2009-11-17 Daniel Jacobowitz <dan@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2-frame.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "gdbtypes.h"
28 #include "symtab.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "gdb_string.h"
32 #include "gdb_assert.h"
33 #include "inferior.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "dis-asm.h"
38 #include "target-descriptions.h"
39
40 #include "m68k-tdep.h"
41 \f
42
43 #define P_LINKL_FP 0x480e
44 #define P_LINKW_FP 0x4e56
45 #define P_PEA_FP 0x4856
46 #define P_MOVEAL_SP_FP 0x2c4f
47 #define P_ADDAW_SP 0xdefc
48 #define P_ADDAL_SP 0xdffc
49 #define P_SUBQW_SP 0x514f
50 #define P_SUBQL_SP 0x518f
51 #define P_LEA_SP_SP 0x4fef
52 #define P_LEA_PC_A5 0x4bfb0170
53 #define P_FMOVEMX_SP 0xf227
54 #define P_MOVEL_SP 0x2f00
55 #define P_MOVEML_SP 0x48e7
56
57 /* Offset from SP to first arg on stack at first instruction of a function */
58 #define SP_ARG0 (1 * 4)
59
60 #if !defined (BPT_VECTOR)
61 #define BPT_VECTOR 0xf
62 #endif
63
64 static const gdb_byte *
65 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
66 CORE_ADDR *pcptr, int *lenptr)
67 {
68 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
69 *lenptr = sizeof (break_insn);
70 return break_insn;
71 }
72 \f
73
74 /* Construct types for ISA-specific registers. */
75 static struct type *
76 m68k_ps_type (struct gdbarch *gdbarch)
77 {
78 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
79
80 if (!tdep->m68k_ps_type)
81 {
82 struct type *type;
83
84 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
85 append_flags_type_flag (type, 0, "C");
86 append_flags_type_flag (type, 1, "V");
87 append_flags_type_flag (type, 2, "Z");
88 append_flags_type_flag (type, 3, "N");
89 append_flags_type_flag (type, 4, "X");
90 append_flags_type_flag (type, 8, "I0");
91 append_flags_type_flag (type, 9, "I1");
92 append_flags_type_flag (type, 10, "I2");
93 append_flags_type_flag (type, 12, "M");
94 append_flags_type_flag (type, 13, "S");
95 append_flags_type_flag (type, 14, "T0");
96 append_flags_type_flag (type, 15, "T1");
97
98 tdep->m68k_ps_type = type;
99 }
100
101 return tdep->m68k_ps_type;
102 }
103
104 static struct type *
105 m68881_ext_type (struct gdbarch *gdbarch)
106 {
107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
108
109 if (!tdep->m68881_ext_type)
110 tdep->m68881_ext_type
111 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
112 floatformats_m68881_ext);
113
114 return tdep->m68881_ext_type;
115 }
116
117 /* Return the GDB type object for the "standard" data type of data in
118 register N. This should be int for D0-D7, SR, FPCONTROL and
119 FPSTATUS, long double for FP0-FP7, and void pointer for all others
120 (A0-A7, PC, FPIADDR). Note, for registers which contain
121 addresses return pointer to void, not pointer to char, because we
122 don't want to attempt to print the string after printing the
123 address. */
124
125 static struct type *
126 m68k_register_type (struct gdbarch *gdbarch, int regnum)
127 {
128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
129
130 if (tdep->fpregs_present)
131 {
132 if (regnum >= gdbarch_fp0_regnum (gdbarch)
133 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
134 {
135 if (tdep->flavour == m68k_coldfire_flavour)
136 return builtin_type (gdbarch)->builtin_double;
137 else
138 return m68881_ext_type (gdbarch);
139 }
140
141 if (regnum == M68K_FPI_REGNUM)
142 return builtin_type (gdbarch)->builtin_func_ptr;
143
144 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
145 return builtin_type (gdbarch)->builtin_int32;
146 }
147 else
148 {
149 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
150 return builtin_type (gdbarch)->builtin_int0;
151 }
152
153 if (regnum == gdbarch_pc_regnum (gdbarch))
154 return builtin_type (gdbarch)->builtin_func_ptr;
155
156 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
157 return builtin_type (gdbarch)->builtin_data_ptr;
158
159 if (regnum == M68K_PS_REGNUM)
160 return m68k_ps_type (gdbarch);
161
