* linux-arm-low.c (arm_reinsert_addr): New function.
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez, stcarrez@nerim.fr
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "gdb_string.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "dis-asm.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "reggroups.h"
37
38 #include "target.h"
39 #include "opcode/m68hc11.h"
40 #include "elf/m68hc11.h"
41 #include "elf-bfd.h"
42
43 /* Macros for setting and testing a bit in a minimal symbol.
44 For 68HC11/68HC12 we have two flags that tell which return
45 type the function is using. This is used for prologue and frame
46 analysis to compute correct stack frame layout.
47
48 The MSB of the minimal symbol's "info" field is used for this purpose.
49 This field is already being used to store the symbol size, so the
50 assumption is that the symbol size cannot exceed 2^30.
51
52 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
53 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
54 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
55 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol.
56 MSYMBOL_SIZE Returns the size of the minimal symbol,
57 i.e. the "info" field with the "special" bit
58 masked out. */
59
60 #define MSYMBOL_SET_RTC(msym) \
61 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
62 | 0x80000000)
63
64 #define MSYMBOL_SET_RTI(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x40000000)
67
68 #define MSYMBOL_IS_RTC(msym) \
69 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
70
71 #define MSYMBOL_IS_RTI(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
73
74 #define MSYMBOL_SIZE(msym) \
75 ((long) MSYMBOL_INFO (msym) & 0x3fffffff)
76
77 enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81 };
82
83
84 /* Register numbers of various important registers.
85 Note that some of these values are "real" register numbers,
86 and correspond to the general registers of the machine,
87 and some are "phony" register numbers which are too large
88 to be actual register numbers as far as the user is concerned
89 but do serve to get the desired values when passed to read_register. */
90
91 #define HARD_X_REGNUM 0
92 #define HARD_D_REGNUM 1
93 #define HARD_Y_REGNUM 2
94 #define HARD_SP_REGNUM 3
95 #define HARD_PC_REGNUM 4
96
97 #define HARD_A_REGNUM 5
98 #define HARD_B_REGNUM 6
99 #define HARD_CCR_REGNUM 7
100
101 /* 68HC12 page number register.
102 Note: to keep a compatibility with gcc register naming, we must
103 not have to rename FP and other soft registers. The page register
104 is a real hard register and must therefore be counted by NUM_REGS.
105 For this it has the same number as Z register (which is not used). */
106 #define HARD_PAGE_REGNUM 8
107 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
108
109 /* Z is replaced by X or Y by gcc during machine reorg.
110 ??? There is no way to get it and even know whether
111 it's in X or Y or in ZS. */
112 #define SOFT_Z_REGNUM 8
113
114 /* Soft registers. These registers are special. There are treated
115 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
116 They are physically located in memory. */
117 #define SOFT_FP_REGNUM 9
118 #define SOFT_TMP_REGNUM 10
119 #define SOFT_ZS_REGNUM 11
120 #define SOFT_XY_REGNUM 12
121 #define SOFT_UNUSED_REGNUM 13
122 #define SOFT_D1_REGNUM 14
123 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
124 #define M68HC11_MAX_SOFT_REGS 32
125
126 #define M68HC11_NUM_REGS (8)
127 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
128 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
129
130 #define M68HC11_REG_SIZE (2)
131
132 #define M68HC12_NUM_REGS (9)
133 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
134 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
135
136 struct insn_sequence;
137 struct gdbarch_tdep
138 {
139 /* Stack pointer correction value. For 68hc11, the stack pointer points
140 to the next push location. An offset of 1 must be applied to obtain
141 the address where the last value is saved. For 68hc12, the stack
142 pointer points to the last value pushed. No offset is necessary. */
143 int stack_correction;
144
145 /* Description of instructions in the prologue. */
146 struct insn_sequence *prologue;
147
148 /* True if the page memory bank register is available
149 and must be used. */
150 int use_page_register;
151
152 /* ELF flags for ABI. */
153 int elf_flags;
154 };
155
156 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
157 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
158 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
159
160 struct frame_extra_info
161 {
162 CORE_ADDR return_pc;
163 int frameless;
164 int size;
165 enum insn_return_kind return_kind;
166 };
167
168 /* Table of registers for 68HC11. This includes the hard registers
169 and the soft registers used by GCC. */
170 static char *
171 m68hc11_register_names[] =
172 {
173 "x", "d", "y", "sp", "pc", "a", "b",
174 "ccr", "page", "frame","tmp", "zs", "xy", 0,
175 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
176 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
177 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
178 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
179 "d29", "d30", "d31", "d32"
180 };
181
182 struct m68hc11_soft_reg
183 {
184 const char *name;
185 CORE_ADDR addr;
186 };
187
188 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
189
190 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
191
