gdb/
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990-1996, 1999-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "inferior.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "osabi.h"
35 #include "dis-asm.h"
36 #include "target-descriptions.h"
37
38 #include "m68k-tdep.h"
39 \f
40
41 #define P_LINKL_FP 0x480e
42 #define P_LINKW_FP 0x4e56
43 #define P_PEA_FP 0x4856
44 #define P_MOVEAL_SP_FP 0x2c4f
45 #define P_ADDAW_SP 0xdefc
46 #define P_ADDAL_SP 0xdffc
47 #define P_SUBQW_SP 0x514f
48 #define P_SUBQL_SP 0x518f
49 #define P_LEA_SP_SP 0x4fef
50 #define P_LEA_PC_A5 0x4bfb0170
51 #define P_FMOVEMX_SP 0xf227
52 #define P_MOVEL_SP 0x2f00
53 #define P_MOVEML_SP 0x48e7
54
55 /* Offset from SP to first arg on stack at first instruction of a function. */
56 #define SP_ARG0 (1 * 4)
57
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
60 #endif
61
62 static const gdb_byte *
63 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
65 {
66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69 }
70 \f
71
72 /* Construct types for ISA-specific registers. */
73 static struct type *
74 m68k_ps_type (struct gdbarch *gdbarch)
75 {
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->m68k_ps_type)
79 {
80 struct type *type;
81
82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95
96 tdep->m68k_ps_type = type;
97 }
98
99 return tdep->m68k_ps_type;
100 }
101
102 static struct type *
103 m68881_ext_type (struct gdbarch *gdbarch)
104 {
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
110 floatformats_m68881_ext);
111
112 return tdep->m68881_ext_type;
113 }
114
115 /* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
121 address. */
122
123 static struct type *
124 m68k_register_type (struct gdbarch *gdbarch, int regnum)
125 {
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127
128 if (tdep->fpregs_present)
129 {
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
132 {
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
135 else
136 return m68881_ext_type (gdbarch);
137 }
138
139 if (regnum == M68K_FPI_REGNUM)
140 return builtin_type (gdbarch)->builtin_func_ptr;
141
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
143 return builtin_type (gdbarch)->builtin_int32;
144 }
145 else
146 {
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
148 return builtin_type (gdbarch)->builtin_int0;
149 }
150
151 if (regnum == gdbarch_pc_regnum (gdbarch))
152 return builtin_type (gdbarch)->builtin_func_ptr;
153
154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
155 return builtin_type (gdbarch)->builtin_data_ptr;
156
157 if (regnum == M68K_PS_REGNUM)
158 return m68k_ps_type (gdbarch);
159
160 return builtin_type (gdbarch)->builtin_int32;
161 }
162
163 static const char *m68k_register_names[] = {
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
166 "ps", "pc",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
168 "fpcontrol", "fpstatus", "fpiaddr"
169 };
170
171 /* Function: m68k_register_name
172 Returns the name of the standard m68k register regnum. */
173
174 static const char *
175 m68k_register_name (struct gdbarch *gdbarch, int regnum)
176 {
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
178 internal_error (__FILE__, __LINE__,
179 _("m68k_register_name: illegal register number %d"),
180 regnum);
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
183 return "";
184 else
185 return m68k_register_names[regnum];
186 }
187 \f
188 /* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
190
191 static int
192 m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
194 {
195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
196 return 0;
197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
199 }
200
201 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
203
204 static int
205 m68k_register_to_value (struct frame_info *frame, int regnum,
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
208 {
209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
218 *optimizedp = *unavailablep = 0;
219 return 0;
220 }
221
222 /* Convert to TYPE. */
223
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
227 return 0;
228
229 convert_typed_floating (from, fpreg_type, to, type);
230 *optimizedp = *unavailablep = 0;
231 return 1;
232 }
233
234 /* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
236
237 static void
238 m68k_value_to_register (struct frame_info *frame, int regnum,
239 struct type *type, const gdb_byte *from)
240 {
241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
243 M68K_FP0_REGNUM);
244
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
247 {
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
250 return;
251 }
252
253 /* Convert from TYPE. */
254 convert_typed_floating (from, type, to, fpreg_type);
255 put_frame_register (frame, regnum, to);
256 }
257
258 \f
259 /* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
268
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
278
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
281
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
287
288 /* Read a function return value of TYPE from REGCACHE, and copy that
289 into VALBUF. */
290
291 static void
292 m68k_extract_return_value (struct type *type, struct regcache *regcache,
293 gdb_byte *valbuf)
294 {
295 int len = TYPE_LENGTH (type);
296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
297
298 if (len <= 4)
299 {
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
302 }
303 else if (len <= 8)
304 {
