*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target dependent code for the Motorola 68000 series.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "dwarf2-frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "symtab.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "gdb_string.h"
32 #include "gdb_assert.h"
33 #include "inferior.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "dis-asm.h"
38
39 #include "m68k-tdep.h"
40 \f
41
42 #define P_LINKL_FP 0x480e
43 #define P_LINKW_FP 0x4e56
44 #define P_PEA_FP 0x4856
45 #define P_MOVEAL_SP_FP 0x2c4f
46 #define P_ADDAW_SP 0xdefc
47 #define P_ADDAL_SP 0xdffc
48 #define P_SUBQW_SP 0x514f
49 #define P_SUBQL_SP 0x518f
50 #define P_LEA_SP_SP 0x4fef
51 #define P_LEA_PC_A5 0x4bfb0170
52 #define P_FMOVEMX_SP 0xf227
53 #define P_MOVEL_SP 0x2f00
54 #define P_MOVEML_SP 0x48e7
55
56
57 #define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
58 #define REGISTER_BYTES_NOFP (16*4 + 8)
59
60 /* Offset from SP to first arg on stack at first instruction of a function */
61 #define SP_ARG0 (1 * 4)
62
63 #if !defined (BPT_VECTOR)
64 #define BPT_VECTOR 0xf
65 #endif
66
67 #if !defined (REMOTE_BPT_VECTOR)
68 #define REMOTE_BPT_VECTOR 1
69 #endif
70
71
72 /* gdbarch_breakpoint_from_pc is set to m68k_local_breakpoint_from_pc
73 so m68k_remote_breakpoint_from_pc is currently not used. */
74
75 static const unsigned char *
76 m68k_remote_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
77 {
78 static unsigned char break_insn[] = {0x4e, (0x40 | REMOTE_BPT_VECTOR)};
79 *lenptr = sizeof (break_insn);
80 return break_insn;
81 }
82
83 static const unsigned char *
84 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
85 {
86 static unsigned char break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
87 *lenptr = sizeof (break_insn);
88 return break_insn;
89 }
90
91
92 static int
93 m68k_register_bytes_ok (long numbytes)
94 {
95 return ((numbytes == REGISTER_BYTES_FP)
96 || (numbytes == REGISTER_BYTES_NOFP));
97 }
98
99 /* Return the GDB type object for the "standard" data type of data in
100 register N. This should be int for D0-D7, SR, FPCONTROL and
101 FPSTATUS, long double for FP0-FP7, and void pointer for all others
102 (A0-A7, PC, FPIADDR). Note, for registers which contain
103 addresses return pointer to void, not pointer to char, because we
104 don't want to attempt to print the string after printing the
105 address. */
106
107 static struct type *
108 m68k_register_type (struct gdbarch *gdbarch, int regnum)
109 {
110 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
111 return builtin_type_m68881_ext;
112
113 if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
114 return builtin_type_void_func_ptr;
115
116 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
117 || regnum == PS_REGNUM)
118 return builtin_type_int32;
119
120 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
121 return builtin_type_void_data_ptr;
122
123 return builtin_type_int32;
124 }
125
126 /* Function: m68k_register_name
127 Returns the name of the standard m68k register regnum. */
128
129 static const char *
130 m68k_register_name (int regnum)
131 {
132 static char *register_names[] = {
133 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
134 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
135 "ps", "pc",
136 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
137 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
138 };
139
140 if (regnum < 0 ||
141 regnum >= sizeof (register_names) / sizeof (register_names[0]))
142 internal_error (__FILE__, __LINE__,
143 "m68k_register_name: illegal register number %d", regnum);
144 else
145 return register_names[regnum];
146 }
147
148 /* Index within `registers' of the first byte of the space for
149 register regnum. */
150
151 static int
152 m68k_register_byte (int regnum)
153 {
