2004-03-23 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target dependent code for the Motorola 68000 series.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "dwarf2-frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "symtab.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "gdb_string.h"
32 #include "gdb_assert.h"
33 #include "inferior.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "dis-asm.h"
38
39 #include "m68k-tdep.h"
40 \f
41
42 #define P_LINKL_FP 0x480e
43 #define P_LINKW_FP 0x4e56
44 #define P_PEA_FP 0x4856
45 #define P_MOVEAL_SP_FP 0x2c4f
46 #define P_ADDAW_SP 0xdefc
47 #define P_ADDAL_SP 0xdffc
48 #define P_SUBQW_SP 0x514f
49 #define P_SUBQL_SP 0x518f
50 #define P_LEA_SP_SP 0x4fef
51 #define P_LEA_PC_A5 0x4bfb0170
52 #define P_FMOVEMX_SP 0xf227
53 #define P_MOVEL_SP 0x2f00
54 #define P_MOVEML_SP 0x48e7
55
56
57 #define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
58 #define REGISTER_BYTES_NOFP (16*4 + 8)
59
60 /* Offset from SP to first arg on stack at first instruction of a function */
61 #define SP_ARG0 (1 * 4)
62
63 #if !defined (BPT_VECTOR)
64 #define BPT_VECTOR 0xf
65 #endif
66
67 #if !defined (REMOTE_BPT_VECTOR)
68 #define REMOTE_BPT_VECTOR 1
69 #endif
70
71
72 static const unsigned char *
73 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
74 {
75 static unsigned char break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
76 *lenptr = sizeof (break_insn);
77 return break_insn;
78 }
79
80
81 static int
82 m68k_register_bytes_ok (long numbytes)
83 {
84 return ((numbytes == REGISTER_BYTES_FP)
85 || (numbytes == REGISTER_BYTES_NOFP));
86 }
87
88 /* Return the GDB type object for the "standard" data type of data in
89 register N. This should be int for D0-D7, SR, FPCONTROL and
90 FPSTATUS, long double for FP0-FP7, and void pointer for all others
91 (A0-A7, PC, FPIADDR). Note, for registers which contain
92 addresses return pointer to void, not pointer to char, because we
93 don't want to attempt to print the string after printing the
94 address. */
95
96 static struct type *
97 m68k_register_type (struct gdbarch *gdbarch, int regnum)
98 {
99 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
100 return builtin_type_m68881_ext;
101
102 if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
103 return builtin_type_void_func_ptr;
104
105 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
106 || regnum == PS_REGNUM)
107 return builtin_type_int32;
108
109 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
110 return builtin_type_void_data_ptr;
111
112 return builtin_type_int32;
113 }
114
115 /* Function: m68k_register_name
116 Returns the name of the standard m68k register regnum. */
117
118 static const char *
119 m68k_register_name (int regnum)
120 {
121 static char *register_names[] = {
122 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
123 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
124 "ps", "pc",
125 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
126 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
127 };
128
129 if (regnum < 0 ||
130 regnum >= sizeof (register_names) / sizeof (register_names[0]))
131 internal_error (__FILE__, __LINE__,
132 "m68k_register_name: illegal register number %d", regnum);
133 else
134 return register_names[regnum];
135 }
136 \f
137 /* Extract from an array REGBUF containing the (raw) register state, a
138 function return value of TYPE, and copy that, in virtual format,
139 into VALBUF. */
140
141 static void
142 m68k_extract_return_value (struct type *type, struct regcache *regcache,
143 void *valbuf)
144 {
