* dwarf2-frame.c (dwarf2_frame_cache, dwarf2_frame_this_id)
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "dwarf2-frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbtypes.h"
29 #include "symtab.h"
30 #include "gdbcore.h"
31 #include "value.h"
32 #include "gdb_string.h"
33 #include "gdb_assert.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "dis-asm.h"
39
40 #include "m68k-tdep.h"
41 \f
42
43 #define P_LINKL_FP 0x480e
44 #define P_LINKW_FP 0x4e56
45 #define P_PEA_FP 0x4856
46 #define P_MOVEAL_SP_FP 0x2c4f
47 #define P_ADDAW_SP 0xdefc
48 #define P_ADDAL_SP 0xdffc
49 #define P_SUBQW_SP 0x514f
50 #define P_SUBQL_SP 0x518f
51 #define P_LEA_SP_SP 0x4fef
52 #define P_LEA_PC_A5 0x4bfb0170
53 #define P_FMOVEMX_SP 0xf227
54 #define P_MOVEL_SP 0x2f00
55 #define P_MOVEML_SP 0x48e7
56
57
58 #define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
59 #define REGISTER_BYTES_NOFP (16*4 + 8)
60
61 /* Offset from SP to first arg on stack at first instruction of a function */
62 #define SP_ARG0 (1 * 4)
63
64 #if !defined (BPT_VECTOR)
65 #define BPT_VECTOR 0xf
66 #endif
67
68 static const gdb_byte *
69 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
70 {
71 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
72 *lenptr = sizeof (break_insn);
73 return break_insn;
74 }
75
76
77 static int
78 m68k_register_bytes_ok (long numbytes)
79 {
80 return ((numbytes == REGISTER_BYTES_FP)
81 || (numbytes == REGISTER_BYTES_NOFP));
82 }
83
84 /* Return the GDB type object for the "standard" data type of data in
85 register N. This should be int for D0-D7, SR, FPCONTROL and
86 FPSTATUS, long double for FP0-FP7, and void pointer for all others
87 (A0-A7, PC, FPIADDR). Note, for registers which contain
88 addresses return pointer to void, not pointer to char, because we
89 don't want to attempt to print the string after printing the
90 address. */
91
92 static struct type *
93 m68k_register_type (struct gdbarch *gdbarch, int regnum)
94 {
95 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
96 return builtin_type_m68881_ext;
97
98 if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
99 return builtin_type_void_func_ptr;
100
101 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
102 || regnum == PS_REGNUM)
103 return builtin_type_int32;
104
105 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
106 return builtin_type_void_data_ptr;
107
108 return builtin_type_int32;
109 }
110
111 /* Function: m68k_register_name
112 Returns the name of the standard m68k register regnum. */
113
114 static const char *
115 m68k_register_name (int regnum)
116 {
117 static char *register_names[] = {
118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
119 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
120 "ps", "pc",
121 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
122 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
123 };
124
125 if (regnum < 0 || regnum >= ARRAY_SIZE (register_names))
126 internal_error (__FILE__, __LINE__,
127 _("m68k_register_name: illegal register number %d"), regnum);
128 else
129 return register_names[regnum];
130 }
131 \f
132 /* Return nonzero if a value of type TYPE stored in register REGNUM
133 needs any special handling. */
134
135 static int
136 m68k_convert_register_p (int regnum, struct type *type)
137 {
138 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
139 }
140
141 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
142 return its contents in TO. */
143
144 static void
145 m68k_register_to_value (struct frame_info *frame, int regnum,
146 struct type *type, gdb_byte *to)
147 {
148 gdb_byte from[M68K_MAX_REGISTER_SIZE];
149
150 /* We only support floating-point values. */
151 if (TYPE_CODE (type) != TYPE_CODE_FLT)
152 {
153 warning (_("Cannot convert floating-point register value "
154 "to non-floating-point type."));
155 return;
156 }
157
158 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
159 the extended floating-point format used by the FPU. */
160 get_frame_register (frame, regnum, from);
161 convert_typed_floating (from, builtin_type_m68881_ext, to, type);
162 }
163
164 /* Write the contents FROM of a value of type TYPE into register
165 REGNUM in frame FRAME. */
166
167 static void
168 m68k_value_to_register (struct frame_info *frame, int regnum,
169 struct type *type, const gdb_byte *from)
170 {
171 gdb_byte to[M68K_MAX_REGISTER_SIZE];
172
173 /* We only support floating-point values. */
174 if (TYPE_CODE (type) != TYPE_CODE_FLT)
175 {
176 warning (_("Cannot convert non-floating-point type "
177 "to floating-point register value."));
178 return;
179 }
180
181 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
182 to the extended floating-point format used by the FPU. */
183 convert_typed_floating (from, type, to, builtin_type_m68881_ext);
184 put_frame_register (frame, regnum, to);
185 }
186
187 \f
188 /* There is a fair number of calling conventions that are in somewhat
189 wide use. The 68000/08/10 don't support an FPU, not even as a
190 coprocessor. All function return values are stored in %d0/%d1.