154 if (regnum >= M68K_FPC_REGNUM)
155 return (((regnum - M68K_FPC_REGNUM) * 4) + 168);
156 else if (regnum >= FP0_REGNUM)
157 return (((regnum - FP0_REGNUM) * 12) + 72);
158 else
159 return (regnum * 4);
160 }
161 \f
162 /* Extract from an array REGBUF containing the (raw) register state, a
163 function return value of TYPE, and copy that, in virtual format,
164 into VALBUF. */
165
166 static void
167 m68k_extract_return_value (struct type *type, struct regcache *regcache,
168 void *valbuf)
169 {
170 int len = TYPE_LENGTH (type);
171 char buf[M68K_MAX_REGISTER_SIZE];
172
173 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
174 && TYPE_NFIELDS (type) == 1)
175 {
176 m68k_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
177 return;
178 }
179
180 if (len <= 4)
181 {
182 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
183 memcpy (valbuf, buf + (4 - len), len);
184 }
185 else if (len <= 8)
186 {
187 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
188 memcpy (valbuf, buf + (8 - len), len - 4);
189 regcache_raw_read (regcache, M68K_D1_REGNUM,
190 (char *) valbuf + (len - 4));
191 }
192 else
193 internal_error (__FILE__, __LINE__,
194 "Cannot extract return value of %d bytes long.", len);
195 }
196
197 /* Write into the appropriate registers a function return value stored
198 in VALBUF of type TYPE, given in virtual format. */
199
200 static void
201 m68k_store_return_value (struct type *type, struct regcache *regcache,
202 const void *valbuf)
203 {
204 int len = TYPE_LENGTH (type);
205
206 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
207 && TYPE_NFIELDS (type) == 1)
208 {
209 m68k_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
210 return;
211 }
212
213 if (len <= 4)
214 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
215 else if (len <= 8)
216 {
217 regcache_raw_write_part (regcache, M68K_D1_REGNUM, 8 - len,
218 len - 4, valbuf);
219 regcache_raw_write (regcache, M68K_D0_REGNUM,
220 (char *) valbuf + (len - 4));
221 }
222 else
223 internal_error (__FILE__, __LINE__,
224 "Cannot store return value of %d bytes long.", len);
225 }
226
227 /* Extract from REGCACHE, which contains the (raw) register state, the
228 address in which a function should return its structure value, as a
229 CORE_ADDR. */
230
231 static CORE_ADDR
232 m68k_extract_struct_value_address (struct regcache *regcache)
233 {
234 char buf[4];
235
236 regcache_cooked_read (regcache, M68K_D0_REGNUM, buf);
237 return extract_unsigned_integer (buf, 4);
238 }
239
240 static int
241 m68k_use_struct_convention (int gcc_p, struct type *type)
242 {
243 enum struct_return struct_return;
244
245 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
246 return generic_use_struct_convention (struct_return == reg_struct_return,
247 type);
248 }
249
250 /* A function that tells us whether the function invocation represented
251 by fi does not have a frame on the stack associated with it. If it
252 does not, FRAMELESS is set to 1, else 0. */
253
254 static int
255 m68k_frameless_function_invocation (struct frame_info *fi)
256 {
257 if (get_frame_type (fi) == SIGTRAMP_FRAME)
258 return 0;
259 else
260 return frameless_look_for_prologue (fi);
261 }
262
263 int
264 delta68_in_sigtramp (CORE_ADDR pc, char *name)
265 {
266 if (name != NULL)
267 return strcmp (name, "_sigcode") == 0;
268 else
269 return 0;
270 }
271
272 CORE_ADDR
273 delta68_frame_args_address (struct frame_info *frame_info)
274 {
275 /* we assume here that the only frameless functions are the system calls
276 or other functions who do not put anything on the stack. */
277 if (get_frame_type (frame_info) == SIGTRAMP_FRAME)
278 return get_frame_base (frame_info) + 12;
279 else if (frameless_look_for_prologue (frame_info))
280 {
281 /* Check for an interrupted system call */
282 if (get_next_frame (frame_info) && (get_frame_type (get_next_frame (frame_info)) == SIGTRAMP_FRAME))