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
308 }
309 else
310 internal_error (__FILE__, __LINE__,
311 _("Cannot extract return value of %d bytes long."), len);
312 }
313
314 static void
315 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
316 gdb_byte *valbuf)
317 {
318 int len = TYPE_LENGTH (type);
319 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
320 struct gdbarch *gdbarch = get_regcache_arch (regcache);
321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
322
323 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
324 {
325 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
326 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
327 convert_typed_floating (buf, fpreg_type, valbuf, type);
328 }
329 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
330 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
331 else
332 m68k_extract_return_value (type, regcache, valbuf);
333 }
334
335 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
336
337 static void
338 m68k_store_return_value (struct type *type, struct regcache *regcache,
339 const gdb_byte *valbuf)
340 {
341 int len = TYPE_LENGTH (type);
342
343 if (len <= 4)
344 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
345 else if (len <= 8)
346 {
347 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
348 len - 4, valbuf);
349 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
350 }
351 else
352 internal_error (__FILE__, __LINE__,
353 _("Cannot store return value of %d bytes long."), len);
354 }
355
356 static void
357 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
358 const gdb_byte *valbuf)
359 {
360 int len = TYPE_LENGTH (type);
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363
364 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
365 {
366 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
367 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
368 convert_typed_floating (valbuf, type, buf, fpreg_type);
369 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
370 }
371 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
372 {
373 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
374 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
375 }
376 else
377 m68k_store_return_value (type, regcache, valbuf);
378 }
379
380 /* Return non-zero if TYPE, which is assumed to be a structure or
381 union type, should be returned in registers for architecture
382 GDBARCH. */
383
384 static int
385 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
386 {
387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 enum type_code code = TYPE_CODE (type);
389 int len = TYPE_LENGTH (type);
390
391 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
392
393 if (tdep->struct_return == pcc_struct_return)
394 return 0;
395
396 return (len == 1 || len == 2 || len == 4 || len == 8);
397 }
398
399 /* Determine, for architecture GDBARCH, how a return value of TYPE
400 should be returned. If it is supposed to be returned in registers,
401 and READBUF is non-zero, read the appropriate value from REGCACHE,
402 and copy it into READBUF. If WRITEBUF is non-zero, write the value
403 from WRITEBUF into REGCACHE. */
404
405 static enum return_value_convention
406 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
407 struct type *type, struct regcache *regcache,
408 gdb_byte *readbuf, const gdb_byte *writebuf)
409 {
410 enum type_code code = TYPE_CODE (type);
411
412 /* GCC returns a `long double' in memory too. */
413 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
414 && !m68k_reg_struct_return_p (gdbarch, type))
415 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
416 {
417 /* The default on m68k is to return structures in static memory.
418 Consequently a function must return the address where we can
419 find the return value. */
420
421 if (readbuf)
422 {
423 ULONGEST addr;
424
425 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
426 read_memory (addr, readbuf, TYPE_LENGTH (type));
427 }
428
429 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
430 }
431
432 if (readbuf)
433 m68k_extract_return_value (type, regcache, readbuf);
434 if (writebuf)
435 m68k_store_return_value (type, regcache, writebuf);
436
437 return RETURN_VALUE_REGISTER_CONVENTION;
438 }
439
440 static enum return_value_convention
441 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
442 struct type *type, struct regcache *regcache,
443 gdb_byte *readbuf, const gdb_byte *writebuf)
444 {
445 enum type_code code = TYPE_CODE (type);
446
447 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
448 && !m68k_reg_struct_return_p (gdbarch, type))
449 {
450 /* The System V ABI says that:
451
452 "A function returning a structure or union also sets %a0 to
453 the value it finds in %a0. Thus when the caller receives
454 control again, the address of the returned object resides in
455 register %a0."
456
457 So the ABI guarantees that we can always find the return
458 value just after the function has returned. */
459
460 if (readbuf)
461 {
462 ULONGEST addr;
463
464 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
465 read_memory (addr, readbuf, TYPE_LENGTH (type));
466 }
467
468 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
469 }
470
471 /* This special case is for structures consisting of a single
472 `float' or `double' member. These structures are returned in
473 %fp0. For these structures, we call ourselves recursively,
474 changing TYPE into the type of the first member of the structure.
