* alphafbsd-tdep.c: Update for unwinder changes.
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "trad-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdb_string.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "reggroups.h"
43
44 #include "target.h"
45 #include "opcode/m68hc11.h"
46 #include "elf/m68hc11.h"
47 #include "elf-bfd.h"
48
49 /* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
60
61 #define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
63 | 0x80000000)
64
65 #define MSYMBOL_SET_RTI(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x40000000)
68
69 #define MSYMBOL_IS_RTC(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 #define MSYMBOL_IS_RTI(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
74
75 enum insn_return_kind {
76 RETURN_RTS,
77 RETURN_RTC,
78 RETURN_RTI
79 };
80
81
82 /* Register numbers of various important registers. */
83
84 #define HARD_X_REGNUM 0
85 #define HARD_D_REGNUM 1
86 #define HARD_Y_REGNUM 2
87 #define HARD_SP_REGNUM 3
88 #define HARD_PC_REGNUM 4
89
90 #define HARD_A_REGNUM 5
91 #define HARD_B_REGNUM 6
92 #define HARD_CCR_REGNUM 7
93
94 /* 68HC12 page number register.
95 Note: to keep a compatibility with gcc register naming, we must
96 not have to rename FP and other soft registers. The page register
97 is a real hard register and must therefore be counted by gdbarch_num_regs.
98 For this it has the same number as Z register (which is not used). */
99 #define HARD_PAGE_REGNUM 8
100 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
101
102 /* Z is replaced by X or Y by gcc during machine reorg.
103 ??? There is no way to get it and even know whether
104 it's in X or Y or in ZS. */
105 #define SOFT_Z_REGNUM 8
106
107 /* Soft registers. These registers are special. There are treated
108 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
109 They are physically located in memory. */
110 #define SOFT_FP_REGNUM 9
111 #define SOFT_TMP_REGNUM 10
112 #define SOFT_ZS_REGNUM 11
113 #define SOFT_XY_REGNUM 12
114 #define SOFT_UNUSED_REGNUM 13
115 #define SOFT_D1_REGNUM 14
116 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
117 #define M68HC11_MAX_SOFT_REGS 32
118
119 #define M68HC11_NUM_REGS (8)
120 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
121 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
122
123 #define M68HC11_REG_SIZE (2)
124
125 #define M68HC12_NUM_REGS (9)
126 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
127 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
128
129 struct insn_sequence;
130 struct gdbarch_tdep
131 {
132 /* Stack pointer correction value. For 68hc11, the stack pointer points
133 to the next push location. An offset of 1 must be applied to obtain
134 the address where the last value is saved. For 68hc12, the stack
135 pointer points to the last value pushed. No offset is necessary. */
136 int stack_correction;
137
138 /* Description of instructions in the prologue. */
139 struct insn_sequence *prologue;
140
141 /* True if the page memory bank register is available
142 and must be used. */
143 int use_page_register;
144
145 /* ELF flags for ABI. */
146 int elf_flags;
147 };
148
149 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
150 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
151
152 struct m68hc11_unwind_cache
153 {
154 /* The previous frame's inner most stack address. Used as this
155 frame ID's stack_addr. */
156 CORE_ADDR prev_sp;
157 /* The frame's base, optionally used by the high-level debug info. */
158 CORE_ADDR base;
159 CORE_ADDR pc;
160 int size;
161 int prologue_type;
162 CORE_ADDR return_pc;
163 CORE_ADDR sp_offset;
164 int frameless;
165 enum insn_return_kind return_kind;
166
167 /* Table indicating the location of each and every register. */
168 struct trad_frame_saved_reg *saved_regs;
169 };
170
171 /* Table of registers for 68HC11. This includes the hard registers
172 and the soft registers used by GCC. */
173 static char *
174 m68hc11_register_names[] =
175 {
176 "x", "d", "y", "sp", "pc", "a", "b",
177 "ccr", "page", "frame","tmp", "zs", "xy", 0,
178 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
179 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
180 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
181 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
182 "d29", "d30", "d31", "d32"
183 };
184
185 struct m68hc11_soft_reg
186 {
187 const char *name;
188 CORE_ADDR addr;
189 };
190
191 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
192
193 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
194
195 static int soft_min_addr;
196 static int soft_max_addr;
197 static int soft_reg_initialized = 0;
198
199 /* Look in the symbol table for the address of a pseudo register
200 in memory. If we don't find it, pretend the register is not used
201 and not available. */
202 static void
203 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
204 {
205 struct minimal_symbol *msymbol;
206
207 msymbol = lookup_minimal_symbol (name, NULL, NULL);
208 if (msymbol)
209 {
210 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