283 return get_frame_base (get_next_frame (frame_info)) + 16;
284 else
285 return get_frame_base (frame_info) + 4;
286 }
287 else
288 return get_frame_base (frame_info);
289 }
290
291 CORE_ADDR
292 delta68_frame_saved_pc (struct frame_info *frame_info)
293 {
294 return read_memory_unsigned_integer (delta68_frame_args_address (frame_info)
295 + 4, 4);
296 }
297
298 int
299 delta68_frame_num_args (struct frame_info *fi)
300 {
301 int val;
302 CORE_ADDR pc = DEPRECATED_FRAME_SAVED_PC (fi);
303 int insn = read_memory_unsigned_integer (pc, 2);
304 val = 0;
305 if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
306 val = read_memory_integer (pc + 2, 2);
307 else if ((insn & 0170777) == 0050217 /* addql #N, sp */
308 || (insn & 0170777) == 0050117) /* addqw */
309 {
310 val = (insn >> 9) & 7;
311 if (val == 0)
312 val = 8;
313 }
314 else if (insn == 0157774) /* addal #WW, sp */
315 val = read_memory_integer (pc + 2, 4);
316 val >>= 2;
317 return val;
318 }
319
320 static CORE_ADDR
321 m68k_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
322 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
323 struct value **args, CORE_ADDR sp, int struct_return,
324 CORE_ADDR struct_addr)
325 {
326 char buf[4];
327 int i;
328
329 /* Push arguments in reverse order. */
330 for (i = nargs - 1; i >= 0; i--)
331 {
332 struct type *value_type = VALUE_ENCLOSING_TYPE (args[i]);
333 int len = TYPE_LENGTH (value_type);
334 int container_len = (len + 3) & ~3;
335 int offset;
336
337 /* Non-scalars bigger than 4 bytes are left aligned, others are
338 right aligned. */
339 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
340 || TYPE_CODE (value_type) == TYPE_CODE_UNION
341 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
342 && len > 4)
343 offset = 0;
344 else
345 offset = container_len - len;
346 sp -= container_len;
347 write_memory (sp + offset, VALUE_CONTENTS_ALL (args[i]), len);
348 }
349
350 /* Store struct value address. */
351 if (struct_return)
352 {
353 store_unsigned_integer (buf, 4, struct_addr);
354 regcache_cooked_write (regcache, M68K_A1_REGNUM, buf);
355 }
356
357 /* Store return address. */
358 sp -= 4;
359 store_unsigned_integer (buf, 4, bp_addr);
360 write_memory (sp, buf, 4);
361
362 /* Finally, update the stack pointer... */
363 store_unsigned_integer (buf, 4, sp);
364 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
365
366 /* ...and fake a frame pointer. */
367 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
368
369 /* DWARF2/GCC uses the stack address *before* the function call as a
370 frame's CFA. */
371 return sp + 8;
372 }
373 \f
374 struct m68k_frame_cache
375 {
376 /* Base address. */
377 CORE_ADDR base;
378 CORE_ADDR sp_offset;
379 CORE_ADDR pc;
380
381 /* Saved registers. */
382 CORE_ADDR saved_regs[M68K_NUM_REGS];
383 CORE_ADDR saved_sp;
384
385 /* Stack space reserved for local variables. */
386 long locals;
387 };
388
389 /* Allocate and initialize a frame cache. */
390
391 static struct m68k_frame_cache *
392 m68k_alloc_frame_cache (void)
393 {
394 struct m68k_frame_cache *cache;
395 int i;
396
397 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
398
399 /* Base address. */
400 cache->base = 0;
401 cache->sp_offset = -4;
402 cache->pc = 0;
403
404 /* Saved registers. We initialize these to -1 since zero is a valid
405 offset (that's where %fp is supposed to be stored). */
406 for (i = 0; i < M68K_NUM_REGS; i++)
407 cache->saved_regs[i] = -1;
408
409 /* Frameless until proven otherwise. */
410 cache->locals = -1;
411
412 return cache;
413 }
414
415 /* Check whether PC points at a code that sets up a new stack frame.
416 If so, it updates CACHE and returns the address of the first
417 instruction after the sequence that sets removes the "hidden"
418 argument from the stack or CURRENT_PC, whichever is smaller.