162 return builtin_type (gdbarch)->builtin_int32;
163 }
164
165 static const char *m68k_register_names[] = {
166 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
167 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
168 "ps", "pc",
169 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
170 "fpcontrol", "fpstatus", "fpiaddr"
171 };
172
173 /* Function: m68k_register_name
174 Returns the name of the standard m68k register regnum. */
175
176 static const char *
177 m68k_register_name (struct gdbarch *gdbarch, int regnum)
178 {
179 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
180 internal_error (__FILE__, __LINE__,
181 _("m68k_register_name: illegal register number %d"), regnum);
182 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
183 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
184 return "";
185 else
186 return m68k_register_names[regnum];
187 }
188 \f
189 /* Return nonzero if a value of type TYPE stored in register REGNUM
190 needs any special handling. */
191
192 static int
193 m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
194 {
195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
196 return 0;
197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
199 }
200
201 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
203
204 static void
205 m68k_register_to_value (struct frame_info *frame, int regnum,
206 struct type *type, gdb_byte *to)
207 {
208 gdb_byte from[M68K_MAX_REGISTER_SIZE];
209 struct type *fpreg_type = register_type (get_frame_arch (frame),
210 M68K_FP0_REGNUM);
211
212 /* We only support floating-point values. */
213 if (TYPE_CODE (type) != TYPE_CODE_FLT)
214 {
215 warning (_("Cannot convert floating-point register value "
216 "to non-floating-point type."));
217 return;
218 }
219
220 /* Convert to TYPE. */
221 get_frame_register (frame, regnum, from);
222 convert_typed_floating (from, fpreg_type, to, type);
223 }
224
225 /* Write the contents FROM of a value of type TYPE into register
226 REGNUM in frame FRAME. */
227
228 static void
229 m68k_value_to_register (struct frame_info *frame, int regnum,
230 struct type *type, const gdb_byte *from)
231 {
232 gdb_byte to[M68K_MAX_REGISTER_SIZE];
233 struct type *fpreg_type = register_type (get_frame_arch (frame),
234 M68K_FP0_REGNUM);
235
236 /* We only support floating-point values. */
237 if (TYPE_CODE (type) != TYPE_CODE_FLT)
238 {
239 warning (_("Cannot convert non-floating-point type "
240 "to floating-point register value."));
241 return;
242 }
243
244 /* Convert from TYPE. */
245 convert_typed_floating (from, type, to, fpreg_type);
246 put_frame_register (frame, regnum, to);
247 }
248
249 \f
250 /* There is a fair number of calling conventions that are in somewhat
251 wide use. The 68000/08/10 don't support an FPU, not even as a
252 coprocessor. All function return values are stored in %d0/%d1.
253 Structures are returned in a static buffer, a pointer to which is
254 returned in %d0. This means that functions returning a structure
255 are not re-entrant. To avoid this problem some systems use a
256 convention where the caller passes a pointer to a buffer in %a1
257 where the return values is to be stored. This convention is the
258 default, and is implemented in the function m68k_return_value.
259
260 The 68020/030/040/060 do support an FPU, either as a coprocessor
261 (68881/2) or built-in (68040/68060). That's why System V release 4
262 (SVR4) instroduces a new calling convention specified by the SVR4
263 psABI. Integer values are returned in %d0/%d1, pointer return
264 values in %a0 and floating values in %fp0. When calling functions
265 returning a structure the caller should pass a pointer to a buffer
266 for the return value in %a0. This convention is implemented in the
267 function m68k_svr4_return_value, and by appropriately setting the
268 struct_value_regnum member of `struct gdbarch_tdep'.
269
270 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
271 for passing the structure return value buffer.