211 reg->name = xstrdup (name);
212
213 /* Keep track of the address range for soft registers. */
214 if (reg->addr < (CORE_ADDR) soft_min_addr)
215 soft_min_addr = reg->addr;
216 if (reg->addr > (CORE_ADDR) soft_max_addr)
217 soft_max_addr = reg->addr;
218 }
219 else
220 {
221 reg->name = 0;
222 reg->addr = 0;
223 }
224 }
225
226 /* Initialize the table of soft register addresses according
227 to the symbol table. */
228 static void
229 m68hc11_initialize_register_info (void)
230 {
231 int i;
232
233 if (soft_reg_initialized)
234 return;
235
236 soft_min_addr = INT_MAX;
237 soft_max_addr = 0;
238 for (i = 0; i < M68HC11_ALL_REGS; i++)
239 {
240 soft_regs[i].name = 0;
241 }
242
243 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
244 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
245 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
246 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
247 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
248
249 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
250 {
251 char buf[10];
252
253 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
254 m68hc11_get_register_info (&soft_regs[i], buf);
255 }
256
257 if (soft_regs[SOFT_FP_REGNUM].name == 0)
258 warning (_("No frame soft register found in the symbol table.\n"
259 "Stack backtrace will not work."));
260 soft_reg_initialized = 1;
261 }
262
263 /* Given an address in memory, return the soft register number if
264 that address corresponds to a soft register. Returns -1 if not. */
265 static int
266 m68hc11_which_soft_register (CORE_ADDR addr)
267 {
268 int i;
269
270 if (addr < soft_min_addr || addr > soft_max_addr)
271 return -1;
272
273 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
274 {
275 if (soft_regs[i].name && soft_regs[i].addr == addr)
276 return i;
277 }
278 return -1;
279 }
280
281 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
282 pseudo registers. They are located in memory. Translate the register
283 fetch into a memory read. */
284 static void
285 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
286 struct regcache *regcache,
287 int regno, gdb_byte *buf)
288 {
289 /* The PC is a pseudo reg only for 68HC12 with the memory bank
290 addressing mode. */
291 if (regno == M68HC12_HARD_PC_REGNUM)
292 {
293 ULONGEST pc;
294 const int regsize = TYPE_LENGTH (builtin_type_uint32);
295
296 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
297 if (pc >= 0x8000 && pc < 0xc000)
298 {
299 ULONGEST page;
300
301 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
302 pc -= 0x8000;
303 pc += (page << 14);
304 pc += 0x1000000;
305 }
306 store_unsigned_integer (buf, regsize, pc);
307 return;
308 }
309
310 m68hc11_initialize_register_info ();
311
312 /* Fetch a soft register: translate into a memory read. */
313 if (soft_regs[regno].name)
314 {
315 target_read_memory (soft_regs[regno].addr, buf, 2);
316 }
317 else
318 {
319 memset (buf, 0, 2);
320 }
321 }
322
323 /* Store a pseudo register. Translate the register store
324 into a memory write. */
325 static void
326 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
327 struct regcache *regcache,
328 int regno, const gdb_byte *buf)
329 {
330 /* The PC is a pseudo reg only for 68HC12 with the memory bank
331 addressing mode. */
332 if (regno == M68HC12_HARD_PC_REGNUM)
333 {
334 const int regsize = TYPE_LENGTH (builtin_type_uint32);
335 char *tmp = alloca (regsize);
336 CORE_ADDR pc;
337
338 memcpy (tmp, buf, regsize);
339 pc = extract_unsigned_integer (tmp, regsize);
340 if (pc >= 0x1000000)
341 {
342 pc -= 0x1000000;
343 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
344 (pc >> 14) & 0x0ff);
345 pc &= 0x03fff;
346 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
347 pc + 0x8000);
348 }
349 else
350 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
351 return;
352 }
353
354 m68hc11_initialize_register_info ();
355
356 /* Store a soft register: translate into a memory write. */
357 if (soft_regs[regno].name)
358 {
359 const int regsize = 2;
360 char *tmp = alloca (regsize);
361 memcpy (tmp, buf, regsize);
362 target_write_memory (soft_regs[regno].addr, tmp, regsize);
363 }
364 }
365
366 static const char *
367 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
368 {
369 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
370 return "pc";
371 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
372 return "ppc";
373
374 if (reg_nr < 0)
375 return NULL;
376 if (reg_nr >= M68HC11_ALL_REGS)
377 return NULL;
378
379 m68hc11_initialize_register_info ();
380
381 /* If we don't know the address of a soft register, pretend it
382 does not exist. */
383 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
384 return NULL;
385 return m68hc11_register_names[reg_nr];
386 }
387
388 static const unsigned char *
389 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
390 int *lenptr)
391 {
392 static unsigned char breakpoint[] = {0x0};
393
394 *lenptr = sizeof (breakpoint);
395 return breakpoint;
396 }
397
398 \f
399 /* 68HC11 & 68HC12 prologue analysis.