145 int len = TYPE_LENGTH (type);
146 char buf[M68K_MAX_REGISTER_SIZE];
147
148 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
149 && TYPE_NFIELDS (type) == 1)
150 {
151 m68k_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
152 return;
153 }
154
155 if (len <= 4)
156 {
157 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
158 memcpy (valbuf, buf + (4 - len), len);
159 }
160 else if (len <= 8)
161 {
162 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
163 memcpy (valbuf, buf + (8 - len), len - 4);
164 regcache_raw_read (regcache, M68K_D1_REGNUM,
165 (char *) valbuf + (len - 4));
166 }
167 else
168 internal_error (__FILE__, __LINE__,
169 "Cannot extract return value of %d bytes long.", len);
170 }
171
172 /* Write into the appropriate registers a function return value stored
173 in VALBUF of type TYPE, given in virtual format. */
174
175 static void
176 m68k_store_return_value (struct type *type, struct regcache *regcache,
177 const void *valbuf)
178 {
179 int len = TYPE_LENGTH (type);
180
181 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
182 && TYPE_NFIELDS (type) == 1)
183 {
184 m68k_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
185 return;
186 }
187
188 if (len <= 4)
189 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
190 else if (len <= 8)
191 {
192 regcache_raw_write_part (regcache, M68K_D1_REGNUM, 8 - len,
193 len - 4, valbuf);
194 regcache_raw_write (regcache, M68K_D0_REGNUM,
195 (char *) valbuf + (len - 4));
196 }
197 else
198 internal_error (__FILE__, __LINE__,
199 "Cannot store return value of %d bytes long.", len);
200 }
201
202 /* Extract from REGCACHE, which contains the (raw) register state, the
203 address in which a function should return its structure value, as a
204 CORE_ADDR. */
205
206 static CORE_ADDR
207 m68k_extract_struct_value_address (struct regcache *regcache)
208 {
209 char buf[4];
210
211 regcache_cooked_read (regcache, M68K_D0_REGNUM, buf);
212 return extract_unsigned_integer (buf, 4);
213 }
214
215 static int
216 m68k_use_struct_convention (int gcc_p, struct type *type)
217 {
218 enum struct_return struct_return;
219
220 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
221 return generic_use_struct_convention (struct_return == reg_struct_return,
222 type);
223 }
224
225 /* A function that tells us whether the function invocation represented
226 by fi does not have a frame on the stack associated with it. If it
227 does not, FRAMELESS is set to 1, else 0. */
228
229 static int
230 m68k_frameless_function_invocation (struct frame_info *fi)
231 {
232 if (get_frame_type (fi) == SIGTRAMP_FRAME)
233 return 0;
234 else
235 return legacy_frameless_look_for_prologue (fi);
236 }
237
238 int
239 delta68_in_sigtramp (CORE_ADDR pc, char *name)
240 {
241 if (name != NULL)
242 return strcmp (name, "_sigcode") == 0;
243 else
244 return 0;
245 }
246
247 CORE_ADDR
248 delta68_frame_args_address (struct frame_info *frame_info)
249 {
250 /* we assume here that the only frameless functions are the system calls
251 or other functions who do not put anything on the stack. */
252 if (get_frame_type (frame_info) == SIGTRAMP_FRAME)
253 return get_frame_base (frame_info) + 12;
254 else if (legacy_frameless_look_for_prologue (frame_info))
255 {
256 /* Check for an interrupted system call */
257 if (get_next_frame (frame_info) && (get_frame_type (get_next_frame (frame_info)) == SIGTRAMP_FRAME))
258 return get_frame_base (get_next_frame (frame_info)) + 16;
259 else
260 return get_frame_base (frame_info) + 4;
261 }
262 else
263 return get_frame_base (frame_info);
264 }
265
266 CORE_ADDR
