gdb/
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999-2005, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdb_string.h"
34 #include "value.h"
35 #include "inferior.h"
36 #include "dis-asm.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42
43 #include "target.h"
44 #include "opcode/m68hc11.h"
45 #include "elf/m68hc11.h"
46 #include "elf-bfd.h"
47
48 /* Macros for setting and testing a bit in a minimal symbol.
49 For 68HC11/68HC12 we have two flags that tell which return
50 type the function is using. This is used for prologue and frame
51 analysis to compute correct stack frame layout.
52
53 The MSB of the minimal symbol's "info" field is used for this purpose.
54
55 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
56 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
57 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
58 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
59
60 #define MSYMBOL_SET_RTC(msym) \
61 MSYMBOL_TARGET_FLAG_1 (msym) = 1
62
63 #define MSYMBOL_SET_RTI(msym) \
64 MSYMBOL_TARGET_FLAG_2 (msym) = 1
65
66 #define MSYMBOL_IS_RTC(msym) \
67 MSYMBOL_TARGET_FLAG_1 (msym)
68
69 #define MSYMBOL_IS_RTI(msym) \
70 MSYMBOL_TARGET_FLAG_2 (msym)
71
72 enum insn_return_kind {
73 RETURN_RTS,
74 RETURN_RTC,
75 RETURN_RTI
76 };
77
78
79 /* Register numbers of various important registers. */
80
81 #define HARD_X_REGNUM 0
82 #define HARD_D_REGNUM 1
83 #define HARD_Y_REGNUM 2
84 #define HARD_SP_REGNUM 3
85 #define HARD_PC_REGNUM 4
86
87 #define HARD_A_REGNUM 5
88 #define HARD_B_REGNUM 6
89 #define HARD_CCR_REGNUM 7
90
91 /* 68HC12 page number register.
92 Note: to keep a compatibility with gcc register naming, we must
93 not have to rename FP and other soft registers. The page register
94 is a real hard register and must therefore be counted by gdbarch_num_regs.
95 For this it has the same number as Z register (which is not used). */
96 #define HARD_PAGE_REGNUM 8
97 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
98
99 /* Z is replaced by X or Y by gcc during machine reorg.
100 ??? There is no way to get it and even know whether
101 it's in X or Y or in ZS. */
102 #define SOFT_Z_REGNUM 8
103
104 /* Soft registers. These registers are special. There are treated
105 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
106 They are physically located in memory. */
107 #define SOFT_FP_REGNUM 9
108 #define SOFT_TMP_REGNUM 10
109 #define SOFT_ZS_REGNUM 11
110 #define SOFT_XY_REGNUM 12
111 #define SOFT_UNUSED_REGNUM 13
112 #define SOFT_D1_REGNUM 14
113 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
114 #define M68HC11_MAX_SOFT_REGS 32
115
116 #define M68HC11_NUM_REGS (8)
117 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
118 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
119
120 #define M68HC11_REG_SIZE (2)
121
122 #define M68HC12_NUM_REGS (9)
123 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
124 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
125
126 struct insn_sequence;
127 struct gdbarch_tdep
128 {
129 /* Stack pointer correction value. For 68hc11, the stack pointer points
130 to the next push location. An offset of 1 must be applied to obtain
131 the address where the last value is saved. For 68hc12, the stack
132 pointer points to the last value pushed. No offset is necessary. */
133 int stack_correction;
134
135 /* Description of instructions in the prologue. */
136 struct insn_sequence *prologue;
137
138 /* True if the page memory bank register is available
139 and must be used. */
140 int use_page_register;
141
142 /* ELF flags for ABI. */
143 int elf_flags;
144 };
145
146 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
147 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
148
149 struct m68hc11_unwind_cache
150 {
151 /* The previous frame's inner most stack address. Used as this
152 frame ID's stack_addr. */
153 CORE_ADDR prev_sp;
154 /* The frame's base, optionally used by the high-level debug info. */
155 CORE_ADDR base;
156 CORE_ADDR pc;
157 int size;
158 int prologue_type;
159 CORE_ADDR return_pc;
160 CORE_ADDR sp_offset;
161 int frameless;
162 enum insn_return_kind return_kind;
163
164 /* Table indicating the location of each and every register. */
165 struct trad_frame_saved_reg *saved_regs;
166 };
167
168 /* Table of registers for 68HC11. This includes the hard registers
169 and the soft registers used by GCC. */
170 static char *
171 m68hc11_register_names[] =
172 {
173 "x", "d", "y", "sp", "pc", "a", "b",
174 "ccr", "page", "frame","tmp", "zs", "xy", 0,
175 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
176 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
177 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
178 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
179 "d29", "d30", "d31", "d32"
180 };
181
182 struct m68hc11_soft_reg
183 {
184 const char *name;
185 CORE_ADDR addr;
186 };
187
188 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
189
190 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
191
192 static int soft_min_addr;
193 static int soft_max_addr;
194 static int soft_reg_initialized = 0;
195
196 /* Look in the symbol table for the address of a pseudo register
197 in memory. If we don't find it, pretend the register is not used
198 and not available. */
199 static void
200 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
201 {
202 struct minimal_symbol *msymbol;
203
204 msymbol = lookup_minimal_symbol (name, NULL, NULL);
