* m68hc11-tdep.c (m68hc11_pseudo_register_write): Use gdb_byte
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
4 Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "dwarf2-frame.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdb_string.h"
36 #include "value.h"
37 #include "inferior.h"
38 #include "dis-asm.h"
39 #include "symfile.h"
40 #include "objfiles.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "reggroups.h"
44
45 #include "target.h"
46 #include "opcode/m68hc11.h"
47 #include "elf/m68hc11.h"
48 #include "elf-bfd.h"
49
50 /* Macros for setting and testing a bit in a minimal symbol.
51 For 68HC11/68HC12 we have two flags that tell which return
52 type the function is using. This is used for prologue and frame
53 analysis to compute correct stack frame layout.
54
55 The MSB of the minimal symbol's "info" field is used for this purpose.
56
57 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
58 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
59 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
60 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
61
62 #define MSYMBOL_SET_RTC(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66 #define MSYMBOL_SET_RTI(msym) \
67 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
68 | 0x40000000)
69
70 #define MSYMBOL_IS_RTC(msym) \
71 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
72
73 #define MSYMBOL_IS_RTI(msym) \
74 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
75
76 enum insn_return_kind {
77 RETURN_RTS,
78 RETURN_RTC,
79 RETURN_RTI
80 };
81
82
83 /* Register numbers of various important registers.
84 Note that some of these values are "real" register numbers,
85 and correspond to the general registers of the machine,
86 and some are "phony" register numbers which are too large
87 to be actual register numbers as far as the user is concerned
88 but do serve to get the desired values when passed to read_register. */
89
90 #define HARD_X_REGNUM 0
91 #define HARD_D_REGNUM 1
92 #define HARD_Y_REGNUM 2
93 #define HARD_SP_REGNUM 3
94 #define HARD_PC_REGNUM 4
95
96 #define HARD_A_REGNUM 5
97 #define HARD_B_REGNUM 6
98 #define HARD_CCR_REGNUM 7
99
100 /* 68HC12 page number register.
101 Note: to keep a compatibility with gcc register naming, we must
102 not have to rename FP and other soft registers. The page register
103 is a real hard register and must therefore be counted by NUM_REGS.
104 For this it has the same number as Z register (which is not used). */
105 #define HARD_PAGE_REGNUM 8
106 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
107
108 /* Z is replaced by X or Y by gcc during machine reorg.
109 ??? There is no way to get it and even know whether
110 it's in X or Y or in ZS. */
111 #define SOFT_Z_REGNUM 8
112
113 /* Soft registers. These registers are special. There are treated
114 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
115 They are physically located in memory. */
116 #define SOFT_FP_REGNUM 9
117 #define SOFT_TMP_REGNUM 10
118 #define SOFT_ZS_REGNUM 11
119 #define SOFT_XY_REGNUM 12
120 #define SOFT_UNUSED_REGNUM 13
121 #define SOFT_D1_REGNUM 14
122 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
123 #define M68HC11_MAX_SOFT_REGS 32
124
125 #define M68HC11_NUM_REGS (8)
126 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
127 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
128
129 #define M68HC11_REG_SIZE (2)
130
131 #define M68HC12_NUM_REGS (9)
132 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
133 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
134
135 struct insn_sequence;
136 struct gdbarch_tdep
137 {
138 /* Stack pointer correction value. For 68hc11, the stack pointer points
139 to the next push location. An offset of 1 must be applied to obtain
140 the address where the last value is saved. For 68hc12, the stack
141 pointer points to the last value pushed. No offset is necessary. */
142 int stack_correction;
143
144 /* Description of instructions in the prologue. */
145 struct insn_sequence *prologue;
146
147 /* True if the page memory bank register is available
148 and must be used. */
149 int use_page_register;
150
151 /* ELF flags for ABI. */
152 int elf_flags;
153 };
154
155 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
156 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
157 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
158
159 struct m68hc11_unwind_cache
160 {
161 /* The previous frame's inner most stack address. Used as this
162 frame ID's stack_addr. */
163 CORE_ADDR prev_sp;
164 /* The frame's base, optionally used by the high-level debug info. */
165 CORE_ADDR base;
166 CORE_ADDR pc;
167 int size;
168 int prologue_type;
169 CORE_ADDR return_pc;
170 CORE_ADDR sp_offset;
171 int frameless;
172 enum insn_return_kind return_kind;
173
174 /* Table indicating the location of each and every register. */
175 struct trad_frame_saved_reg *saved_regs;
176 };
177
178 /* Table of registers for 68HC11. This includes the hard registers
179 and the soft registers used by GCC. */
180 static char *
181 m68hc11_register_names[] =
182 {
183 "x", "d", "y", "sp", "pc", "a", "b",
184 "ccr", "page", "frame","tmp", "zs", "xy", 0,
185 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
186 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
187 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
188 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
189 "d29", "d30", "d31", "d32"
190 };
191
192 struct m68hc11_soft_reg
193 {
194 const char *name;
195 CORE_ADDR addr;
196 };
197
198 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