400
401 */
402 #define MAX_CODES 12
403
404 /* 68HC11 opcodes. */
405 #undef M6811_OP_PAGE2
406 #define M6811_OP_PAGE2 (0x18)
407 #define M6811_OP_LDX (0xde)
408 #define M6811_OP_LDX_EXT (0xfe)
409 #define M6811_OP_PSHX (0x3c)
410 #define M6811_OP_STS (0x9f)
411 #define M6811_OP_STS_EXT (0xbf)
412 #define M6811_OP_TSX (0x30)
413 #define M6811_OP_XGDX (0x8f)
414 #define M6811_OP_ADDD (0xc3)
415 #define M6811_OP_TXS (0x35)
416 #define M6811_OP_DES (0x34)
417
418 /* 68HC12 opcodes. */
419 #define M6812_OP_PAGE2 (0x18)
420 #define M6812_OP_MOVW (0x01)
421 #define M6812_PB_PSHW (0xae)
422 #define M6812_OP_STS (0x5f)
423 #define M6812_OP_STS_EXT (0x7f)
424 #define M6812_OP_LEAS (0x1b)
425 #define M6812_OP_PSHX (0x34)
426 #define M6812_OP_PSHY (0x35)
427
428 /* Operand extraction. */
429 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
430 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
431 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
432 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
433
434 /* Identification of the sequence. */
435 enum m6811_seq_type
436 {
437 P_LAST = 0,
438 P_SAVE_REG, /* Save a register on the stack. */
439 P_SET_FRAME, /* Setup the frame pointer. */
440 P_LOCAL_1, /* Allocate 1 byte for locals. */
441 P_LOCAL_2, /* Allocate 2 bytes for locals. */
442 P_LOCAL_N /* Allocate N bytes for locals. */
443 };
444
445 struct insn_sequence {
446 enum m6811_seq_type type;
447 unsigned length;
448 unsigned short code[MAX_CODES];
449 };
450
451 /* Sequence of instructions in the 68HC11 function prologue. */
452 static struct insn_sequence m6811_prologue[] = {
453 /* Sequences to save a soft-register. */
454 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
455 M6811_OP_PSHX } },
456 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PAGE2, M6811_OP_PSHX } },
458 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
459 M6811_OP_PSHX } },
460 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PAGE2, M6811_OP_PSHX } },
462
463 /* Sequences to allocate local variables. */
464 { P_LOCAL_N, 7, { M6811_OP_TSX,
465 M6811_OP_XGDX,
466 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_XGDX,
468 M6811_OP_TXS } },
469 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
470 M6811_OP_PAGE2, M6811_OP_XGDX,
471 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_PAGE2, M6811_OP_TXS } },
474 { P_LOCAL_1, 1, { M6811_OP_DES } },
475 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
476 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
477
478 /* Initialize the frame pointer. */
479 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
480 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
481 { P_LAST, 0, { 0 } }
482 };
483
484
485 /* Sequence of instructions in the 68HC12 function prologue. */
486 static struct insn_sequence m6812_prologue[] = {
487 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
488 OP_IMM_HIGH, OP_IMM_LOW } },
489 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
490 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
491 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
492 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
493 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
494 { P_LAST, 0 }
495 };
496
497
498 /* Analyze the sequence of instructions starting at the given address.
499 Returns a pointer to the sequence when it is recognized and
500 the optional value (constant/address) associated with it. */
501 static struct insn_sequence *
502 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
503 CORE_ADDR *val)
504 {
505 unsigned char buffer[MAX_CODES];
506 unsigned bufsize;
507 unsigned j;
508 CORE_ADDR cur_val;
509 short v = 0;
510
511 bufsize = 0;
512 for (; seq->type != P_LAST; seq++)
513 {
514 cur_val = 0;
515 for (j = 0; j < seq->length; j++)
516 {
517 if (bufsize < j + 1)
518 {
519 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
520 1);
521 bufsize++;
522 }
523 /* Continue while we match the opcode. */
524 if (seq->code[j] == buffer[j])
525 continue;
526
527 if ((seq->code[j] & 0xf00) == 0)
528 break;
529
530 /* Extract a sequence parameter (address or constant). */
531 switch (seq->code[j])
532 {
533 case OP_DIRECT:
534 cur_val = (CORE_ADDR) buffer[j];
535 break;
536
537 case OP_IMM_HIGH:
538 cur_val = cur_val & 0x0ff;
539 cur_val |= (buffer[j] << 8);
540 break;
541
542 case OP_IMM_LOW:
543 cur_val &= 0x0ff00;
544 cur_val |= buffer[j];
545 break;
546
547 case OP_PBYTE:
548 if ((buffer[j] & 0xE0) == 0x80)
549 {
550 v = buffer[j] & 0x1f;
551 if (v & 0x10)
552 v |= 0xfff0;
553 }
554 else if ((buffer[j] & 0xfe) == 0xf0)
555 {
556 v = read_memory_unsigned_integer (pc + j + 1, 1);
557 if (buffer[j] & 1)
558 v |= 0xff00;
559 }
560 else if (buffer[j] == 0xf2)
561 {
562 v = read_memory_unsigned_integer (pc + j + 1, 2);
563 }
564 cur_val = v;
565 break;
566 }
567 }
568
569 /* We have a full match. */
570 if (j == seq->length)
571 {
572 *val = cur_val;
573 return seq;
574 }
575 }
576 return 0;
577 }
578
579 /* Return the instruction that the function at the PC is using. */
580 static enum insn_return_kind
581 m68hc11_get_return_insn (CORE_ADDR pc)
582 {
583 struct minimal_symbol *sym;
584
585 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
586 function is stored by elfread.c in the high bit of the info field.
