 /* Return the instruction that the function at the PC is using. */
587 static enum insn_return_kind
588 m68hc11_get_return_insn (CORE_ADDR pc)
589 {
590 struct minimal_symbol *sym;
591
592 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
593 function is stored by elfread.c in the high bit of the info field.
594 Use this to decide which instruction the function uses to return. */
595 sym = lookup_minimal_symbol_by_pc (pc);
596 if (sym == 0)
597 return RETURN_RTS;
598
599 if (MSYMBOL_IS_RTC (sym))
600 return RETURN_RTC;
601 else if (MSYMBOL_IS_RTI (sym))
602 return RETURN_RTI;
603 else
604 return RETURN_RTS;
605 }
606
607 /* Analyze the function prologue to find some information
608 about the function:
609 - the PC of the first line (for m68hc11_skip_prologue)
610 - the offset of the previous frame saved address (from current frame)
611 - the soft registers which are pushed. */
612 static CORE_ADDR
613 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
614 struct m68hc11_unwind_cache *info)
615 {
616 LONGEST save_addr;
617 CORE_ADDR func_end;
618 int size;
619 int found_frame_point;
620 int saved_reg;
621 int done = 0;
622 struct insn_sequence *seq_table;
623
624 info->size = 0;
625 info->sp_offset = 0;
626 if (pc >= current_pc)
627 return current_pc;
628
629 size = 0;
630
631 m68hc11_initialize_register_info ();
632 if (pc == 0)
633 {
634 info->size = 0;
635 return pc;
636 }
637
638 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
639
640 /* The 68hc11 stack is as follows:
641
642
643 | |
644 +-----------+
645 | |
646 | args |
647 | |
648 +-----------+
649 | PC-return |
650 +-----------+
651 | Old frame |
652 +-----------+
653 | |
654 | Locals |
655 | |
656 +-----------+ <--- current frame
657 | |
658
659 With most processors (like 68K) the previous frame can be computed
660 easily because it is always at a fixed offset (see link/unlink).
661 That is, locals are accessed with negative offsets, arguments are
662 accessed with positive ones. Since 68hc11 only supports offsets
663 in the range [0..255], the frame is defined at the bottom of
664 locals (see picture).
665
666 The purpose of the analysis made here is to find out the size
667 of locals in this function. An alternative to this is to use
668 DWARF2 info. This would be better but I don't know how to
669 access dwarf2 debug from this function.
670
671 Walk from the function entry point to the point where we save
672 the frame. While walking instructions, compute the size of bytes
673 which are pushed. This gives us the index to access the previous
674 frame.
675
676 We limit the search to 128 bytes so that the algorithm is bounded
677 in case of random and wrong code. We also stop and abort if
678 we find an instruction which is not supposed to appear in the
679 prologue (as generated by gcc 2.95, 2.96).
680 */
681 func_end = pc + 128;
682 found_frame_point = 0;
683 info->size = 0;
684 save_addr = 0;
685 while (!done && pc + 2 < func_end)
686 {
687 struct insn_sequence *seq;
688 CORE_ADDR val;
689
690 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
691 if (seq == 0)
692 break;
693
694 /* If we are within the instruction group, we can't advance the
695 pc nor the stack offset. Otherwise the caller's stack computed
696 from the current stack can be wrong. */
697 if (pc + seq->length > current_pc)
698 break;
699
700 pc = pc + seq->length;
701 if (seq->type == P_SAVE_REG)
702 {
703 if (found_frame_point)
704 {
705 saved_reg = m68hc11_which_soft_register (val);
706 if (saved_reg < 0)
707 break;
708
709 save_addr -= 2;
710 if (info->saved_regs)
711 info->saved_regs[saved_reg].addr = save_addr;
712 }
713 else
714 {
715 size += 2;
716 }
717 }
718 else if (seq->type == P_SET_FRAME)
719 {
720 found_frame_point = 1;
721 info->size = size;
722 }
723 else if (seq->type == P_LOCAL_1)
724 {
725 size += 1;
726 }
727 else if (seq->type == P_LOCAL_2)
728 {
729 size += 2;
730 }
731 else if (seq->type == P_LOCAL_N)
732 {
733 /* Stack pointer is decremented for the allocation. */
734 if (val & 0x8000)
735 size -= (int) (val) | 0xffff0000;
736 else
737 size -= val;
738 }
739 }
740 if (found_frame_point == 0)
741 info->sp_offset = size;
742 else
743 info->sp_offset = -1;
744 return pc;
745 }
746
747 static CORE_ADDR