267 delta68_frame_saved_pc (struct frame_info *frame_info)
268 {
269 return read_memory_unsigned_integer (delta68_frame_args_address (frame_info)
270 + 4, 4);
271 }
272
273 int
274 delta68_frame_num_args (struct frame_info *fi)
275 {
276 int val;
277 CORE_ADDR pc = DEPRECATED_FRAME_SAVED_PC (fi);
278 int insn = read_memory_unsigned_integer (pc, 2);
279 val = 0;
280 if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
281 val = read_memory_integer (pc + 2, 2);
282 else if ((insn & 0170777) == 0050217 /* addql #N, sp */
283 || (insn & 0170777) == 0050117) /* addqw */
284 {
285 val = (insn >> 9) & 7;
286 if (val == 0)
287 val = 8;
288 }
289 else if (insn == 0157774) /* addal #WW, sp */
290 val = read_memory_integer (pc + 2, 4);
291 val >>= 2;
292 return val;
293 }
294
295 static CORE_ADDR
296 m68k_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
297 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
298 struct value **args, CORE_ADDR sp, int struct_return,
299 CORE_ADDR struct_addr)
300 {
301 char buf[4];
302 int i;
303
304 /* Push arguments in reverse order. */
305 for (i = nargs - 1; i >= 0; i--)
306 {
307 struct type *value_type = VALUE_ENCLOSING_TYPE (args[i]);
308 int len = TYPE_LENGTH (value_type);
309 int container_len = (len + 3) & ~3;
310 int offset;
311
312 /* Non-scalars bigger than 4 bytes are left aligned, others are
313 right aligned. */
314 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
315 || TYPE_CODE (value_type) == TYPE_CODE_UNION
316 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
317 && len > 4)
318 offset = 0;
319 else
320 offset = container_len - len;
321 sp -= container_len;
322 write_memory (sp + offset, VALUE_CONTENTS_ALL (args[i]), len);
323 }
324
325 /* Store struct value address. */
326 if (struct_return)
327 {
328 store_unsigned_integer (buf, 4, struct_addr);
329 regcache_cooked_write (regcache, M68K_A1_REGNUM, buf);
330 }
331
332 /* Store return address. */
333 sp -= 4;
334 store_unsigned_integer (buf, 4, bp_addr);
335 write_memory (sp, buf, 4);
336
337 /* Finally, update the stack pointer... */
338 store_unsigned_integer (buf, 4, sp);
339 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
340
341 /* ...and fake a frame pointer. */
342 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
343
344 /* DWARF2/GCC uses the stack address *before* the function call as a
345 frame's CFA. */
346 return sp + 8;
347 }
348 \f
349 struct m68k_frame_cache
350 {
351 /* Base address. */
352 CORE_ADDR base;
353 CORE_ADDR sp_offset;
354 CORE_ADDR pc;
355
356 /* Saved registers. */
357 CORE_ADDR saved_regs[M68K_NUM_REGS];
358 CORE_ADDR saved_sp;
359
360 /* Stack space reserved for local variables. */
361 long locals;
362 };
363
364 /* Allocate and initialize a frame cache. */
365
366 static struct m68k_frame_cache *
367 m68k_alloc_frame_cache (void)
368 {
369 struct m68k_frame_cache *cache;
370 int i;
371
372 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
373
374 /* Base address. */
375 cache->base = 0;
376 cache->sp_offset = -4;
377 cache->pc = 0;
378
379 /* Saved registers. We initialize these to -1 since zero is a valid
380 offset (that's where %fp is supposed to be stored). */
381 for (i = 0; i < M68K_NUM_REGS; i++)
382 cache->saved_regs[i] = -1;
383
384 /* Frameless until proven otherwise. */
385 cache->locals = -1;
386
387 return cache;
388 }
389
390 /* Check whether PC points at a code that sets up a new stack frame.
391 If so, it updates CACHE and returns the address of the first
392 instruction after the sequence that sets removes the "hidden"
393 argument from the stack or CURRENT_PC, whichever is smaller.
