* MAINTAINERS: Reverted misunderstood change of x86-64 maintainer.
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez, stcarrez@worldnet.fr
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "obstack.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37
38 #include "target.h"
39 #include "opcode/m68hc11.h"
40
41 /* Register numbers of various important registers.
42 Note that some of these values are "real" register numbers,
43 and correspond to the general registers of the machine,
44 and some are "phony" register numbers which are too large
45 to be actual register numbers as far as the user is concerned
46 but do serve to get the desired values when passed to read_register. */
47
48 #define HARD_X_REGNUM 0
49 #define HARD_D_REGNUM 1
50 #define HARD_Y_REGNUM 2
51 #define HARD_SP_REGNUM 3
52 #define HARD_PC_REGNUM 4
53
54 #define HARD_A_REGNUM 5
55 #define HARD_B_REGNUM 6
56 #define HARD_CCR_REGNUM 7
57 #define M68HC11_LAST_HARD_REG (HARD_CCR_REGNUM)
58
59 /* Z is replaced by X or Y by gcc during machine reorg.
60 ??? There is no way to get it and even know whether
61 it's in X or Y or in ZS. */
62 #define SOFT_Z_REGNUM 8
63
64 /* Soft registers. These registers are special. There are treated
65 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
66 They are physically located in memory. */
67 #define SOFT_FP_REGNUM 9
68 #define SOFT_TMP_REGNUM 10
69 #define SOFT_ZS_REGNUM 11
70 #define SOFT_XY_REGNUM 12
71 #define SOFT_UNUSED_REGNUM 13
72 #define SOFT_D1_REGNUM 14
73 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
74 #define M68HC11_MAX_SOFT_REGS 32
75
76 #define M68HC11_NUM_REGS (8)
77 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
78 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
79
80 #define M68HC11_REG_SIZE (2)
81
82 struct insn_sequence;
83 struct gdbarch_tdep
84 {
85 /* Stack pointer correction value. For 68hc11, the stack pointer points
86 to the next push location. An offset of 1 must be applied to obtain
87 the address where the last value is saved. For 68hc12, the stack
88 pointer points to the last value pushed. No offset is necessary. */
89 int stack_correction;
90
91 /* Description of instructions in the prologue. */
92 struct insn_sequence *prologue;
93 };
94
95 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
96 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
97
98 struct frame_extra_info
99 {
100 int frame_reg;
101 CORE_ADDR return_pc;
102 CORE_ADDR dummy;
103 int frameless;
104 int size;
105 };
106
107 /* Table of registers for 68HC11. This includes the hard registers
108 and the soft registers used by GCC. */
109 static char *
110 m68hc11_register_names[] =
111 {
112 "x", "d", "y", "sp", "pc", "a", "b",
113 "ccr", "z", "frame","tmp", "zs", "xy", 0,
114 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
115 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
116 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
117 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
118 "d29", "d30", "d31", "d32"
119 };
120
121 struct m68hc11_soft_reg
122 {
123 const char *name;
124 CORE_ADDR addr;
125 };
126
127 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
128
129 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
130
131 static int soft_min_addr;
132 static int soft_max_addr;
133 static int soft_reg_initialized = 0;
134
135 /* Look in the symbol table for the address of a pseudo register
136 in memory. If we don't find it, pretend the register is not used
137 and not available. */
138 static void
139 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
140 {
141 struct minimal_symbol *msymbol;
142
143 msymbol = lookup_minimal_symbol (name, NULL, NULL);
144 if (msymbol)
145 {
146 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
147 reg->name = xstrdup (name);
148
149 /* Keep track of the address range for soft registers. */
150 if (reg->addr < (CORE_ADDR) soft_min_addr)
151 soft_min_addr = reg->addr;
152 if (reg->addr > (CORE_ADDR) soft_max_addr)
153 soft_max_addr = reg->addr;
154 }
155 else
156 {
157 reg->name = 0;
158 reg->addr = 0;
159 }
160 }
161
162 /* Initialize the table of soft register addresses according
163 to the symbol table. */
164 static void
165 m68hc11_initialize_register_info (void)
166 {
167 int i;
168
169 if (soft_reg_initialized)
170 return;
171
172 soft_min_addr = INT_MAX;
173 soft_max_addr = 0;
174 for (i = 0; i < M68HC11_ALL_REGS; i++)
175 {
176 soft_regs[i].name = 0;
177 }
178