587 Use this to decide which instruction the function uses to return. */
588 sym = lookup_minimal_symbol_by_pc (pc);
589 if (sym == 0)
590 return RETURN_RTS;
591
592 if (MSYMBOL_IS_RTC (sym))
593 return RETURN_RTC;
594 else if (MSYMBOL_IS_RTI (sym))
595 return RETURN_RTI;
596 else
597 return RETURN_RTS;
598 }
599
600 /* Analyze the function prologue to find some information
601 about the function:
602 - the PC of the first line (for m68hc11_skip_prologue)
603 - the offset of the previous frame saved address (from current frame)
604 - the soft registers which are pushed. */
605 static CORE_ADDR
606 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
607 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
608 {
609 LONGEST save_addr;
610 CORE_ADDR func_end;
611 int size;
612 int found_frame_point;
613 int saved_reg;
614 int done = 0;
615 struct insn_sequence *seq_table;
616
617 info->size = 0;
618 info->sp_offset = 0;
619 if (pc >= current_pc)
620 return current_pc;
621
622 size = 0;
623
624 m68hc11_initialize_register_info ();
625 if (pc == 0)
626 {
627 info->size = 0;
628 return pc;
629 }
630
631 seq_table = gdbarch_tdep (gdbarch)->prologue;
632
633 /* The 68hc11 stack is as follows:
634
635
636 | |
637 +-----------+
638 | |
639 | args |
640 | |
641 +-----------+
642 | PC-return |
643 +-----------+
644 | Old frame |
645 +-----------+
646 | |
647 | Locals |
648 | |
649 +-----------+ <--- current frame
650 | |
651
652 With most processors (like 68K) the previous frame can be computed
653 easily because it is always at a fixed offset (see link/unlink).
654 That is, locals are accessed with negative offsets, arguments are
655 accessed with positive ones. Since 68hc11 only supports offsets
656 in the range [0..255], the frame is defined at the bottom of
657 locals (see picture).
658
659 The purpose of the analysis made here is to find out the size
660 of locals in this function. An alternative to this is to use
661 DWARF2 info. This would be better but I don't know how to
662 access dwarf2 debug from this function.
663
664 Walk from the function entry point to the point where we save
665 the frame. While walking instructions, compute the size of bytes
666 which are pushed. This gives us the index to access the previous
667 frame.
668
669 We limit the search to 128 bytes so that the algorithm is bounded
670 in case of random and wrong code. We also stop and abort if
671 we find an instruction which is not supposed to appear in the
672 prologue (as generated by gcc 2.95, 2.96).
673 */
674 func_end = pc + 128;
675 found_frame_point = 0;
676 info->size = 0;
677 save_addr = 0;
678 while (!done && pc + 2 < func_end)
679 {
680 struct insn_sequence *seq;
681 CORE_ADDR val;
682
683 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
684 if (seq == 0)
685 break;
686
687 /* If we are within the instruction group, we can't advance the
688 pc nor the stack offset. Otherwise the caller's stack computed
689 from the current stack can be wrong. */
690 if (pc + seq->length > current_pc)
691 break;
692
693 pc = pc + seq->length;
694 if (seq->type == P_SAVE_REG)
695 {
696 if (found_frame_point)
697 {
698 saved_reg = m68hc11_which_soft_register (val);
699 if (saved_reg < 0)
700 break;
701
702 save_addr -= 2;
703 if (info->saved_regs)
704 info->saved_regs[saved_reg].addr = save_addr;
705 }
706 else
707 {
708 size += 2;
709 }
710 }
711 else if (seq->type == P_SET_FRAME)
712 {
713 found_frame_point = 1;
714 info->size = size;
715 }
716 else if (seq->type == P_LOCAL_1)
717 {
718 size += 1;
719 }
720 else if (seq->type == P_LOCAL_2)
721 {
722 size += 2;
723 }
724 else if (seq->type == P_LOCAL_N)
725 {
726 /* Stack pointer is decremented for the allocation. */
727 if (val & 0x8000)
728 size -= (int) (val) | 0xffff0000;
729 else
730 size -= val;
731 }
732 }
733 if (found_frame_point == 0)
734 info->sp_offset = size;
735 else
736 info->sp_offset = -1;
737 return pc;
738 }
739
740 static CORE_ADDR
741 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
742 {
743 CORE_ADDR func_addr, func_end;
744 struct symtab_and_line sal;
745 struct m68hc11_unwind_cache tmp_cache = { 0 };
746
747 /* If we have line debugging information, then the end of the
748 prologue should be the first assembly instruction of the
749 first source line. */
750 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
751 {
752 sal = find_pc_line (func_addr, 0);
753 if (sal.end && sal.end < func_end)
754 return sal.end;
755 }
756
757 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
758 return pc;
759 }
760
761 static CORE_ADDR
762 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
763 {
764 ULONGEST pc;
765
766 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
767 return pc;
768 }
769
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
775
776 struct m68hc11_unwind_cache *