394 Otherwise, return PC. */
395
396 static CORE_ADDR
397 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
398 struct m68k_frame_cache *cache)
399 {
400 int op;
401
402 if (pc >= current_pc)
403 return current_pc;
404
405 op = read_memory_unsigned_integer (pc, 2);
406
407 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
408 {
409 cache->saved_regs[M68K_FP_REGNUM] = 0;
410 cache->sp_offset += 4;
411 if (op == P_LINKW_FP)
412 {
413 /* link.w %fp, #-N */
414 /* link.w %fp, #0; adda.l #-N, %sp */
415 cache->locals = -read_memory_integer (pc + 2, 2);
416
417 if (pc + 4 < current_pc && cache->locals == 0)
418 {
419 op = read_memory_unsigned_integer (pc + 4, 2);
420 if (op == P_ADDAL_SP)
421 {
422 cache->locals = read_memory_integer (pc + 6, 4);
423 return pc + 10;
424 }
425 }
426
427 return pc + 4;
428 }
429 else if (op == P_LINKL_FP)
430 {
431 /* link.l %fp, #-N */
432 cache->locals = -read_memory_integer (pc + 2, 4);
433 return pc + 6;
434 }
435 else
436 {
437 /* pea (%fp); movea.l %sp, %fp */
438 cache->locals = 0;
439
440 if (pc + 2 < current_pc)
441 {
442 op = read_memory_unsigned_integer (pc + 2, 2);
443
444 if (op == P_MOVEAL_SP_FP)
445 {
446 /* move.l %sp, %fp */
447 return pc + 4;
448 }
449 }
450
451 return pc + 2;
452 }
453 }
454 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
455 {
456 /* subq.[wl] #N,%sp */
457 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
458 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
459 if (pc + 2 < current_pc)
460 {
461 op = read_memory_unsigned_integer (pc + 2, 2);
462 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
463 {
464 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
465 return pc + 4;
466 }
467 }
468 return pc + 2;
469 }
470 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
471 {
472 /* adda.w #-N,%sp */
473 /* lea (-N,%sp),%sp */
474 cache->locals = -read_memory_integer (pc + 2, 2);
475 return pc + 4;
476 }
477 else if (op == P_ADDAL_SP)
478 {
479 /* adda.l #-N,%sp */
480 cache->locals = -read_memory_integer (pc + 2, 4);
481 return pc + 6;
482 }
483
484 return pc;
485 }
486
487 /* Check whether PC points at code that saves registers on the stack.
488 If so, it updates CACHE and returns the address of the first
489 instruction after the register saves or CURRENT_PC, whichever is
490 smaller. Otherwise, return PC. */
491
492 static CORE_ADDR
493 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
494 struct m68k_frame_cache *cache)
495 {
496 if (cache->locals >= 0)
497 {
498 CORE_ADDR offset;
499 int op;
500 int i, mask, regno;
501
502 offset = -4 - cache->locals;
503 while (pc < current_pc)
504 {
505 op = read_memory_unsigned_integer (pc, 2);
506 if (op == P_FMOVEMX_SP)
507 {
508 /* fmovem.x REGS,-(%sp) */
509 op = read_memory_unsigned_integer (pc + 2, 2);
510 if ((op & 0xff00) == 0xe000)
511 {
512 mask = op & 0xff;
513 for (i = 0; i < 16; i++, mask >>= 1)
514 {
515 if (mask & 1)
516 {
517 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
518 offset -= 12;
519 }
520 }
521 pc += 4;
522 }
523 else
524 break;
525 }
526 else if ((op & 0170677) == P_MOVEL_SP)
527 {
528 /* move.l %R,-(%sp) */
529 regno = ((op & 07000) >> 9) | ((op & 0100) >> 3);
530 cache->saved_regs[regno] = offset;
531 offset -= 4;
532 pc += 2;
533 }
534 else if (op == P_MOVEML_SP)
535 {
536 /* movem.l REGS,-(%sp) */
537 mask = read_memory_unsigned_integer (pc + 2, 2);
538 for (i = 0; i < 16; i++, mask >>= 1)
539 {
540 if (mask & 1)
541 {
542 cache->saved_regs[15 - i] = offset;
543 offset -= 4;
544 }
545 }
546 pc += 4;
547 }
548 else
549 break;
550 }
551 }
552
553 return pc;
554 }
555
556
557 /* Do a full analysis of the prologue at PC and update CACHE
558 accordingly. Bail out early if CURRENT_PC is reached. Return the
559 address where the analysis stopped.