179 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
180 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
181 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
182 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
183 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
184
185 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
186 {
187 char buf[10];
188
189 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
190 m68hc11_get_register_info (&soft_regs[i], buf);
191 }
192
193 if (soft_regs[SOFT_FP_REGNUM].name == 0)
194 {
195 warning ("No frame soft register found in the symbol table.\n");
196 warning ("Stack backtrace will not work.\n");
197 }
198 soft_reg_initialized = 1;
199 }
200
201 /* Given an address in memory, return the soft register number if
202 that address corresponds to a soft register. Returns -1 if not. */
203 static int
204 m68hc11_which_soft_register (CORE_ADDR addr)
205 {
206 int i;
207
208 if (addr < soft_min_addr || addr > soft_max_addr)
209 return -1;
210
211 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
212 {
213 if (soft_regs[i].name && soft_regs[i].addr == addr)
214 return i;
215 }
216 return -1;
217 }
218
219 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
220 pseudo registers. They are located in memory. Translate the register
221 fetch into a memory read. */
222 void
223 m68hc11_fetch_pseudo_register (int regno)
224 {
225 char buf[MAX_REGISTER_RAW_SIZE];
226
227 m68hc11_initialize_register_info ();
228
229 /* Fetch a soft register: translate into a memory read. */
230 if (soft_regs[regno].name)
231 {
232 target_read_memory (soft_regs[regno].addr, buf, 2);
233 }
234 else
235 {
236 memset (buf, 0, 2);
237 }
238 supply_register (regno, buf);
239 }
240
241 /* Store a pseudo register. Translate the register store
242 into a memory write. */
243 static void
244 m68hc11_store_pseudo_register (int regno)
245 {
246 m68hc11_initialize_register_info ();
247
248 /* Store a soft register: translate into a memory write. */
249 if (soft_regs[regno].name)
250 {
251 char buf[MAX_REGISTER_RAW_SIZE];
252
253 read_register_gen (regno, buf);
254 target_write_memory (soft_regs[regno].addr, buf, 2);
255 }
256 }
257
258 static char *
259 m68hc11_register_name (int reg_nr)
260 {
261 if (reg_nr < 0)
262 return NULL;
263 if (reg_nr >= M68HC11_ALL_REGS)
264 return NULL;
265
266 /* If we don't know the address of a soft register, pretend it
267 does not exist. */
268 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
269 return NULL;
270 return m68hc11_register_names[reg_nr];
271 }
272
273 static unsigned char *
274 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
275 {
276 static unsigned char breakpoint[] = {0x0};
277
278 *lenptr = sizeof (breakpoint);
279 return breakpoint;
280 }
281
282 /* Immediately after a function call, return the saved pc before the frame
283 is setup. */
284
285 static CORE_ADDR
286 m68hc11_saved_pc_after_call (struct frame_info *frame)
287 {
288 CORE_ADDR addr;
289
290 addr = read_register (HARD_SP_REGNUM) + STACK_CORRECTION;
291 addr &= 0x0ffff;
292 return read_memory_integer (addr, 2) & 0x0FFFF;
293 }
294
295 static CORE_ADDR
296 m68hc11_frame_saved_pc (struct frame_info *frame)
297 {
298 return frame->extra_info->return_pc;
299 }
300
301 static CORE_ADDR
302 m68hc11_frame_args_address (struct frame_info *frame)
303 {
304 return frame->frame + frame->extra_info->size + STACK_CORRECTION + 2;
305 }
306
307 static CORE_ADDR
308 m68hc11_frame_locals_address (struct frame_info *frame)
309 {
310 return frame->frame;
311 }
312
313 /* Discard from the stack the innermost frame, restoring all saved
314 registers. */
315
316 static void
317 m68hc11_pop_frame (void)
318 {
319 register struct frame_info *frame = get_current_frame ();
320 register CORE_ADDR fp, sp;
321 register int regnum;
322
323 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
324 generic_pop_dummy_frame ();
325 else
326 {
327 fp = FRAME_FP (frame);
328 FRAME_INIT_SAVED_REGS (frame);
329
330 /* Copy regs from where they were saved in the frame. */
331 for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
332 if (frame->saved_regs[regnum])
333 write_register (regnum,
334 read_memory_integer (frame->saved_regs[regnum], 2));
335
336 write_register (HARD_PC_REGNUM, frame->extra_info->return_pc);
337 sp = (fp + frame->extra_info->size + 2) & 0x0ffff;
338 write_register (HARD_SP_REGNUM, sp);
339 }
340 flush_cached_frames ();
341 }
342
343 \f
344 /* 68HC11 & 68HC12 prologue analysis.