272
273 GCC can also generate code where small structures are returned in
274 %d0/%d1 instead of in memory by using -freg-struct-return. This is
275 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
276 embedded systems. This convention is implemented by setting the
277 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
278
279 /* Read a function return value of TYPE from REGCACHE, and copy that
280 into VALBUF. */
281
282 static void
283 m68k_extract_return_value (struct type *type, struct regcache *regcache,
284 gdb_byte *valbuf)
285 {
286 int len = TYPE_LENGTH (type);
287 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
288
289 if (len <= 4)
290 {
291 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
292 memcpy (valbuf, buf + (4 - len), len);
293 }
294 else if (len <= 8)
295 {
296 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
297 memcpy (valbuf, buf + (8 - len), len - 4);
298 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
299 }
300 else
301 internal_error (__FILE__, __LINE__,
302 _("Cannot extract return value of %d bytes long."), len);
303 }
304
305 static void
306 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
307 gdb_byte *valbuf)
308 {
309 int len = TYPE_LENGTH (type);
310 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
311 struct gdbarch *gdbarch = get_regcache_arch (regcache);
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313
314 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
315 {
316 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
317 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
318 convert_typed_floating (buf, fpreg_type, valbuf, type);
319 }
320 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
321 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
322 else
323 m68k_extract_return_value (type, regcache, valbuf);
324 }
325
326 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
327
328 static void
329 m68k_store_return_value (struct type *type, struct regcache *regcache,
330 const gdb_byte *valbuf)
331 {
332 int len = TYPE_LENGTH (type);
333
334 if (len <= 4)
335 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
336 else if (len <= 8)
337 {
338 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
339 len - 4, valbuf);
340 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
341 }
342 else
343 internal_error (__FILE__, __LINE__,
344 _("Cannot store return value of %d bytes long."), len);
345 }
346
347 static void
348 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
349 const gdb_byte *valbuf)
350 {
351 int len = TYPE_LENGTH (type);
352 struct gdbarch *gdbarch = get_regcache_arch (regcache);
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
355 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
356 {
357 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
358 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
359 convert_typed_floating (valbuf, type, buf, fpreg_type);
360 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
361 }
362 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
363 {
364 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
365 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
366 }
367 else
368 m68k_store_return_value (type, regcache, valbuf);
369 }
370
371 /* Return non-zero if TYPE, which is assumed to be a structure or
372 union type, should be returned in registers for architecture
373 GDBARCH. */
374
375 static int
376 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
377 {
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379 enum type_code code = TYPE_CODE (type);
380 int len = TYPE_LENGTH (type);
381
382 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
383
384 if (tdep->struct_return == pcc_struct_return)
385 return 0;
386
387 return (len == 1 || len == 2 || len == 4 || len == 8);
388 }
389
390 /* Determine, for architecture GDBARCH, how a return value of TYPE
391 should be returned. If it is supposed to be returned in registers,
392 and READBUF is non-zero, read the appropriate value from REGCACHE,
393 and copy it into READBUF. If WRITEBUF is non-zero, write the value
394 from WRITEBUF into REGCACHE. */
395
396 static enum return_value_convention
397 m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
398 struct type *type, struct regcache *regcache,
399 gdb_byte *readbuf, const gdb_byte *writebuf)
400 {
401 enum type_code code = TYPE_CODE (type);
402
403 /* GCC returns a `long double' in memory too. */
404 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
405 && !m68k_reg_struct_return_p (gdbarch, type))
406 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
407 {
408 /* The default on m68k is to return structures in static memory.
409 Consequently a function must return the address where we can
410 find the return value. */
411
412 if (readbuf)
413 {
414 ULONGEST addr;
415
416 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
417 read_memory (addr, readbuf, TYPE_LENGTH (type));
418 }
419
420 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
421 }
422
423 if (readbuf)
424 m68k_extract_return_value (type, regcache, readbuf);
425 if (writebuf)
426 m68k_store_return_value (type, regcache, writebuf);
427
428 return RETURN_VALUE_REGISTER_CONVENTION;
429 }
430
431 static enum return_value_convention
432 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
433 struct type *type, struct regcache *regcache,
434 gdb_byte *readbuf, const gdb_byte *writebuf)
435 {
436 enum type_code code = TYPE_CODE (type);
437
438 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
439 && !m68k_reg_struct_return_p (gdbarch, type))
440 {
441 /* The System V ABI says that:
442
443 "A function returning a structure or union also sets %a0 to
444 the value it finds in %a0. Thus when the caller receives
445 control again, the address of the returned object resides in
446 register %a0."
447
448 So the ABI guarantees that we can always find the return
449 value just after the function has returned. */
450
451 if (readbuf)
452 {
453 ULONGEST addr;
454
455 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
456 read_memory (addr, readbuf, TYPE_LENGTH (type));
457 }
458
459 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
460 }
461
462 /* This special case is for structures consisting of a single
463 `float' or `double' member. These structures are returned in
464 %fp0. For these structures, we call ourselves recursively,
465 changing TYPE into the type of the first member of the structure.