205 if (msymbol)
206 {
207 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
208 reg->name = xstrdup (name);
209
210 /* Keep track of the address range for soft registers. */
211 if (reg->addr < (CORE_ADDR) soft_min_addr)
212 soft_min_addr = reg->addr;
213 if (reg->addr > (CORE_ADDR) soft_max_addr)
214 soft_max_addr = reg->addr;
215 }
216 else
217 {
218 reg->name = 0;
219 reg->addr = 0;
220 }
221 }
222
223 /* Initialize the table of soft register addresses according
224 to the symbol table. */
225 static void
226 m68hc11_initialize_register_info (void)
227 {
228 int i;
229
230 if (soft_reg_initialized)
231 return;
232
233 soft_min_addr = INT_MAX;
234 soft_max_addr = 0;
235 for (i = 0; i < M68HC11_ALL_REGS; i++)
236 {
237 soft_regs[i].name = 0;
238 }
239
240 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
241 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
242 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
243 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
244 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
245
246 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
247 {
248 char buf[10];
249
250 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
251 m68hc11_get_register_info (&soft_regs[i], buf);
252 }
253
254 if (soft_regs[SOFT_FP_REGNUM].name == 0)
255 warning (_("No frame soft register found in the symbol table.\n"
256 "Stack backtrace will not work."));
257 soft_reg_initialized = 1;
258 }
259
260 /* Given an address in memory, return the soft register number if
261 that address corresponds to a soft register. Returns -1 if not. */
262 static int
263 m68hc11_which_soft_register (CORE_ADDR addr)
264 {
265 int i;
266
267 if (addr < soft_min_addr || addr > soft_max_addr)
268 return -1;
269
270 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
271 {
272 if (soft_regs[i].name && soft_regs[i].addr == addr)
273 return i;
274 }
275 return -1;
276 }
277
278 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
279 pseudo registers. They are located in memory. Translate the register
280 fetch into a memory read. */
281 static enum register_status
282 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
283 struct regcache *regcache,
284 int regno, gdb_byte *buf)
285 {
286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
287
288 /* The PC is a pseudo reg only for 68HC12 with the memory bank
289 addressing mode. */
290 if (regno == M68HC12_HARD_PC_REGNUM)
291 {
292 ULONGEST pc;
293 const int regsize = 4;
294 enum register_status status;
295
296 status = regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
297 if (status != REG_VALID)
298 return status;
299 if (pc >= 0x8000 && pc < 0xc000)
300 {
301 ULONGEST page;
302
303 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
304 pc -= 0x8000;
305 pc += (page << 14);
306 pc += 0x1000000;
307 }
308 store_unsigned_integer (buf, regsize, byte_order, pc);
309 return REG_VALID;
310 }
311
312 m68hc11_initialize_register_info ();
313
314 /* Fetch a soft register: translate into a memory read. */
315 if (soft_regs[regno].name)
316 {
317 target_read_memory (soft_regs[regno].addr, buf, 2);
318 }
319 else
320 {
321 memset (buf, 0, 2);
322 }
323
324 return REG_VALID;
325 }
326
327 /* Store a pseudo register. Translate the register store
328 into a memory write. */
329 static void
330 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
331 struct regcache *regcache,
332 int regno, const gdb_byte *buf)
333 {
334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335
336 /* The PC is a pseudo reg only for 68HC12 with the memory bank
337 addressing mode. */
338 if (regno == M68HC12_HARD_PC_REGNUM)
339 {
340 const int regsize = 4;
341 char *tmp = alloca (regsize);
342 CORE_ADDR pc;
343
344 memcpy (tmp, buf, regsize);
345 pc = extract_unsigned_integer (tmp, regsize, byte_order);
346 if (pc >= 0x1000000)
347 {
348 pc -= 0x1000000;
349 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
350 (pc >> 14) & 0x0ff);
351 pc &= 0x03fff;
352 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
353 pc + 0x8000);
354 }
355 else
356 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
357 return;
358 }
359
360 m68hc11_initialize_register_info ();
361
362 /* Store a soft register: translate into a memory write. */
363 if (soft_regs[regno].name)
364 {
365 const int regsize = 2;
366 char *tmp = alloca (regsize);
367 memcpy (tmp, buf, regsize);
368 target_write_memory (soft_regs[regno].addr, tmp, regsize);
369 }
370 }
371
372 static const char *
373 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
374 {
375 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
376 return "pc";
377 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
378 return "ppc";
379
380 if (reg_nr < 0)
381 return NULL;
382 if (reg_nr >= M68HC11_ALL_REGS)
383 return NULL;
384
385 m68hc11_initialize_register_info ();
386
387 /* If we don't know the address of a soft register, pretend it
388 does not exist. */
389 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
390 return NULL;
391 return m68hc11_register_names[reg_nr];
392 }
393
394 static const unsigned char *
395 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
396 int *lenptr)
397 {
398 static unsigned char breakpoint[] = {0x0};
399
400 *lenptr = sizeof (breakpoint);
401 return breakpoint;
402 }
403
404 \f
405 /* 68HC11 & 68HC12 prologue analysis. */
406
407 #define MAX_CODES 12
408
409 /* 68HC11 opcodes. */