192 static int soft_min_addr;
193 static int soft_max_addr;
194 static int soft_reg_initialized = 0;
195
196 /* Look in the symbol table for the address of a pseudo register
197 in memory. If we don't find it, pretend the register is not used
198 and not available. */
199 static void
200 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
201 {
202 struct minimal_symbol *msymbol;
203
204 msymbol = lookup_minimal_symbol (name, NULL, NULL);
205 if (msymbol)
206 {
207 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
208 reg->name = xstrdup (name);
209
210 /* Keep track of the address range for soft registers. */
211 if (reg->addr < (CORE_ADDR) soft_min_addr)
212 soft_min_addr = reg->addr;
213 if (reg->addr > (CORE_ADDR) soft_max_addr)
214 soft_max_addr = reg->addr;
215 }
216 else
217 {
218 reg->name = 0;
219 reg->addr = 0;
220 }
221 }
222
223 /* Initialize the table of soft register addresses according
224 to the symbol table. */
225 static void
226 m68hc11_initialize_register_info (void)
227 {
228 int i;
229
230 if (soft_reg_initialized)
231 return;
232
233 soft_min_addr = INT_MAX;
234 soft_max_addr = 0;
235 for (i = 0; i < M68HC11_ALL_REGS; i++)
236 {
237 soft_regs[i].name = 0;
238 }
239
240 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
241 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
242 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
243 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
244 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
245
246 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
247 {
248 char buf[10];
249
250 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
251 m68hc11_get_register_info (&soft_regs[i], buf);
252 }
253
254 if (soft_regs[SOFT_FP_REGNUM].name == 0)
255 {
256 warning ("No frame soft register found in the symbol table.\n");
257 warning ("Stack backtrace will not work.\n");
258 }
259 soft_reg_initialized = 1;
260 }
261
262 /* Given an address in memory, return the soft register number if
263 that address corresponds to a soft register. Returns -1 if not. */
264 static int
265 m68hc11_which_soft_register (CORE_ADDR addr)
266 {
267 int i;
268
269 if (addr < soft_min_addr || addr > soft_max_addr)
270 return -1;
271
272 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
273 {
274 if (soft_regs[i].name && soft_regs[i].addr == addr)
275 return i;
276 }
277 return -1;
278 }
279
280 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
281 pseudo registers. They are located in memory. Translate the register
282 fetch into a memory read. */
283 static void
284 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regno, void *buf)
287 {
288 /* The PC is a pseudo reg only for 68HC12 with the memory bank
289 addressing mode. */
290 if (regno == M68HC12_HARD_PC_REGNUM)
291 {
292 ULONGEST pc;
293 const int regsize = TYPE_LENGTH (builtin_type_uint32);
294
295 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
296 if (pc >= 0x8000 && pc < 0xc000)
297 {
298 ULONGEST page;
299
300 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
301 pc -= 0x8000;
302 pc += (page << 14);
303 pc += 0x1000000;
304 }
305 store_unsigned_integer (buf, regsize, pc);
306 return;
307 }
308
309 m68hc11_initialize_register_info ();
310
311 /* Fetch a soft register: translate into a memory read. */
312 if (soft_regs[regno].name)
313 {
314 target_read_memory (soft_regs[regno].addr, buf, 2);
315 }
316 else
317 {
318 memset (buf, 0, 2);
319 }
320 }
321
322 /* Store a pseudo register. Translate the register store
323 into a memory write. */
324 static void
325 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
326 struct regcache *regcache,
327 int regno, const void *buf)
328 {
329 /* The PC is a pseudo reg only for 68HC12 with the memory bank
330 addressing mode. */
331 if (regno == M68HC12_HARD_PC_REGNUM)
332 {
333 const int regsize = TYPE_LENGTH (builtin_type_uint32);
334 char *tmp = alloca (regsize);
335 CORE_ADDR pc;
336
337 memcpy (tmp, buf, regsize);
338 pc = extract_unsigned_integer (tmp, regsize);
339 if (pc >= 0x1000000)
340 {
341 pc -= 0x1000000;
342 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
343 (pc >> 14) & 0x0ff);
344 pc &= 0x03fff;
345 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
346 pc + 0x8000);
347 }
348 else
349 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
350 return;
351 }
352
353 m68hc11_initialize_register_info ();
354
355 /* Store a soft register: translate into a memory write. */
356 if (soft_regs[regno].name)
357 {
358 const int regsize = 2;
359 char *tmp = alloca (regsize);
360 memcpy (tmp, buf, regsize);
361 target_write_memory (soft_regs[regno].addr, tmp, regsize);
362 }
363 }
364
365 static const char *
366 m68hc11_register_name (int reg_nr)
367 {
368 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
369 return "pc";
370 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
371 return "ppc";
372
373 if (reg_nr < 0)
374 return NULL;
375 if (reg_nr >= M68HC11_ALL_REGS)
376 return NULL;
377
378 /* If we don't know the address of a soft register, pretend it
379 does not exist. */
380 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
381 return NULL;
382 return m68hc11_register_names[reg_nr];
383 }
384
385 static const unsigned char *
386 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
387 {
388 static unsigned char breakpoint[] = {0x0};
389
390 *lenptr = sizeof (breakpoint);
391 return breakpoint;
392 }
393
394 /* Immediately after a function call, return the saved pc before the frame