419 Otherwise, return PC. */
420
421 static CORE_ADDR
422 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
423 struct m68k_frame_cache *cache)
424 {
425 int op;
426
427 if (pc >= current_pc)
428 return current_pc;
429
430 op = read_memory_unsigned_integer (pc, 2);
431
432 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
433 {
434 cache->saved_regs[M68K_FP_REGNUM] = 0;
435 cache->sp_offset += 4;
436 if (op == P_LINKW_FP)
437 {
438 /* link.w %fp, #-N */
439 /* link.w %fp, #0; adda.l #-N, %sp */
440 cache->locals = -read_memory_integer (pc + 2, 2);
441
442 if (pc + 4 < current_pc && cache->locals == 0)
443 {
444 op = read_memory_unsigned_integer (pc + 4, 2);
445 if (op == P_ADDAL_SP)
446 {
447 cache->locals = read_memory_integer (pc + 6, 4);
448 return pc + 10;
449 }
450 }
451
452 return pc + 4;
453 }
454 else if (op == P_LINKL_FP)
455 {
456 /* link.l %fp, #-N */
457 cache->locals = -read_memory_integer (pc + 2, 4);
458 return pc + 6;
459 }
460 else
461 {
462 /* pea (%fp); movea.l %sp, %fp */
463 cache->locals = 0;
464
465 if (pc + 2 < current_pc)
466 {
467 op = read_memory_unsigned_integer (pc + 2, 2);
468
469 if (op == P_MOVEAL_SP_FP)
470 {
471 /* move.l %sp, %fp */
472 return pc + 4;
473 }
474 }
475
476 return pc + 2;
477 }
478 }
479 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
480 {
481 /* subq.[wl] #N,%sp */
482 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
483 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
484 if (pc + 2 < current_pc)
485 {
486 op = read_memory_unsigned_integer (pc + 2, 2);
487 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
488 {
489 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
490 return pc + 4;
491 }
492 }
493 return pc + 2;
494 }
495 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
496 {
497 /* adda.w #-N,%sp */
498 /* lea (-N,%sp),%sp */
499 cache->locals = -read_memory_integer (pc + 2, 2);
500 return pc + 4;
501 }
502 else if (op == P_ADDAL_SP)
503 {
504 /* adda.l #-N,%sp */
505 cache->locals = -read_memory_integer (pc + 2, 4);
506 return pc + 6;
507 }
508
509 return pc;
510 }
511
512 /* Check whether PC points at code that saves registers on the stack.
513 If so, it updates CACHE and returns the address of the first
514 instruction after the register saves or CURRENT_PC, whichever is
515 smaller. Otherwise, return PC. */
516
517 static CORE_ADDR
518 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
519 struct m68k_frame_cache *cache)
520 {
521 if (cache->locals >= 0)
522 {
523 CORE_ADDR offset;
524 int op;
525 int i, mask, regno;
526
527 offset = -4 - cache->locals;
528 while (pc < current_pc)
529 {
530 op = read_memory_unsigned_integer (pc, 2);
531 if (op == P_FMOVEMX_SP)
532 {
533 /* fmovem.x REGS,-(%sp) */
534 op = read_memory_unsigned_integer (pc + 2, 2);
535 if ((op & 0xff00) == 0xe000)
536 {
537 mask = op & 0xff;
538 for (i = 0; i < 16; i++, mask >>= 1)
539 {
540 if (mask & 1)
541 {
542 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
543 offset -= 12;
544 }
545 }
546 pc += 4;
547 }
548 else
549 break;
550 }
551 else if ((op & 0170677) == P_MOVEL_SP)
552 {
553 /* move.l %R,-(%sp) */
554 regno = ((op & 07000) >> 9) | ((op & 0100) >> 3);
555 cache->saved_regs[regno] = offset;
556 offset -= 4;
557 pc += 2;
558 }
559 else if (op == P_MOVEML_SP)
560 {
561 /* movem.l REGS,-(%sp) */
562 mask = read_memory_unsigned_integer (pc + 2, 2);
563 for (i = 0; i < 16; i++, mask >>= 1)
564 {
565 if (mask & 1)
566 {
567 cache->saved_regs[15 - i] = offset;
568 offset -= 4;
569 }
570 }
571 pc += 4;
572 }
573 else
574 break;
575 }
576 }
577
578 return pc;
579 }
580
581
582 /* Do a full analysis of the prologue at PC and update CACHE
583 accordingly. Bail out early if CURRENT_PC is reached. Return the
584 address where the analysis stopped.