410 #undef M6811_OP_PAGE2
411 #define M6811_OP_PAGE2 (0x18)
412 #define M6811_OP_LDX (0xde)
413 #define M6811_OP_LDX_EXT (0xfe)
414 #define M6811_OP_PSHX (0x3c)
415 #define M6811_OP_STS (0x9f)
416 #define M6811_OP_STS_EXT (0xbf)
417 #define M6811_OP_TSX (0x30)
418 #define M6811_OP_XGDX (0x8f)
419 #define M6811_OP_ADDD (0xc3)
420 #define M6811_OP_TXS (0x35)
421 #define M6811_OP_DES (0x34)
422
423 /* 68HC12 opcodes. */
424 #define M6812_OP_PAGE2 (0x18)
425 #define M6812_OP_MOVW (0x01)
426 #define M6812_PB_PSHW (0xae)
427 #define M6812_OP_STS (0x5f)
428 #define M6812_OP_STS_EXT (0x7f)
429 #define M6812_OP_LEAS (0x1b)
430 #define M6812_OP_PSHX (0x34)
431 #define M6812_OP_PSHY (0x35)
432
433 /* Operand extraction. */
434 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
435 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
436 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
437 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
438
439 /* Identification of the sequence. */
440 enum m6811_seq_type
441 {
442 P_LAST = 0,
443 P_SAVE_REG, /* Save a register on the stack. */
444 P_SET_FRAME, /* Setup the frame pointer. */
445 P_LOCAL_1, /* Allocate 1 byte for locals. */
446 P_LOCAL_2, /* Allocate 2 bytes for locals. */
447 P_LOCAL_N /* Allocate N bytes for locals. */
448 };
449
450 struct insn_sequence {
451 enum m6811_seq_type type;
452 unsigned length;
453 unsigned short code[MAX_CODES];
454 };
455
456 /* Sequence of instructions in the 68HC11 function prologue. */
457 static struct insn_sequence m6811_prologue[] = {
458 /* Sequences to save a soft-register. */
459 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
460 M6811_OP_PSHX } },
461 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
462 M6811_OP_PAGE2, M6811_OP_PSHX } },
463 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_PSHX } },
465 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
466 M6811_OP_PAGE2, M6811_OP_PSHX } },
467
468 /* Sequences to allocate local variables. */
469 { P_LOCAL_N, 7, { M6811_OP_TSX,
470 M6811_OP_XGDX,
471 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
472 M6811_OP_XGDX,
473 M6811_OP_TXS } },
474 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
475 M6811_OP_PAGE2, M6811_OP_XGDX,
476 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
477 M6811_OP_PAGE2, M6811_OP_XGDX,
478 M6811_OP_PAGE2, M6811_OP_TXS } },
479 { P_LOCAL_1, 1, { M6811_OP_DES } },
480 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
481 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
482
483 /* Initialize the frame pointer. */
484 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
485 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
486 { P_LAST, 0, { 0 } }
487 };
488
489
490 /* Sequence of instructions in the 68HC12 function prologue. */
491 static struct insn_sequence m6812_prologue[] = {
492 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
493 OP_IMM_HIGH, OP_IMM_LOW } },
494 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
495 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
496 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
497 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
498 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
499 { P_LAST, 0 }
500 };
501
502
503 /* Analyze the sequence of instructions starting at the given address.
504 Returns a pointer to the sequence when it is recognized and
505 the optional value (constant/address) associated with it. */
506 static struct insn_sequence *
507 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
508 struct insn_sequence *seq, CORE_ADDR pc,
509 CORE_ADDR *val)
510 {
511 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
512 unsigned char buffer[MAX_CODES];
513 unsigned bufsize;
514 unsigned j;
515 CORE_ADDR cur_val;
516 short v = 0;
517
518 bufsize = 0;
519 for (; seq->type != P_LAST; seq++)
520 {
521 cur_val = 0;
522 for (j = 0; j < seq->length; j++)
523 {
524 if (bufsize < j + 1)
525 {
526 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
527 1, byte_order);
528 bufsize++;
529 }
530 /* Continue while we match the opcode. */
531 if (seq->code[j] == buffer[j])
532 continue;
533
534 if ((seq->code[j] & 0xf00) == 0)
535 break;
536
537 /* Extract a sequence parameter (address or constant). */
538 switch (seq->code[j])
539 {
540 case OP_DIRECT:
541 cur_val = (CORE_ADDR) buffer[j];
542 break;
543
544 case OP_IMM_HIGH:
545 cur_val = cur_val & 0x0ff;
546 cur_val |= (buffer[j] << 8);
547 break;
548
549 case OP_IMM_LOW:
550 cur_val &= 0x0ff00;
551 cur_val |= buffer[j];
552 break;
553
554 case OP_PBYTE:
555 if ((buffer[j] & 0xE0) == 0x80)
556 {
557 v = buffer[j] & 0x1f;
558 if (v & 0x10)
559 v |= 0xfff0;
560 }
561 else if ((buffer[j] & 0xfe) == 0xf0)
562 {
563 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
564 if (buffer[j] & 1)
565 v |= 0xff00;
566 }
567 else if (buffer[j] == 0xf2)
568 {
569 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
570 }
571 cur_val = v;
572 break;
573 }
574 }
575
576 /* We have a full match. */
577 if (j == seq->length)
578 {
579 *val = cur_val;
580 return seq;
581 }
582 }
583 return 0;
584 }
585
586 /* Return the instruction that the function at the PC is using. */
587 static enum insn_return_kind
588 m68hc11_get_return_insn (CORE_ADDR pc)
589 {
590 struct minimal_symbol *sym;
591
592 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
593 function is stored by elfread.c in the high bit of the info field.