475 Since that should work for all structures that have only one
476 member, we don't bother to check the member's type here. */
477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
478 {
479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
480 return m68k_svr4_return_value (gdbarch, function, type, regcache,
481 readbuf, writebuf);
482 }
483
484 if (readbuf)
485 m68k_svr4_extract_return_value (type, regcache, readbuf);
486 if (writebuf)
487 m68k_svr4_store_return_value (type, regcache, writebuf);
488
489 return RETURN_VALUE_REGISTER_CONVENTION;
490 }
491 \f
492
493 /* Always align the frame to a 4-byte boundary. This is required on
494 coldfire and harmless on the rest. */
495
496 static CORE_ADDR
497 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
498 {
499 /* Align the stack to four bytes. */
500 return sp & ~3;
501 }
502
503 static CORE_ADDR
504 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
505 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
506 struct value **args, CORE_ADDR sp, int struct_return,
507 CORE_ADDR struct_addr)
508 {
509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
511 gdb_byte buf[4];
512 int i;
513
514 /* Push arguments in reverse order. */
515 for (i = nargs - 1; i >= 0; i--)
516 {
517 struct type *value_type = value_enclosing_type (args[i]);
518 int len = TYPE_LENGTH (value_type);
519 int container_len = (len + 3) & ~3;
520 int offset;
521
522 /* Non-scalars bigger than 4 bytes are left aligned, others are
523 right aligned. */
524 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
525 || TYPE_CODE (value_type) == TYPE_CODE_UNION
526 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
527 && len > 4)
528 offset = 0;
529 else
530 offset = container_len - len;
531 sp -= container_len;
532 write_memory (sp + offset, value_contents_all (args[i]), len);
533 }
534
535 /* Store struct value address. */
536 if (struct_return)
537 {
538 store_unsigned_integer (buf, 4, byte_order, struct_addr);
539 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
540 }
541
542 /* Store return address. */
543 sp -= 4;
544 store_unsigned_integer (buf, 4, byte_order, bp_addr);
545 write_memory (sp, buf, 4);
546
547 /* Finally, update the stack pointer... */
548 store_unsigned_integer (buf, 4, byte_order, sp);
549 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
550
551 /* ...and fake a frame pointer. */
552 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
553
554 /* DWARF2/GCC uses the stack address *before* the function call as a
555 frame's CFA. */
556 return sp + 8;
557 }
558
559 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
560
561 static int
562 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
563 {
564 if (num < 8)
565 /* d0..7 */
566 return (num - 0) + M68K_D0_REGNUM;
567 else if (num < 16)
568 /* a0..7 */
569 return (num - 8) + M68K_A0_REGNUM;
570 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
571 /* fp0..7 */
572 return (num - 16) + M68K_FP0_REGNUM;
573 else if (num == 25)
574 /* pc */
575 return M68K_PC_REGNUM;
576 else
577 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
578 }
579
580 \f
581 struct m68k_frame_cache
582 {
583 /* Base address. */
584 CORE_ADDR base;
585 CORE_ADDR sp_offset;
586 CORE_ADDR pc;
587
588 /* Saved registers. */
589 CORE_ADDR saved_regs[M68K_NUM_REGS];
590 CORE_ADDR saved_sp;
591
592 /* Stack space reserved for local variables. */
593 long locals;
594 };
595
596 /* Allocate and initialize a frame cache. */
597
598 static struct m68k_frame_cache *
599 m68k_alloc_frame_cache (void)
600 {
601 struct m68k_frame_cache *cache;
602 int i;
603
604 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
605
606 /* Base address. */
607 cache->base = 0;
608 cache->sp_offset = -4;
609 cache->pc = 0;
610
611 /* Saved registers. We initialize these to -1 since zero is a valid
612 offset (that's where %fp is supposed to be stored). */
613 for (i = 0; i < M68K_NUM_REGS; i++)
614 cache->saved_regs[i] = -1;
615
616 /* Frameless until proven otherwise. */
617 cache->locals = -1;
618
619 return cache;
620 }
621
622 /* Check whether PC points at a code that sets up a new stack frame.
623 If so, it updates CACHE and returns the address of the first
624 instruction after the sequence that sets removes the "hidden"
625 argument from the stack or CURRENT_PC, whichever is smaller.