345
346 */
347 #define MAX_CODES 12
348
349 /* 68HC11 opcodes. */
350 #undef M6811_OP_PAGE2
351 #define M6811_OP_PAGE2 (0x18)
352 #define M6811_OP_LDX (0xde)
353 #define M6811_OP_PSHX (0x3c)
354 #define M6811_OP_STS (0x9f)
355 #define M6811_OP_TSX (0x30)
356 #define M6811_OP_XGDX (0x8f)
357 #define M6811_OP_ADDD (0xc3)
358 #define M6811_OP_TXS (0x35)
359 #define M6811_OP_DES (0x34)
360
361 /* 68HC12 opcodes. */
362 #define M6812_OP_PAGE2 (0x18)
363 #define M6812_OP_MOVW (0x01)
364 #define M6812_PB_PSHW (0xae)
365 #define M6812_OP_STS (0x7f)
366 #define M6812_OP_LEAS (0x1b)
367
368 /* Operand extraction. */
369 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
370 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
371 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
372 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
373
374 /* Identification of the sequence. */
375 enum m6811_seq_type
376 {
377 P_LAST = 0,
378 P_SAVE_REG, /* Save a register on the stack. */
379 P_SET_FRAME, /* Setup the frame pointer. */
380 P_LOCAL_1, /* Allocate 1 byte for locals. */
381 P_LOCAL_2, /* Allocate 2 bytes for locals. */
382 P_LOCAL_N /* Allocate N bytes for locals. */
383 };
384
385 struct insn_sequence {
386 enum m6811_seq_type type;
387 unsigned length;
388 unsigned short code[MAX_CODES];
389 };
390
391 /* Sequence of instructions in the 68HC11 function prologue. */
392 static struct insn_sequence m6811_prologue[] = {
393 /* Sequences to save a soft-register. */
394 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
395 M6811_OP_PSHX } },
396 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
397 M6811_OP_PAGE2, M6811_OP_PSHX } },
398
399 /* Sequences to allocate local variables. */
400 { P_LOCAL_N, 7, { M6811_OP_TSX,
401 M6811_OP_XGDX,
402 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
403 M6811_OP_XGDX,
404 M6811_OP_TXS } },
405 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
406 M6811_OP_PAGE2, M6811_OP_XGDX,
407 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
408 M6811_OP_PAGE2, M6811_OP_XGDX,
409 M6811_OP_PAGE2, M6811_OP_TXS } },
410 { P_LOCAL_1, 1, { M6811_OP_DES } },
411 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
412 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
413
414 /* Initialize the frame pointer. */
415 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
416 { P_LAST, 0, { 0 } }
417 };
418
419
420 /* Sequence of instructions in the 68HC12 function prologue. */
421 static struct insn_sequence m6812_prologue[] = {
422 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
423 OP_IMM_HIGH, OP_IMM_LOW } },
424 { P_SET_FRAME, 3, { M6812_OP_STS, OP_IMM_HIGH, OP_IMM_LOW } },
425 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
426 { P_LAST, 0 }
427 };
428
429
430 /* Analyze the sequence of instructions starting at the given address.
431 Returns a pointer to the sequence when it is recognized and
432 the optional value (constant/address) associated with it.