585
586 We handle all cases that can be generated by gcc.
587
588 For allocating a stack frame:
589
590 link.w %a6,#-N
591 link.l %a6,#-N
592 pea (%fp); move.l %sp,%fp
593 link.w %a6,#0; add.l #-N,%sp
594 subq.l #N,%sp
595 subq.w #N,%sp
596 subq.w #8,%sp; subq.w #N-8,%sp
597 add.w #-N,%sp
598 lea (-N,%sp),%sp
599 add.l #-N,%sp
600
601 For saving registers:
602
603 fmovem.x REGS,-(%sp)
604 move.l R1,-(%sp)
605 move.l R1,-(%sp); move.l R2,-(%sp)
606 movem.l REGS,-(%sp)
607
608 For setting up the PIC register:
609
610 lea (%pc,N),%a5
611
612 */
613
614 static CORE_ADDR
615 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
616 struct m68k_frame_cache *cache)
617 {
618 unsigned int op;
619
620 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
621 pc = m68k_analyze_register_saves (pc, current_pc, cache);
622 if (pc >= current_pc)
623 return current_pc;
624
625 /* Check for GOT setup. */
626 op = read_memory_unsigned_integer (pc, 4);
627 if (op == P_LEA_PC_A5)
628 {
629 /* lea (%pc,N),%a5 */
630 return pc + 6;
631 }
632
633 return pc;
634 }
635
636 /* Return PC of first real instruction. */
637
638 static CORE_ADDR
639 m68k_skip_prologue (CORE_ADDR start_pc)
640 {
641 struct m68k_frame_cache cache;
642 CORE_ADDR pc;
643 int op;
644
645 cache.locals = -1;
646 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
647 if (cache.locals < 0)
648 return start_pc;
649 return pc;
650 }
651
652 static CORE_ADDR
653 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
654 {
655 char buf[8];
656
657 frame_unwind_register (next_frame, PC_REGNUM, buf);
658 return extract_typed_address (buf, builtin_type_void_func_ptr);
659 }
660 \f
661 /* Normal frames. */
662
663 static struct m68k_frame_cache *
664 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
665 {
666 struct m68k_frame_cache *cache;
667 char buf[4];
668 int i;
669
670 if (*this_cache)
671 return *this_cache;
672
673 cache = m68k_alloc_frame_cache ();
674 *this_cache = cache;
675
676 /* In principle, for normal frames, %fp holds the frame pointer,
677 which holds the base address for the current stack frame.
678 However, for functions that don't need it, the frame pointer is
679 optional. For these "frameless" functions the frame pointer is
680 actually the frame pointer of the calling frame. Signal
681 trampolines are just a special case of a "frameless" function.
682 They (usually) share their frame pointer with the frame that was
683 in progress when the signal occurred. */
684
685 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
686 cache->base = extract_unsigned_integer (buf, 4);
687 if (cache->base == 0)
688 return cache;
689
690 /* For normal frames, %pc is stored at 4(%fp). */
691 cache->saved_regs[M68K_PC_REGNUM] = 4;
692
693 cache->pc = frame_func_unwind (next_frame);
694 if (cache->pc != 0)
695 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
696
697 if (cache->locals < 0)
698 {
699 /* We didn't find a valid frame, which means that CACHE->base
700 currently holds the frame pointer for our calling frame. If
701 we're at the start of a function, or somewhere half-way its
702 prologue, the function's frame probably hasn't been fully
703 setup yet. Try to reconstruct the base address for the stack
704 frame by looking at the stack pointer. For truly "frameless"
705 functions this might work too. */
706
707 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
708 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
709 }
710
711 /* Now that we have the base address for the stack frame we can
712 calculate the value of %sp in the calling frame. */
713 cache->saved_sp = cache->base + 8;
714
715 /* Adjust all the saved registers such that they contain addresses
716 instead of offsets. */
717 for (i = 0; i < M68K_NUM_REGS; i++)
718 if (cache->saved_regs[i] != -1)
719 cache->saved_regs[i] += cache->base;
720
721 return cache;
722 }
723
724 static void
725 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
726 struct frame_id *this_id)
727 {
728 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
729
730 /* This marks the outermost frame. */
731 if (cache->base == 0)
732 return;
733
734 /* See the end of m68k_push_dummy_call. */
735 *this_id = frame_id_build (cache->base + 8, cache->pc);
736 }
737
738 static void
739 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
740 int regnum, int *optimizedp,
741 enum lval_type *lvalp, CORE_ADDR *addrp,
742 int *realnump, void *valuep)
743 {
744 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
745
746 gdb_assert (regnum >= 0);
747
748 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