594 Use this to decide which instruction the function uses to return. */
595 sym = lookup_minimal_symbol_by_pc (pc);
596 if (sym == 0)
597 return RETURN_RTS;
598
599 if (MSYMBOL_IS_RTC (sym))
600 return RETURN_RTC;
601 else if (MSYMBOL_IS_RTI (sym))
602 return RETURN_RTI;
603 else
604 return RETURN_RTS;
605 }
606
607 /* Analyze the function prologue to find some information
608 about the function:
609 - the PC of the first line (for m68hc11_skip_prologue)
610 - the offset of the previous frame saved address (from current frame)
611 - the soft registers which are pushed. */
612 static CORE_ADDR
613 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
614 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
615 {
616 LONGEST save_addr;
617 CORE_ADDR func_end;
618 int size;
619 int found_frame_point;
620 int saved_reg;
621 int done = 0;
622 struct insn_sequence *seq_table;
623
624 info->size = 0;
625 info->sp_offset = 0;
626 if (pc >= current_pc)
627 return current_pc;
628
629 size = 0;
630
631 m68hc11_initialize_register_info ();
632 if (pc == 0)
633 {
634 info->size = 0;
635 return pc;
636 }
637
638 seq_table = gdbarch_tdep (gdbarch)->prologue;
639
640 /* The 68hc11 stack is as follows:
641
642
643 | |
644 +-----------+
645 | |
646 | args |
647 | |
648 +-----------+
649 | PC-return |
650 +-----------+
651 | Old frame |
652 +-----------+
653 | |
654 | Locals |
655 | |
656 +-----------+ <--- current frame
657 | |
658
659 With most processors (like 68K) the previous frame can be computed
660 easily because it is always at a fixed offset (see link/unlink).
661 That is, locals are accessed with negative offsets, arguments are
662 accessed with positive ones. Since 68hc11 only supports offsets
663 in the range [0..255], the frame is defined at the bottom of
664 locals (see picture).
665
666 The purpose of the analysis made here is to find out the size
667 of locals in this function. An alternative to this is to use
668 DWARF2 info. This would be better but I don't know how to
669 access dwarf2 debug from this function.
670
671 Walk from the function entry point to the point where we save
672 the frame. While walking instructions, compute the size of bytes
673 which are pushed. This gives us the index to access the previous
674 frame.
675
676 We limit the search to 128 bytes so that the algorithm is bounded
677 in case of random and wrong code. We also stop and abort if
678 we find an instruction which is not supposed to appear in the
679 prologue (as generated by gcc 2.95, 2.96). */
680
681 func_end = pc + 128;
682 found_frame_point = 0;
683 info->size = 0;
684 save_addr = 0;
685 while (!done && pc + 2 < func_end)
686 {
687 struct insn_sequence *seq;
688 CORE_ADDR val;
689
690 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
691 if (seq == 0)
692 break;
693
694 /* If we are within the instruction group, we can't advance the
695 pc nor the stack offset. Otherwise the caller's stack computed
696 from the current stack can be wrong. */
697 if (pc + seq->length > current_pc)
698 break;
699
700 pc = pc + seq->length;
701 if (seq->type == P_SAVE_REG)
702 {
703 if (found_frame_point)
704 {
705 saved_reg = m68hc11_which_soft_register (val);
706 if (saved_reg < 0)
707 break;
708
709 save_addr -= 2;
710 if (info->saved_regs)
711 info->saved_regs[saved_reg].addr = save_addr;
712 }
713 else
714 {
715 size += 2;
716 }
717 }
718 else if (seq->type == P_SET_FRAME)
719 {
720 found_frame_point = 1;
721 info->size = size;
722 }
723 else if (seq->type == P_LOCAL_1)
724 {
725 size += 1;
726 }
727 else if (seq->type == P_LOCAL_2)
728 {
729 size += 2;
730 }
731 else if (seq->type == P_LOCAL_N)
732 {
733 /* Stack pointer is decremented for the allocation. */
734 if (val & 0x8000)
735 size -= (int) (val) | 0xffff0000;
736 else
737 size -= val;
738 }
739 }
740 if (found_frame_point == 0)
741 info->sp_offset = size;
742 else
743 info->sp_offset = -1;
744 return pc;
745 }
746
747 static CORE_ADDR
748 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
749 {
750 CORE_ADDR func_addr, func_end;
751 struct symtab_and_line sal;
752 struct m68hc11_unwind_cache tmp_cache = { 0 };
753
754 /* If we have line debugging information, then the end of the
755 prologue should be the first assembly instruction of the
756 first source line. */
757 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
758 {
759 sal = find_pc_line (func_addr, 0);
760 if (sal.end && sal.end < func_end)
761 return sal.end;
762 }
763
764 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
765 return pc;
766 }
767
768 static CORE_ADDR
769 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
770 {
771 ULONGEST pc;
772
773 pc = frame_unwind_register_unsigned (next_frame,
774 gdbarch_pc_regnum (gdbarch));
775 return pc;
776 }
777
778 /* Put here the code to store, into fi->saved_regs, the addresses of
779 the saved registers of frame described by FRAME_INFO. This
780 includes special registers such as pc and fp saved in special ways
781 in the stack frame. sp is even more special: the address we return
782 for it IS the sp for the next frame. */
783
784 static struct m68hc11_unwind_cache *
785 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
786 void **this_prologue_cache)
787 {
788 struct gdbarch *gdbarch = get_frame_arch (this_frame);
789 ULONGEST prev_sp;
790 ULONGEST this_base;