395 is setup. */
396
397 static CORE_ADDR
398 m68hc11_saved_pc_after_call (struct frame_info *frame)
399 {
400 CORE_ADDR addr;
401 ULONGEST sp;
402
403 regcache_cooked_read_unsigned (current_regcache, HARD_SP_REGNUM, &sp);
404 sp += STACK_CORRECTION;
405 addr = sp & 0x0ffff;
406 return read_memory_integer (addr, 2) & 0x0FFFF;
407 }
408
409 static CORE_ADDR
410 m68hc11_frame_saved_pc (struct frame_info *frame)
411 {
412 return get_frame_extra_info (frame)->return_pc;
413 }
414
415 static CORE_ADDR
416 m68hc11_frame_args_address (struct frame_info *frame)
417 {
418 CORE_ADDR addr;
419
420 addr = get_frame_base (frame) + get_frame_extra_info (frame)->size + STACK_CORRECTION + 2;
421 if (get_frame_extra_info (frame)->return_kind == RETURN_RTC)
422 addr += 1;
423 else if (get_frame_extra_info (frame)->return_kind == RETURN_RTI)
424 addr += 7;
425
426 return addr;
427 }
428
429 /* Discard from the stack the innermost frame, restoring all saved
430 registers. */
431
432 static void
433 m68hc11_pop_frame (void)
434 {
435 register struct frame_info *frame = get_current_frame ();
436 register CORE_ADDR fp, sp;
437 register int regnum;
438
439 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
440 get_frame_base (frame),
441 get_frame_base (frame)))
442 generic_pop_dummy_frame ();
443 else
444 {
445 fp = get_frame_base (frame);
446 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
447
448 /* Copy regs from where they were saved in the frame. */
449 for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
450 if (get_frame_saved_regs (frame)[regnum])
451 write_register (regnum,
452 read_memory_integer (get_frame_saved_regs (frame)[regnum], 2));
453
454 write_register (HARD_PC_REGNUM, get_frame_extra_info (frame)->return_pc);
455 sp = (fp + get_frame_extra_info (frame)->size + 2) & 0x0ffff;
456 write_register (HARD_SP_REGNUM, sp);
457 }
458 flush_cached_frames ();
459 }
460
461 \f
462 /* 68HC11 & 68HC12 prologue analysis.
463
464 */
465 #define MAX_CODES 12
466
467 /* 68HC11 opcodes. */
468 #undef M6811_OP_PAGE2
469 #define M6811_OP_PAGE2 (0x18)
470 #define M6811_OP_LDX (0xde)
471 #define M6811_OP_LDX_EXT (0xfe)
472 #define M6811_OP_PSHX (0x3c)
473 #define M6811_OP_STS (0x9f)
474 #define M6811_OP_STS_EXT (0xbf)
475 #define M6811_OP_TSX (0x30)
476 #define M6811_OP_XGDX (0x8f)
477 #define M6811_OP_ADDD (0xc3)
478 #define M6811_OP_TXS (0x35)
479 #define M6811_OP_DES (0x34)
480
481 /* 68HC12 opcodes. */
482 #define M6812_OP_PAGE2 (0x18)
483 #define M6812_OP_MOVW (0x01)
484 #define M6812_PB_PSHW (0xae)
485 #define M6812_OP_STS (0x5f)
486 #define M6812_OP_STS_EXT (0x7f)
487 #define M6812_OP_LEAS (0x1b)
488 #define M6812_OP_PSHX (0x34)
489 #define M6812_OP_PSHY (0x35)
490
491 /* Operand extraction. */
492 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
493 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
494 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
495 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
496
497 /* Identification of the sequence. */
498 enum m6811_seq_type
499 {
500 P_LAST = 0,
501 P_SAVE_REG, /* Save a register on the stack. */
502 P_SET_FRAME, /* Setup the frame pointer. */
503 P_LOCAL_1, /* Allocate 1 byte for locals. */
504 P_LOCAL_2, /* Allocate 2 bytes for locals. */
505 P_LOCAL_N /* Allocate N bytes for locals. */
506 };
507
508 struct insn_sequence {
509 enum m6811_seq_type type;
510 unsigned length;
511 unsigned short code[MAX_CODES];
512 };
513
514 /* Sequence of instructions in the 68HC11 function prologue. */
515 static struct insn_sequence m6811_prologue[] = {
516 /* Sequences to save a soft-register. */
517 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
518 M6811_OP_PSHX } },
519 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
520 M6811_OP_PAGE2, M6811_OP_PSHX } },
521 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
522 M6811_OP_PSHX } },
523 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
524 M6811_OP_PAGE2, M6811_OP_PSHX } },
525
526 /* Sequences to allocate local variables. */
527 { P_LOCAL_N, 7, { M6811_OP_TSX,
528 M6811_OP_XGDX,
529 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
530 M6811_OP_XGDX,
531 M6811_OP_TXS } },
532 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
533 M6811_OP_PAGE2, M6811_OP_XGDX,
534 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
535 M6811_OP_PAGE2, M6811_OP_XGDX,
536 M6811_OP_PAGE2, M6811_OP_TXS } },
537 { P_LOCAL_1, 1, { M6811_OP_DES } },
538 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
539 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
540
541 /* Initialize the frame pointer. */
542 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
543 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
544 { P_LAST, 0, { 0 } }
545 };
546
547
548 /* Sequence of instructions in the 68HC12 function prologue. */
549 static struct insn_sequence m6812_prologue[] = {
550 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
551 OP_IMM_HIGH, OP_IMM_LOW } },
552 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
553 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
554 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
555 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
556 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
557 { P_LAST, 0 }
558 };
559
560
561 /* Analyze the sequence of instructions starting at the given address.
562 Returns a pointer to the sequence when it is recognized and
563 the optional value (constant/address) associated with it.