199
200 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
201
202 static int soft_min_addr;
203 static int soft_max_addr;
204 static int soft_reg_initialized = 0;
205
206 /* Look in the symbol table for the address of a pseudo register
207 in memory. If we don't find it, pretend the register is not used
208 and not available. */
209 static void
210 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
211 {
212 struct minimal_symbol *msymbol;
213
214 msymbol = lookup_minimal_symbol (name, NULL, NULL);
215 if (msymbol)
216 {
217 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
218 reg->name = xstrdup (name);
219
220 /* Keep track of the address range for soft registers. */
221 if (reg->addr < (CORE_ADDR) soft_min_addr)
222 soft_min_addr = reg->addr;
223 if (reg->addr > (CORE_ADDR) soft_max_addr)
224 soft_max_addr = reg->addr;
225 }
226 else
227 {
228 reg->name = 0;
229 reg->addr = 0;
230 }
231 }
232
233 /* Initialize the table of soft register addresses according
234 to the symbol table. */
235 static void
236 m68hc11_initialize_register_info (void)
237 {
238 int i;
239
240 if (soft_reg_initialized)
241 return;
242
243 soft_min_addr = INT_MAX;
244 soft_max_addr = 0;
245 for (i = 0; i < M68HC11_ALL_REGS; i++)
246 {
247 soft_regs[i].name = 0;
248 }
249
250 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
251 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
252 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
253 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
254 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
255
256 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
257 {
258 char buf[10];
259
260 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
261 m68hc11_get_register_info (&soft_regs[i], buf);
262 }
263
264 if (soft_regs[SOFT_FP_REGNUM].name == 0)
265 warning (_("No frame soft register found in the symbol table.\n"
266 "Stack backtrace will not work."));
267 soft_reg_initialized = 1;
268 }
269
270 /* Given an address in memory, return the soft register number if
271 that address corresponds to a soft register. Returns -1 if not. */
272 static int
273 m68hc11_which_soft_register (CORE_ADDR addr)
274 {
275 int i;
276
277 if (addr < soft_min_addr || addr > soft_max_addr)
278 return -1;
279
280 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
281 {
282 if (soft_regs[i].name && soft_regs[i].addr == addr)
283 return i;
284 }
285 return -1;
286 }
287
288 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
289 pseudo registers. They are located in memory. Translate the register
290 fetch into a memory read. */
291 static void
292 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
293 struct regcache *regcache,
294 int regno, gdb_byte *buf)
295 {
296 /* The PC is a pseudo reg only for 68HC12 with the memory bank
297 addressing mode. */
298 if (regno == M68HC12_HARD_PC_REGNUM)
299 {
300 ULONGEST pc;
301 const int regsize = TYPE_LENGTH (builtin_type_uint32);
302
303 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
304 if (pc >= 0x8000 && pc < 0xc000)
305 {
306 ULONGEST page;
307
308 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
309 pc -= 0x8000;
310 pc += (page << 14);
311 pc += 0x1000000;
312 }
313 store_unsigned_integer (buf, regsize, pc);
314 return;
315 }
316
317 m68hc11_initialize_register_info ();
318
319 /* Fetch a soft register: translate into a memory read. */
320 if (soft_regs[regno].name)
321 {
322 target_read_memory (soft_regs[regno].addr, buf, 2);
323 }
324 else
325 {
326 memset (buf, 0, 2);
327 }
328 }
329
330 /* Store a pseudo register. Translate the register store
331 into a memory write. */
332 static void
333 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
334 struct regcache *regcache,
335 int regno, const gdb_byte *buf)
336 {
337 /* The PC is a pseudo reg only for 68HC12 with the memory bank
338 addressing mode. */
339 if (regno == M68HC12_HARD_PC_REGNUM)
340 {
341 const int regsize = TYPE_LENGTH (builtin_type_uint32);
342 char *tmp = alloca (regsize);
343 CORE_ADDR pc;
344
345 memcpy (tmp, buf, regsize);
346 pc = extract_unsigned_integer (tmp, regsize);
347 if (pc >= 0x1000000)
348 {
349 pc -= 0x1000000;
350 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
351 (pc >> 14) & 0x0ff);
352 pc &= 0x03fff;
353 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
354 pc + 0x8000);
355 }
356 else
357 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
358 return;
359 }
360
361 m68hc11_initialize_register_info ();
362
363 /* Store a soft register: translate into a memory write. */
364 if (soft_regs[regno].name)
365 {
366 const int regsize = 2;
367 char *tmp = alloca (regsize);
368 memcpy (tmp, buf, regsize);
369 target_write_memory (soft_regs[regno].addr, tmp, regsize);
370 }
371 }
372
373 static const char *
374 m68hc11_register_name (int reg_nr)
375 {
376 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
377 return "pc";
378 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
379 return "ppc";
380
381 if (reg_nr < 0)
382 return NULL;
383 if (reg_nr >= M68HC11_ALL_REGS)
384 return NULL;
385
386 m68hc11_initialize_register_info ();
387
388 /* If we don't know the address of a soft register, pretend it
389 does not exist. */
390 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
391 return NULL;
392 return m68hc11_register_names[reg_nr];
393 }
394
395 static const unsigned char *
396 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
397 {
398 static unsigned char breakpoint[] = {0x0};
399
400 *lenptr = sizeof (breakpoint);
401 return breakpoint;
402 }
403
404 \f
405 /* 68HC11 & 68HC12 prologue analysis.