466 Since that should work for all structures that have only one
467 member, we don't bother to check the member's type here. */
468 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
469 {
470 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
471 return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
472 readbuf, writebuf);
473 }
474
475 if (readbuf)
476 m68k_svr4_extract_return_value (type, regcache, readbuf);
477 if (writebuf)
478 m68k_svr4_store_return_value (type, regcache, writebuf);
479
480 return RETURN_VALUE_REGISTER_CONVENTION;
481 }
482 \f
483
484 /* Always align the frame to a 4-byte boundary. This is required on
485 coldfire and harmless on the rest. */
486
487 static CORE_ADDR
488 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
489 {
490 /* Align the stack to four bytes. */
491 return sp & ~3;
492 }
493
494 static CORE_ADDR
495 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
496 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
497 struct value **args, CORE_ADDR sp, int struct_return,
498 CORE_ADDR struct_addr)
499 {
500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
502 gdb_byte buf[4];
503 int i;
504
505 /* Push arguments in reverse order. */
506 for (i = nargs - 1; i >= 0; i--)
507 {
508 struct type *value_type = value_enclosing_type (args[i]);
509 int len = TYPE_LENGTH (value_type);
510 int container_len = (len + 3) & ~3;
511 int offset;
512
513 /* Non-scalars bigger than 4 bytes are left aligned, others are
514 right aligned. */
515 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
516 || TYPE_CODE (value_type) == TYPE_CODE_UNION
517 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
518 && len > 4)
519 offset = 0;
520 else
521 offset = container_len - len;
522 sp -= container_len;
523 write_memory (sp + offset, value_contents_all (args[i]), len);
524 }
525
526 /* Store struct value address. */
527 if (struct_return)
528 {
529 store_unsigned_integer (buf, 4, byte_order, struct_addr);
530 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
531 }
532
533 /* Store return address. */
534 sp -= 4;
535 store_unsigned_integer (buf, 4, byte_order, bp_addr);
536 write_memory (sp, buf, 4);
537
538 /* Finally, update the stack pointer... */
539 store_unsigned_integer (buf, 4, byte_order, sp);
540 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
541
542 /* ...and fake a frame pointer. */
543 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
544
545 /* DWARF2/GCC uses the stack address *before* the function call as a
546 frame's CFA. */
547 return sp + 8;
548 }
549
550 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
551
552 static int
553 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
554 {
555 if (num < 8)
556 /* d0..7 */
557 return (num - 0) + M68K_D0_REGNUM;
558 else if (num < 16)
559 /* a0..7 */
560 return (num - 8) + M68K_A0_REGNUM;
561 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
562 /* fp0..7 */
563 return (num - 16) + M68K_FP0_REGNUM;
564 else if (num == 25)
565 /* pc */
566 return M68K_PC_REGNUM;
567 else
568 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
569 }
570
571 \f
572 struct m68k_frame_cache
573 {
574 /* Base address. */
575 CORE_ADDR base;
576 CORE_ADDR sp_offset;
577 CORE_ADDR pc;
578
579 /* Saved registers. */
580 CORE_ADDR saved_regs[M68K_NUM_REGS];
581 CORE_ADDR saved_sp;
582
583 /* Stack space reserved for local variables. */
584 long locals;
585 };
586
587 /* Allocate and initialize a frame cache. */
588
589 static struct m68k_frame_cache *
590 m68k_alloc_frame_cache (void)
591 {
592 struct m68k_frame_cache *cache;
593 int i;
594
595 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
596
597 /* Base address. */
598 cache->base = 0;
599 cache->sp_offset = -4;
600 cache->pc = 0;
601
602 /* Saved registers. We initialize these to -1 since zero is a valid
603 offset (that's where %fp is supposed to be stored). */
604 for (i = 0; i < M68K_NUM_REGS; i++)
605 cache->saved_regs[i] = -1;
606
607 /* Frameless until proven otherwise. */
608 cache->locals = -1;
609
610 return cache;
611 }
612
613 /* Check whether PC points at a code that sets up a new stack frame.
614 If so, it updates CACHE and returns the address of the first
615 instruction after the sequence that sets removes the "hidden"
616 argument from the stack or CURRENT_PC, whichever is smaller.