748 m68hc11_skip_prologue (CORE_ADDR pc)
749 {
750 CORE_ADDR func_addr, func_end;
751 struct symtab_and_line sal;
752 struct m68hc11_unwind_cache tmp_cache = { 0 };
753
754 /* If we have line debugging information, then the end of the
755 prologue should be the first assembly instruction of the
756 first source line. */
757 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
758 {
759 sal = find_pc_line (func_addr, 0);
760 if (sal.end && sal.end < func_end)
761 return sal.end;
762 }
763
764 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
765 return pc;
766 }
767
768 static CORE_ADDR
769 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
770 {
771 ULONGEST pc;
772
773 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
774 &pc);
775 return pc;
776 }
777
778 /* Put here the code to store, into fi->saved_regs, the addresses of
779 the saved registers of frame described by FRAME_INFO. This
780 includes special registers such as pc and fp saved in special ways
781 in the stack frame. sp is even more special: the address we return
782 for it IS the sp for the next frame. */
783
784 struct m68hc11_unwind_cache *
785 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
786 void **this_prologue_cache)
787 {
788 ULONGEST prev_sp;
789 ULONGEST this_base;
790 struct m68hc11_unwind_cache *info;
791 CORE_ADDR current_pc;
792 int i;
793
794 if ((*this_prologue_cache))
795 return (*this_prologue_cache);
796
797 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
798 (*this_prologue_cache) = info;
799 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
800
801 info->pc = frame_func_unwind (next_frame);
802
803 info->size = 0;
804 info->return_kind = m68hc11_get_return_insn (info->pc);
805
806 /* The SP was moved to the FP. This indicates that a new frame
807 was created. Get THIS frame's FP value by unwinding it from
808 the next frame. */
809 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
810 if (this_base == 0)
811 {
812 info->base = 0;
813 return info;
814 }
815
816 current_pc = frame_pc_unwind (next_frame);
817 if (info->pc != 0)
818 m68hc11_scan_prologue (info->pc, current_pc, info);
819
820 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
821
822 if (info->sp_offset != (CORE_ADDR) -1)
823 {
824 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
825 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
826 prev_sp = this_base + info->sp_offset + 2;
827 this_base += STACK_CORRECTION;
828 }
829 else
830 {
831 /* The FP points at the last saved register. Adjust the FP back
832 to before the first saved register giving the SP. */
833 prev_sp = this_base + info->size + 2;
834
835 this_base += STACK_CORRECTION;
836 if (soft_regs[SOFT_FP_REGNUM].name)
837 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
838 }
839
840 if (info->return_kind == RETURN_RTC)
841 {
842 prev_sp += 1;
843 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
844 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
845 }
846 else if (info->return_kind == RETURN_RTI)
847 {
848 prev_sp += 7;
849 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
850 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
851 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
852 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
853 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
854 }
855
856 /* Add 1 here to adjust for the post-decrement nature of the push
857 instruction.*/
858 info->prev_sp = prev_sp;
859
860 info->base = this_base;
861
862 /* Adjust all the saved registers so that they contain addresses and not
863 offsets. */
864 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
865 if (trad_frame_addr_p (info->saved_regs, i))
866 {
867 info->saved_regs[i].addr += this_base;
868 }
869
870 /* The previous frame's SP needed to be computed. Save the computed
871 value. */
872 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
873
874 return info;
875 }
876
877 /* Given a GDB frame, determine the address of the calling function's
878 frame. This will be used to create a new GDB frame struct. */
879
880 static void
881 m68hc11_frame_this_id (struct frame_info *next_frame,
882 void **this_prologue_cache,
883 struct frame_id *this_id)
884 {
885 struct m68hc11_unwind_cache *info