777 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
778 void **this_prologue_cache)
779 {
780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
788 return (*this_prologue_cache);
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
793
794 info->pc = get_frame_func (this_frame);
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
802 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
809 current_pc = get_frame_pc (this_frame);
810 if (info->pc != 0)
811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
818 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += STACK_CORRECTION (gdbarch);
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
828 this_base += STACK_CORRECTION (gdbarch);
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
850 instruction.*/
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
857 for (i = 0;
858 i < gdbarch_num_regs (gdbarch)
859 + gdbarch_num_pseudo_regs (gdbarch) - 1;
860 i++)
861 if (trad_frame_addr_p (info->saved_regs, i))
862 {
863 info->saved_regs[i].addr += this_base;
864 }
865
866 /* The previous frame's SP needed to be computed. Save the computed
867 value. */
868 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
869
870 return info;
871 }
872
873 /* Given a GDB frame, determine the address of the calling function's
874 frame. This will be used to create a new GDB frame struct. */
875
876 static void
877 m68hc11_frame_this_id (struct frame_info *this_frame,
878 void **this_prologue_cache,
879 struct frame_id *this_id)
880 {
881 struct m68hc11_unwind_cache *info
882 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
883 CORE_ADDR base;
884 CORE_ADDR func;
885 struct frame_id id;
886
887 /* The FUNC is easy. */
888 func = get_frame_func (this_frame);
889
890 /* Hopefully the prologue analysis either correctly determined the
891 frame's base (which is the SP from the previous frame), or set
892 that base to "NULL". */
893 base = info->prev_sp;
894 if (base == 0)
895 return;
896
897 id = frame_id_build (base, func);
898 (*this_id) = id;
899 }
900
901 static struct value *
902 m68hc11_frame_prev_register (struct frame_info *this_frame,
903 void **this_prologue_cache, int regnum)
904 {
905 struct value *value;
906 struct m68hc11_unwind_cache *info
907 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
908
909 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
910
911 /* Take into account the 68HC12 specific call (PC + page). */
912 if (regnum == HARD_PC_REGNUM
913 && info->return_kind == RETURN_RTC
914 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
915 {
916 CORE_ADDR pc = value_as_long (value);
917 if (pc >= 0x08000 && pc < 0x0c000)
918 {
919 CORE_ADDR page;
920
921 release_value (value);
922 value_free (value);
923
924 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
925 HARD_PAGE_REGNUM);
926 page = value_as_long (value);
927 release_value (value);
928 value_free (value);
929
930 pc -= 0x08000;
931 pc += ((page & 0x0ff) << 14);
932 pc += 0x1000000;
933
934 return frame_unwind_got_constant (this_frame, regnum, pc);
935 }
936 }
937
938 return value;
939 }
940
941 static const struct frame_unwind m68hc11_frame_unwind = {
942 NORMAL_FRAME,
943 m68hc11_frame_this_id,
944 m68hc11_frame_prev_register,
945 NULL,
946 default_frame_sniffer
947 };
948
949 static CORE_ADDR
950 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
951 {
952 struct m68hc11_unwind_cache *info
953 = m68hc11_frame_unwind_cache (this_frame, this_cache);
954
955 return info->base;
956 }
957
958 static CORE_ADDR
959 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
960 {
961 CORE_ADDR addr;
962 struct m68hc11_unwind_cache *info
963 = m68hc11_frame_unwind_cache (this_frame, this_cache);
964
965 addr = info->base + info->size;
966 if (info->return_kind == RETURN_RTC)
967 addr += 1;
968 else if (info->return_kind == RETURN_RTI)
969 addr += 7;
970
971 return addr;
972 }
973
974 static const struct frame_base m68hc11_frame_base = {
975 &m68hc11_frame_unwind,
976 m68hc11_frame_base_address,
977 m68hc11_frame_base_address,
978 m68hc11_frame_args_address
979 };
980
981 static CORE_ADDR
982 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
983 {
984 ULONGEST sp;
985 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
986 return sp;
987 }
988
989 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
990 frame. The frame ID's base needs to match the TOS value saved by
991 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
992
993 static struct frame_id
994 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
995 {
996 ULONGEST tos;
997 CORE_ADDR pc = get_frame_pc (this_frame);
998
999 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1000 tos += 2;
1001 return frame_id_build (tos, pc);
1002 }
1003
1004 \f
1005 /* Get and print the register from the given frame. */