433 Advance the pc for the next sequence. */
434 static struct insn_sequence *
435 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
436 CORE_ADDR *val)
437 {
438 unsigned char buffer[MAX_CODES];
439 unsigned bufsize;
440 unsigned j;
441 CORE_ADDR cur_val;
442 short v = 0;
443
444 bufsize = 0;
445 for (; seq->type != P_LAST; seq++)
446 {
447 cur_val = 0;
448 for (j = 0; j < seq->length; j++)
449 {
450 if (bufsize < j + 1)
451 {
452 buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
453 1);
454 bufsize++;
455 }
456 /* Continue while we match the opcode. */
457 if (seq->code[j] == buffer[j])
458 continue;
459
460 if ((seq->code[j] & 0xf00) == 0)
461 break;
462
463 /* Extract a sequence parameter (address or constant). */
464 switch (seq->code[j])
465 {
466 case OP_DIRECT:
467 cur_val = (CORE_ADDR) buffer[j];
468 break;
469
470 case OP_IMM_HIGH:
471 cur_val = cur_val & 0x0ff;
472 cur_val |= (buffer[j] << 8);
473 break;
474
475 case OP_IMM_LOW:
476 cur_val &= 0x0ff00;
477 cur_val |= buffer[j];
478 break;
479
480 case OP_PBYTE:
481 if ((buffer[j] & 0xE0) == 0x80)
482 {
483 v = buffer[j] & 0x1f;
484 if (v & 0x10)
485 v |= 0xfff0;
486 }
487 else if ((buffer[j] & 0xfe) == 0xf0)
488 {
489 v = read_memory_unsigned_integer (*pc + j + 1, 1);
490 if (buffer[j] & 1)
491 v |= 0xff00;
492 *pc = *pc + 1;
493 }
494 else if (buffer[j] == 0xf2)
495 {
496 v = read_memory_unsigned_integer (*pc + j + 1, 2);
497 *pc = *pc + 2;
498 }
499 cur_val = v;
500 break;
501 }
502 }
503
504 /* We have a full match. */
505 if (j == seq->length)
506 {
507 *val = cur_val;
508 *pc = *pc + j;
509 return seq;
510 }
511 }
512 return 0;
513 }
514
515 /* Analyze the function prologue to find some information
516 about the function:
517 - the PC of the first line (for m68hc11_skip_prologue)
518 - the offset of the previous frame saved address (from current frame)
519 - the soft registers which are pushed. */
520 static void
521 m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
522 CORE_ADDR *first_line,
523 int *frame_offset, CORE_ADDR *pushed_regs)
524 {
525 CORE_ADDR save_addr;
526 CORE_ADDR func_end;
527 int size;
528 int found_frame_point;
529 int saved_reg;
530 CORE_ADDR first_pc;
531 int done = 0;
532 struct insn_sequence *seq_table;
533
534 first_pc = get_pc_function_start (pc);
535 size = 0;
536
537 m68hc11_initialize_register_info ();
538 if (first_pc == 0)
539 {
540 *frame_offset = 0;
541 *first_line = pc;
542 return;
543 }
544
545 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
546
547 /* The 68hc11 stack is as follows:
548
549
550 | |
551 +-----------+
552 | |
553 | args |
554 | |
555 +-----------+
556 | PC-return |
557 +-----------+
558 | Old frame |
559 +-----------+
560 | |
561 | Locals |
562 | |
563 +-----------+ <--- current frame
564 | |
565
566 With most processors (like 68K) the previous frame can be computed
567 easily because it is always at a fixed offset (see link/unlink).
568 That is, locals are accessed with negative offsets, arguments are
569 accessed with positive ones. Since 68hc11 only supports offsets
570 in the range [0..255], the frame is defined at the bottom of
571 locals (see picture).
572
573 The purpose of the analysis made here is to find out the size
574 of locals in this function. An alternative to this is to use
575 DWARF2 info. This would be better but I don't know how to
576 access dwarf2 debug from this function.
577
578 Walk from the function entry point to the point where we save
579 the frame. While walking instructions, compute the size of bytes
580 which are pushed. This gives us the index to access the previous
581 frame.
582
583 We limit the search to 128 bytes so that the algorithm is bounded
584 in case of random and wrong code. We also stop and abort if
585 we find an instruction which is not supposed to appear in the
586 prologue (as generated by gcc 2.95, 2.96).