791 struct m68hc11_unwind_cache *info;
792 CORE_ADDR current_pc;
793 int i;
794
795 if ((*this_prologue_cache))
796 return (*this_prologue_cache);
797
798 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
799 (*this_prologue_cache) = info;
800 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
801
802 info->pc = get_frame_func (this_frame);
803
804 info->size = 0;
805 info->return_kind = m68hc11_get_return_insn (info->pc);
806
807 /* The SP was moved to the FP. This indicates that a new frame
808 was created. Get THIS frame's FP value by unwinding it from
809 the next frame. */
810 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
811 if (this_base == 0)
812 {
813 info->base = 0;
814 return info;
815 }
816
817 current_pc = get_frame_pc (this_frame);
818 if (info->pc != 0)
819 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
820
821 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
822
823 if (info->sp_offset != (CORE_ADDR) -1)
824 {
825 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
826 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
827 prev_sp = this_base + info->sp_offset + 2;
828 this_base += STACK_CORRECTION (gdbarch);
829 }
830 else
831 {
832 /* The FP points at the last saved register. Adjust the FP back
833 to before the first saved register giving the SP. */
834 prev_sp = this_base + info->size + 2;
835
836 this_base += STACK_CORRECTION (gdbarch);
837 if (soft_regs[SOFT_FP_REGNUM].name)
838 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
839 }
840
841 if (info->return_kind == RETURN_RTC)
842 {
843 prev_sp += 1;
844 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
845 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
846 }
847 else if (info->return_kind == RETURN_RTI)
848 {
849 prev_sp += 7;
850 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
851 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
852 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
853 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
854 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
855 }
856
857 /* Add 1 here to adjust for the post-decrement nature of the push
858 instruction. */
859 info->prev_sp = prev_sp;
860
861 info->base = this_base;
862
863 /* Adjust all the saved registers so that they contain addresses and not
864 offsets. */
865 for (i = 0;
866 i < gdbarch_num_regs (gdbarch)
867 + gdbarch_num_pseudo_regs (gdbarch) - 1;
868 i++)
869 if (trad_frame_addr_p (info->saved_regs, i))
870 {
871 info->saved_regs[i].addr += this_base;
872 }
873
874 /* The previous frame's SP needed to be computed. Save the computed
875 value. */
876 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
877
878 return info;
879 }
880
881 /* Given a GDB frame, determine the address of the calling function's
882 frame. This will be used to create a new GDB frame struct. */
883
884 static void
885 m68hc11_frame_this_id (struct frame_info *this_frame,
886 void **this_prologue_cache,
887 struct frame_id *this_id)
888 {
889 struct m68hc11_unwind_cache *info
890 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
891 CORE_ADDR base;
892 CORE_ADDR func;
893 struct frame_id id;
894
895 /* The FUNC is easy. */
896 func = get_frame_func (this_frame);
897
898 /* Hopefully the prologue analysis either correctly determined the
899 frame's base (which is the SP from the previous frame), or set
900 that base to "NULL". */
901 base = info->prev_sp;
902 if (base == 0)
903 return;
904
905 id = frame_id_build (base, func);
906 (*this_id) = id;
907 }
908
909 static struct value *
910 m68hc11_frame_prev_register (struct frame_info *this_frame,
911 void **this_prologue_cache, int regnum)
912 {
913 struct value *value;
914 struct m68hc11_unwind_cache *info
915 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
916
917 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
918
919 /* Take into account the 68HC12 specific call (PC + page). */
920 if (regnum == HARD_PC_REGNUM
921 && info->return_kind == RETURN_RTC
922 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
923 {
924 CORE_ADDR pc = value_as_long (value);
925 if (pc >= 0x08000 && pc < 0x0c000)
926 {
927 CORE_ADDR page;
928
929 release_value (value);
930 value_free (value);
931
932 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
933 HARD_PAGE_REGNUM);
934 page = value_as_long (value);
935 release_value (value);
936 value_free (value);
937
938 pc -= 0x08000;
939 pc += ((page & 0x0ff) << 14);
940 pc += 0x1000000;
941
942 return frame_unwind_got_constant (this_frame, regnum, pc);
943 }
944 }
945
946 return value;
947 }
948
949 static const struct frame_unwind m68hc11_frame_unwind = {
950 NORMAL_FRAME,
951 default_frame_unwind_stop_reason,
952 m68hc11_frame_this_id,
953 m68hc11_frame_prev_register,
954 NULL,
955 default_frame_sniffer
956 };
957
958 static CORE_ADDR
959 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
960 {
961 struct m68hc11_unwind_cache *info
962 = m68hc11_frame_unwind_cache (this_frame, this_cache);
963
964 return info->base;
965 }
966
967 static CORE_ADDR
968 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
969 {
970 CORE_ADDR addr;
971 struct m68hc11_unwind_cache *info
972 = m68hc11_frame_unwind_cache (this_frame, this_cache);
973
974 addr = info->base + info->size;
975 if (info->return_kind == RETURN_RTC)
976 addr += 1;
977 else if (info->return_kind == RETURN_RTI)