626 Otherwise, return PC. */
627
628 static CORE_ADDR
629 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
630 CORE_ADDR pc, CORE_ADDR current_pc,
631 struct m68k_frame_cache *cache)
632 {
633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
634 int op;
635
636 if (pc >= current_pc)
637 return current_pc;
638
639 op = read_memory_unsigned_integer (pc, 2, byte_order);
640
641 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
642 {
643 cache->saved_regs[M68K_FP_REGNUM] = 0;
644 cache->sp_offset += 4;
645 if (op == P_LINKW_FP)
646 {
647 /* link.w %fp, #-N */
648 /* link.w %fp, #0; adda.l #-N, %sp */
649 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
650
651 if (pc + 4 < current_pc && cache->locals == 0)
652 {
653 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
654 if (op == P_ADDAL_SP)
655 {
656 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
657 return pc + 10;
658 }
659 }
660
661 return pc + 4;
662 }
663 else if (op == P_LINKL_FP)
664 {
665 /* link.l %fp, #-N */
666 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
667 return pc + 6;
668 }
669 else
670 {
671 /* pea (%fp); movea.l %sp, %fp */
672 cache->locals = 0;
673
674 if (pc + 2 < current_pc)
675 {
676 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
677
678 if (op == P_MOVEAL_SP_FP)
679 {
680 /* move.l %sp, %fp */
681 return pc + 4;
682 }
683 }
684
685 return pc + 2;
686 }
687 }
688 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
689 {
690 /* subq.[wl] #N,%sp */
691 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
692 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
693 if (pc + 2 < current_pc)
694 {
695 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
696 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
697 {
698 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
699 return pc + 4;
700 }
701 }
702 return pc + 2;
703 }
704 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
705 {
706 /* adda.w #-N,%sp */
707 /* lea (-N,%sp),%sp */
708 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
709 return pc + 4;
710 }
711 else if (op == P_ADDAL_SP)
712 {
713 /* adda.l #-N,%sp */
714 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
715 return pc + 6;
716 }
717
718 return pc;
719 }
720
721 /* Check whether PC points at code that saves registers on the stack.
722 If so, it updates CACHE and returns the address of the first
723 instruction after the register saves or CURRENT_PC, whichever is
724 smaller. Otherwise, return PC. */
725
726 static CORE_ADDR
727 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
728 CORE_ADDR current_pc,
729 struct m68k_frame_cache *cache)
730 {
731 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
732
733 if (cache->locals >= 0)
734 {
735 CORE_ADDR offset;
736 int op;
737 int i, mask, regno;
738
739 offset = -4 - cache->locals;
740 while (pc < current_pc)
741 {
742 op = read_memory_unsigned_integer (pc, 2, byte_order);
743 if (op == P_FMOVEMX_SP
744 && gdbarch_tdep (gdbarch)->fpregs_present)
745 {
746 /* fmovem.x REGS,-(%sp) */
747 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
748 if ((op & 0xff00) == 0xe000)
749 {
750 mask = op & 0xff;
751 for (i = 0; i < 16; i++, mask >>= 1)
752 {
753 if (mask & 1)
754 {
755 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
756 offset -= 12;
757 }
758 }
759 pc += 4;
760 }
761 else
762 break;
763 }
764 else if ((op & 0177760) == P_MOVEL_SP)
765 {
766 /* move.l %R,-(%sp) */
767 regno = op & 017;
768 cache->saved_regs[regno] = offset;
769 offset -= 4;
770 pc += 2;
771 }
772 else if (op == P_MOVEML_SP)
773 {
774 /* movem.l REGS,-(%sp) */
775 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
776 for (i = 0; i < 16; i++, mask >>= 1)
777 {
778 if (mask & 1)
779 {
780 cache->saved_regs[15 - i] = offset;
781 offset -= 4;
782 }
783 }
784 pc += 4;
785 }
786 else
787 break;
788 }
789 }
790
791 return pc;
792 }
793
794
795 /* Do a full analysis of the prologue at PC and update CACHE
796 accordingly. Bail out early if CURRENT_PC is reached. Return the
797 address where the analysis stopped.