587 */
588 pc = first_pc;
589 func_end = pc + 128;
590 found_frame_point = 0;
591 *frame_offset = 0;
592 save_addr = fp + STACK_CORRECTION;
593 while (!done && pc + 2 < func_end)
594 {
595 struct insn_sequence *seq;
596 CORE_ADDR val;
597
598 seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
599 if (seq == 0)
600 break;
601
602 if (seq->type == P_SAVE_REG)
603 {
604 if (found_frame_point)
605 {
606 saved_reg = m68hc11_which_soft_register (val);
607 if (saved_reg < 0)
608 break;
609
610 save_addr -= 2;
611 if (pushed_regs)
612 pushed_regs[saved_reg] = save_addr;
613 }
614 else
615 {
616 size += 2;
617 }
618 }
619 else if (seq->type == P_SET_FRAME)
620 {
621 found_frame_point = 1;
622 *frame_offset = size;
623 }
624 else if (seq->type == P_LOCAL_1)
625 {
626 size += 1;
627 }
628 else if (seq->type == P_LOCAL_2)
629 {
630 size += 2;
631 }
632 else if (seq->type == P_LOCAL_N)
633 {
634 /* Stack pointer is decremented for the allocation. */
635 if (val & 0x8000)
636 size -= (int) (val) | 0xffff0000;
637 else
638 size -= val;
639 }
640 }
641 *first_line = pc;
642 }
643
644 static CORE_ADDR
645 m68hc11_skip_prologue (CORE_ADDR pc)
646 {
647 CORE_ADDR func_addr, func_end;
648 struct symtab_and_line sal;
649 int frame_offset;
650
651 /* If we have line debugging information, then the end of the
652 prologue should be the first assembly instruction of the
653 first source line. */
654 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
655 {
656 sal = find_pc_line (func_addr, 0);
657 if (sal.end && sal.end < func_end)
658 return sal.end;
659 }
660
661 m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
662 return pc;
663 }
664
665 /* Given a GDB frame, determine the address of the calling function's frame.
666 This will be used to create a new GDB frame struct, and then
667 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
668 */
669
670 static CORE_ADDR
671 m68hc11_frame_chain (struct frame_info *frame)
672 {
673 CORE_ADDR addr;
674
675 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
676 return frame->frame; /* dummy frame same as caller's frame */
677
678 if (frame->extra_info->return_pc == 0
679 || inside_entry_file (frame->extra_info->return_pc))
680 return (CORE_ADDR) 0;
681
682 if (frame->frame == 0)
683 {
684 return (CORE_ADDR) 0;
685 }
686
687 addr = frame->frame + frame->extra_info->size + STACK_CORRECTION - 2;
688 addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
689 if (addr == 0)
690 {
691 return (CORE_ADDR) 0;
692 }
693
694 return addr;
695 }
696
697 /* Put here the code to store, into a struct frame_saved_regs, the
698 addresses of the saved registers of frame described by FRAME_INFO.
699 This includes special registers such as pc and fp saved in special
700 ways in the stack frame. sp is even more special: the address we
701 return for it IS the sp for the next frame. */
702 static void
703 m68hc11_frame_init_saved_regs (struct frame_info *fi)
704 {
705 CORE_ADDR pc;
706 CORE_ADDR addr;
707
708 if (fi->saved_regs == NULL)
709 frame_saved_regs_zalloc (fi);
710 else
711 memset (fi->saved_regs, 0, sizeof (fi->saved_regs));
712
713 pc = fi->pc;
714 m68hc11_guess_from_prologue (pc, fi->frame, &pc, &fi->extra_info->size,
715 fi->saved_regs);
716
717 addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
718 if (soft_regs[SOFT_FP_REGNUM].name)
719 fi->saved_regs[SOFT_FP_REGNUM] = addr - 2;
720 fi->saved_regs[HARD_SP_REGNUM] = addr;
721 fi->saved_regs[HARD_PC_REGNUM] = fi->saved_regs[HARD_SP_REGNUM];
722 }
723
724 static void
725 m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
726 {
727 CORE_ADDR addr;
728
729 fi->extra_info = (struct frame_extra_info *)
730 frame_obstack_alloc (sizeof (struct frame_extra_info));
731
732 if (fi->next)
733 fi->pc = FRAME_SAVED_PC (fi->next);
734
735 m68hc11_frame_init_saved_regs (fi);
736
737 if (fromleaf)
738 {
739 fi->extra_info->return_pc = m68hc11_saved_pc_after_call (fi);
740 }
741 else