560
561 We handle all cases that can be generated by gcc.
562
563 For allocating a stack frame:
564
565 link.w %a6,#-N
566 link.l %a6,#-N
567 pea (%fp); move.l %sp,%fp
568 link.w %a6,#0; add.l #-N,%sp
569 subq.l #N,%sp
570 subq.w #N,%sp
571 subq.w #8,%sp; subq.w #N-8,%sp
572 add.w #-N,%sp
573 lea (-N,%sp),%sp
574 add.l #-N,%sp
575
576 For saving registers:
577
578 fmovem.x REGS,-(%sp)
579 move.l R1,-(%sp)
580 move.l R1,-(%sp); move.l R2,-(%sp)
581 movem.l REGS,-(%sp)
582
583 For setting up the PIC register:
584
585 lea (%pc,N),%a5
586
587 */
588
589 static CORE_ADDR
590 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
591 struct m68k_frame_cache *cache)
592 {
593 unsigned int op;
594
595 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
596 pc = m68k_analyze_register_saves (pc, current_pc, cache);
597 if (pc >= current_pc)
598 return current_pc;
599
600 /* Check for GOT setup. */
601 op = read_memory_unsigned_integer (pc, 4);
602 if (op == P_LEA_PC_A5)
603 {
604 /* lea (%pc,N),%a5 */
605 return pc + 6;
606 }
607
608 return pc;
609 }
610
611 /* Return PC of first real instruction. */
612
613 static CORE_ADDR
614 m68k_skip_prologue (CORE_ADDR start_pc)
615 {
616 struct m68k_frame_cache cache;
617 CORE_ADDR pc;
618 int op;
619
620 cache.locals = -1;
621 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
622 if (cache.locals < 0)
623 return start_pc;
624 return pc;
625 }
626
627 static CORE_ADDR
628 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
629 {
630 char buf[8];
631
632 frame_unwind_register (next_frame, PC_REGNUM, buf);
633 return extract_typed_address (buf, builtin_type_void_func_ptr);
634 }
635 \f
636 /* Normal frames. */
637
638 static struct m68k_frame_cache *
639 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
640 {
641 struct m68k_frame_cache *cache;
642 char buf[4];
643 int i;
644
645 if (*this_cache)
646 return *this_cache;
647
648 cache = m68k_alloc_frame_cache ();
649 *this_cache = cache;
650
651 /* In principle, for normal frames, %fp holds the frame pointer,
652 which holds the base address for the current stack frame.
653 However, for functions that don't need it, the frame pointer is
654 optional. For these "frameless" functions the frame pointer is
655 actually the frame pointer of the calling frame. Signal
656 trampolines are just a special case of a "frameless" function.
657 They (usually) share their frame pointer with the frame that was
658 in progress when the signal occurred. */
659
660 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
661 cache->base = extract_unsigned_integer (buf, 4);
662 if (cache->base == 0)
663 return cache;
664
665 /* For normal frames, %pc is stored at 4(%fp). */
666 cache->saved_regs[M68K_PC_REGNUM] = 4;
667
668 cache->pc = frame_func_unwind (next_frame);
669 if (cache->pc != 0)
670 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
671
672 if (cache->locals < 0)
673 {
674 /* We didn't find a valid frame, which means that CACHE->base
675 currently holds the frame pointer for our calling frame. If
676 we're at the start of a function, or somewhere half-way its
677 prologue, the function's frame probably hasn't been fully
678 setup yet. Try to reconstruct the base address for the stack
679 frame by looking at the stack pointer. For truly "frameless"
680 functions this might work too. */
681
682 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
683 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
684 }
685
686 /* Now that we have the base address for the stack frame we can
687 calculate the value of %sp in the calling frame. */
688 cache->saved_sp = cache->base + 8;
689
690 /* Adjust all the saved registers such that they contain addresses
691 instead of offsets. */
692 for (i = 0; i < M68K_NUM_REGS; i++)
693 if (cache->saved_regs[i] != -1)
694 cache->saved_regs[i] += cache->base;
695
696 return cache;
697 }
698
699 static void
700 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
701 struct frame_id *this_id)
702 {
703 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
704
705 /* This marks the outermost frame. */
706 if (cache->base == 0)
707 return;
708
709 /* See the end of m68k_push_dummy_call. */
710 *this_id = frame_id_build (cache->base + 8, cache->pc);
711 }
712
713 static void
714 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
715 int regnum, int *optimizedp,
716 enum lval_type *lvalp, CORE_ADDR *addrp,
717 int *realnump, void *valuep)
718 {
719 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
720