564 Advance the pc for the next sequence. */
565 static struct insn_sequence *
566 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
567 CORE_ADDR *val)
568 {
569 unsigned char buffer[MAX_CODES];
570 unsigned bufsize;
571 unsigned j;
572 CORE_ADDR cur_val;
573 short v = 0;
574
575 bufsize = 0;
576 for (; seq->type != P_LAST; seq++)
577 {
578 cur_val = 0;
579 for (j = 0; j < seq->length; j++)
580 {
581 if (bufsize < j + 1)
582 {
583 buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
584 1);
585 bufsize++;
586 }
587 /* Continue while we match the opcode. */
588 if (seq->code[j] == buffer[j])
589 continue;
590
591 if ((seq->code[j] & 0xf00) == 0)
592 break;
593
594 /* Extract a sequence parameter (address or constant). */
595 switch (seq->code[j])
596 {
597 case OP_DIRECT:
598 cur_val = (CORE_ADDR) buffer[j];
599 break;
600
601 case OP_IMM_HIGH:
602 cur_val = cur_val & 0x0ff;
603 cur_val |= (buffer[j] << 8);
604 break;
605
606 case OP_IMM_LOW:
607 cur_val &= 0x0ff00;
608 cur_val |= buffer[j];
609 break;
610
611 case OP_PBYTE:
612 if ((buffer[j] & 0xE0) == 0x80)
613 {
614 v = buffer[j] & 0x1f;
615 if (v & 0x10)
616 v |= 0xfff0;
617 }
618 else if ((buffer[j] & 0xfe) == 0xf0)
619 {
620 v = read_memory_unsigned_integer (*pc + j + 1, 1);
621 if (buffer[j] & 1)
622 v |= 0xff00;
623 *pc = *pc + 1;
624 }
625 else if (buffer[j] == 0xf2)
626 {
627 v = read_memory_unsigned_integer (*pc + j + 1, 2);
628 *pc = *pc + 2;
629 }
630 cur_val = v;
631 break;
632 }
633 }
634
635 /* We have a full match. */
636 if (j == seq->length)
637 {
638 *val = cur_val;
639 *pc = *pc + j;
640 return seq;
641 }
642 }
643 return 0;
644 }
645
646 /* Return the instruction that the function at the PC is using. */
647 static enum insn_return_kind
648 m68hc11_get_return_insn (CORE_ADDR pc)
649 {
650 struct minimal_symbol *sym;
651
652 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
653 function is stored by elfread.c in the high bit of the info field.
654 Use this to decide which instruction the function uses to return. */
655 sym = lookup_minimal_symbol_by_pc (pc);
656 if (sym == 0)
657 return RETURN_RTS;
658
659 if (MSYMBOL_IS_RTC (sym))
660 return RETURN_RTC;
661 else if (MSYMBOL_IS_RTI (sym))
662 return RETURN_RTI;
663 else
664 return RETURN_RTS;
665 }
666
667
668 /* Analyze the function prologue to find some information
669 about the function:
670 - the PC of the first line (for m68hc11_skip_prologue)
671 - the offset of the previous frame saved address (from current frame)
672 - the soft registers which are pushed. */
673 static void
674 m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
675 CORE_ADDR *first_line,
676 int *frame_offset, CORE_ADDR *pushed_regs)
677 {
678 CORE_ADDR save_addr;
679 CORE_ADDR func_end;
680 int size;
681 int found_frame_point;
682 int saved_reg;
683 CORE_ADDR first_pc;
684 int done = 0;
685 struct insn_sequence *seq_table;
686
687 first_pc = get_pc_function_start (pc);
688 size = 0;
689
690 m68hc11_initialize_register_info ();
691 if (first_pc == 0)
692 {
693 *frame_offset = 0;
694 *first_line = pc;
695 return;
696 }
697
698 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
699
700 /* The 68hc11 stack is as follows:
701
702
703 | |
704 +-----------+
705 | |
706 | args |
707 | |
708 +-----------+
709 | PC-return |
710 +-----------+
711 | Old frame |
712 +-----------+
713 | |
714 | Locals |
715 | |
716 +-----------+ <--- current frame
717 | |
718
719 With most processors (like 68K) the previous frame can be computed
720 easily because it is always at a fixed offset (see link/unlink).
721 That is, locals are accessed with negative offsets, arguments are
722 accessed with positive ones. Since 68hc11 only supports offsets
723 in the range [0..255], the frame is defined at the bottom of
724 locals (see picture).
725
726 The purpose of the analysis made here is to find out the size
727 of locals in this function. An alternative to this is to use
728 DWARF2 info. This would be better but I don't know how to
729 access dwarf2 debug from this function.
730
731 Walk from the function entry point to the point where we save
732 the frame. While walking instructions, compute the size of bytes
733 which are pushed. This gives us the index to access the previous
734 frame.
735
736 We limit the search to 128 bytes so that the algorithm is bounded
737 in case of random and wrong code. We also stop and abort if
738 we find an instruction which is not supposed to appear in the
739 prologue (as generated by gcc 2.95, 2.96).