886 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
887 CORE_ADDR base;
888 CORE_ADDR func;
889 struct frame_id id;
890
891 /* The FUNC is easy. */
892 func = frame_func_unwind (next_frame);
893
894 /* Hopefully the prologue analysis either correctly determined the
895 frame's base (which is the SP from the previous frame), or set
896 that base to "NULL". */
897 base = info->prev_sp;
898 if (base == 0)
899 return;
900
901 id = frame_id_build (base, func);
902 (*this_id) = id;
903 }
904
905 static void
906 m68hc11_frame_prev_register (struct frame_info *next_frame,
907 void **this_prologue_cache,
908 int regnum, int *optimizedp,
909 enum lval_type *lvalp, CORE_ADDR *addrp,
910 int *realnump, gdb_byte *bufferp)
911 {
912 struct m68hc11_unwind_cache *info
913 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
914
915 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
916 optimizedp, lvalp, addrp, realnump, bufferp);
917
918 if (regnum == HARD_PC_REGNUM)
919 {
920 /* Take into account the 68HC12 specific call (PC + page). */
921 if (info->return_kind == RETURN_RTC
922 && *addrp >= 0x08000 && *addrp < 0x0c000
923 && USE_PAGE_REGISTER)
924 {
925 int page_optimized;
926
927 CORE_ADDR page;
928
929 trad_frame_get_prev_register (next_frame, info->saved_regs,
930 HARD_PAGE_REGNUM, &page_optimized,
931 0, &page, 0, 0);
932 *addrp -= 0x08000;
933 *addrp += ((page & 0x0ff) << 14);
934 *addrp += 0x1000000;
935 }
936 }
937 }
938
939 static const struct frame_unwind m68hc11_frame_unwind = {
940 NORMAL_FRAME,
941 m68hc11_frame_this_id,
942 m68hc11_frame_prev_register
943 };
944
945 const struct frame_unwind *
946 m68hc11_frame_sniffer (struct frame_info *next_frame)
947 {
948 return &m68hc11_frame_unwind;
949 }
950
951 static CORE_ADDR
952 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
953 {
954 struct m68hc11_unwind_cache *info
955 = m68hc11_frame_unwind_cache (next_frame, this_cache);
956
957 return info->base;
958 }
959
960 static CORE_ADDR
961 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
962 {
963 CORE_ADDR addr;
964 struct m68hc11_unwind_cache *info
965 = m68hc11_frame_unwind_cache (next_frame, this_cache);
966
967 addr = info->base + info->size;
968 if (info->return_kind == RETURN_RTC)
969 addr += 1;
970 else if (info->return_kind == RETURN_RTI)
971 addr += 7;
972
973 return addr;
974 }
975
976 static const struct frame_base m68hc11_frame_base = {
977 &m68hc11_frame_unwind,
978 m68hc11_frame_base_address,
979 m68hc11_frame_base_address,
980 m68hc11_frame_args_address
981 };
982
983 static CORE_ADDR
984 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
985 {
986 ULONGEST sp;
987 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
988 return sp;
989 }
990
991 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
992 dummy frame. The frame ID's base needs to match the TOS value
993 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
994 breakpoint. */
995
996 static struct frame_id
997 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
998 {
999 ULONGEST tos;
1000 CORE_ADDR pc = frame_pc_unwind (next_frame);
1001
1002 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1003 tos += 2;
1004 return frame_id_build (tos, pc);
1005 }
1006
1007 \f
1008 /* Get and print the register from the given frame. */
1009 static void
1010 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1011 struct frame_info *frame, int regno)
1012 {
1013 LONGEST rval;
1014
1015 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1016 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1017 rval = get_frame_register_unsigned (frame, regno);
1018 else
1019 rval = get_frame_register_signed (frame, regno);
1020
1021 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1022 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1023 {
1024 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1025 if (regno != HARD_CCR_REGNUM)
1026 print_longest (file, 'd', 1, rval);
1027 }
1028 else
1029 {
1030 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1031 {
1032 ULONGEST page;
1033
1034 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1035 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1036 (unsigned) rval);
1037 }
1038 else
1039 {