406
407 */
408 #define MAX_CODES 12
409
410 /* 68HC11 opcodes. */
411 #undef M6811_OP_PAGE2
412 #define M6811_OP_PAGE2 (0x18)
413 #define M6811_OP_LDX (0xde)
414 #define M6811_OP_LDX_EXT (0xfe)
415 #define M6811_OP_PSHX (0x3c)
416 #define M6811_OP_STS (0x9f)
417 #define M6811_OP_STS_EXT (0xbf)
418 #define M6811_OP_TSX (0x30)
419 #define M6811_OP_XGDX (0x8f)
420 #define M6811_OP_ADDD (0xc3)
421 #define M6811_OP_TXS (0x35)
422 #define M6811_OP_DES (0x34)
423
424 /* 68HC12 opcodes. */
425 #define M6812_OP_PAGE2 (0x18)
426 #define M6812_OP_MOVW (0x01)
427 #define M6812_PB_PSHW (0xae)
428 #define M6812_OP_STS (0x5f)
429 #define M6812_OP_STS_EXT (0x7f)
430 #define M6812_OP_LEAS (0x1b)
431 #define M6812_OP_PSHX (0x34)
432 #define M6812_OP_PSHY (0x35)
433
434 /* Operand extraction. */
435 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
436 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
437 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
438 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
439
440 /* Identification of the sequence. */
441 enum m6811_seq_type
442 {
443 P_LAST = 0,
444 P_SAVE_REG, /* Save a register on the stack. */
445 P_SET_FRAME, /* Setup the frame pointer. */
446 P_LOCAL_1, /* Allocate 1 byte for locals. */
447 P_LOCAL_2, /* Allocate 2 bytes for locals. */
448 P_LOCAL_N /* Allocate N bytes for locals. */
449 };
450
451 struct insn_sequence {
452 enum m6811_seq_type type;
453 unsigned length;
454 unsigned short code[MAX_CODES];
455 };
456
457 /* Sequence of instructions in the 68HC11 function prologue. */
458 static struct insn_sequence m6811_prologue[] = {
459 /* Sequences to save a soft-register. */
460 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
464 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
465 M6811_OP_PSHX } },
466 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PAGE2, M6811_OP_PSHX } },
468
469 /* Sequences to allocate local variables. */
470 { P_LOCAL_N, 7, { M6811_OP_TSX,
471 M6811_OP_XGDX,
472 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
473 M6811_OP_XGDX,
474 M6811_OP_TXS } },
475 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
476 M6811_OP_PAGE2, M6811_OP_XGDX,
477 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_PAGE2, M6811_OP_TXS } },
480 { P_LOCAL_1, 1, { M6811_OP_DES } },
481 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
482 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
483
484 /* Initialize the frame pointer. */
485 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
486 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
487 { P_LAST, 0, { 0 } }
488 };
489
490
491 /* Sequence of instructions in the 68HC12 function prologue. */
492 static struct insn_sequence m6812_prologue[] = {
493 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
494 OP_IMM_HIGH, OP_IMM_LOW } },
495 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
496 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
497 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
498 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
499 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
500 { P_LAST, 0 }
501 };
502
503
504 /* Analyze the sequence of instructions starting at the given address.
505 Returns a pointer to the sequence when it is recognized and
506 the optional value (constant/address) associated with it. */
507 static struct insn_sequence *
508 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
509 CORE_ADDR *val)
510 {
511 unsigned char buffer[MAX_CODES];
512 unsigned bufsize;
513 unsigned j;
514 CORE_ADDR cur_val;
515 short v = 0;
516
517 bufsize = 0;
518 for (; seq->type != P_LAST; seq++)
519 {
520 cur_val = 0;
521 for (j = 0; j < seq->length; j++)
522 {
523 if (bufsize < j + 1)
524 {
525 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
526 1);
527 bufsize++;
528 }
529 /* Continue while we match the opcode. */
530 if (seq->code[j] == buffer[j])
531 continue;
532
533 if ((seq->code[j] & 0xf00) == 0)
534 break;
535
536 /* Extract a sequence parameter (address or constant). */
537 switch (seq->code[j])
538 {
539 case OP_DIRECT:
540 cur_val = (CORE_ADDR) buffer[j];
541 break;
542
543 case OP_IMM_HIGH:
544 cur_val = cur_val & 0x0ff;
545 cur_val |= (buffer[j] << 8);
546 break;
547
548 case OP_IMM_LOW:
549 cur_val &= 0x0ff00;
550 cur_val |= buffer[j];
551 break;
552
553 case OP_PBYTE:
554 if ((buffer[j] & 0xE0) == 0x80)
555 {
556 v = buffer[j] & 0x1f;
557 if (v & 0x10)
558 v |= 0xfff0;
559 }
560 else if ((buffer[j] & 0xfe) == 0xf0)
561 {
562 v = read_memory_unsigned_integer (pc + j + 1, 1);
563 if (buffer[j] & 1)
564 v |= 0xff00;
565 }
566 else if (buffer[j] == 0xf2)
567 {
568 v = read_memory_unsigned_integer (pc + j + 1, 2);
569 }
570 cur_val = v;
571 break;
572 }
573 }
574
575 /* We have a full match. */
576 if (j == seq->length)
577 {
578 *val = cur_val;
579 return seq;
580 }
581 }
582 return 0;
583 }
584
585 /* Return the instruction that the function at the PC is using. */
586 static enum insn_return_kind
587 m68hc11_get_return_insn (CORE_ADDR pc)
588 {
589 struct minimal_symbol *sym;
590
591 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
592 function is stored by elfread.c in the high bit of the info field.