740 */
741 pc = first_pc;
742 func_end = pc + 128;
743 found_frame_point = 0;
744 *frame_offset = 0;
745 save_addr = fp + STACK_CORRECTION;
746 while (!done && pc + 2 < func_end)
747 {
748 struct insn_sequence *seq;
749 CORE_ADDR val;
750
751 seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
752 if (seq == 0)
753 break;
754
755 if (seq->type == P_SAVE_REG)
756 {
757 if (found_frame_point)
758 {
759 saved_reg = m68hc11_which_soft_register (val);
760 if (saved_reg < 0)
761 break;
762
763 save_addr -= 2;
764 if (pushed_regs)
765 pushed_regs[saved_reg] = save_addr;
766 }
767 else
768 {
769 size += 2;
770 }
771 }
772 else if (seq->type == P_SET_FRAME)
773 {
774 found_frame_point = 1;
775 *frame_offset = size;
776 }
777 else if (seq->type == P_LOCAL_1)
778 {
779 size += 1;
780 }
781 else if (seq->type == P_LOCAL_2)
782 {
783 size += 2;
784 }
785 else if (seq->type == P_LOCAL_N)
786 {
787 /* Stack pointer is decremented for the allocation. */
788 if (val & 0x8000)
789 size -= (int) (val) | 0xffff0000;
790 else
791 size -= val;
792 }
793 }
794 *first_line = pc;
795 }
796
797 static CORE_ADDR
798 m68hc11_skip_prologue (CORE_ADDR pc)
799 {
800 CORE_ADDR func_addr, func_end;
801 struct symtab_and_line sal;
802 int frame_offset;
803
804 /* If we have line debugging information, then the end of the
805 prologue should be the first assembly instruction of the
806 first source line. */
807 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
808 {
809 sal = find_pc_line (func_addr, 0);
810 if (sal.end && sal.end < func_end)
811 return sal.end;
812 }
813
814 m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
815 return pc;
816 }
817
818 /* Given a GDB frame, determine the address of the calling function's
819 frame. This will be used to create a new GDB frame struct, and
820 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
821 will be called for the new frame. */
822
823 static CORE_ADDR
824 m68hc11_frame_chain (struct frame_info *frame)
825 {
826 CORE_ADDR addr;
827
828 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
829 get_frame_base (frame),
830 get_frame_base (frame)))
831 return get_frame_base (frame); /* dummy frame same as caller's frame */
832
833 if (get_frame_extra_info (frame)->return_pc == 0
834 || inside_entry_file (get_frame_extra_info (frame)->return_pc))
835 return (CORE_ADDR) 0;
836
837 if (get_frame_base (frame) == 0)
838 {
839 return (CORE_ADDR) 0;
840 }
841
842 addr = get_frame_base (frame) + get_frame_extra_info (frame)->size + STACK_CORRECTION - 2;
843 addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
844 return addr;
845 }
846
847 /* Put here the code to store, into a struct frame_saved_regs, the
848 addresses of the saved registers of frame described by FRAME_INFO.
849 This includes special registers such as pc and fp saved in special
850 ways in the stack frame. sp is even more special: the address we
851 return for it IS the sp for the next frame. */
852 static void
853 m68hc11_frame_init_saved_regs (struct frame_info *fi)
854 {
855 CORE_ADDR pc;
856 CORE_ADDR addr;
857
858 if (get_frame_saved_regs (fi) == NULL)
859 frame_saved_regs_zalloc (fi);
860 else
861 memset (get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
862
863 pc = get_frame_pc (fi);
864 get_frame_extra_info (fi)->return_kind = m68hc11_get_return_insn (pc);
865 m68hc11_guess_from_prologue (pc, get_frame_base (fi), &pc,
866 &get_frame_extra_info (fi)->size,
867 get_frame_saved_regs (fi));
868
869 addr = get_frame_base (fi) + get_frame_extra_info (fi)->size + STACK_CORRECTION;
870 if (soft_regs[SOFT_FP_REGNUM].name)
871 get_frame_saved_regs (fi)[SOFT_FP_REGNUM] = addr - 2;
872
873 /* Take into account how the function was called/returns. */
874 if (get_frame_extra_info (fi)->return_kind == RETURN_RTC)
875 {
876 get_frame_saved_regs (fi)[HARD_PAGE_REGNUM] = addr;
877 addr++;
878 }
879 else if (get_frame_extra_info (fi)->return_kind == RETURN_RTI)
880 {
881 get_frame_saved_regs (fi)[HARD_CCR_REGNUM] = addr;
882 get_frame_saved_regs (fi)[HARD_D_REGNUM] = addr + 1;
883 get_frame_saved_regs (fi)[HARD_X_REGNUM] = addr + 3;
884 get_frame_saved_regs (fi)[HARD_Y_REGNUM] = addr + 5;
885 addr += 7;
886 }
887 get_frame_saved_regs (fi)[HARD_SP_REGNUM] = addr;
888 get_frame_saved_regs (fi)[HARD_PC_REGNUM] = get_frame_saved_regs (fi)[HARD_SP_REGNUM];
889 }
890
891 static void
892 m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
893 {
894 CORE_ADDR addr;
895
896 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
897
898 if (get_next_frame (fi))
899 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
900
901 m68hc11_frame_init_saved_regs (fi);
902
903 if (fromleaf)
904 {