1040 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1041 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1042 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1043 print_longest (file, 'd', 1, rval);
1044 }
1045 }
1046
1047 if (regno == HARD_CCR_REGNUM)
1048 {
1049 /* CCR register */
1050 int C, Z, N, V;
1051 unsigned char l = rval & 0xff;
1052
1053 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1054 l & M6811_S_BIT ? 'S' : '-',
1055 l & M6811_X_BIT ? 'X' : '-',
1056 l & M6811_H_BIT ? 'H' : '-',
1057 l & M6811_I_BIT ? 'I' : '-',
1058 l & M6811_N_BIT ? 'N' : '-',
1059 l & M6811_Z_BIT ? 'Z' : '-',
1060 l & M6811_V_BIT ? 'V' : '-',
1061 l & M6811_C_BIT ? 'C' : '-');
1062 N = (l & M6811_N_BIT) != 0;
1063 Z = (l & M6811_Z_BIT) != 0;
1064 V = (l & M6811_V_BIT) != 0;
1065 C = (l & M6811_C_BIT) != 0;
1066
1067 /* Print flags following the h8300 */
1068 if ((C | Z) == 0)
1069 fprintf_filtered (file, "u> ");
1070 else if ((C | Z) == 1)
1071 fprintf_filtered (file, "u<= ");
1072 else if (C == 0)
1073 fprintf_filtered (file, "u< ");
1074
1075 if (Z == 0)
1076 fprintf_filtered (file, "!= ");
1077 else
1078 fprintf_filtered (file, "== ");
1079
1080 if ((N ^ V) == 0)
1081 fprintf_filtered (file, ">= ");
1082 else
1083 fprintf_filtered (file, "< ");
1084
1085 if ((Z | (N ^ V)) == 0)
1086 fprintf_filtered (file, "> ");
1087 else
1088 fprintf_filtered (file, "<= ");
1089 }
1090 }
1091
1092 /* Same as 'info reg' but prints the registers in a different way. */
1093 static void
1094 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1095 struct frame_info *frame, int regno, int cpregs)
1096 {
1097 if (regno >= 0)
1098 {
1099 const char *name = gdbarch_register_name (gdbarch, regno);
1100
1101 if (!name || !*name)
1102 return;
1103
1104 fprintf_filtered (file, "%-10s ", name);
1105 m68hc11_print_register (gdbarch, file, frame, regno);
1106 fprintf_filtered (file, "\n");
1107 }
1108 else
1109 {
1110 int i, nr;
1111
1112 fprintf_filtered (file, "PC=");
1113 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1114
1115 fprintf_filtered (file, " SP=");
1116 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1117
1118 fprintf_filtered (file, " FP=");
1119 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1120
1121 fprintf_filtered (file, "\nCCR=");
1122 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1123
1124 fprintf_filtered (file, "\nD=");
1125 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1126
1127 fprintf_filtered (file, " X=");
1128 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1129
1130 fprintf_filtered (file, " Y=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1132
1133 if (gdbarch_tdep (gdbarch)->use_page_register)
1134 {
1135 fprintf_filtered (file, "\nPage=");
1136 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1137 }
1138 fprintf_filtered (file, "\n");
1139
1140 nr = 0;
1141 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1142 {
1143 /* Skip registers which are not defined in the symbol table. */
1144 if (soft_regs[i].name == 0)
1145 continue;
1146
1147 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1148 m68hc11_print_register (gdbarch, file, frame, i);
1149 nr++;
1150 if ((nr % 8) == 7)
1151 fprintf_filtered (file, "\n");
1152 else
1153 fprintf_filtered (file, " ");
1154 }
1155 if (nr && (nr % 8) != 7)
1156 fprintf_filtered (file, "\n");
1157 }
1158 }
1159
1160 static CORE_ADDR
1161 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1162 struct regcache *regcache, CORE_ADDR bp_addr,
1163 int nargs, struct value **args, CORE_ADDR sp,
1164 int struct_return, CORE_ADDR struct_addr)
1165 {
1166 int argnum;
1167 int first_stack_argnum;
1168 struct type *type;
1169 char *val;
1170 int len;
1171 char buf[2];
1172
1173 first_stack_argnum = 0;
1174 if (struct_return)
1175 {
1176 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1177 }
1178 else if (nargs > 0)
1179 {
1180 type = value_type (args[0]);
1181 len = TYPE_LENGTH (type);
1182
1183 /* First argument is passed in D and X registers. */
1184 if (len <= 4)
1185 {
1186 ULONGEST v;
1187
1188 v = extract_unsigned_integer (value_contents (args[0]), len);
1189 first_stack_argnum = 1;
1190
1191 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1192 if (len > 2)
1193 {
1194 v >>= 16;
1195 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1196 }
1197 }