721 gdb_assert (regnum >= 0);
722
723 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
724 {
725 *optimizedp = 0;
726 *lvalp = not_lval;
727 *addrp = 0;
728 *realnump = -1;
729 if (valuep)
730 {
731 /* Store the value. */
732 store_unsigned_integer (valuep, 4, cache->saved_sp);
733 }
734 return;
735 }
736
737 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
738 {
739 *optimizedp = 0;
740 *lvalp = lval_memory;
741 *addrp = cache->saved_regs[regnum];
742 *realnump = -1;
743 if (valuep)
744 {
745 /* Read the value in from memory. */
746 read_memory (*addrp, valuep,
747 register_size (current_gdbarch, regnum));
748 }
749 return;
750 }
751
752 frame_register_unwind (next_frame, regnum,
753 optimizedp, lvalp, addrp, realnump, valuep);
754 }
755
756 static const struct frame_unwind m68k_frame_unwind =
757 {
758 NORMAL_FRAME,
759 m68k_frame_this_id,
760 m68k_frame_prev_register
761 };
762
763 static const struct frame_unwind *
764 m68k_frame_sniffer (struct frame_info *next_frame)
765 {
766 return &m68k_frame_unwind;
767 }
768 \f
769 /* Signal trampolines. */
770
771 static struct m68k_frame_cache *
772 m68k_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
773 {
774 struct m68k_frame_cache *cache;
775 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
776 struct m68k_sigtramp_info info;
777 char buf[4];
778 int i;
779
780 if (*this_cache)
781 return *this_cache;
782
783 cache = m68k_alloc_frame_cache ();
784
785 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
786 cache->base = extract_unsigned_integer (buf, 4) - 4;
787
788 info = tdep->get_sigtramp_info (next_frame);
789
790 for (i = 0; i < M68K_NUM_REGS; i++)
791 if (info.sc_reg_offset[i] != -1)
792 cache->saved_regs[i] = info.sigcontext_addr + info.sc_reg_offset[i];
793
794 *this_cache = cache;
795 return cache;
796 }
797
798 static void
799 m68k_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
800 struct frame_id *this_id)
801 {
802 struct m68k_frame_cache *cache =
803 m68k_sigtramp_frame_cache (next_frame, this_cache);
804
805 /* See the end of m68k_push_dummy_call. */
806 *this_id = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
807 }
808
809 static void
810 m68k_sigtramp_frame_prev_register (struct frame_info *next_frame,
811 void **this_cache,
812 int regnum, int *optimizedp,
813 enum lval_type *lvalp, CORE_ADDR *addrp,
814 int *realnump, void *valuep)
815 {
816 /* Make sure we've initialized the cache. */
817 m68k_sigtramp_frame_cache (next_frame, this_cache);
818
819 m68k_frame_prev_register (next_frame, this_cache, regnum,
820 optimizedp, lvalp, addrp, realnump, valuep);
821 }
822
823 static const struct frame_unwind m68k_sigtramp_frame_unwind =
824 {
825 SIGTRAMP_FRAME,
826 m68k_sigtramp_frame_this_id,
827 m68k_sigtramp_frame_prev_register
828 };
829
830 static const struct frame_unwind *
831 m68k_sigtramp_frame_sniffer (struct frame_info *next_frame)
832 {
833 CORE_ADDR pc = frame_pc_unwind (next_frame);
834 char *name;
835
836 /* We shouldn't even bother to try if the OSABI didn't register
837 a get_sigtramp_info handler. */
838 if (!gdbarch_tdep (current_gdbarch)->get_sigtramp_info)
839 return NULL;
840
841 find_pc_partial_function (pc, &name, NULL, NULL);
842 if (DEPRECATED_PC_IN_SIGTRAMP (pc, name))
843 return &m68k_sigtramp_frame_unwind;
844
845 return NULL;
846 }
847 \f
848 static CORE_ADDR
849 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
850 {
851 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
852
853 return cache->base;
854 }
855
856 static const struct frame_base m68k_frame_base =
857 {
858 &m68k_frame_unwind,
859 m68k_frame_base_address,
860 m68k_frame_base_address,
861 m68k_frame_base_address
862 };
863
864 static struct frame_id
865 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
866 {
867 char buf[4];
868 CORE_ADDR fp;
869
870 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
871 fp = extract_unsigned_integer (buf, 4);
872
873 /* See the end of m68k_push_dummy_call. */
874 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
875 }
876 \f
877 #ifdef USE_PROC_FS /* Target dependent support for /proc */
878
879 #include <sys/procfs.h>
880
881 /* Prototypes for supply_gregset etc. */
882 #include "gregset.h"
883
884 /* The /proc interface divides the target machine's register set up into
885 two different sets, the general register set (gregset) and the floating
886 point register set (fpregset). For each set, there is an ioctl to get
887 the current register set and another ioctl to set the current values.