593 Use this to decide which instruction the function uses to return. */
594 sym = lookup_minimal_symbol_by_pc (pc);
595 if (sym == 0)
596 return RETURN_RTS;
597
598 if (MSYMBOL_IS_RTC (sym))
599 return RETURN_RTC;
600 else if (MSYMBOL_IS_RTI (sym))
601 return RETURN_RTI;
602 else
603 return RETURN_RTS;
604 }
605
606 /* Analyze the function prologue to find some information
607 about the function:
608 - the PC of the first line (for m68hc11_skip_prologue)
609 - the offset of the previous frame saved address (from current frame)
610 - the soft registers which are pushed. */
611 static CORE_ADDR
612 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
613 struct m68hc11_unwind_cache *info)
614 {
615 LONGEST save_addr;
616 CORE_ADDR func_end;
617 int size;
618 int found_frame_point;
619 int saved_reg;
620 int done = 0;
621 struct insn_sequence *seq_table;
622
623 info->size = 0;
624 info->sp_offset = 0;
625 if (pc >= current_pc)
626 return current_pc;
627
628 size = 0;
629
630 m68hc11_initialize_register_info ();
631 if (pc == 0)
632 {
633 info->size = 0;
634 return pc;
635 }
636
637 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
638
639 /* The 68hc11 stack is as follows:
640
641
642 | |
643 +-----------+
644 | |
645 | args |
646 | |
647 +-----------+
648 | PC-return |
649 +-----------+
650 | Old frame |
651 +-----------+
652 | |
653 | Locals |
654 | |
655 +-----------+ <--- current frame
656 | |
657
658 With most processors (like 68K) the previous frame can be computed
659 easily because it is always at a fixed offset (see link/unlink).
660 That is, locals are accessed with negative offsets, arguments are
661 accessed with positive ones. Since 68hc11 only supports offsets
662 in the range [0..255], the frame is defined at the bottom of
663 locals (see picture).
664
665 The purpose of the analysis made here is to find out the size
666 of locals in this function. An alternative to this is to use
667 DWARF2 info. This would be better but I don't know how to
668 access dwarf2 debug from this function.
669
670 Walk from the function entry point to the point where we save
671 the frame. While walking instructions, compute the size of bytes
672 which are pushed. This gives us the index to access the previous
673 frame.
674
675 We limit the search to 128 bytes so that the algorithm is bounded
676 in case of random and wrong code. We also stop and abort if
677 we find an instruction which is not supposed to appear in the
678 prologue (as generated by gcc 2.95, 2.96).
679 */
680 func_end = pc + 128;
681 found_frame_point = 0;
682 info->size = 0;
683 save_addr = 0;
684 while (!done && pc + 2 < func_end)
685 {
686 struct insn_sequence *seq;
687 CORE_ADDR val;
688
689 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
690 if (seq == 0)
691 break;
692
693 /* If we are within the instruction group, we can't advance the
694 pc nor the stack offset. Otherwise the caller's stack computed
695 from the current stack can be wrong. */
696 if (pc + seq->length > current_pc)
697 break;
698
699 pc = pc + seq->length;
700 if (seq->type == P_SAVE_REG)
701 {
702 if (found_frame_point)
703 {
704 saved_reg = m68hc11_which_soft_register (val);
705 if (saved_reg < 0)
706 break;
707
708 save_addr -= 2;
709 if (info->saved_regs)
710 info->saved_regs[saved_reg].addr = save_addr;
711 }
712 else
713 {
714 size += 2;
715 }
716 }
717 else if (seq->type == P_SET_FRAME)
718 {
719 found_frame_point = 1;
720 info->size = size;
721 }
722 else if (seq->type == P_LOCAL_1)
723 {
724 size += 1;
725 }
726 else if (seq->type == P_LOCAL_2)
727 {
728 size += 2;
729 }
730 else if (seq->type == P_LOCAL_N)
731 {
732 /* Stack pointer is decremented for the allocation. */
733 if (val & 0x8000)
734 size -= (int) (val) | 0xffff0000;
735 else
736 size -= val;
737 }
738 }
739 if (found_frame_point == 0)
740 info->sp_offset = size;
741 else
742 info->sp_offset = -1;
743 return pc;
744 }
745
746 static CORE_ADDR
747 m68hc11_skip_prologue (CORE_ADDR pc)
748 {
749 CORE_ADDR func_addr, func_end;
750 struct symtab_and_line sal;
751 struct m68hc11_unwind_cache tmp_cache = { 0 };
752
753 /* If we have line debugging information, then the end of the
754 prologue should be the first assembly instruction of the
755 first source line. */
756 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
757 {
758 sal = find_pc_line (func_addr, 0);
759 if (sal.end && sal.end < func_end)
760 return sal.end;
761 }
762
763 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
764 return pc;
765 }
766
767 static CORE_ADDR
768 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
769 {
770 ULONGEST pc;
771
772 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
773 &pc);
774 return pc;
775 }
776
777 /* Put here the code to store, into fi->saved_regs, the addresses of
778 the saved registers of frame described by FRAME_INFO. This
779 includes special registers such as pc and fp saved in special ways
780 in the stack frame. sp is even more special: the address we return
781 for it IS the sp for the next frame. */
782
783 struct m68hc11_unwind_cache *
784 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
785 void **this_prologue_cache)
786 {
787 ULONGEST prev_sp;
788 ULONGEST this_base;
789 struct m68hc11_unwind_cache *info;