1198 }
1199
1200 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1201 {
1202 type = value_type (args[argnum]);
1203 len = TYPE_LENGTH (type);
1204
1205 if (len & 1)
1206 {
1207 static char zero = 0;
1208
1209 sp--;
1210 write_memory (sp, &zero, 1);
1211 }
1212 val = (char*) value_contents (args[argnum]);
1213 sp -= len;
1214 write_memory (sp, val, len);
1215 }
1216
1217 /* Store return address. */
1218 sp -= 2;
1219 store_unsigned_integer (buf, 2, bp_addr);
1220 write_memory (sp, buf, 2);
1221
1222 /* Finally, update the stack pointer... */
1223 sp -= STACK_CORRECTION;
1224 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1225
1226 /* ...and fake a frame pointer. */
1227 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1228
1229 /* DWARF2/GCC uses the stack address *before* the function call as a
1230 frame's CFA. */
1231 return sp + 2;
1232 }
1233
1234
1235 /* Return the GDB type object for the "standard" data type
1236 of data in register N. */
1237
1238 static struct type *
1239 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1240 {
1241 switch (reg_nr)
1242 {
1243 case HARD_PAGE_REGNUM:
1244 case HARD_A_REGNUM:
1245 case HARD_B_REGNUM:
1246 case HARD_CCR_REGNUM:
1247 return builtin_type_uint8;
1248
1249 case M68HC12_HARD_PC_REGNUM:
1250 return builtin_type_uint32;
1251
1252 default:
1253 return builtin_type_uint16;
1254 }
1255 }
1256
1257 static void
1258 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1259 const void *valbuf)
1260 {
1261 int len;
1262
1263 len = TYPE_LENGTH (type);
1264
1265 /* First argument is passed in D and X registers. */
1266 if (len <= 2)
1267 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1268 else if (len <= 4)
1269 {
1270 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1271 len - 2, valbuf);
1272 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1273 }
1274 else
1275 error (_("return of value > 4 is not supported."));
1276 }
1277
1278
1279 /* Given a return value in `regcache' with a type `type',
1280 extract and copy its value into `valbuf'. */
1281
1282 static void
1283 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1284 void *valbuf)
1285 {
1286 int len = TYPE_LENGTH (type);
1287 char buf[M68HC11_REG_SIZE];
1288
1289 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1290 switch (len)
1291 {
1292 case 1:
1293 memcpy (valbuf, buf + 1, 1);
1294 break;
1295
1296 case 2:
1297 memcpy (valbuf, buf, 2);
1298 break;
1299
1300 case 3:
1301 memcpy ((char*) valbuf + 1, buf, 2);
1302 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1303 memcpy (valbuf, buf + 1, 1);
1304 break;
1305
1306 case 4:
1307 memcpy ((char*) valbuf + 2, buf, 2);
1308 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1309 memcpy (valbuf, buf, 2);
1310 break;
1311
1312 default:
1313 error (_("bad size for return value"));
1314 }
1315 }
1316
1317 enum return_value_convention
1318 m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1319 struct regcache *regcache, gdb_byte *readbuf,
1320 const gdb_byte *writebuf)
1321 {
1322 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1323 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1324 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1325 || TYPE_LENGTH (valtype) > 4)
1326 return RETURN_VALUE_STRUCT_CONVENTION;
1327 else
1328 {
1329 if (readbuf != NULL)
1330 m68hc11_extract_return_value (valtype, regcache, readbuf);
1331 if (writebuf != NULL)
1332 m68hc11_store_return_value (valtype, regcache, writebuf);
1333 return RETURN_VALUE_REGISTER_CONVENTION;
1334 }
1335 }
1336
1337 /* Test whether the ELF symbol corresponds to a function using rtc or
1338 rti to return. */
1339
1340 static void
1341 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1342 {
1343 unsigned char flags;
1344
1345 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1346 if (flags & STO_M68HC12_FAR)
1347 MSYMBOL_SET_RTC (msym);
1348 if (flags & STO_M68HC12_INTERRUPT)
1349 MSYMBOL_SET_RTI (msym);
1350 }
1351
1352 static int
1353 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1354 {
1355 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1356 return print_insn_m68hc11 (memaddr, info);
1357 else
1358 return print_insn_m68hc12 (memaddr, info);
1359 }
1360
1361 \f
1362
1363 /* 68HC11/68HC12 register groups.