888
889 The actual structure passed through the ioctl interface is, of course,
890 naturally machine dependent, and is different for each set of registers.
891 For the m68k for example, the general register set is typically defined
892 by:
893
894 typedef int gregset_t[18];
895
896 #define R_D0 0
897 ...
898 #define R_PS 17
899
900 and the floating point set by:
901
902 typedef struct fpregset {
903 int f_pcr;
904 int f_psr;
905 int f_fpiaddr;
906 int f_fpregs[8][3]; (8 regs, 96 bits each)
907 } fpregset_t;
908
909 These routines provide the packing and unpacking of gregset_t and
910 fpregset_t formatted data.
911
912 */
913
914 /* Atari SVR4 has R_SR but not R_PS */
915
916 #if !defined (R_PS) && defined (R_SR)
917 #define R_PS R_SR
918 #endif
919
920 /* Given a pointer to a general register set in /proc format (gregset_t *),
921 unpack the register contents and supply them as gdb's idea of the current
922 register values. */
923
924 void
925 supply_gregset (gregset_t *gregsetp)
926 {
927 int regi;
928 greg_t *regp = (greg_t *) gregsetp;
929
930 for (regi = 0; regi < R_PC; regi++)
931 {
932 supply_register (regi, (char *) (regp + regi));
933 }
934 supply_register (PS_REGNUM, (char *) (regp + R_PS));
935 supply_register (PC_REGNUM, (char *) (regp + R_PC));
936 }
937
938 void
939 fill_gregset (gregset_t *gregsetp, int regno)
940 {
941 int regi;
942 greg_t *regp = (greg_t *) gregsetp;
943
944 for (regi = 0; regi < R_PC; regi++)
945 {
946 if (regno == -1 || regno == regi)
947 regcache_collect (regi, regp + regi);
948 }
949 if (regno == -1 || regno == PS_REGNUM)
950 regcache_collect (PS_REGNUM, regp + R_PS);
951 if (regno == -1 || regno == PC_REGNUM)
952 regcache_collect (PC_REGNUM, regp + R_PC);
953 }
954
955 #if defined (FP0_REGNUM)
956
957 /* Given a pointer to a floating point register set in /proc format
958 (fpregset_t *), unpack the register contents and supply them as gdb's
959 idea of the current floating point register values. */
960
961 void
962 supply_fpregset (fpregset_t *fpregsetp)
963 {
964 int regi;
965 char *from;
966
967 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
968 {
969 from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
970 supply_register (regi, from);
971 }
972 supply_register (M68K_FPC_REGNUM, (char *) &(fpregsetp->f_pcr));
973 supply_register (M68K_FPS_REGNUM, (char *) &(fpregsetp->f_psr));
974 supply_register (M68K_FPI_REGNUM, (char *) &(fpregsetp->f_fpiaddr));
975 }
976
977 /* Given a pointer to a floating point register set in /proc format
978 (fpregset_t *), update the register specified by REGNO from gdb's idea
979 of the current floating point register set. If REGNO is -1, update
980 them all. */
981
982 void
983 fill_fpregset (fpregset_t *fpregsetp, int regno)
984 {
985 int regi;
986
987 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
988 {
989 if (regno == -1 || regno == regi)
990 regcache_collect (regi, &fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
991 }
992 if (regno == -1 || regno == M68K_FPC_REGNUM)
993 regcache_collect (M68K_FPC_REGNUM, &fpregsetp->f_pcr);
994 if (regno == -1 || regno == M68K_FPS_REGNUM)
995 regcache_collect (M68K_FPS_REGNUM, &fpregsetp->f_psr);
996 if (regno == -1 || regno == M68K_FPI_REGNUM)
997 regcache_collect (M68K_FPI_REGNUM, &fpregsetp->f_fpiaddr);
998 }
999
1000 #endif /* defined (FP0_REGNUM) */
1001
1002 #endif /* USE_PROC_FS */
1003
1004 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1005 We expect the first arg to be a pointer to the jmp_buf structure from which
1006 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1007 This routine returns true on success. */
1008
1009 int
1010 m68k_get_longjmp_target (CORE_ADDR *pc)
1011 {
1012 char *buf;
1013 CORE_ADDR sp, jb_addr;
1014 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1015
1016 if (tdep->jb_pc < 0)
1017 {
1018 internal_error (__FILE__, __LINE__,
1019 "m68k_get_longjmp_target: not implemented");
1020 return 0;
1021 }
1022
1023 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1024 sp = read_register (SP_REGNUM);
1025
1026 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1027 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
1028 return 0;
1029
1030 jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1031
1032 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1033 TARGET_PTR_BIT / TARGET_CHAR_BIT))
1034 return 0;
1035
1036 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1037 return 1;