1006 static void
1007 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1008 struct frame_info *frame, int regno)
1009 {
1010 LONGEST rval;
1011
1012 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1013 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1014 rval = get_frame_register_unsigned (frame, regno);
1015 else
1016 rval = get_frame_register_signed (frame, regno);
1017
1018 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1019 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1020 {
1021 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1022 if (regno != HARD_CCR_REGNUM)
1023 print_longest (file, 'd', 1, rval);
1024 }
1025 else
1026 {
1027 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1028 {
1029 ULONGEST page;
1030
1031 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1032 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1033 (unsigned) rval);
1034 }
1035 else
1036 {
1037 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1038 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1039 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1040 print_longest (file, 'd', 1, rval);
1041 }
1042 }
1043
1044 if (regno == HARD_CCR_REGNUM)
1045 {
1046 /* CCR register */
1047 int C, Z, N, V;
1048 unsigned char l = rval & 0xff;
1049
1050 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1051 l & M6811_S_BIT ? 'S' : '-',
1052 l & M6811_X_BIT ? 'X' : '-',
1053 l & M6811_H_BIT ? 'H' : '-',
1054 l & M6811_I_BIT ? 'I' : '-',
1055 l & M6811_N_BIT ? 'N' : '-',
1056 l & M6811_Z_BIT ? 'Z' : '-',
1057 l & M6811_V_BIT ? 'V' : '-',
1058 l & M6811_C_BIT ? 'C' : '-');
1059 N = (l & M6811_N_BIT) != 0;
1060 Z = (l & M6811_Z_BIT) != 0;
1061 V = (l & M6811_V_BIT) != 0;
1062 C = (l & M6811_C_BIT) != 0;
1063
1064 /* Print flags following the h8300 */
1065 if ((C | Z) == 0)
1066 fprintf_filtered (file, "u> ");
1067 else if ((C | Z) == 1)
1068 fprintf_filtered (file, "u<= ");
1069 else if (C == 0)
1070 fprintf_filtered (file, "u< ");
1071
1072 if (Z == 0)
1073 fprintf_filtered (file, "!= ");
1074 else
1075 fprintf_filtered (file, "== ");
1076
1077 if ((N ^ V) == 0)
1078 fprintf_filtered (file, ">= ");
1079 else
1080 fprintf_filtered (file, "< ");
1081
1082 if ((Z | (N ^ V)) == 0)
1083 fprintf_filtered (file, "> ");
1084 else
1085 fprintf_filtered (file, "<= ");
1086 }
1087 }
1088
1089 /* Same as 'info reg' but prints the registers in a different way. */
1090 static void
1091 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1092 struct frame_info *frame, int regno, int cpregs)
1093 {
1094 if (regno >= 0)
1095 {
1096 const char *name = gdbarch_register_name (gdbarch, regno);
1097
1098 if (!name || !*name)
1099 return;
1100
1101 fprintf_filtered (file, "%-10s ", name);
1102 m68hc11_print_register (gdbarch, file, frame, regno);
1103 fprintf_filtered (file, "\n");
1104 }
1105 else
1106 {
1107 int i, nr;
1108
1109 fprintf_filtered (file, "PC=");
1110 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1111
1112 fprintf_filtered (file, " SP=");
1113 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1114
1115 fprintf_filtered (file, " FP=");
1116 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1117
1118 fprintf_filtered (file, "\nCCR=");
1119 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1120
1121 fprintf_filtered (file, "\nD=");
1122 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1123
1124 fprintf_filtered (file, " X=");
1125 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1126
1127 fprintf_filtered (file, " Y=");
1128 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1129
1130 if (gdbarch_tdep (gdbarch)->use_page_register)
1131 {
1132 fprintf_filtered (file, "\nPage=");
1133 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1134 }
1135 fprintf_filtered (file, "\n");
1136
1137 nr = 0;
1138 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1139 {
1140 /* Skip registers which are not defined in the symbol table. */
1141 if (soft_regs[i].name == 0)
1142 continue;
1143
1144 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1145 m68hc11_print_register (gdbarch, file, frame, i);
1146 nr++;
1147 if ((nr % 8) == 7)
1148 fprintf_filtered (file, "\n");
1149 else
1150 fprintf_filtered (file, " ");
1151 }
1152 if (nr && (nr % 8) != 7)
1153 fprintf_filtered (file, "\n");
1154 }
1155 }
1156
1157 static CORE_ADDR
1158 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1159 struct regcache *regcache, CORE_ADDR bp_addr,
1160 int nargs, struct value **args, CORE_ADDR sp,
1161 int struct_return, CORE_ADDR struct_addr)
1162 {
1163 int argnum;
1164 int first_stack_argnum;
1165 struct type *type;
1166 char *val;
1167 int len;
1168 char buf[2];
1169
1170 first_stack_argnum = 0;
1171 if (struct_return)
1172 {
1173 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1174 }