790 CORE_ADDR current_pc;
791 int i;
792
793 if ((*this_prologue_cache))
794 return (*this_prologue_cache);
795
796 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
797 (*this_prologue_cache) = info;
798 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
799
800 info->pc = frame_func_unwind (next_frame);
801
802 info->size = 0;
803 info->return_kind = m68hc11_get_return_insn (info->pc);
804
805 /* The SP was moved to the FP. This indicates that a new frame
806 was created. Get THIS frame's FP value by unwinding it from
807 the next frame. */
808 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
809 if (this_base == 0)
810 {
811 info->base = 0;
812 return info;
813 }
814
815 current_pc = frame_pc_unwind (next_frame);
816 if (info->pc != 0)
817 m68hc11_scan_prologue (info->pc, current_pc, info);
818
819 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
820
821 if (info->sp_offset != (CORE_ADDR) -1)
822 {
823 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
824 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
825 prev_sp = this_base + info->sp_offset + 2;
826 this_base += STACK_CORRECTION;
827 }
828 else
829 {
830 /* The FP points at the last saved register. Adjust the FP back
831 to before the first saved register giving the SP. */
832 prev_sp = this_base + info->size + 2;
833
834 this_base += STACK_CORRECTION;
835 if (soft_regs[SOFT_FP_REGNUM].name)
836 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
837 }
838
839 if (info->return_kind == RETURN_RTC)
840 {
841 prev_sp += 1;
842 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
843 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
844 }
845 else if (info->return_kind == RETURN_RTI)
846 {
847 prev_sp += 7;
848 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
849 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
850 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
851 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
852 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
853 }
854
855 /* Add 1 here to adjust for the post-decrement nature of the push
856 instruction.*/
857 info->prev_sp = prev_sp;
858
859 info->base = this_base;
860
861 /* Adjust all the saved registers so that they contain addresses and not
862 offsets. */
863 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
864 if (trad_frame_addr_p (info->saved_regs, i))
865 {
866 info->saved_regs[i].addr += this_base;
867 }
868
869 /* The previous frame's SP needed to be computed. Save the computed
870 value. */
871 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
872
873 return info;
874 }
875
876 /* Given a GDB frame, determine the address of the calling function's
877 frame. This will be used to create a new GDB frame struct. */
878
879 static void
880 m68hc11_frame_this_id (struct frame_info *next_frame,
881 void **this_prologue_cache,
882 struct frame_id *this_id)
883 {
884 struct m68hc11_unwind_cache *info
885 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
886 CORE_ADDR base;
887 CORE_ADDR func;
888 struct frame_id id;
889
890 /* The FUNC is easy. */
891 func = frame_func_unwind (next_frame);
892
893 /* Hopefully the prologue analysis either correctly determined the
894 frame's base (which is the SP from the previous frame), or set
895 that base to "NULL". */
896 base = info->prev_sp;
897 if (base == 0)
898 return;
899
900 id = frame_id_build (base, func);
901 (*this_id) = id;
902 }
903
904 static void
905 m68hc11_frame_prev_register (struct frame_info *next_frame,
906 void **this_prologue_cache,
907 int regnum, int *optimizedp,
908 enum lval_type *lvalp, CORE_ADDR *addrp,
909 int *realnump, gdb_byte *bufferp)
910 {
911 struct m68hc11_unwind_cache *info
912 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
913
914 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
915 optimizedp, lvalp, addrp, realnump, bufferp);
916
917 if (regnum == HARD_PC_REGNUM)
918 {
919 /* Take into account the 68HC12 specific call (PC + page). */
920 if (info->return_kind == RETURN_RTC
921 && *addrp >= 0x08000 && *addrp < 0x0c000
922 && USE_PAGE_REGISTER)
923 {
924 int page_optimized;
925
926 CORE_ADDR page;
927
928 trad_frame_get_prev_register (next_frame, info->saved_regs,
929 HARD_PAGE_REGNUM, &page_optimized,
930 0, &page, 0, 0);
931 *addrp -= 0x08000;
932 *addrp += ((page & 0x0ff) << 14);
933 *addrp += 0x1000000;
934 }
935 }
936 }
937
938 static const struct frame_unwind m68hc11_frame_unwind = {
939 NORMAL_FRAME,
940 m68hc11_frame_this_id,
941 m68hc11_frame_prev_register
942 };
943
944 const struct frame_unwind *
945 m68hc11_frame_sniffer (struct frame_info *next_frame)
946 {
947 return &m68hc11_frame_unwind;
948 }
949
950 static CORE_ADDR
951 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
952 {
953 struct m68hc11_unwind_cache *info
954 = m68hc11_frame_unwind_cache (next_frame, this_cache);
955
956 return info->base;
957 }
958
959 static CORE_ADDR
960 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
961 {
962 CORE_ADDR addr;
963 struct m68hc11_unwind_cache *info
964 = m68hc11_frame_unwind_cache (next_frame, this_cache);
965
966 addr = info->base + info->size;
967 if (info->return_kind == RETURN_RTC)
968 addr += 1;
969 else if (info->return_kind == RETURN_RTI)