978 addr += 7;
979
980 return addr;
981 }
982
983 static const struct frame_base m68hc11_frame_base = {
984 &m68hc11_frame_unwind,
985 m68hc11_frame_base_address,
986 m68hc11_frame_base_address,
987 m68hc11_frame_args_address
988 };
989
990 static CORE_ADDR
991 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
992 {
993 ULONGEST sp;
994 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
995 return sp;
996 }
997
998 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
999 frame. The frame ID's base needs to match the TOS value saved by
1000 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1001
1002 static struct frame_id
1003 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1004 {
1005 ULONGEST tos;
1006 CORE_ADDR pc = get_frame_pc (this_frame);
1007
1008 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1009 tos += 2;
1010 return frame_id_build (tos, pc);
1011 }
1012
1013 \f
1014 /* Get and print the register from the given frame. */
1015 static void
1016 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1017 struct frame_info *frame, int regno)
1018 {
1019 LONGEST rval;
1020
1021 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1022 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1023 rval = get_frame_register_unsigned (frame, regno);
1024 else
1025 rval = get_frame_register_signed (frame, regno);
1026
1027 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1028 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1029 {
1030 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1031 if (regno != HARD_CCR_REGNUM)
1032 print_longest (file, 'd', 1, rval);
1033 }
1034 else
1035 {
1036 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1037 {
1038 ULONGEST page;
1039
1040 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1041 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1042 (unsigned) rval);
1043 }
1044 else
1045 {
1046 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1047 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1048 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1049 print_longest (file, 'd', 1, rval);
1050 }
1051 }
1052
1053 if (regno == HARD_CCR_REGNUM)
1054 {
1055 /* CCR register */
1056 int C, Z, N, V;
1057 unsigned char l = rval & 0xff;
1058
1059 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1060 l & M6811_S_BIT ? 'S' : '-',
1061 l & M6811_X_BIT ? 'X' : '-',
1062 l & M6811_H_BIT ? 'H' : '-',
1063 l & M6811_I_BIT ? 'I' : '-',
1064 l & M6811_N_BIT ? 'N' : '-',
1065 l & M6811_Z_BIT ? 'Z' : '-',
1066 l & M6811_V_BIT ? 'V' : '-',
1067 l & M6811_C_BIT ? 'C' : '-');
1068 N = (l & M6811_N_BIT) != 0;
1069 Z = (l & M6811_Z_BIT) != 0;
1070 V = (l & M6811_V_BIT) != 0;
1071 C = (l & M6811_C_BIT) != 0;
1072
1073 /* Print flags following the h8300. */
1074 if ((C | Z) == 0)
1075 fprintf_filtered (file, "u> ");
1076 else if ((C | Z) == 1)
1077 fprintf_filtered (file, "u<= ");
1078 else if (C == 0)
1079 fprintf_filtered (file, "u< ");
1080
1081 if (Z == 0)
1082 fprintf_filtered (file, "!= ");
1083 else
1084 fprintf_filtered (file, "== ");
1085
1086 if ((N ^ V) == 0)
1087 fprintf_filtered (file, ">= ");
1088 else
1089 fprintf_filtered (file, "< ");
1090
1091 if ((Z | (N ^ V)) == 0)
1092 fprintf_filtered (file, "> ");
1093 else
1094 fprintf_filtered (file, "<= ");
1095 }
1096 }
1097
1098 /* Same as 'info reg' but prints the registers in a different way. */
1099 static void
1100 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1101 struct frame_info *frame, int regno, int cpregs)
1102 {
1103 if (regno >= 0)
1104 {
1105 const char *name = gdbarch_register_name (gdbarch, regno);
1106
1107 if (!name || !*name)
1108 return;
1109
1110 fprintf_filtered (file, "%-10s ", name);
1111 m68hc11_print_register (gdbarch, file, frame, regno);
1112 fprintf_filtered (file, "\n");
1113 }
1114 else
1115 {
1116 int i, nr;
1117
1118 fprintf_filtered (file, "PC=");
1119 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1120
1121 fprintf_filtered (file, " SP=");
1122 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1123
1124 fprintf_filtered (file, " FP=");
1125 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1126
1127 fprintf_filtered (file, "\nCCR=");
1128 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1129
1130 fprintf_filtered (file, "\nD=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1132
1133 fprintf_filtered (file, " X=");
1134 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1135
1136 fprintf_filtered (file, " Y=");
1137 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1138
1139 if (gdbarch_tdep (gdbarch)->use_page_register)
1140 {
1141 fprintf_filtered (file, "\nPage=");
1142 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1143 }
1144 fprintf_filtered (file, "\n");
1145
1146 nr = 0;
1147 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1148 {
1149 /* Skip registers which are not defined in the symbol table. */
1150 if (soft_regs[i].name == 0)
1151 continue;
1152
1153 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1154 m68hc11_print_register (gdbarch, file, frame, i);
1155 nr++;
1156 if ((nr % 8) == 7)
1157 fprintf_filtered (file, "\n");
1158 else
1159 fprintf_filtered (file, " ");
1160 }
1161 if (nr && (nr % 8) != 7)
1162 fprintf_filtered (file, "\n");
1163 }
1164 }
1165
1166 static CORE_ADDR