1038 }
1039
1040 /* Function: m68k_gdbarch_init
1041 Initializer function for the m68k gdbarch vector.
1042 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1043
1044 static struct gdbarch *
1045 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1046 {
1047 struct gdbarch_tdep *tdep = NULL;
1048 struct gdbarch *gdbarch;
1049
1050 /* find a candidate among the list of pre-declared architectures. */
1051 arches = gdbarch_list_lookup_by_info (arches, &info);
1052 if (arches != NULL)
1053 return (arches->gdbarch);
1054
1055 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1056 gdbarch = gdbarch_alloc (&info, tdep);
1057
1058 set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
1059 set_gdbarch_long_double_bit (gdbarch, 96);
1060
1061 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1062 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1063
1064 /* Stack grows down. */
1065 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1066 set_gdbarch_parm_boundary (gdbarch, 32);
1067
1068 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1069 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1070
1071 set_gdbarch_extract_return_value (gdbarch, m68k_extract_return_value);
1072 set_gdbarch_store_return_value (gdbarch, m68k_store_return_value);
1073 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m68k_extract_struct_value_address);
1074 set_gdbarch_use_struct_convention (gdbarch, m68k_use_struct_convention);
1075
1076 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, m68k_frameless_function_invocation);
1077 set_gdbarch_frame_args_skip (gdbarch, 8);
1078
1079 set_gdbarch_register_type (gdbarch, m68k_register_type);
1080 set_gdbarch_register_name (gdbarch, m68k_register_name);
1081 set_gdbarch_num_regs (gdbarch, 29);
1082 set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
1083 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1084 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1085 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1086 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1087
1088 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1089
1090 /* Disassembler. */
1091 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1092
1093 #if defined JB_PC && defined JB_ELEMENT_SIZE
1094 tdep->jb_pc = JB_PC;
1095 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1096 #else
1097 tdep->jb_pc = -1;
1098 #endif
1099 tdep->get_sigtramp_info = NULL;
1100 tdep->struct_return = pcc_struct_return;
1101
1102 /* Frame unwinder. */
1103 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1104 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1105
1106 /* Hook in the DWARF CFI frame unwinder. */
1107 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1108
1109 frame_base_set_default (gdbarch, &m68k_frame_base);
1110
1111 /* Hook in ABI-specific overrides, if they have been registered. */
1112 gdbarch_init_osabi (info, gdbarch);
1113
1114 /* Now we have tuned the configuration, set a few final things,
1115 based on what the OS ABI has told us. */
1116
1117 if (tdep->jb_pc >= 0)
1118 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1119
1120 frame_unwind_append_sniffer (gdbarch, m68k_sigtramp_frame_sniffer);
1121 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1122
1123 return gdbarch;
1124 }
1125
1126
1127 static void
1128 m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1129 {
1130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1131
1132 if (tdep == NULL)
1133 return;
1134 }
1135
1136 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1137
1138 void
1139 _initialize_m68k_tdep (void)
1140 {
1141 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1142 }
This page took 0.054101 seconds and 4 git commands to generate.