617 Otherwise, return PC. */
618
619 static CORE_ADDR
620 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
621 CORE_ADDR pc, CORE_ADDR current_pc,
622 struct m68k_frame_cache *cache)
623 {
624 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
625 int op;
626
627 if (pc >= current_pc)
628 return current_pc;
629
630 op = read_memory_unsigned_integer (pc, 2, byte_order);
631
632 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
633 {
634 cache->saved_regs[M68K_FP_REGNUM] = 0;
635 cache->sp_offset += 4;
636 if (op == P_LINKW_FP)
637 {
638 /* link.w %fp, #-N */
639 /* link.w %fp, #0; adda.l #-N, %sp */
640 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
641
642 if (pc + 4 < current_pc && cache->locals == 0)
643 {
644 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
645 if (op == P_ADDAL_SP)
646 {
647 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
648 return pc + 10;
649 }
650 }
651
652 return pc + 4;
653 }
654 else if (op == P_LINKL_FP)
655 {
656 /* link.l %fp, #-N */
657 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
658 return pc + 6;
659 }
660 else
661 {
662 /* pea (%fp); movea.l %sp, %fp */
663 cache->locals = 0;
664
665 if (pc + 2 < current_pc)
666 {
667 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
668
669 if (op == P_MOVEAL_SP_FP)
670 {
671 /* move.l %sp, %fp */
672 return pc + 4;
673 }
674 }
675
676 return pc + 2;
677 }
678 }
679 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
680 {
681 /* subq.[wl] #N,%sp */
682 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
683 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
684 if (pc + 2 < current_pc)
685 {
686 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
687 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
688 {
689 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
690 return pc + 4;
691 }
692 }
693 return pc + 2;
694 }
695 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
696 {
697 /* adda.w #-N,%sp */
698 /* lea (-N,%sp),%sp */
699 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
700 return pc + 4;
701 }
702 else if (op == P_ADDAL_SP)
703 {
704 /* adda.l #-N,%sp */
705 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
706 return pc + 6;
707 }
708
709 return pc;
710 }
711
712 /* Check whether PC points at code that saves registers on the stack.
713 If so, it updates CACHE and returns the address of the first
714 instruction after the register saves or CURRENT_PC, whichever is
715 smaller. Otherwise, return PC. */
716
717 static CORE_ADDR
718 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
719 CORE_ADDR current_pc,
720 struct m68k_frame_cache *cache)
721 {
722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
723
724 if (cache->locals >= 0)
725 {
726 CORE_ADDR offset;
727 int op;
728 int i, mask, regno;
729
730 offset = -4 - cache->locals;
731 while (pc < current_pc)
732 {
733 op = read_memory_unsigned_integer (pc, 2, byte_order);
734 if (op == P_FMOVEMX_SP
735 && gdbarch_tdep (gdbarch)->fpregs_present)
736 {
737 /* fmovem.x REGS,-(%sp) */
738 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
739 if ((op & 0xff00) == 0xe000)
740 {
741 mask = op & 0xff;
742 for (i = 0; i < 16; i++, mask >>= 1)
743 {
744 if (mask & 1)
745 {
746 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
747 offset -= 12;
748 }
749 }
750 pc += 4;
751 }
752 else
753 break;
754 }
755 else if ((op & 0177760) == P_MOVEL_SP)
756 {
757 /* move.l %R,-(%sp) */
758 regno = op & 017;
759 cache->saved_regs[regno] = offset;
760 offset -= 4;
761 pc += 2;
762 }
763 else if (op == P_MOVEML_SP)
764 {
765 /* movem.l REGS,-(%sp) */
766 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
767 for (i = 0; i < 16; i++, mask >>= 1)
768 {
769 if (mask & 1)
770 {
771 cache->saved_regs[15 - i] = offset;
772 offset -= 4;
773 }
774 }
775 pc += 4;
776 }
777 else
778 break;
779 }
780 }
781
782 return pc;
783 }
784
785
786 /* Do a full analysis of the prologue at PC and update CACHE
787 accordingly. Bail out early if CURRENT_PC is reached. Return the
788 address where the analysis stopped.