1167 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1168 struct regcache *regcache, CORE_ADDR bp_addr,
1169 int nargs, struct value **args, CORE_ADDR sp,
1170 int struct_return, CORE_ADDR struct_addr)
1171 {
1172 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1173 int argnum;
1174 int first_stack_argnum;
1175 struct type *type;
1176 char *val;
1177 int len;
1178 char buf[2];
1179
1180 first_stack_argnum = 0;
1181 if (struct_return)
1182 {
1183 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1184 }
1185 else if (nargs > 0)
1186 {
1187 type = value_type (args[0]);
1188 len = TYPE_LENGTH (type);
1189
1190 /* First argument is passed in D and X registers. */
1191 if (len <= 4)
1192 {
1193 ULONGEST v;
1194
1195 v = extract_unsigned_integer (value_contents (args[0]),
1196 len, byte_order);
1197 first_stack_argnum = 1;
1198
1199 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1200 if (len > 2)
1201 {
1202 v >>= 16;
1203 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1204 }
1205 }
1206 }
1207
1208 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1209 {
1210 type = value_type (args[argnum]);
1211 len = TYPE_LENGTH (type);
1212
1213 if (len & 1)
1214 {
1215 static char zero = 0;
1216
1217 sp--;
1218 write_memory (sp, &zero, 1);
1219 }
1220 val = (char*) value_contents (args[argnum]);
1221 sp -= len;
1222 write_memory (sp, val, len);
1223 }
1224
1225 /* Store return address. */
1226 sp -= 2;
1227 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1228 write_memory (sp, buf, 2);
1229
1230 /* Finally, update the stack pointer... */
1231 sp -= STACK_CORRECTION (gdbarch);
1232 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1233
1234 /* ...and fake a frame pointer. */
1235 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1236
1237 /* DWARF2/GCC uses the stack address *before* the function call as a
1238 frame's CFA. */
1239 return sp + 2;
1240 }
1241
1242
1243 /* Return the GDB type object for the "standard" data type
1244 of data in register N. */
1245
1246 static struct type *
1247 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1248 {
1249 switch (reg_nr)
1250 {
1251 case HARD_PAGE_REGNUM:
1252 case HARD_A_REGNUM:
1253 case HARD_B_REGNUM:
1254 case HARD_CCR_REGNUM:
1255 return builtin_type (gdbarch)->builtin_uint8;
1256
1257 case M68HC12_HARD_PC_REGNUM:
1258 return builtin_type (gdbarch)->builtin_uint32;
1259
1260 default:
1261 return builtin_type (gdbarch)->builtin_uint16;
1262 }
1263 }
1264
1265 static void
1266 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1267 const void *valbuf)
1268 {
1269 int len;
1270
1271 len = TYPE_LENGTH (type);
1272
1273 /* First argument is passed in D and X registers. */
1274 if (len <= 2)
1275 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1276 else if (len <= 4)
1277 {
1278 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1279 len - 2, valbuf);
1280 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1281 }
1282 else
1283 error (_("return of value > 4 is not supported."));
1284 }
1285
1286
1287 /* Given a return value in `regcache' with a type `type',
1288 extract and copy its value into `valbuf'. */
1289
1290 static void
1291 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1292 void *valbuf)
1293 {
1294 int len = TYPE_LENGTH (type);
1295 char buf[M68HC11_REG_SIZE];
1296
1297 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1298 switch (len)
1299 {
1300 case 1:
1301 memcpy (valbuf, buf + 1, 1);
1302 break;
1303
1304 case 2:
1305 memcpy (valbuf, buf, 2);
1306 break;
1307
1308 case 3:
1309 memcpy ((char*) valbuf + 1, buf, 2);
1310 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1311 memcpy (valbuf, buf + 1, 1);
1312 break;
1313
1314 case 4:
1315 memcpy ((char*) valbuf + 2, buf, 2);
1316 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1317 memcpy (valbuf, buf, 2);
1318 break;
1319
1320 default:
1321 error (_("bad size for return value"));
1322 }
1323 }
1324
1325 static enum return_value_convention
1326 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1327 struct type *valtype, struct regcache *regcache,
1328 gdb_byte *readbuf, const gdb_byte *writebuf)
1329 {
1330 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1331 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1332 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1333 || TYPE_LENGTH (valtype) > 4)
1334 return RETURN_VALUE_STRUCT_CONVENTION;
1335 else
1336 {
1337 if (readbuf != NULL)
1338 m68hc11_extract_return_value (valtype, regcache, readbuf);
1339 if (writebuf != NULL)
1340 m68hc11_store_return_value (valtype, regcache, writebuf);
1341 return RETURN_VALUE_REGISTER_CONVENTION;
1342 }
1343 }
1344
1345 /* Test whether the ELF symbol corresponds to a function using rtc or
1346 rti to return. */
1347
1348 static void
1349 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1350 {
1351 unsigned char flags;
1352
1353 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1354 if (flags & STO_M68HC12_FAR)
1355 MSYMBOL_SET_RTC (msym);
1356 if (flags & STO_M68HC12_INTERRUPT)
1357 MSYMBOL_SET_RTI (msym);
1358 }
1359
1360 static int
1361 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1362 {
1363 if (info->arch == bfd_arch_m68hc11)
1364 return print_insn_m68hc11 (memaddr, info);
1365 else
1366 return print_insn_m68hc12 (memaddr, info);
1367 }
1368
1369 \f
1370
1371 /* 68HC11/68HC12 register groups.