1364 Identify real hard registers and soft registers used by gcc. */
1365
1366 static struct reggroup *m68hc11_soft_reggroup;
1367 static struct reggroup *m68hc11_hard_reggroup;
1368
1369 static void
1370 m68hc11_init_reggroups (void)
1371 {
1372 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1373 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1374 }
1375
1376 static void
1377 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1378 {
1379 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1380 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1381 reggroup_add (gdbarch, general_reggroup);
1382 reggroup_add (gdbarch, float_reggroup);
1383 reggroup_add (gdbarch, all_reggroup);
1384 reggroup_add (gdbarch, save_reggroup);
1385 reggroup_add (gdbarch, restore_reggroup);
1386 reggroup_add (gdbarch, vector_reggroup);
1387 reggroup_add (gdbarch, system_reggroup);
1388 }
1389
1390 static int
1391 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1392 struct reggroup *group)
1393 {
1394 /* We must save the real hard register as well as gcc
1395 soft registers including the frame pointer. */
1396 if (group == save_reggroup || group == restore_reggroup)
1397 {
1398 return (regnum <= gdbarch_num_regs (gdbarch)
1399 || ((regnum == SOFT_FP_REGNUM
1400 || regnum == SOFT_TMP_REGNUM
1401 || regnum == SOFT_ZS_REGNUM
1402 || regnum == SOFT_XY_REGNUM)
1403 && m68hc11_register_name (regnum)));
1404 }
1405
1406 /* Group to identify gcc soft registers (d1..dN). */
1407 if (group == m68hc11_soft_reggroup)
1408 {
1409 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1410 }
1411
1412 if (group == m68hc11_hard_reggroup)
1413 {
1414 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1415 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1416 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1417 }
1418 return default_register_reggroup_p (gdbarch, regnum, group);
1419 }
1420
1421 static struct gdbarch *
1422 m68hc11_gdbarch_init (struct gdbarch_info info,
1423 struct gdbarch_list *arches)
1424 {
1425 struct gdbarch *gdbarch;
1426 struct gdbarch_tdep *tdep;
1427 int elf_flags;
1428
1429 soft_reg_initialized = 0;
1430
1431 /* Extract the elf_flags if available. */
1432 if (info.abfd != NULL
1433 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1434 elf_flags = elf_elfheader (info.abfd)->e_flags;
1435 else
1436 elf_flags = 0;
1437
1438 /* try to find a pre-existing architecture */
1439 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1440 arches != NULL;
1441 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1442 {
1443 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1444 continue;
1445
1446 return arches->gdbarch;
1447 }
1448
1449 /* Need a new architecture. Fill in a target specific vector. */
1450 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1451 gdbarch = gdbarch_alloc (&info, tdep);
1452 tdep->elf_flags = elf_flags;
1453
1454 switch (info.bfd_arch_info->arch)
1455 {
1456 case bfd_arch_m68hc11:
1457 tdep->stack_correction = 1;
1458 tdep->use_page_register = 0;
1459 tdep->prologue = m6811_prologue;
1460 set_gdbarch_addr_bit (gdbarch, 16);
1461 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1462 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1463 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1464 break;
1465
1466 case bfd_arch_m68hc12:
1467 tdep->stack_correction = 0;
1468 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1469 tdep->prologue = m6812_prologue;
1470 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1471 set_gdbarch_num_pseudo_regs (gdbarch,
1472 elf_flags & E_M68HC12_BANKS
1473 ? M68HC12_NUM_PSEUDO_REGS
1474 : M68HC11_NUM_PSEUDO_REGS);
1475 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1476 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1477 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1478 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1479 break;
1480
1481 default:
1482 break;
1483 }
1484
1485 /* Initially set everything according to the ABI.
1486 Use 16-bit integers since it will be the case for most
1487 programs. The size of these types should normally be set
1488 according to the dwarf2 debug information. */
1489 set_gdbarch_short_bit (gdbarch, 16);
1490 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1491 set_gdbarch_float_bit (gdbarch, 32);
1492 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1493 set_gdbarch_long_double_bit (gdbarch, 64);
1494 set_gdbarch_long_bit (gdbarch, 32);
1495 set_gdbarch_ptr_bit (gdbarch, 16);
1496 set_gdbarch_long_long_bit (gdbarch, 64);
1497
1498 /* Characters are unsigned. */
1499 set_gdbarch_char_signed (gdbarch, 0);
1500
1501 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1502 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1503
1504 /* Set register info. */
1505 set_gdbarch_fp0_regnum (gdbarch, -1);
1506
1507 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1508
1509 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1510 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1511 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1512 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1513 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1514
1515 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1516
1517 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1518 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1519 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1520 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1521 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1522
1523 m68hc11_add_reggroups (gdbarch);
1524 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1525 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1526
1527 /* Hook in the DWARF CFI frame unwinder. */
1528 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1529
1530 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1531 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1532
1533 /* Methods for saving / extracting a dummy frame's ID. The ID's
1534 stack address must match the SP value returned by
1535 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1536 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1537
1538 /* Return the unwound PC value. */
1539 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1540
1541 /* Minsymbol frobbing. */
1542 set_gdbarch_elf_make_msymbol_special (gdbarch,
1543 m68hc11_elf_make_msymbol_special);
1544
1545 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1546
1547 return gdbarch;
1548 }
1549
1550 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1551
1552 void
1553 _initialize_m68hc11_tdep (void)
1554 {
1555 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1556 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1557 m68hc11_init_reggroups ();
1558 }
1559
This page took 0.087955 seconds and 4 git commands to generate.