789
790 We handle all cases that can be generated by gcc.
791
792 For allocating a stack frame:
793
794 link.w %a6,#-N
795 link.l %a6,#-N
796 pea (%fp); move.l %sp,%fp
797 link.w %a6,#0; add.l #-N,%sp
798 subq.l #N,%sp
799 subq.w #N,%sp
800 subq.w #8,%sp; subq.w #N-8,%sp
801 add.w #-N,%sp
802 lea (-N,%sp),%sp
803 add.l #-N,%sp
804
805 For saving registers:
806
807 fmovem.x REGS,-(%sp)
808 move.l R1,-(%sp)
809 move.l R1,-(%sp); move.l R2,-(%sp)
810 movem.l REGS,-(%sp)
811
812 For setting up the PIC register:
813
814 lea (%pc,N),%a5
815
816 */
817
818 static CORE_ADDR
819 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
820 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
821 {
822 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
823 unsigned int op;
824
825 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
826 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
827 if (pc >= current_pc)
828 return current_pc;
829
830 /* Check for GOT setup. */
831 op = read_memory_unsigned_integer (pc, 4, byte_order);
832 if (op == P_LEA_PC_A5)
833 {
834 /* lea (%pc,N),%a5 */
835 return pc + 8;
836 }
837
838 return pc;
839 }
840
841 /* Return PC of first real instruction. */
842
843 static CORE_ADDR
844 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
845 {
846 struct m68k_frame_cache cache;
847 CORE_ADDR pc;
848 int op;
849
850 cache.locals = -1;
851 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
852 if (cache.locals < 0)
853 return start_pc;
854 return pc;
855 }
856
857 static CORE_ADDR
858 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
859 {
860 gdb_byte buf[8];
861
862 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
863 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
864 }
865 \f
866 /* Normal frames. */
867
868 static struct m68k_frame_cache *
869 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
870 {
871 struct gdbarch *gdbarch = get_frame_arch (this_frame);
872 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
873 struct m68k_frame_cache *cache;
874 gdb_byte buf[4];
875 int i;
876
877 if (*this_cache)
878 return *this_cache;
879
880 cache = m68k_alloc_frame_cache ();
881 *this_cache = cache;
882
883 /* In principle, for normal frames, %fp holds the frame pointer,
884 which holds the base address for the current stack frame.
885 However, for functions that don't need it, the frame pointer is
886 optional. For these "frameless" functions the frame pointer is
887 actually the frame pointer of the calling frame. Signal
888 trampolines are just a special case of a "frameless" function.
889 They (usually) share their frame pointer with the frame that was
890 in progress when the signal occurred. */
891
892 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
893 cache->base = extract_unsigned_integer (buf, 4, byte_order);
894 if (cache->base == 0)
895 return cache;
896
897 /* For normal frames, %pc is stored at 4(%fp). */
898 cache->saved_regs[M68K_PC_REGNUM] = 4;
899
900 cache->pc = get_frame_func (this_frame);
901 if (cache->pc != 0)
902 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
903 get_frame_pc (this_frame), cache);
904
905 if (cache->locals < 0)
906 {
907 /* We didn't find a valid frame, which means that CACHE->base
908 currently holds the frame pointer for our calling frame. If
909 we're at the start of a function, or somewhere half-way its
910 prologue, the function's frame probably hasn't been fully
911 setup yet. Try to reconstruct the base address for the stack
912 frame by looking at the stack pointer. For truly "frameless"
913 functions this might work too. */
914
915 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
916 cache->base = extract_unsigned_integer (buf, 4, byte_order)
917 + cache->sp_offset;
918 }
919
920 /* Now that we have the base address for the stack frame we can
921 calculate the value of %sp in the calling frame. */
922 cache->saved_sp = cache->base + 8;
923
924 /* Adjust all the saved registers such that they contain addresses
925 instead of offsets. */
926 for (i = 0; i < M68K_NUM_REGS; i++)
927 if (cache->saved_regs[i] != -1)
928 cache->saved_regs[i] += cache->base;
929
930 return cache;
931 }
932
933 static void
934 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
935 struct frame_id *this_id)
936 {
937 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
938
939 /* This marks the outermost frame. */
940 if (cache->base == 0)
941 return;
942
943 /* See the end of m68k_push_dummy_call. */
944 *this_id = frame_id_build (cache->base + 8, cache->pc);
945 }
946
947 static struct value *
948 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
949 int regnum)
950 {
951 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
952
953 gdb_assert (regnum >= 0);
954
955 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
956 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