749 {
750 *optimizedp = 0;
751 *lvalp = not_lval;
752 *addrp = 0;
753 *realnump = -1;
754 if (valuep)
755 {
756 /* Store the value. */
757 store_unsigned_integer (valuep, 4, cache->saved_sp);
758 }
759 return;
760 }
761
762 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
763 {
764 *optimizedp = 0;
765 *lvalp = lval_memory;
766 *addrp = cache->saved_regs[regnum];
767 *realnump = -1;
768 if (valuep)
769 {
770 /* Read the value in from memory. */
771 read_memory (*addrp, valuep,
772 register_size (current_gdbarch, regnum));
773 }
774 return;
775 }
776
777 frame_register_unwind (next_frame, regnum,
778 optimizedp, lvalp, addrp, realnump, valuep);
779 }
780
781 static const struct frame_unwind m68k_frame_unwind =
782 {
783 NORMAL_FRAME,
784 m68k_frame_this_id,
785 m68k_frame_prev_register
786 };
787
788 static const struct frame_unwind *
789 m68k_frame_sniffer (struct frame_info *next_frame)
790 {
791 return &m68k_frame_unwind;
792 }
793 \f
794 /* Signal trampolines. */
795
796 static struct m68k_frame_cache *
797 m68k_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
798 {
799 struct m68k_frame_cache *cache;
800 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
801 struct m68k_sigtramp_info info;
802 char buf[4];
803 int i;
804
805 if (*this_cache)
806 return *this_cache;
807
808 cache = m68k_alloc_frame_cache ();
809
810 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
811 cache->base = extract_unsigned_integer (buf, 4) - 4;
812
813 info = tdep->get_sigtramp_info (next_frame);
814
815 for (i = 0; i < M68K_NUM_REGS; i++)
816 if (info.sc_reg_offset[i] != -1)
817 cache->saved_regs[i] = info.sigcontext_addr + info.sc_reg_offset[i];
818
819 *this_cache = cache;
820 return cache;
821 }
822
823 static void
824 m68k_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
825 struct frame_id *this_id)
826 {
827 struct m68k_frame_cache *cache =
828 m68k_sigtramp_frame_cache (next_frame, this_cache);
829
830 /* See the end of m68k_push_dummy_call. */
831 *this_id = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
832 }
833
834 static void
835 m68k_sigtramp_frame_prev_register (struct frame_info *next_frame,
836 void **this_cache,
837 int regnum, int *optimizedp,
838 enum lval_type *lvalp, CORE_ADDR *addrp,
839 int *realnump, void *valuep)
840 {
841 /* Make sure we've initialized the cache. */
842 m68k_sigtramp_frame_cache (next_frame, this_cache);
843
844 m68k_frame_prev_register (next_frame, this_cache, regnum,
845 optimizedp, lvalp, addrp, realnump, valuep);
846 }
847
848 static const struct frame_unwind m68k_sigtramp_frame_unwind =
849 {
850 SIGTRAMP_FRAME,
851 m68k_sigtramp_frame_this_id,
852 m68k_sigtramp_frame_prev_register
853 };
854
855 static const struct frame_unwind *
856 m68k_sigtramp_frame_sniffer (struct frame_info *next_frame)
857 {
858 CORE_ADDR pc = frame_pc_unwind (next_frame);
859 char *name;
860
861 /* We shouldn't even bother to try if the OSABI didn't register
862 a get_sigtramp_info handler. */
863 if (!gdbarch_tdep (current_gdbarch)->get_sigtramp_info)
864 return NULL;
865
866 find_pc_partial_function (pc, &name, NULL, NULL);
867 if (PC_IN_SIGTRAMP (pc, name))
868 return &m68k_sigtramp_frame_unwind;
869
870 return NULL;
871 }
872 \f
873 static CORE_ADDR
874 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
875 {
876 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
877
878 return cache->base;
879 }
880
881 static const struct frame_base m68k_frame_base =
882 {
883 &m68k_frame_unwind,
884 m68k_frame_base_address,
885 m68k_frame_base_address,
886 m68k_frame_base_address
887 };
888
889 static struct frame_id
890 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
891 {
892 char buf[4];
893 CORE_ADDR fp;
894
895 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
896 fp = extract_unsigned_integer (buf, 4);
897
898 /* See the end of m68k_push_dummy_call. */
899 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
900 }
901 \f
902 #ifdef USE_PROC_FS /* Target dependent support for /proc */
903
904 #include <sys/procfs.h>
905
906 /* Prototypes for supply_gregset etc. */
907 #include "gregset.h"
908
909 /* The /proc interface divides the target machine's register set up into
910 two different sets, the general register set (gregset) and the floating
911 point register set (fpregset). For each set, there is an ioctl to get
912 the current register set and another ioctl to set the current values.
913
914 The actual structure passed through the ioctl interface is, of course,
915 naturally machine dependent, and is different for each set of registers.