1175 else if (nargs > 0)
1176 {
1177 type = value_type (args[0]);
1178 len = TYPE_LENGTH (type);
1179
1180 /* First argument is passed in D and X registers. */
1181 if (len <= 4)
1182 {
1183 ULONGEST v;
1184
1185 v = extract_unsigned_integer (value_contents (args[0]), len);
1186 first_stack_argnum = 1;
1187
1188 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1189 if (len > 2)
1190 {
1191 v >>= 16;
1192 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1193 }
1194 }
1195 }
1196
1197 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1198 {
1199 type = value_type (args[argnum]);
1200 len = TYPE_LENGTH (type);
1201
1202 if (len & 1)
1203 {
1204 static char zero = 0;
1205
1206 sp--;
1207 write_memory (sp, &zero, 1);
1208 }
1209 val = (char*) value_contents (args[argnum]);
1210 sp -= len;
1211 write_memory (sp, val, len);
1212 }
1213
1214 /* Store return address. */
1215 sp -= 2;
1216 store_unsigned_integer (buf, 2, bp_addr);
1217 write_memory (sp, buf, 2);
1218
1219 /* Finally, update the stack pointer... */
1220 sp -= STACK_CORRECTION (gdbarch);
1221 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1222
1223 /* ...and fake a frame pointer. */
1224 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1225
1226 /* DWARF2/GCC uses the stack address *before* the function call as a
1227 frame's CFA. */
1228 return sp + 2;
1229 }
1230
1231
1232 /* Return the GDB type object for the "standard" data type
1233 of data in register N. */
1234
1235 static struct type *
1236 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1237 {
1238 switch (reg_nr)
1239 {
1240 case HARD_PAGE_REGNUM:
1241 case HARD_A_REGNUM:
1242 case HARD_B_REGNUM:
1243 case HARD_CCR_REGNUM:
1244 return builtin_type_uint8;
1245
1246 case M68HC12_HARD_PC_REGNUM:
1247 return builtin_type_uint32;
1248
1249 default:
1250 return builtin_type_uint16;
1251 }
1252 }
1253
1254 static void
1255 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1256 const void *valbuf)
1257 {
1258 int len;
1259
1260 len = TYPE_LENGTH (type);
1261
1262 /* First argument is passed in D and X registers. */
1263 if (len <= 2)
1264 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1265 else if (len <= 4)
1266 {
1267 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1268 len - 2, valbuf);
1269 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1270 }
1271 else
1272 error (_("return of value > 4 is not supported."));
1273 }
1274
1275
1276 /* Given a return value in `regcache' with a type `type',
1277 extract and copy its value into `valbuf'. */
1278
1279 static void
1280 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1281 void *valbuf)
1282 {
1283 int len = TYPE_LENGTH (type);
1284 char buf[M68HC11_REG_SIZE];
1285
1286 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1287 switch (len)
1288 {
1289 case 1:
1290 memcpy (valbuf, buf + 1, 1);
1291 break;
1292
1293 case 2:
1294 memcpy (valbuf, buf, 2);
1295 break;
1296
1297 case 3:
1298 memcpy ((char*) valbuf + 1, buf, 2);
1299 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1300 memcpy (valbuf, buf + 1, 1);
1301 break;
1302
1303 case 4:
1304 memcpy ((char*) valbuf + 2, buf, 2);
1305 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1306 memcpy (valbuf, buf, 2);
1307 break;
1308
1309 default:
1310 error (_("bad size for return value"));
1311 }
1312 }
1313
1314 enum return_value_convention
1315 m68hc11_return_value (struct gdbarch *gdbarch, struct type *func_type,
1316 struct type *valtype, struct regcache *regcache,
1317 gdb_byte *readbuf, const gdb_byte *writebuf)
1318 {
1319 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1320 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1321 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1322 || TYPE_LENGTH (valtype) > 4)
1323 return RETURN_VALUE_STRUCT_CONVENTION;
1324 else
1325 {
1326 if (readbuf != NULL)
1327 m68hc11_extract_return_value (valtype, regcache, readbuf);
1328 if (writebuf != NULL)
1329 m68hc11_store_return_value (valtype, regcache, writebuf);
1330 return RETURN_VALUE_REGISTER_CONVENTION;
1331 }
1332 }
1333
1334 /* Test whether the ELF symbol corresponds to a function using rtc or
1335 rti to return. */
1336
1337 static void
1338 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1339 {
1340 unsigned char flags;
1341
1342 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1343 if (flags & STO_M68HC12_FAR)
1344 MSYMBOL_SET_RTC (msym);
1345 if (flags & STO_M68HC12_INTERRUPT)
1346 MSYMBOL_SET_RTI (msym);
1347 }
1348
1349 static int
1350 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1351 {
1352 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_m68hc11)
1353 return print_insn_m68hc11 (memaddr, info);
1354 else
1355 return print_insn_m68hc12 (memaddr, info);
1356 }
1357
1358 \f
1359
1360 /* 68HC11/68HC12 register groups.