798
799 We handle all cases that can be generated by gcc.
800
801 For allocating a stack frame:
802
803 link.w %a6,#-N
804 link.l %a6,#-N
805 pea (%fp); move.l %sp,%fp
806 link.w %a6,#0; add.l #-N,%sp
807 subq.l #N,%sp
808 subq.w #N,%sp
809 subq.w #8,%sp; subq.w #N-8,%sp
810 add.w #-N,%sp
811 lea (-N,%sp),%sp
812 add.l #-N,%sp
813
814 For saving registers:
815
816 fmovem.x REGS,-(%sp)
817 move.l R1,-(%sp)
818 move.l R1,-(%sp); move.l R2,-(%sp)
819 movem.l REGS,-(%sp)
820
821 For setting up the PIC register:
822
823 lea (%pc,N),%a5
824
825 */
826
827 static CORE_ADDR
828 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
829 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
830 {
831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
832 unsigned int op;
833
834 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
835 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
836 if (pc >= current_pc)
837 return current_pc;
838
839 /* Check for GOT setup. */
840 op = read_memory_unsigned_integer (pc, 4, byte_order);
841 if (op == P_LEA_PC_A5)
842 {
843 /* lea (%pc,N),%a5 */
844 return pc + 8;
845 }
846
847 return pc;
848 }
849
850 /* Return PC of first real instruction. */
851
852 static CORE_ADDR
853 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
854 {
855 struct m68k_frame_cache cache;
856 CORE_ADDR pc;
857
858 cache.locals = -1;
859 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
860 if (cache.locals < 0)
861 return start_pc;
862 return pc;
863 }
864
865 static CORE_ADDR
866 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
867 {
868 gdb_byte buf[8];
869
870 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
871 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
872 }
873 \f
874 /* Normal frames. */
875
876 static struct m68k_frame_cache *
877 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
878 {
879 struct gdbarch *gdbarch = get_frame_arch (this_frame);
880 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
881 struct m68k_frame_cache *cache;
882 gdb_byte buf[4];
883 int i;
884
885 if (*this_cache)
886 return *this_cache;
887
888 cache = m68k_alloc_frame_cache ();
889 *this_cache = cache;
890
891 /* In principle, for normal frames, %fp holds the frame pointer,
892 which holds the base address for the current stack frame.
893 However, for functions that don't need it, the frame pointer is
894 optional. For these "frameless" functions the frame pointer is
895 actually the frame pointer of the calling frame. Signal
896 trampolines are just a special case of a "frameless" function.
897 They (usually) share their frame pointer with the frame that was
898 in progress when the signal occurred. */
899
900 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
901 cache->base = extract_unsigned_integer (buf, 4, byte_order);
902 if (cache->base == 0)
903 return cache;
904
905 /* For normal frames, %pc is stored at 4(%fp). */
906 cache->saved_regs[M68K_PC_REGNUM] = 4;
907
908 cache->pc = get_frame_func (this_frame);
909 if (cache->pc != 0)
910 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
911 get_frame_pc (this_frame), cache);
912
913 if (cache->locals < 0)
914 {
915 /* We didn't find a valid frame, which means that CACHE->base
916 currently holds the frame pointer for our calling frame. If
917 we're at the start of a function, or somewhere half-way its
918 prologue, the function's frame probably hasn't been fully
919 setup yet. Try to reconstruct the base address for the stack
920 frame by looking at the stack pointer. For truly "frameless"
921 functions this might work too. */
922
923 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
924 cache->base = extract_unsigned_integer (buf, 4, byte_order)
925 + cache->sp_offset;
926 }
927
928 /* Now that we have the base address for the stack frame we can
929 calculate the value of %sp in the calling frame. */
930 cache->saved_sp = cache->base + 8;
931
932 /* Adjust all the saved registers such that they contain addresses
933 instead of offsets. */
934 for (i = 0; i < M68K_NUM_REGS; i++)
935 if (cache->saved_regs[i] != -1)
936 cache->saved_regs[i] += cache->base;
937
938 return cache;
939 }
940
941 static void
942 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
943 struct frame_id *this_id)
944 {
945 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
946
947 /* This marks the outermost frame. */
948 if (cache->base == 0)
949 return;
950
951 /* See the end of m68k_push_dummy_call. */
952 *this_id = frame_id_build (cache->base + 8, cache->pc);
953 }
954
955 static struct value *
956 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
957 int regnum)
958 {
959 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
960
961 gdb_assert (regnum >= 0);
962
963 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
964 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
965
966 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
967 return frame_unwind_got_memory (this_frame, regnum,
968 cache->saved_regs[regnum]);