742 {
743 addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
744 addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
745 fi->extra_info->return_pc = addr;
746 #if 0
747 printf ("Pc@0x%04x, FR 0x%04x, size %d, read ret @0x%04x -> 0x%04x\n",
748 fi->pc,
749 fi->frame, fi->size,
750 addr & 0x0ffff,
751 fi->return_pc);
752 #endif
753 }
754 }
755
756 /* Same as 'info reg' but prints the registers in a different way. */
757 static void
758 show_regs (char *args, int from_tty)
759 {
760 int ccr = read_register (HARD_CCR_REGNUM);
761 int i;
762 int nr;
763
764 printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
765 (int) read_register (HARD_PC_REGNUM),
766 (int) read_register (HARD_SP_REGNUM),
767 (int) read_register (SOFT_FP_REGNUM),
768 ccr,
769 ccr & M6811_S_BIT ? 'S' : '-',
770 ccr & M6811_X_BIT ? 'X' : '-',
771 ccr & M6811_H_BIT ? 'H' : '-',
772 ccr & M6811_I_BIT ? 'I' : '-',
773 ccr & M6811_N_BIT ? 'N' : '-',
774 ccr & M6811_Z_BIT ? 'Z' : '-',
775 ccr & M6811_V_BIT ? 'V' : '-',
776 ccr & M6811_C_BIT ? 'C' : '-');
777
778 printf_filtered ("D=%04x IX=%04x IY=%04x\n",
779 (int) read_register (HARD_D_REGNUM),
780 (int) read_register (HARD_X_REGNUM),
781 (int) read_register (HARD_Y_REGNUM));
782
783 nr = 0;
784 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
785 {
786 /* Skip registers which are not defined in the symbol table. */
787 if (soft_regs[i].name == 0)
788 continue;
789
790 printf_filtered ("D%d=%04x",
791 i - SOFT_D1_REGNUM + 1,
792 (int) read_register (i));
793 nr++;
794 if ((nr % 8) == 7)
795 printf_filtered ("\n");
796 else
797 printf_filtered (" ");
798 }
799 if (nr && (nr % 8) != 7)
800 printf_filtered ("\n");
801 }
802
803 static CORE_ADDR
804 m68hc11_stack_align (CORE_ADDR addr)
805 {
806 return ((addr + 1) & -2);
807 }
808
809 static CORE_ADDR
810 m68hc11_push_arguments (int nargs,
811 struct value **args,
812 CORE_ADDR sp,
813 int struct_return,
814 CORE_ADDR struct_addr)
815 {
816 int stack_alloc;
817 int argnum;
818 int first_stack_argnum;
819 int stack_offset;
820 struct type *type;
821 char *val;
822 int len;
823
824 stack_alloc = 0;
825 first_stack_argnum = 0;
826 if (struct_return)
827 {
828 /* The struct is allocated on the stack and gdb used the stack
829 pointer for the address of that struct. We must apply the
830 stack offset on the address. */
831 write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
832 }
833 else if (nargs > 0)
834 {
835 type = VALUE_TYPE (args[0]);
836 len = TYPE_LENGTH (type);
837
838 /* First argument is passed in D and X registers. */
839 if (len <= 4)
840 {
841 LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
842 first_stack_argnum = 1;
843 write_register (HARD_D_REGNUM, v);
844 if (len > 2)
845 {
846 v >>= 16;
847 write_register (HARD_X_REGNUM, v);
848 }
849 }
850 }
851 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
852 {
853 type = VALUE_TYPE (args[argnum]);
854 stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
855 }
856 sp -= stack_alloc;
857
858 stack_offset = STACK_CORRECTION;
859 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
860 {
861 type = VALUE_TYPE (args[argnum]);
862 len = TYPE_LENGTH (type);
863
864 val = (char*) VALUE_CONTENTS (args[argnum]);
865 write_memory (sp + stack_offset, val, len);
866 stack_offset += len;
867 if (len & 1)
868 {
869 static char zero = 0;
870
871 write_memory (sp + stack_offset, &zero, 1);
872 stack_offset++;
873 }
874 }
875 return sp;
876 }
877
878
879 /* Return a location where we can set a breakpoint that will be hit
880 when an inferior function call returns. */
881 CORE_ADDR
882 m68hc11_call_dummy_address (void)
883 {
884 return entry_point_address ();
885 }
886
887 static struct type *
888 m68hc11_register_virtual_type (int reg_nr)
889 {
890 return builtin_type_uint16;
891 }
892
893 static void
894 m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
895 {
896 /* The struct address computed by gdb is on the stack.