957
958 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
959 return frame_unwind_got_memory (this_frame, regnum,
960 cache->saved_regs[regnum]);
961
962 return frame_unwind_got_register (this_frame, regnum, regnum);
963 }
964
965 static const struct frame_unwind m68k_frame_unwind =
966 {
967 NORMAL_FRAME,
968 m68k_frame_this_id,
969 m68k_frame_prev_register,
970 NULL,
971 default_frame_sniffer
972 };
973 \f
974 static CORE_ADDR
975 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
976 {
977 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
978
979 return cache->base;
980 }
981
982 static const struct frame_base m68k_frame_base =
983 {
984 &m68k_frame_unwind,
985 m68k_frame_base_address,
986 m68k_frame_base_address,
987 m68k_frame_base_address
988 };
989
990 static struct frame_id
991 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
992 {
993 CORE_ADDR fp;
994
995 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
996
997 /* See the end of m68k_push_dummy_call. */
998 return frame_id_build (fp + 8, get_frame_pc (this_frame));
999 }
1000 \f
1001
1002 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1003 We expect the first arg to be a pointer to the jmp_buf structure from which
1004 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1005 This routine returns true on success. */
1006
1007 static int
1008 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1009 {
1010 gdb_byte *buf;
1011 CORE_ADDR sp, jb_addr;
1012 struct gdbarch *gdbarch = get_frame_arch (frame);
1013 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1014 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1015
1016 if (tdep->jb_pc < 0)
1017 {
1018 internal_error (__FILE__, __LINE__,
1019 _("m68k_get_longjmp_target: not implemented"));
1020 return 0;
1021 }
1022
1023 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1024 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1025
1026 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1027 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1028 return 0;
1029
1030 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1031 / TARGET_CHAR_BIT, byte_order);
1032
1033 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1034 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1035 byte_order)
1036 return 0;
1037
1038 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1039 / TARGET_CHAR_BIT, byte_order);
1040 return 1;
1041 }
1042 \f
1043
1044 /* System V Release 4 (SVR4). */
1045
1046 void
1047 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1048 {
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1050
1051 /* SVR4 uses a different calling convention. */
1052 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1053
1054 /* SVR4 uses %a0 instead of %a1. */
1055 tdep->struct_value_regnum = M68K_A0_REGNUM;
1056 }
1057 \f
1058
1059 /* Function: m68k_gdbarch_init
1060 Initializer function for the m68k gdbarch vector.
1061 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1062
1063 static struct gdbarch *
1064 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1065 {
1066 struct gdbarch_tdep *tdep = NULL;
1067 struct gdbarch *gdbarch;
1068 struct gdbarch_list *best_arch;
1069 struct tdesc_arch_data *tdesc_data = NULL;
1070 int i;
1071 enum m68k_flavour flavour = m68k_no_flavour;
1072 int has_fp = 1;
1073 const struct floatformat **long_double_format = floatformats_m68881_ext;
1074
1075 /* Check any target description for validity. */
1076 if (tdesc_has_registers (info.target_desc))
1077 {
1078 const struct tdesc_feature *feature;
1079 int valid_p;
1080
1081 feature = tdesc_find_feature (info.target_desc,
1082 "org.gnu.gdb.m68k.core");
1083 if (feature != NULL)
1084 /* Do nothing. */
1085 ;
1086
1087 if (feature == NULL)
1088 {
1089 feature = tdesc_find_feature (info.target_desc,
1090 "org.gnu.gdb.coldfire.core");
1091 if (feature != NULL)
1092 flavour = m68k_coldfire_flavour;
1093 }
1094
1095 if (feature == NULL)
1096 {
1097 feature = tdesc_find_feature (info.target_desc,
1098 "org.gnu.gdb.fido.core");
1099 if (feature != NULL)
1100 flavour = m68k_fido_flavour;
1101 }
1102
1103 if (feature == NULL)
1104 return NULL;
1105
1106 tdesc_data = tdesc_data_alloc ();
1107
1108 valid_p = 1;
1109 for (i = 0; i <= M68K_PC_REGNUM; i++)
1110 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1111 m68k_register_names[i]);
1112
1113 if (!valid_p)
1114 {
1115 tdesc_data_cleanup (tdesc_data);
1116 return NULL;
1117 }
1118
1119 feature = tdesc_find_feature (info.target_desc,
1120 "org.gnu.gdb.coldfire.fp");
1121 if (feature != NULL)
1122 {
1123 valid_p = 1;
1124 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1125 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1126 m68k_register_names[i]);
1127 if (!valid_p)
1128 {
1129 tdesc_data_cleanup (tdesc_data);
1130 return NULL;
1131 }
1132 }
1133 else
1134 has_fp = 0;
1135 }