969
970 return frame_unwind_got_register (this_frame, regnum, regnum);
971 }
972
973 static const struct frame_unwind m68k_frame_unwind =
974 {
975 NORMAL_FRAME,
976 default_frame_unwind_stop_reason,
977 m68k_frame_this_id,
978 m68k_frame_prev_register,
979 NULL,
980 default_frame_sniffer
981 };
982 \f
983 static CORE_ADDR
984 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
985 {
986 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
987
988 return cache->base;
989 }
990
991 static const struct frame_base m68k_frame_base =
992 {
993 &m68k_frame_unwind,
994 m68k_frame_base_address,
995 m68k_frame_base_address,
996 m68k_frame_base_address
997 };
998
999 static struct frame_id
1000 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1001 {
1002 CORE_ADDR fp;
1003
1004 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
1005
1006 /* See the end of m68k_push_dummy_call. */
1007 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1008 }
1009 \f
1010
1011 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1012 We expect the first arg to be a pointer to the jmp_buf structure from which
1013 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1014 This routine returns true on success. */
1015
1016 static int
1017 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1018 {
1019 gdb_byte *buf;
1020 CORE_ADDR sp, jb_addr;
1021 struct gdbarch *gdbarch = get_frame_arch (frame);
1022 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1023 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1024
1025 if (tdep->jb_pc < 0)
1026 {
1027 internal_error (__FILE__, __LINE__,
1028 _("m68k_get_longjmp_target: not implemented"));
1029 return 0;
1030 }
1031
1032 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1033 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1034
1035 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1036 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1037 return 0;
1038
1039 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1040 / TARGET_CHAR_BIT, byte_order);
1041
1042 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1043 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1044 byte_order)
1045 return 0;
1046
1047 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1048 / TARGET_CHAR_BIT, byte_order);
1049 return 1;
1050 }
1051 \f
1052
1053 /* This is the implementation of gdbarch method
1054 return_in_first_hidden_param_p. */
1055
1056 static int
1057 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1058 struct type *type)
1059 {
1060 return 0;
1061 }
1062
1063 /* System V Release 4 (SVR4). */
1064
1065 void
1066 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1067 {
1068 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1069
1070 /* SVR4 uses a different calling convention. */
1071 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1072
1073 /* SVR4 uses %a0 instead of %a1. */
1074 tdep->struct_value_regnum = M68K_A0_REGNUM;
1075 }
1076 \f
1077
1078 /* Function: m68k_gdbarch_init
1079 Initializer function for the m68k gdbarch vector.
1080 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1081
1082 static struct gdbarch *
1083 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1084 {
1085 struct gdbarch_tdep *tdep = NULL;
1086 struct gdbarch *gdbarch;
1087 struct gdbarch_list *best_arch;
1088 struct tdesc_arch_data *tdesc_data = NULL;
1089 int i;
1090 enum m68k_flavour flavour = m68k_no_flavour;
1091 int has_fp = 1;
1092 const struct floatformat **long_double_format = floatformats_m68881_ext;
1093
1094 /* Check any target description for validity. */
1095 if (tdesc_has_registers (info.target_desc))
1096 {
1097 const struct tdesc_feature *feature;
1098 int valid_p;
1099
1100 feature = tdesc_find_feature (info.target_desc,
1101 "org.gnu.gdb.m68k.core");
1102 if (feature != NULL)
1103 /* Do nothing. */
1104 ;
1105
1106 if (feature == NULL)
1107 {
1108 feature = tdesc_find_feature (info.target_desc,
1109 "org.gnu.gdb.coldfire.core");
1110 if (feature != NULL)
1111 flavour = m68k_coldfire_flavour;
1112 }
1113
1114 if (feature == NULL)
1115 {
1116 feature = tdesc_find_feature (info.target_desc,
1117 "org.gnu.gdb.fido.core");
1118 if (feature != NULL)
1119 flavour = m68k_fido_flavour;
1120 }
1121
1122 if (feature == NULL)
1123 return NULL;
1124
1125 tdesc_data = tdesc_data_alloc ();
1126
1127 valid_p = 1;
1128 for (i = 0; i <= M68K_PC_REGNUM; i++)
1129 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1130 m68k_register_names[i]);
1131
1132 if (!valid_p)
1133 {
1134 tdesc_data_cleanup (tdesc_data);
1135 return NULL;
1136 }
1137
1138 feature = tdesc_find_feature (info.target_desc,
1139 "org.gnu.gdb.coldfire.fp");
1140 if (feature != NULL)
1141 {
1142 valid_p = 1;
1143 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1144 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1145 m68k_register_names[i]);
1146 if (!valid_p)
1147 {
1148 tdesc_data_cleanup (tdesc_data);
1149 return NULL;
1150 }
1151 }
1152 else