897 It uses the stack pointer so we must apply the stack
898 correction offset. */
899 write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
900 }
901
902 static void
903 m68hc11_store_return_value (struct type *type, char *valbuf)
904 {
905 int len;
906
907 len = TYPE_LENGTH (type);
908
909 /* First argument is passed in D and X registers. */
910 if (len <= 4)
911 {
912 LONGEST v = extract_unsigned_integer (valbuf, len);
913
914 write_register (HARD_D_REGNUM, v);
915 if (len > 2)
916 {
917 v >>= 16;
918 write_register (HARD_X_REGNUM, v);
919 }
920 }
921 else
922 error ("return of value > 4 is not supported.");
923 }
924
925
926 /* Given a return value in `regbuf' with a type `type',
927 extract and copy its value into `valbuf'. */
928
929 static void
930 m68hc11_extract_return_value (struct type *type,
931 char *regbuf,
932 char *valbuf)
933 {
934 int len = TYPE_LENGTH (type);
935
936 switch (len)
937 {
938 case 1:
939 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2 + 1], len);
940 break;
941
942 case 2:
943 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2], len);
944 break;
945
946 case 3:
947 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2 + 1], 1);
948 memcpy (&valbuf[1], &regbuf[HARD_D_REGNUM * 2], 2);
949 break;
950
951 case 4:
952 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2], 2);
953 memcpy (&valbuf[2], &regbuf[HARD_D_REGNUM * 2], 2);
954 break;
955
956 default:
957 error ("bad size for return value");
958 }
959 }
960
961 /* Should call_function allocate stack space for a struct return? */
962 static int
963 m68hc11_use_struct_convention (int gcc_p, struct type *type)
964 {
965 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
966 || TYPE_CODE (type) == TYPE_CODE_UNION
967 || TYPE_LENGTH (type) > 4);
968 }
969
970 static int
971 m68hc11_return_value_on_stack (struct type *type)
972 {
973 return TYPE_LENGTH (type) > 4;
974 }
975
976 /* Extract from an array REGBUF containing the (raw) register state
977 the address in which a function should return its structure value,
978 as a CORE_ADDR (or an expression that can be used as one). */
979 static CORE_ADDR
980 m68hc11_extract_struct_value_address (char *regbuf)
981 {
982 return extract_address (&regbuf[HARD_D_REGNUM * 2],
983 REGISTER_RAW_SIZE (HARD_D_REGNUM));
984 }
985
986 /* Function: push_return_address (pc)
987 Set up the return address for the inferior function call.
988 Needed for targets where we don't actually execute a JSR/BSR instruction */
989
990 static CORE_ADDR
991 m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
992 {
993 char valbuf[2];
994
995 pc = CALL_DUMMY_ADDRESS ();
996 sp -= 2;
997 store_unsigned_integer (valbuf, 2, pc);
998 write_memory (sp + STACK_CORRECTION, valbuf, 2);
999 return sp;
1000 }
1001
1002 /* Index within `registers' of the first byte of the space for
1003 register N. */
1004 static int
1005 m68hc11_register_byte (int reg_nr)
1006 {
1007 return (reg_nr * M68HC11_REG_SIZE);
1008 }
1009
1010 static int
1011 m68hc11_register_raw_size (int reg_nr)
1012 {
1013 return M68HC11_REG_SIZE;
1014 }
1015
1016 static int
1017 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1018 {
1019 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1020 return print_insn_m68hc11 (memaddr, info);
1021 else
1022 return print_insn_m68hc12 (memaddr, info);
1023 }
1024
1025 static struct gdbarch *
1026 m68hc11_gdbarch_init (struct gdbarch_info info,
1027 struct gdbarch_list *arches)
1028 {
1029 static LONGEST m68hc11_call_dummy_words[] =
1030 {0};
1031 struct gdbarch *gdbarch;
1032 struct gdbarch_tdep *tdep;
1033
1034 soft_reg_initialized = 0;
1035
1036 /* try to find a pre-existing architecture */
1037 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1038 arches != NULL;
1039 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1040 {
1041 return arches->gdbarch;
1042 }
1043
1044 /* Need a new architecture. Fill in a target specific vector. */
1045 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1046 gdbarch = gdbarch_alloc (&info, tdep);
1047
1048 switch (info.bfd_arch_info->arch)
1049 {
1050 case bfd_arch_m68hc11:
1051 tdep->stack_correction = 1;
1052 tdep->prologue = m6811_prologue;
1053 break;
1054
1055 case bfd_arch_m68hc12:
1056 tdep->stack_correction = 0;
1057 tdep->prologue = m6812_prologue;
1058 break;
1059
1060 default:
1061 break;
1062 }
1063
1064 /* Initially set everything according to the ABI.