970 addr += 7;
971
972 return addr;
973 }
974
975 static const struct frame_base m68hc11_frame_base = {
976 &m68hc11_frame_unwind,
977 m68hc11_frame_base_address,
978 m68hc11_frame_base_address,
979 m68hc11_frame_args_address
980 };
981
982 static CORE_ADDR
983 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
984 {
985 ULONGEST sp;
986 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
987 return sp;
988 }
989
990 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
991 dummy frame. The frame ID's base needs to match the TOS value
992 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
993 breakpoint. */
994
995 static struct frame_id
996 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
997 {
998 ULONGEST tos;
999 CORE_ADDR pc = frame_pc_unwind (next_frame);
1000
1001 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1002 tos += 2;
1003 return frame_id_build (tos, pc);
1004 }
1005
1006 \f
1007 /* Get and print the register from the given frame. */
1008 static void
1009 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1010 struct frame_info *frame, int regno)
1011 {
1012 LONGEST rval;
1013
1014 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1015 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1016 rval = get_frame_register_unsigned (frame, regno);
1017 else
1018 rval = get_frame_register_signed (frame, regno);
1019
1020 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1021 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1022 {
1023 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1024 if (regno != HARD_CCR_REGNUM)
1025 print_longest (file, 'd', 1, rval);
1026 }
1027 else
1028 {
1029 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1030 {
1031 ULONGEST page;
1032
1033 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1034 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1035 (unsigned) rval);
1036 }
1037 else
1038 {
1039 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1040 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1041 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1042 print_longest (file, 'd', 1, rval);
1043 }
1044 }
1045
1046 if (regno == HARD_CCR_REGNUM)
1047 {
1048 /* CCR register */
1049 int C, Z, N, V;
1050 unsigned char l = rval & 0xff;
1051
1052 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1053 l & M6811_S_BIT ? 'S' : '-',
1054 l & M6811_X_BIT ? 'X' : '-',
1055 l & M6811_H_BIT ? 'H' : '-',
1056 l & M6811_I_BIT ? 'I' : '-',
1057 l & M6811_N_BIT ? 'N' : '-',
1058 l & M6811_Z_BIT ? 'Z' : '-',
1059 l & M6811_V_BIT ? 'V' : '-',
1060 l & M6811_C_BIT ? 'C' : '-');
1061 N = (l & M6811_N_BIT) != 0;
1062 Z = (l & M6811_Z_BIT) != 0;
1063 V = (l & M6811_V_BIT) != 0;
1064 C = (l & M6811_C_BIT) != 0;
1065
1066 /* Print flags following the h8300 */
1067 if ((C | Z) == 0)
1068 fprintf_filtered (file, "u> ");
1069 else if ((C | Z) == 1)
1070 fprintf_filtered (file, "u<= ");
1071 else if (C == 0)
1072 fprintf_filtered (file, "u< ");
1073
1074 if (Z == 0)
1075 fprintf_filtered (file, "!= ");
1076 else
1077 fprintf_filtered (file, "== ");
1078
1079 if ((N ^ V) == 0)
1080 fprintf_filtered (file, ">= ");
1081 else
1082 fprintf_filtered (file, "< ");
1083
1084 if ((Z | (N ^ V)) == 0)
1085 fprintf_filtered (file, "> ");
1086 else
1087 fprintf_filtered (file, "<= ");
1088 }
1089 }
1090
1091 /* Same as 'info reg' but prints the registers in a different way. */
1092 static void
1093 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1094 struct frame_info *frame, int regno, int cpregs)
1095 {
1096 if (regno >= 0)
1097 {
1098 const char *name = gdbarch_register_name (gdbarch, regno);
1099
1100 if (!name || !*name)
1101 return;
1102
1103 fprintf_filtered (file, "%-10s ", name);
1104 m68hc11_print_register (gdbarch, file, frame, regno);
1105 fprintf_filtered (file, "\n");
1106 }
1107 else
1108 {
1109 int i, nr;
1110
1111 fprintf_filtered (file, "PC=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1113
1114 fprintf_filtered (file, " SP=");
1115 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1116
1117 fprintf_filtered (file, " FP=");
1118 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1119
1120 fprintf_filtered (file, "\nCCR=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1122
1123 fprintf_filtered (file, "\nD=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1125
1126 fprintf_filtered (file, " X=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1128
1129 fprintf_filtered (file, " Y=");
1130 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1131
1132 if (gdbarch_tdep (gdbarch)->use_page_register)
1133 {
1134 fprintf_filtered (file, "\nPage=");
1135 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1136 }
1137 fprintf_filtered (file, "\n");
1138
1139 nr = 0;
1140 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1141 {
1142 /* Skip registers which are not defined in the symbol table. */
1143 if (soft_regs[i].name == 0)
1144 continue;
1145
1146 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1147 m68hc11_print_register (gdbarch, file, frame, i);
1148 nr++;
1149 if ((nr % 8) == 7)
1150 fprintf_filtered (file, "\n");
1151 else
1152 fprintf_filtered (file, " ");
1153 }
1154 if (nr && (nr % 8) != 7)
1155 fprintf_filtered (file, "\n");