1372 Identify real hard registers and soft registers used by gcc. */
1373
1374 static struct reggroup *m68hc11_soft_reggroup;
1375 static struct reggroup *m68hc11_hard_reggroup;
1376
1377 static void
1378 m68hc11_init_reggroups (void)
1379 {
1380 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1381 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1382 }
1383
1384 static void
1385 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1386 {
1387 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1388 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1389 reggroup_add (gdbarch, general_reggroup);
1390 reggroup_add (gdbarch, float_reggroup);
1391 reggroup_add (gdbarch, all_reggroup);
1392 reggroup_add (gdbarch, save_reggroup);
1393 reggroup_add (gdbarch, restore_reggroup);
1394 reggroup_add (gdbarch, vector_reggroup);
1395 reggroup_add (gdbarch, system_reggroup);
1396 }
1397
1398 static int
1399 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1400 struct reggroup *group)
1401 {
1402 /* We must save the real hard register as well as gcc
1403 soft registers including the frame pointer. */
1404 if (group == save_reggroup || group == restore_reggroup)
1405 {
1406 return (regnum <= gdbarch_num_regs (gdbarch)
1407 || ((regnum == SOFT_FP_REGNUM
1408 || regnum == SOFT_TMP_REGNUM
1409 || regnum == SOFT_ZS_REGNUM
1410 || regnum == SOFT_XY_REGNUM)
1411 && m68hc11_register_name (gdbarch, regnum)));
1412 }
1413
1414 /* Group to identify gcc soft registers (d1..dN). */
1415 if (group == m68hc11_soft_reggroup)
1416 {
1417 return regnum >= SOFT_D1_REGNUM
1418 && m68hc11_register_name (gdbarch, regnum);
1419 }
1420
1421 if (group == m68hc11_hard_reggroup)
1422 {
1423 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1424 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1425 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1426 }
1427 return default_register_reggroup_p (gdbarch, regnum, group);
1428 }
1429
1430 static struct gdbarch *
1431 m68hc11_gdbarch_init (struct gdbarch_info info,
1432 struct gdbarch_list *arches)
1433 {
1434 struct gdbarch *gdbarch;
1435 struct gdbarch_tdep *tdep;
1436 int elf_flags;
1437
1438 soft_reg_initialized = 0;
1439
1440 /* Extract the elf_flags if available. */
1441 if (info.abfd != NULL
1442 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1443 elf_flags = elf_elfheader (info.abfd)->e_flags;
1444 else
1445 elf_flags = 0;
1446
1447 /* Try to find a pre-existing architecture. */
1448 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1449 arches != NULL;
1450 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1451 {
1452 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1453 continue;
1454
1455 return arches->gdbarch;
1456 }
1457
1458 /* Need a new architecture. Fill in a target specific vector. */
1459 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1460 gdbarch = gdbarch_alloc (&info, tdep);
1461 tdep->elf_flags = elf_flags;
1462
1463 switch (info.bfd_arch_info->arch)
1464 {
1465 case bfd_arch_m68hc11:
1466 tdep->stack_correction = 1;
1467 tdep->use_page_register = 0;
1468 tdep->prologue = m6811_prologue;
1469 set_gdbarch_addr_bit (gdbarch, 16);
1470 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1471 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1472 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1473 break;
1474
1475 case bfd_arch_m68hc12:
1476 tdep->stack_correction = 0;
1477 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1478 tdep->prologue = m6812_prologue;
1479 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1480 set_gdbarch_num_pseudo_regs (gdbarch,
1481 elf_flags & E_M68HC12_BANKS
1482 ? M68HC12_NUM_PSEUDO_REGS
1483 : M68HC11_NUM_PSEUDO_REGS);
1484 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1485 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1486 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1487 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1488 break;
1489
1490 default:
1491 break;
1492 }
1493
1494 /* Initially set everything according to the ABI.
1495 Use 16-bit integers since it will be the case for most
1496 programs. The size of these types should normally be set
1497 according to the dwarf2 debug information. */
1498 set_gdbarch_short_bit (gdbarch, 16);
1499 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1500 set_gdbarch_float_bit (gdbarch, 32);
1501 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1502 set_gdbarch_long_double_bit (gdbarch, 64);
1503 set_gdbarch_long_bit (gdbarch, 32);
1504 set_gdbarch_ptr_bit (gdbarch, 16);
1505 set_gdbarch_long_long_bit (gdbarch, 64);
1506
1507 /* Characters are unsigned. */
1508 set_gdbarch_char_signed (gdbarch, 0);
1509
1510 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1511 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1512
1513 /* Set register info. */
1514 set_gdbarch_fp0_regnum (gdbarch, -1);
1515
1516 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1517 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1518 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1519 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1520 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1521
1522 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1523
1524 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1525 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1526 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1527 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1528 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1529
1530 m68hc11_add_reggroups (gdbarch);
1531 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1532 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1533
1534 /* Hook in the DWARF CFI frame unwinder. */
1535 dwarf2_append_unwinders (gdbarch);
1536
1537 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1538 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1539
1540 /* Methods for saving / extracting a dummy frame's ID. The ID's
1541 stack address must match the SP value returned by
1542 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1543 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1544
1545 /* Return the unwound PC value. */
1546 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1547
1548 /* Minsymbol frobbing. */
1549 set_gdbarch_elf_make_msymbol_special (gdbarch,
1550 m68hc11_elf_make_msymbol_special);
1551
1552 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1553
1554 return gdbarch;
1555 }
1556
1557 /* -Wmissing-prototypes */
1558 extern initialize_file_ftype _initialize_m68hc11_tdep;
1559
1560 void
1561 _initialize_m68hc11_tdep (void)
1562 {
1563 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1564 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1565 m68hc11_init_reggroups ();
1566 }
1567
This page took 0.059443 seconds and 5 git commands to generate.