905 get_frame_extra_info (fi)->return_kind = m68hc11_get_return_insn (get_frame_pc (fi));
906 get_frame_extra_info (fi)->return_pc = m68hc11_saved_pc_after_call (fi);
907 }
908 else
909 {
910 addr = get_frame_saved_regs (fi)[HARD_PC_REGNUM];
911 addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
912
913 /* Take into account the 68HC12 specific call (PC + page). */
914 if (get_frame_extra_info (fi)->return_kind == RETURN_RTC
915 && addr >= 0x08000 && addr < 0x0c000
916 && USE_PAGE_REGISTER)
917 {
918 CORE_ADDR page_addr = get_frame_saved_regs (fi)[HARD_PAGE_REGNUM];
919
920 unsigned page = read_memory_unsigned_integer (page_addr, 1);
921 addr -= 0x08000;
922 addr += ((page & 0x0ff) << 14);
923 addr += 0x1000000;
924 }
925 get_frame_extra_info (fi)->return_pc = addr;
926 }
927 }
928
929 /* Same as 'info reg' but prints the registers in a different way. */
930 static void
931 show_regs (char *args, int from_tty)
932 {
933 int ccr = read_register (HARD_CCR_REGNUM);
934 int i;
935 int nr;
936
937 printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
938 (int) read_register (HARD_PC_REGNUM),
939 (int) read_register (HARD_SP_REGNUM),
940 (int) read_register (SOFT_FP_REGNUM),
941 ccr,
942 ccr & M6811_S_BIT ? 'S' : '-',
943 ccr & M6811_X_BIT ? 'X' : '-',
944 ccr & M6811_H_BIT ? 'H' : '-',
945 ccr & M6811_I_BIT ? 'I' : '-',
946 ccr & M6811_N_BIT ? 'N' : '-',
947 ccr & M6811_Z_BIT ? 'Z' : '-',
948 ccr & M6811_V_BIT ? 'V' : '-',
949 ccr & M6811_C_BIT ? 'C' : '-');
950
951 printf_filtered ("D=%04x IX=%04x IY=%04x",
952 (int) read_register (HARD_D_REGNUM),
953 (int) read_register (HARD_X_REGNUM),
954 (int) read_register (HARD_Y_REGNUM));
955
956 if (USE_PAGE_REGISTER)
957 {
958 printf_filtered (" Page=%02x",
959 (int) read_register (HARD_PAGE_REGNUM));
960 }
961 printf_filtered ("\n");
962
963 nr = 0;
964 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
965 {
966 /* Skip registers which are not defined in the symbol table. */
967 if (soft_regs[i].name == 0)
968 continue;
969
970 printf_filtered ("D%d=%04x",
971 i - SOFT_D1_REGNUM + 1,
972 (int) read_register (i));
973 nr++;
974 if ((nr % 8) == 7)
975 printf_filtered ("\n");
976 else
977 printf_filtered (" ");
978 }
979 if (nr && (nr % 8) != 7)
980 printf_filtered ("\n");
981 }
982
983 static CORE_ADDR
984 m68hc11_stack_align (CORE_ADDR addr)
985 {
986 return ((addr + 1) & -2);
987 }
988
989 static CORE_ADDR
990 m68hc11_push_arguments (int nargs,
991 struct value **args,
992 CORE_ADDR sp,
993 int struct_return,
994 CORE_ADDR struct_addr)
995 {
996 int stack_alloc;
997 int argnum;
998 int first_stack_argnum;
999 int stack_offset;
1000 struct type *type;
1001 char *val;
1002 int len;
1003
1004 stack_alloc = 0;
1005 first_stack_argnum = 0;
1006 if (struct_return)
1007 {
1008 /* The struct is allocated on the stack and gdb used the stack
1009 pointer for the address of that struct. We must apply the
1010 stack offset on the address. */
1011 write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
1012 }
1013 else if (nargs > 0)
1014 {
1015 type = VALUE_TYPE (args[0]);
1016 len = TYPE_LENGTH (type);
1017
1018 /* First argument is passed in D and X registers. */
1019 if (len <= 4)
1020 {
1021 LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1022 first_stack_argnum = 1;
1023 write_register (HARD_D_REGNUM, v);
1024 if (len > 2)
1025 {
1026 v >>= 16;
1027 write_register (HARD_X_REGNUM, v);
1028 }
1029 }
1030 }
1031 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1032 {
1033 type = VALUE_TYPE (args[argnum]);
1034 stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
1035 }
1036 sp -= stack_alloc;
1037
1038 stack_offset = STACK_CORRECTION;
1039 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1040 {
1041 type = VALUE_TYPE (args[argnum]);
1042 len = TYPE_LENGTH (type);
1043
1044 val = (char*) VALUE_CONTENTS (args[argnum]);
1045 write_memory (sp + stack_offset, val, len);
1046 stack_offset += len;
1047 if (len & 1)
1048 {
1049 static char zero = 0;
1050
1051 write_memory (sp + stack_offset, &zero, 1);
1052 stack_offset++;
1053 }
1054 }
1055 return sp;
1056 }
1057
1058
1059 /* Return the GDB type object for the "standard" data type
1060 of data in register N. */
1061
1062 static struct type *
1063 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1064 {
1065 switch (reg_nr)
1066 {
1067 case HARD_PAGE_REGNUM:
1068 case HARD_A_REGNUM:
1069 case HARD_B_REGNUM:
1070 case HARD_CCR_REGNUM:
1071 return builtin_type_uint8;
1072
1073 case M68HC12_HARD_PC_REGNUM:
1074 return builtin_type_uint32;
1075
1076 default:
1077 return builtin_type_uint16;
1078 }
1079 }
1080
1081 static void
1082 m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1083 {
1084 /* The struct address computed by gdb is on the stack.