1156 }
1157 }
1158
1159 static CORE_ADDR
1160 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1161 struct regcache *regcache, CORE_ADDR bp_addr,
1162 int nargs, struct value **args, CORE_ADDR sp,
1163 int struct_return, CORE_ADDR struct_addr)
1164 {
1165 int argnum;
1166 int first_stack_argnum;
1167 struct type *type;
1168 char *val;
1169 int len;
1170 char buf[2];
1171
1172 first_stack_argnum = 0;
1173 if (struct_return)
1174 {
1175 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1176 }
1177 else if (nargs > 0)
1178 {
1179 type = value_type (args[0]);
1180 len = TYPE_LENGTH (type);
1181
1182 /* First argument is passed in D and X registers. */
1183 if (len <= 4)
1184 {
1185 ULONGEST v;
1186
1187 v = extract_unsigned_integer (value_contents (args[0]), len);
1188 first_stack_argnum = 1;
1189
1190 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1191 if (len > 2)
1192 {
1193 v >>= 16;
1194 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1195 }
1196 }
1197 }
1198
1199 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1200 {
1201 type = value_type (args[argnum]);
1202 len = TYPE_LENGTH (type);
1203
1204 if (len & 1)
1205 {
1206 static char zero = 0;
1207
1208 sp--;
1209 write_memory (sp, &zero, 1);
1210 }
1211 val = (char*) value_contents (args[argnum]);
1212 sp -= len;
1213 write_memory (sp, val, len);
1214 }
1215
1216 /* Store return address. */
1217 sp -= 2;
1218 store_unsigned_integer (buf, 2, bp_addr);
1219 write_memory (sp, buf, 2);
1220
1221 /* Finally, update the stack pointer... */
1222 sp -= STACK_CORRECTION;
1223 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1224
1225 /* ...and fake a frame pointer. */
1226 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1227
1228 /* DWARF2/GCC uses the stack address *before* the function call as a
1229 frame's CFA. */
1230 return sp + 2;
1231 }
1232
1233
1234 /* Return the GDB type object for the "standard" data type
1235 of data in register N. */
1236
1237 static struct type *
1238 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1239 {
1240 switch (reg_nr)
1241 {
1242 case HARD_PAGE_REGNUM:
1243 case HARD_A_REGNUM:
1244 case HARD_B_REGNUM:
1245 case HARD_CCR_REGNUM:
1246 return builtin_type_uint8;
1247
1248 case M68HC12_HARD_PC_REGNUM:
1249 return builtin_type_uint32;
1250
1251 default:
1252 return builtin_type_uint16;
1253 }
1254 }
1255
1256 static void
1257 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1258 const void *valbuf)
1259 {
1260 int len;
1261
1262 len = TYPE_LENGTH (type);
1263
1264 /* First argument is passed in D and X registers. */
1265 if (len <= 2)
1266 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1267 else if (len <= 4)
1268 {
1269 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1270 len - 2, valbuf);
1271 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1272 }
1273 else
1274 error (_("return of value > 4 is not supported."));
1275 }
1276
1277
1278 /* Given a return value in `regcache' with a type `type',
1279 extract and copy its value into `valbuf'. */
1280
1281 static void
1282 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1283 void *valbuf)
1284 {
1285 int len = TYPE_LENGTH (type);
1286 char buf[M68HC11_REG_SIZE];
1287
1288 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1289 switch (len)
1290 {
1291 case 1:
1292 memcpy (valbuf, buf + 1, 1);
1293 break;
1294
1295 case 2:
1296 memcpy (valbuf, buf, 2);
1297 break;
1298
1299 case 3:
1300 memcpy ((char*) valbuf + 1, buf, 2);
1301 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1302 memcpy (valbuf, buf + 1, 1);
1303 break;
1304
1305 case 4:
1306 memcpy ((char*) valbuf + 2, buf, 2);
1307 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1308 memcpy (valbuf, buf, 2);
1309 break;
1310
1311 default:
1312 error (_("bad size for return value"));
1313 }
1314 }
1315
1316 enum return_value_convention
1317 m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1318 struct regcache *regcache, gdb_byte *readbuf,
1319 const gdb_byte *writebuf)
1320 {
1321 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1322 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1323 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1324 || TYPE_LENGTH (valtype) > 4)
1325 return RETURN_VALUE_STRUCT_CONVENTION;
1326 else
1327 {
1328 if (readbuf != NULL)
1329 m68hc11_extract_return_value (valtype, regcache, readbuf);
1330 if (writebuf != NULL)
1331 m68hc11_store_return_value (valtype, regcache, writebuf);
1332 return RETURN_VALUE_REGISTER_CONVENTION;
1333 }
1334 }
1335
1336 /* Test whether the ELF symbol corresponds to a function using rtc or
1337 rti to return. */
1338
1339 static void
1340 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1341 {
1342 unsigned char flags;
1343
1344 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1345 if (flags & STO_M68HC12_FAR)
1346 MSYMBOL_SET_RTC (msym);
1347 if (flags & STO_M68HC12_INTERRUPT)
1348 MSYMBOL_SET_RTI (msym);
1349 }
1350
1351 static int
1352 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1353 {
1354 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1355 return print_insn_m68hc11 (memaddr, info);
1356 else
1357 return print_insn_m68hc12 (memaddr, info);
1358 }
1359
1360 \f
1361
1362 /* 68HC11/68HC12 register groups.