1136
1137 /* The mechanism for returning floating values from function
1138 and the type of long double depend on whether we're
1139 on ColdFire or standard m68k. */
1140
1141 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1142 {
1143 const bfd_arch_info_type *coldfire_arch =
1144 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1145
1146 if (coldfire_arch
1147 && ((*info.bfd_arch_info->compatible)
1148 (info.bfd_arch_info, coldfire_arch)))
1149 flavour = m68k_coldfire_flavour;
1150 }
1151
1152 /* If there is already a candidate, use it. */
1153 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1154 best_arch != NULL;
1155 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1156 {
1157 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1158 continue;
1159
1160 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1161 continue;
1162
1163 break;
1164 }
1165
1166 if (best_arch != NULL)
1167 {
1168 if (tdesc_data != NULL)
1169 tdesc_data_cleanup (tdesc_data);
1170 return best_arch->gdbarch;
1171 }
1172
1173 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1174 gdbarch = gdbarch_alloc (&info, tdep);
1175 tdep->fpregs_present = has_fp;
1176 tdep->flavour = flavour;
1177
1178 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1179 long_double_format = floatformats_ieee_double;
1180 set_gdbarch_long_double_format (gdbarch, long_double_format);
1181 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1182
1183 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1184 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1185
1186 /* Stack grows down. */
1187 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1188 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1189
1190 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1191 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1192 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1193
1194 set_gdbarch_frame_args_skip (gdbarch, 8);
1195 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1196
1197 set_gdbarch_register_type (gdbarch, m68k_register_type);
1198 set_gdbarch_register_name (gdbarch, m68k_register_name);
1199 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1200 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1201 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1202 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1203 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1204 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1205 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1206
1207 if (has_fp)
1208 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1209
1210 /* Try to figure out if the arch uses floating registers to return
1211 floating point values from functions. */
1212 if (has_fp)
1213 {
1214 /* On ColdFire, floating point values are returned in D0. */
1215 if (flavour == m68k_coldfire_flavour)
1216 tdep->float_return = 0;
1217 else
1218 tdep->float_return = 1;
1219 }
1220 else
1221 {
1222 /* No floating registers, so can't use them for returning values. */
1223 tdep->float_return = 0;
1224 }
1225
1226 /* Function call & return */
1227 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1228 set_gdbarch_return_value (gdbarch, m68k_return_value);
1229
1230
1231 /* Disassembler. */
1232 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1233
1234 #if defined JB_PC && defined JB_ELEMENT_SIZE
1235 tdep->jb_pc = JB_PC;
1236 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1237 #else
1238 tdep->jb_pc = -1;
1239 #endif
1240 tdep->struct_value_regnum = M68K_A1_REGNUM;
1241 tdep->struct_return = reg_struct_return;
1242
1243 /* Frame unwinder. */
1244 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1245 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1246
1247 /* Hook in the DWARF CFI frame unwinder. */
1248 dwarf2_append_unwinders (gdbarch);
1249
1250 frame_base_set_default (gdbarch, &m68k_frame_base);
1251
1252 /* Hook in ABI-specific overrides, if they have been registered. */
1253 gdbarch_init_osabi (info, gdbarch);
1254
1255 /* Now we have tuned the configuration, set a few final things,
1256 based on what the OS ABI has told us. */
1257
1258 if (tdep->jb_pc >= 0)
1259 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1260
1261 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1262
1263 if (tdesc_data)
1264 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1265
1266 return gdbarch;
1267 }
1268
1269
1270 static void
1271 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1272 {
1273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1274
1275 if (tdep == NULL)
1276 return;
1277 }
1278
1279 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1280
1281 void
1282 _initialize_m68k_tdep (void)
1283 {
1284 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1285 }
This page took 0.058257 seconds and 5 git commands to generate.