1361 Identify real hard registers and soft registers used by gcc. */
1362
1363 static struct reggroup *m68hc11_soft_reggroup;
1364 static struct reggroup *m68hc11_hard_reggroup;
1365
1366 static void
1367 m68hc11_init_reggroups (void)
1368 {
1369 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1370 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1371 }
1372
1373 static void
1374 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1375 {
1376 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1377 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1378 reggroup_add (gdbarch, general_reggroup);
1379 reggroup_add (gdbarch, float_reggroup);
1380 reggroup_add (gdbarch, all_reggroup);
1381 reggroup_add (gdbarch, save_reggroup);
1382 reggroup_add (gdbarch, restore_reggroup);
1383 reggroup_add (gdbarch, vector_reggroup);
1384 reggroup_add (gdbarch, system_reggroup);
1385 }
1386
1387 static int
1388 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1389 struct reggroup *group)
1390 {
1391 /* We must save the real hard register as well as gcc
1392 soft registers including the frame pointer. */
1393 if (group == save_reggroup || group == restore_reggroup)
1394 {
1395 return (regnum <= gdbarch_num_regs (gdbarch)
1396 || ((regnum == SOFT_FP_REGNUM
1397 || regnum == SOFT_TMP_REGNUM
1398 || regnum == SOFT_ZS_REGNUM
1399 || regnum == SOFT_XY_REGNUM)
1400 && m68hc11_register_name (gdbarch, regnum)));
1401 }
1402
1403 /* Group to identify gcc soft registers (d1..dN). */
1404 if (group == m68hc11_soft_reggroup)
1405 {
1406 return regnum >= SOFT_D1_REGNUM
1407 && m68hc11_register_name (gdbarch, regnum);
1408 }
1409
1410 if (group == m68hc11_hard_reggroup)
1411 {
1412 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1413 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1414 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1415 }
1416 return default_register_reggroup_p (gdbarch, regnum, group);
1417 }
1418
1419 static struct gdbarch *
1420 m68hc11_gdbarch_init (struct gdbarch_info info,
1421 struct gdbarch_list *arches)
1422 {
1423 struct gdbarch *gdbarch;
1424 struct gdbarch_tdep *tdep;
1425 int elf_flags;
1426
1427 soft_reg_initialized = 0;
1428
1429 /* Extract the elf_flags if available. */
1430 if (info.abfd != NULL
1431 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1432 elf_flags = elf_elfheader (info.abfd)->e_flags;
1433 else
1434 elf_flags = 0;
1435
1436 /* try to find a pre-existing architecture */
1437 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1438 arches != NULL;
1439 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1440 {
1441 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1442 continue;
1443
1444 return arches->gdbarch;
1445 }
1446
1447 /* Need a new architecture. Fill in a target specific vector. */
1448 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1449 gdbarch = gdbarch_alloc (&info, tdep);
1450 tdep->elf_flags = elf_flags;
1451
1452 switch (info.bfd_arch_info->arch)
1453 {
1454 case bfd_arch_m68hc11:
1455 tdep->stack_correction = 1;
1456 tdep->use_page_register = 0;
1457 tdep->prologue = m6811_prologue;
1458 set_gdbarch_addr_bit (gdbarch, 16);
1459 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1460 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1461 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1462 break;
1463
1464 case bfd_arch_m68hc12:
1465 tdep->stack_correction = 0;
1466 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1467 tdep->prologue = m6812_prologue;
1468 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1469 set_gdbarch_num_pseudo_regs (gdbarch,
1470 elf_flags & E_M68HC12_BANKS
1471 ? M68HC12_NUM_PSEUDO_REGS
1472 : M68HC11_NUM_PSEUDO_REGS);
1473 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1474 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1475 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1476 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1477 break;
1478
1479 default:
1480 break;
1481 }
1482
1483 /* Initially set everything according to the ABI.
1484 Use 16-bit integers since it will be the case for most
1485 programs. The size of these types should normally be set
1486 according to the dwarf2 debug information. */
1487 set_gdbarch_short_bit (gdbarch, 16);
1488 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1489 set_gdbarch_float_bit (gdbarch, 32);
1490 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1491 set_gdbarch_long_double_bit (gdbarch, 64);
1492 set_gdbarch_long_bit (gdbarch, 32);
1493 set_gdbarch_ptr_bit (gdbarch, 16);
1494 set_gdbarch_long_long_bit (gdbarch, 64);
1495
1496 /* Characters are unsigned. */
1497 set_gdbarch_char_signed (gdbarch, 0);
1498
1499 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1500 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1501
1502 /* Set register info. */
1503 set_gdbarch_fp0_regnum (gdbarch, -1);
1504
1505 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1506 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1507 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1508 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1509 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1510
1511 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1512
1513 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1514 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1516 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1517 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1518
1519 m68hc11_add_reggroups (gdbarch);
1520 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1521 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1522
1523 /* Hook in the DWARF CFI frame unwinder. */
1524 dwarf2_append_unwinders (gdbarch);
1525
1526 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1527 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1528
1529 /* Methods for saving / extracting a dummy frame's ID. The ID's
1530 stack address must match the SP value returned by
1531 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1532 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1533
1534 /* Return the unwound PC value. */
1535 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1536
1537 /* Minsymbol frobbing. */
1538 set_gdbarch_elf_make_msymbol_special (gdbarch,
1539 m68hc11_elf_make_msymbol_special);
1540
1541 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1542
1543 return gdbarch;
1544 }
1545
1546 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1547
1548 void
1549 _initialize_m68hc11_tdep (void)
1550 {
1551 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1552 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1553 m68hc11_init_reggroups ();
1554 }
1555
This page took 0.090694 seconds and 5 git commands to generate.