1085 It uses the stack pointer so we must apply the stack
1086 correction offset. */
1087 write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
1088 }
1089
1090 static void
1091 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1092 const void *valbuf)
1093 {
1094 int len;
1095
1096 len = TYPE_LENGTH (type);
1097
1098 /* First argument is passed in D and X registers. */
1099 if (len <= 2)
1100 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1101 else if (len <= 4)
1102 {
1103 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1104 len - 2, valbuf);
1105 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1106 }
1107 else
1108 error ("return of value > 4 is not supported.");
1109 }
1110
1111
1112 /* Given a return value in `regcache' with a type `type',
1113 extract and copy its value into `valbuf'. */
1114
1115 static void
1116 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1117 void *valbuf)
1118 {
1119 int len = TYPE_LENGTH (type);
1120 char buf[M68HC11_REG_SIZE];
1121
1122 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1123 switch (len)
1124 {
1125 case 1:
1126 memcpy (valbuf, buf + 1, 1);
1127 break;
1128
1129 case 2:
1130 memcpy (valbuf, buf, 2);
1131 break;
1132
1133 case 3:
1134 memcpy ((char*) valbuf + 1, buf, 2);
1135 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1136 memcpy (valbuf, buf + 1, 1);
1137 break;
1138
1139 case 4:
1140 memcpy ((char*) valbuf + 2, buf, 2);
1141 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1142 memcpy (valbuf, buf, 2);
1143 break;
1144
1145 default:
1146 error ("bad size for return value");
1147 }
1148 }
1149
1150 /* Should call_function allocate stack space for a struct return? */
1151 static int
1152 m68hc11_use_struct_convention (int gcc_p, struct type *type)
1153 {
1154 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1155 || TYPE_CODE (type) == TYPE_CODE_UNION
1156 || TYPE_LENGTH (type) > 4);
1157 }
1158
1159 static int
1160 m68hc11_return_value_on_stack (struct type *type)
1161 {
1162 return TYPE_LENGTH (type) > 4;
1163 }
1164
1165 /* Extract from an array REGBUF containing the (raw) register state
1166 the address in which a function should return its structure value,
1167 as a CORE_ADDR (or an expression that can be used as one). */
1168 static CORE_ADDR
1169 m68hc11_extract_struct_value_address (struct regcache *regcache)
1170 {
1171 char buf[M68HC11_REG_SIZE];
1172
1173 regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
1174 return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
1175 }
1176
1177 /* Function: push_return_address (pc)
1178 Set up the return address for the inferior function call.
1179 Needed for targets where we don't actually execute a JSR/BSR instruction */
1180
1181 static CORE_ADDR
1182 m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1183 {
1184 char valbuf[2];
1185
1186 pc = CALL_DUMMY_ADDRESS ();
1187 sp -= 2;
1188 store_unsigned_integer (valbuf, 2, pc);
1189 write_memory (sp + STACK_CORRECTION, valbuf, 2);
1190 return sp;
1191 }
1192
1193 /* Test whether the ELF symbol corresponds to a function using rtc or
1194 rti to return. */
1195
1196 static void
1197 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1198 {
1199 unsigned char flags;
1200
1201 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1202 if (flags & STO_M68HC12_FAR)
1203 MSYMBOL_SET_RTC (msym);
1204 if (flags & STO_M68HC12_INTERRUPT)
1205 MSYMBOL_SET_RTI (msym);
1206 }
1207
1208 static int
1209 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1210 {
1211 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1212 return print_insn_m68hc11 (memaddr, info);
1213 else
1214 return print_insn_m68hc12 (memaddr, info);
1215 }
1216
1217 \f
1218
1219 /* 68HC11/68HC12 register groups.
1220 Identify real hard registers and soft registers used by gcc. */
1221
1222 static struct reggroup *m68hc11_soft_reggroup;
1223 static struct reggroup *m68hc11_hard_reggroup;
1224
1225 static void
1226 m68hc11_init_reggroups (void)
1227 {
1228 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1229 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1230 }
1231
1232 static void
1233 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1234 {
1235 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1236 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1237 reggroup_add (gdbarch, general_reggroup);
1238 reggroup_add (gdbarch, float_reggroup);
1239 reggroup_add (gdbarch, all_reggroup);
1240 reggroup_add (gdbarch, save_reggroup);
1241 reggroup_add (gdbarch, restore_reggroup);
1242 reggroup_add (gdbarch, vector_reggroup);
1243 reggroup_add (gdbarch, system_reggroup);
1244 }
1245
1246 static int
1247 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1248 struct reggroup *group)
1249 {
1250 /* We must save the real hard register as well as gcc
1251 soft registers including the frame pointer. */
1252 if (group == save_reggroup || group == restore_reggroup)
1253 {
1254 return (regnum <= gdbarch_num_regs (gdbarch)
1255 || ((regnum == SOFT_FP_REGNUM
1256 || regnum == SOFT_TMP_REGNUM
1257 || regnum == SOFT_ZS_REGNUM
1258 || regnum == SOFT_XY_REGNUM)
1259 && m68hc11_register_name (regnum)));
1260 }
1261
1262 /* Group to identify gcc soft registers (d1..dN). */
1263 if (group == m68hc11_soft_reggroup)
1264 {
1265 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1266 }
1267
1268 if (group == m68hc11_hard_reggroup)
1269 {
1270 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1271 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1272 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1273 }
1274 return default_register_reggroup_p (gdbarch, regnum, group);
1275 }
1276
1277 static struct gdbarch *
1278 m68hc11_gdbarch_init (struct gdbarch_info info,
1279 struct gdbarch_list *arches)
1280 {
1281 static LONGEST m68hc11_call_dummy_words[] =
1282 {0};
1283 struct gdbarch *gdbarch;
1284 struct gdbarch_tdep *tdep;
1285 int elf_flags;
1286
1287 soft_reg_initialized = 0;
1288
1289 /* Extract the elf_flags if available. */
1290 if (info.abfd != NULL