1153 has_fp = 0;
1154 }
1155
1156 /* The mechanism for returning floating values from function
1157 and the type of long double depend on whether we're
1158 on ColdFire or standard m68k. */
1159
1160 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1161 {
1162 const bfd_arch_info_type *coldfire_arch =
1163 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1164
1165 if (coldfire_arch
1166 && ((*info.bfd_arch_info->compatible)
1167 (info.bfd_arch_info, coldfire_arch)))
1168 flavour = m68k_coldfire_flavour;
1169 }
1170
1171 /* If there is already a candidate, use it. */
1172 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1173 best_arch != NULL;
1174 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1175 {
1176 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1177 continue;
1178
1179 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1180 continue;
1181
1182 break;
1183 }
1184
1185 if (best_arch != NULL)
1186 {
1187 if (tdesc_data != NULL)
1188 tdesc_data_cleanup (tdesc_data);
1189 return best_arch->gdbarch;
1190 }
1191
1192 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1193 gdbarch = gdbarch_alloc (&info, tdep);
1194 tdep->fpregs_present = has_fp;
1195 tdep->flavour = flavour;
1196
1197 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1198 long_double_format = floatformats_ieee_double;
1199 set_gdbarch_long_double_format (gdbarch, long_double_format);
1200 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1201
1202 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1203 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1204
1205 /* Stack grows down. */
1206 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1207 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1208
1209 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1210 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1211 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1212
1213 set_gdbarch_frame_args_skip (gdbarch, 8);
1214 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1215
1216 set_gdbarch_register_type (gdbarch, m68k_register_type);
1217 set_gdbarch_register_name (gdbarch, m68k_register_name);
1218 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1219 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1220 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1221 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1222 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1223 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1224 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1225
1226 if (has_fp)
1227 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1228
1229 /* Try to figure out if the arch uses floating registers to return
1230 floating point values from functions. */
1231 if (has_fp)
1232 {
1233 /* On ColdFire, floating point values are returned in D0. */
1234 if (flavour == m68k_coldfire_flavour)
1235 tdep->float_return = 0;
1236 else
1237 tdep->float_return = 1;
1238 }
1239 else
1240 {
1241 /* No floating registers, so can't use them for returning values. */
1242 tdep->float_return = 0;
1243 }
1244
1245 /* Function call & return. */
1246 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1247 set_gdbarch_return_value (gdbarch, m68k_return_value);
1248 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1249 m68k_return_in_first_hidden_param_p);
1250
1251
1252 /* Disassembler. */
1253 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1254
1255 #if defined JB_PC && defined JB_ELEMENT_SIZE
1256 tdep->jb_pc = JB_PC;
1257 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1258 #else
1259 tdep->jb_pc = -1;
1260 #endif
1261 tdep->struct_value_regnum = M68K_A1_REGNUM;
1262 tdep->struct_return = reg_struct_return;
1263
1264 /* Frame unwinder. */
1265 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1266 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1267
1268 /* Hook in the DWARF CFI frame unwinder. */
1269 dwarf2_append_unwinders (gdbarch);
1270
1271 frame_base_set_default (gdbarch, &m68k_frame_base);
1272
1273 /* Hook in ABI-specific overrides, if they have been registered. */
1274 gdbarch_init_osabi (info, gdbarch);
1275
1276 /* Now we have tuned the configuration, set a few final things,
1277 based on what the OS ABI has told us. */
1278
1279 if (tdep->jb_pc >= 0)
1280 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1281
1282 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1283
1284 if (tdesc_data)
1285 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1286
1287 return gdbarch;
1288 }
1289
1290
1291 static void
1292 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1293 {
1294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1295
1296 if (tdep == NULL)
1297 return;
1298 }
1299
1300 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1301
1302 void
1303 _initialize_m68k_tdep (void)
1304 {
1305 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1306 }
This page took 0.066026 seconds and 4 git commands to generate.