1065 Use 16-bit integers since it will be the case for most
1066 programs. The size of these types should normally be set
1067 according to the dwarf2 debug information. */
1068 set_gdbarch_short_bit (gdbarch, 16);
1069 set_gdbarch_int_bit (gdbarch, 16);
1070 set_gdbarch_float_bit (gdbarch, 32);
1071 set_gdbarch_double_bit (gdbarch, 64);
1072 set_gdbarch_long_double_bit (gdbarch, 64);
1073 set_gdbarch_long_bit (gdbarch, 32);
1074 set_gdbarch_ptr_bit (gdbarch, 16);
1075 set_gdbarch_long_long_bit (gdbarch, 64);
1076
1077 /* Set register info. */
1078 set_gdbarch_fp0_regnum (gdbarch, -1);
1079 set_gdbarch_max_register_raw_size (gdbarch, 2);
1080 set_gdbarch_max_register_virtual_size (gdbarch, 2);
1081 set_gdbarch_register_raw_size (gdbarch, m68hc11_register_raw_size);
1082 set_gdbarch_register_virtual_size (gdbarch, m68hc11_register_raw_size);
1083 set_gdbarch_register_byte (gdbarch, m68hc11_register_byte);
1084 set_gdbarch_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
1085 set_gdbarch_frame_args_skip (gdbarch, 0);
1086
1087 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1088 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1089 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
1090 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
1091 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1092 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1093
1094 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1095 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1096 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1097 set_gdbarch_fp_regnum (gdbarch, SOFT_FP_REGNUM);
1098 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1099 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1100 set_gdbarch_register_size (gdbarch, 2);
1101 set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
1102 set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
1103 set_gdbarch_fetch_pseudo_register (gdbarch, m68hc11_fetch_pseudo_register);
1104 set_gdbarch_store_pseudo_register (gdbarch, m68hc11_store_pseudo_register);
1105
1106 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1107 set_gdbarch_call_dummy_length (gdbarch, 0);
1108 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1109 set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
1110 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
1111 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1112 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1113 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1114 set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1115 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1116 sizeof (m68hc11_call_dummy_words));
1117 set_gdbarch_call_dummy_p (gdbarch, 1);
1118 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1119 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1120 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1121 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1122 set_gdbarch_push_arguments (gdbarch, m68hc11_push_arguments);
1123 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1124 set_gdbarch_push_return_address (gdbarch, m68hc11_push_return_address);
1125 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1126
1127 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
1128 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1129 set_gdbarch_extract_struct_value_address (gdbarch,
1130 m68hc11_extract_struct_value_address);
1131 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1132
1133
1134 set_gdbarch_frame_chain (gdbarch, m68hc11_frame_chain);
1135 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1136 set_gdbarch_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1137 set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
1138 set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
1139 set_gdbarch_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1140 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1141
1142 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1143 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1144
1145 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
1146 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1147 set_gdbarch_extract_struct_value_address
1148 (gdbarch, m68hc11_extract_struct_value_address);
1149 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1150 set_gdbarch_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
1151 set_gdbarch_pop_frame (gdbarch, m68hc11_pop_frame);
1152 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1153 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1154 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1155 set_gdbarch_function_start_offset (gdbarch, 0);
1156 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1157 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
1158
1159 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1160
1161 return gdbarch;
1162 }
1163
1164 void
1165 _initialize_m68hc11_tdep (void)
1166 {
1167 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1168 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1169 if (!tm_print_insn) /* Someone may have already set it */
1170 tm_print_insn = gdb_print_insn_m68hc11;
1171
1172 add_com ("regs", class_vars, show_regs, "Print all registers");
1173 }
1174
This page took 0.089978 seconds and 5 git commands to generate.