1291 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1292 elf_flags = elf_elfheader (info.abfd)->e_flags;
1293 else
1294 elf_flags = 0;
1295
1296 /* try to find a pre-existing architecture */
1297 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1298 arches != NULL;
1299 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1300 {
1301 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1302 continue;
1303
1304 return arches->gdbarch;
1305 }
1306
1307 /* Need a new architecture. Fill in a target specific vector. */
1308 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1309 gdbarch = gdbarch_alloc (&info, tdep);
1310 tdep->elf_flags = elf_flags;
1311
1312 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1313 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1314 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1315
1316 switch (info.bfd_arch_info->arch)
1317 {
1318 case bfd_arch_m68hc11:
1319 tdep->stack_correction = 1;
1320 tdep->use_page_register = 0;
1321 tdep->prologue = m6811_prologue;
1322 set_gdbarch_addr_bit (gdbarch, 16);
1323 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1324 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1325 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1326 break;
1327
1328 case bfd_arch_m68hc12:
1329 tdep->stack_correction = 0;
1330 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1331 tdep->prologue = m6812_prologue;
1332 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1333 set_gdbarch_num_pseudo_regs (gdbarch,
1334 elf_flags & E_M68HC12_BANKS
1335 ? M68HC12_NUM_PSEUDO_REGS
1336 : M68HC11_NUM_PSEUDO_REGS);
1337 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1338 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1339 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1340 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1341 break;
1342
1343 default:
1344 break;
1345 }
1346
1347 /* Initially set everything according to the ABI.
1348 Use 16-bit integers since it will be the case for most
1349 programs. The size of these types should normally be set
1350 according to the dwarf2 debug information. */
1351 set_gdbarch_short_bit (gdbarch, 16);
1352 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1353 set_gdbarch_float_bit (gdbarch, 32);
1354 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1355 set_gdbarch_long_double_bit (gdbarch, 64);
1356 set_gdbarch_long_bit (gdbarch, 32);
1357 set_gdbarch_ptr_bit (gdbarch, 16);
1358 set_gdbarch_long_long_bit (gdbarch, 64);
1359
1360 /* Characters are unsigned. */
1361 set_gdbarch_char_signed (gdbarch, 0);
1362
1363 /* Set register info. */
1364 set_gdbarch_fp0_regnum (gdbarch, -1);
1365 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
1366 set_gdbarch_frame_args_skip (gdbarch, 0);
1367
1368 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1369 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1370
1371 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1372 set_gdbarch_deprecated_fp_regnum (gdbarch, SOFT_FP_REGNUM);
1373 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1374 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1375 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1376 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1377
1378 set_gdbarch_deprecated_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1379 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (m68hc11_call_dummy_words));
1380 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
1381 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1382 set_gdbarch_deprecated_push_arguments (gdbarch, m68hc11_push_arguments);
1383 set_gdbarch_deprecated_push_return_address (gdbarch, m68hc11_push_return_address);
1384 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1385
1386 set_gdbarch_deprecated_store_struct_return (gdbarch, m68hc11_store_struct_return);
1387 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1388 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1389
1390 set_gdbarch_deprecated_frame_chain (gdbarch, m68hc11_frame_chain);
1391 set_gdbarch_deprecated_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1392 set_gdbarch_deprecated_frame_args_address (gdbarch, m68hc11_frame_args_address);
1393 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1394
1395 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
1396
1397 set_gdbarch_deprecated_store_struct_return (gdbarch, m68hc11_store_struct_return);
1398 set_gdbarch_deprecated_store_return_value (gdbarch, m68hc11_store_return_value);
1399 set_gdbarch_deprecated_extract_struct_value_address
1400 (gdbarch, m68hc11_extract_struct_value_address);
1401 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1402 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
1403 set_gdbarch_deprecated_pop_frame (gdbarch, m68hc11_pop_frame);
1404 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1405 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1406 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1407 set_gdbarch_function_start_offset (gdbarch, 0);
1408 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1409 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
1410 set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1);
1411 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1412
1413 m68hc11_add_reggroups (gdbarch);
1414 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1415
1416 /* Minsymbol frobbing. */
1417 set_gdbarch_elf_make_msymbol_special (gdbarch,
1418 m68hc11_elf_make_msymbol_special);
1419
1420 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1421
1422 return gdbarch;
1423 }
1424
1425 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1426
1427 void
1428 _initialize_m68hc11_tdep (void)
1429 {
1430 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1431 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1432 m68hc11_init_reggroups ();
1433
1434 add_com ("regs", class_vars, show_regs, "Print all registers");
1435 }
1436
This page took 0.07295 seconds and 5 git commands to generate.