916 For the m68k for example, the general register set is typically defined
917 by:
918
919 typedef int gregset_t[18];
920
921 #define R_D0 0
922 ...
923 #define R_PS 17
924
925 and the floating point set by:
926
927 typedef struct fpregset {
928 int f_pcr;
929 int f_psr;
930 int f_fpiaddr;
931 int f_fpregs[8][3]; (8 regs, 96 bits each)
932 } fpregset_t;
933
934 These routines provide the packing and unpacking of gregset_t and
935 fpregset_t formatted data.
936
937 */
938
939 /* Atari SVR4 has R_SR but not R_PS */
940
941 #if !defined (R_PS) && defined (R_SR)
942 #define R_PS R_SR
943 #endif
944
945 /* Given a pointer to a general register set in /proc format (gregset_t *),
946 unpack the register contents and supply them as gdb's idea of the current
947 register values. */
948
949 void
950 supply_gregset (gregset_t *gregsetp)
951 {
952 int regi;
953 greg_t *regp = (greg_t *) gregsetp;
954
955 for (regi = 0; regi < R_PC; regi++)
956 {
957 supply_register (regi, (char *) (regp + regi));
958 }
959 supply_register (PS_REGNUM, (char *) (regp + R_PS));
960 supply_register (PC_REGNUM, (char *) (regp + R_PC));
961 }
962
963 void
964 fill_gregset (gregset_t *gregsetp, int regno)
965 {
966 int regi;
967 greg_t *regp = (greg_t *) gregsetp;
968
969 for (regi = 0; regi < R_PC; regi++)
970 {
971 if (regno == -1 || regno == regi)
972 regcache_collect (regi, regp + regi);
973 }
974 if (regno == -1 || regno == PS_REGNUM)
975 regcache_collect (PS_REGNUM, regp + R_PS);
976 if (regno == -1 || regno == PC_REGNUM)
977 regcache_collect (PC_REGNUM, regp + R_PC);
978 }
979
980 #if defined (FP0_REGNUM)
981
982 /* Given a pointer to a floating point register set in /proc format
983 (fpregset_t *), unpack the register contents and supply them as gdb's
984 idea of the current floating point register values. */
985
986 void
987 supply_fpregset (fpregset_t *fpregsetp)
988 {
989 int regi;
990 char *from;
991
992 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
993 {
994 from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
995 supply_register (regi, from);
996 }
997 supply_register (M68K_FPC_REGNUM, (char *) &(fpregsetp->f_pcr));
998 supply_register (M68K_FPS_REGNUM, (char *) &(fpregsetp->f_psr));
999 supply_register (M68K_FPI_REGNUM, (char *) &(fpregsetp->f_fpiaddr));
1000 }
1001
1002 /* Given a pointer to a floating point register set in /proc format
1003 (fpregset_t *), update the register specified by REGNO from gdb's idea
1004 of the current floating point register set. If REGNO is -1, update
1005 them all. */
1006
1007 void
1008 fill_fpregset (fpregset_t *fpregsetp, int regno)
1009 {
1010 int regi;
1011
1012 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1013 {
1014 if (regno == -1 || regno == regi)
1015 regcache_collect (regi, &fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1016 }
1017 if (regno == -1 || regno == M68K_FPC_REGNUM)
1018 regcache_collect (M68K_FPC_REGNUM, &fpregsetp->f_pcr);
1019 if (regno == -1 || regno == M68K_FPS_REGNUM)
1020 regcache_collect (M68K_FPS_REGNUM, &fpregsetp->f_psr);
1021 if (regno == -1 || regno == M68K_FPI_REGNUM)
1022 regcache_collect (M68K_FPI_REGNUM, &fpregsetp->f_fpiaddr);
1023 }
1024
1025 #endif /* defined (FP0_REGNUM) */
1026
1027 #endif /* USE_PROC_FS */
1028
1029 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1030 We expect the first arg to be a pointer to the jmp_buf structure from which
1031 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1032 This routine returns true on success. */
1033
1034 int
1035 m68k_get_longjmp_target (CORE_ADDR *pc)
1036 {
1037 char *buf;
1038 CORE_ADDR sp, jb_addr;
1039 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1040
1041 if (tdep->jb_pc < 0)
1042 {
1043 internal_error (__FILE__, __LINE__,
1044 "m68k_get_longjmp_target: not implemented");
1045 return 0;
1046 }
1047
1048 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1049 sp = read_register (SP_REGNUM);
1050
1051 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1052 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
1053 return 0;
1054
1055 jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1056
1057 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1058 TARGET_PTR_BIT / TARGET_CHAR_BIT))
1059 return 0;
1060
1061 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1062 return 1;
1063 }
1064
1065 #ifdef SYSCALL_TRAP
1066 /* Immediately after a function call, return the saved pc before the frame
1067 is setup. For sun3's, we check for the common case of being inside of a
1068 system call, and if so, we know that Sun pushes the call # on the stack
1069 prior to doing the trap. */
1070
1071 static CORE_ADDR
1072 m68k_saved_pc_after_call (struct frame_info *frame)
1073 {
1074 int op;
1075
1076 op = read_memory_unsigned_integer (frame->pc - SYSCALL_TRAP_OFFSET, 2);
1077
1078 if (op == SYSCALL_TRAP)
1079 return read_memory_unsigned_integer (read_register (SP_REGNUM) + 4, 4);