1363 Identify real hard registers and soft registers used by gcc. */
1364
1365 static struct reggroup *m68hc11_soft_reggroup;
1366 static struct reggroup *m68hc11_hard_reggroup;
1367
1368 static void
1369 m68hc11_init_reggroups (void)
1370 {
1371 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1372 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1373 }
1374
1375 static void
1376 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1377 {
1378 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1379 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1380 reggroup_add (gdbarch, general_reggroup);
1381 reggroup_add (gdbarch, float_reggroup);
1382 reggroup_add (gdbarch, all_reggroup);
1383 reggroup_add (gdbarch, save_reggroup);
1384 reggroup_add (gdbarch, restore_reggroup);
1385 reggroup_add (gdbarch, vector_reggroup);
1386 reggroup_add (gdbarch, system_reggroup);
1387 }
1388
1389 static int
1390 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1391 struct reggroup *group)
1392 {
1393 /* We must save the real hard register as well as gcc
1394 soft registers including the frame pointer. */
1395 if (group == save_reggroup || group == restore_reggroup)
1396 {
1397 return (regnum <= gdbarch_num_regs (gdbarch)
1398 || ((regnum == SOFT_FP_REGNUM
1399 || regnum == SOFT_TMP_REGNUM
1400 || regnum == SOFT_ZS_REGNUM
1401 || regnum == SOFT_XY_REGNUM)
1402 && m68hc11_register_name (regnum)));
1403 }
1404
1405 /* Group to identify gcc soft registers (d1..dN). */
1406 if (group == m68hc11_soft_reggroup)
1407 {
1408 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1409 }
1410
1411 if (group == m68hc11_hard_reggroup)
1412 {
1413 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1414 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1415 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1416 }
1417 return default_register_reggroup_p (gdbarch, regnum, group);
1418 }
1419
1420 static struct gdbarch *
1421 m68hc11_gdbarch_init (struct gdbarch_info info,
1422 struct gdbarch_list *arches)
1423 {
1424 struct gdbarch *gdbarch;
1425 struct gdbarch_tdep *tdep;
1426 int elf_flags;
1427
1428 soft_reg_initialized = 0;
1429
1430 /* Extract the elf_flags if available. */
1431 if (info.abfd != NULL
1432 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1433 elf_flags = elf_elfheader (info.abfd)->e_flags;
1434 else
1435 elf_flags = 0;
1436
1437 /* try to find a pre-existing architecture */
1438 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1439 arches != NULL;
1440 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1441 {
1442 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1443 continue;
1444
1445 return arches->gdbarch;
1446 }
1447
1448 /* Need a new architecture. Fill in a target specific vector. */
1449 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1450 gdbarch = gdbarch_alloc (&info, tdep);
1451 tdep->elf_flags = elf_flags;
1452
1453 switch (info.bfd_arch_info->arch)
1454 {
1455 case bfd_arch_m68hc11:
1456 tdep->stack_correction = 1;
1457 tdep->use_page_register = 0;
1458 tdep->prologue = m6811_prologue;
1459 set_gdbarch_addr_bit (gdbarch, 16);
1460 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1461 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1462 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1463 break;
1464
1465 case bfd_arch_m68hc12:
1466 tdep->stack_correction = 0;
1467 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1468 tdep->prologue = m6812_prologue;
1469 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1470 set_gdbarch_num_pseudo_regs (gdbarch,
1471 elf_flags & E_M68HC12_BANKS
1472 ? M68HC12_NUM_PSEUDO_REGS
1473 : M68HC11_NUM_PSEUDO_REGS);
1474 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1475 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1476 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1477 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1478 break;
1479
1480 default:
1481 break;
1482 }
1483
1484 /* Initially set everything according to the ABI.
1485 Use 16-bit integers since it will be the case for most
1486 programs. The size of these types should normally be set
1487 according to the dwarf2 debug information. */
1488 set_gdbarch_short_bit (gdbarch, 16);
1489 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1490 set_gdbarch_float_bit (gdbarch, 32);
1491 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1492 set_gdbarch_long_double_bit (gdbarch, 64);
1493 set_gdbarch_long_bit (gdbarch, 32);
1494 set_gdbarch_ptr_bit (gdbarch, 16);
1495 set_gdbarch_long_long_bit (gdbarch, 64);
1496
1497 /* Characters are unsigned. */
1498 set_gdbarch_char_signed (gdbarch, 0);
1499
1500 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1501 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1502
1503 /* Set register info. */
1504 set_gdbarch_fp0_regnum (gdbarch, -1);
1505
1506 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1507
1508 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1509 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1510 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1511 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1512 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1513
1514 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1515
1516 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1517 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1518 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1519 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1520 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1521
1522 m68hc11_add_reggroups (gdbarch);
1523 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1524 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1525
1526 /* Hook in the DWARF CFI frame unwinder. */
1527 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1528
1529 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1530 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1531
1532 /* Methods for saving / extracting a dummy frame's ID. The ID's
1533 stack address must match the SP value returned by
1534 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1535 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1536
1537 /* Return the unwound PC value. */
1538 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1539
1540 /* Minsymbol frobbing. */
1541 set_gdbarch_elf_make_msymbol_special (gdbarch,
1542 m68hc11_elf_make_msymbol_special);
1543
1544 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1545
1546 return gdbarch;
1547 }
1548
1549 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1550
1551 void
1552 _initialize_m68hc11_tdep (void)
1553 {
1554 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1555 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1556 m68hc11_init_reggroups ();
1557 }
1558
This page took 0.072423 seconds and 5 git commands to generate.