1080 else
1081 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
1082 }
1083 #endif /* SYSCALL_TRAP */
1084
1085 /* Function: m68k_gdbarch_init
1086 Initializer function for the m68k gdbarch vector.
1087 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1088
1089 static struct gdbarch *
1090 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1091 {
1092 struct gdbarch_tdep *tdep = NULL;
1093 struct gdbarch *gdbarch;
1094
1095 /* find a candidate among the list of pre-declared architectures. */
1096 arches = gdbarch_list_lookup_by_info (arches, &info);
1097 if (arches != NULL)
1098 return (arches->gdbarch);
1099
1100 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1101 gdbarch = gdbarch_alloc (&info, tdep);
1102
1103 set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
1104 set_gdbarch_long_double_bit (gdbarch, 96);
1105
1106 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1107 #ifdef SYSCALL_TRAP
1108 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, m68k_saved_pc_after_call);
1109 #endif
1110 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1111
1112 /* Stack grows down. */
1113 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1114 set_gdbarch_parm_boundary (gdbarch, 32);
1115
1116 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1117 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1118
1119 set_gdbarch_extract_return_value (gdbarch, m68k_extract_return_value);
1120 set_gdbarch_store_return_value (gdbarch, m68k_store_return_value);
1121 set_gdbarch_extract_struct_value_address (gdbarch,
1122 m68k_extract_struct_value_address);
1123 set_gdbarch_use_struct_convention (gdbarch, m68k_use_struct_convention);
1124
1125 set_gdbarch_frameless_function_invocation (gdbarch,
1126 m68k_frameless_function_invocation);
1127 set_gdbarch_frame_args_skip (gdbarch, 8);
1128
1129 set_gdbarch_register_type (gdbarch, m68k_register_type);
1130 set_gdbarch_register_name (gdbarch, m68k_register_name);
1131 set_gdbarch_num_regs (gdbarch, 29);
1132 set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
1133 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1134 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1135 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1136 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1137
1138 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1139
1140 /* Disassembler. */
1141 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1142
1143 #if defined JB_PC && defined JB_ELEMENT_SIZE
1144 tdep->jb_pc = JB_PC;
1145 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1146 #else
1147 tdep->jb_pc = -1;
1148 #endif
1149 tdep->get_sigtramp_info = NULL;
1150 tdep->struct_return = pcc_struct_return;
1151
1152 /* Frame unwinder. */
1153 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1154 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1155
1156 /* Hook in the DWARF CFI frame unwinder. */
1157 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1158
1159 frame_base_set_default (gdbarch, &m68k_frame_base);
1160
1161 /* Hook in ABI-specific overrides, if they have been registered. */
1162 gdbarch_init_osabi (info, gdbarch);
1163
1164 /* Now we have tuned the configuration, set a few final things,
1165 based on what the OS ABI has told us. */
1166
1167 if (tdep->jb_pc >= 0)
1168 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1169
1170 frame_unwind_append_sniffer (gdbarch, m68k_sigtramp_frame_sniffer);
1171 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1172
1173 return gdbarch;
1174 }
1175
1176
1177 static void
1178 m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1179 {
1180 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1181
1182 if (tdep == NULL)
1183 return;
1184 }
1185
1186 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1187
1188 void
1189 _initialize_m68k_tdep (void)
1190 {
1191 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1192 }
This page took 0.052006 seconds and 5 git commands to generate.