191 Structures are returned in a static buffer, a pointer to which is
192 returned in %d0. This means that functions returning a structure
193 are not re-entrant. To avoid this problem some systems use a
194 convention where the caller passes a pointer to a buffer in %a1
195 where the return values is to be stored. This convention is the
196 default, and is implemented in the function m68k_return_value.
197
198 The 68020/030/040/060 do support an FPU, either as a coprocessor
199 (68881/2) or built-in (68040/68060). That's why System V release 4
200 (SVR4) instroduces a new calling convention specified by the SVR4
201 psABI. Integer values are returned in %d0/%d1, pointer return
202 values in %a0 and floating values in %fp0. When calling functions
203 returning a structure the caller should pass a pointer to a buffer
204 for the return value in %a0. This convention is implemented in the
205 function m68k_svr4_return_value, and by appropriately setting the
206 struct_value_regnum member of `struct gdbarch_tdep'.
207
208 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
209 for passing the structure return value buffer.
210
211 GCC can also generate code where small structures are returned in
212 %d0/%d1 instead of in memory by using -freg-struct-return. This is
213 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
214 embedded systems. This convention is implemented by setting the
215 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
216
217 /* Read a function return value of TYPE from REGCACHE, and copy that
218 into VALBUF. */
219
220 static void
221 m68k_extract_return_value (struct type *type, struct regcache *regcache,
222 gdb_byte *valbuf)
223 {
224 int len = TYPE_LENGTH (type);
225 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
226
227 if (len <= 4)
228 {
229 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
230 memcpy (valbuf, buf + (4 - len), len);
231 }
232 else if (len <= 8)
233 {
234 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
235 memcpy (valbuf, buf + (8 - len), len - 4);
236 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
237 }
238 else
239 internal_error (__FILE__, __LINE__,
240 _("Cannot extract return value of %d bytes long."), len);
241 }
242
243 static void
244 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
245 gdb_byte *valbuf)
246 {
247 int len = TYPE_LENGTH (type);
248 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
249
250 if (TYPE_CODE (type) == TYPE_CODE_FLT)
251 {
252 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
253 convert_typed_floating (buf, builtin_type_m68881_ext, valbuf, type);
254 }
255 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
256 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
257 else
258 m68k_extract_return_value (type, regcache, valbuf);
259 }
260
261 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
262
263 static void
264 m68k_store_return_value (struct type *type, struct regcache *regcache,
265 const gdb_byte *valbuf)
266 {
267 int len = TYPE_LENGTH (type);
268
269 if (len <= 4)
270 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
271 else if (len <= 8)
272 {
273 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
274 len - 4, valbuf);
275 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
276 }
277 else
278 internal_error (__FILE__, __LINE__,
279 _("Cannot store return value of %d bytes long."), len);
280 }
281
282 static void
283 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
284 const gdb_byte *valbuf)
285 {
286 int len = TYPE_LENGTH (type);
287
288 if (TYPE_CODE (type) == TYPE_CODE_FLT)
289 {
290 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
291 convert_typed_floating (valbuf, type, buf, builtin_type_m68881_ext);
292 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
293 }
294 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
295 {
296 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
297 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
298 }
299 else
300 m68k_store_return_value (type, regcache, valbuf);
301 }
302
303 /* Return non-zero if TYPE, which is assumed to be a structure or
304 union type, should be returned in registers for architecture
305 GDBARCH. */
306
307 static int
308 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
309 {
310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 enum type_code code = TYPE_CODE (type);
312 int len = TYPE_LENGTH (type);
313
314 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
315
316 if (tdep->struct_return == pcc_struct_return)
317 return 0;
318
319 return (len == 1 || len == 2 || len == 4 || len == 8);
320 }
321
322 /* Determine, for architecture GDBARCH, how a return value of TYPE
323 should be returned. If it is supposed to be returned in registers,
324 and READBUF is non-zero, read the appropriate value from REGCACHE,
325 and copy it into READBUF. If WRITEBUF is non-zero, write the value
326 from WRITEBUF into REGCACHE. */
327
328 static enum return_value_convention
329 m68k_return_value (struct gdbarch *gdbarch, struct type *type,
330 struct regcache *regcache, gdb_byte *readbuf,
331 const gdb_byte *writebuf)
332 {
333 enum type_code code = TYPE_CODE (type);
334
335 /* GCC returns a `long double' in memory too. */
336 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
337 && !m68k_reg_struct_return_p (gdbarch, type))
338 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
339 {
340 /* The default on m68k is to return structures in static memory.
341 Consequently a function must return the address where we can
342 find the return value. */
343
344 if (readbuf)
345 {
346 ULONGEST addr;
347
348 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
349 read_memory (addr, readbuf, TYPE_LENGTH (type));
350 }
351
352 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
353 }
354
355 if (readbuf)
356 m68k_extract_return_value (type, regcache, readbuf);
357 if (writebuf)
358 m68k_store_return_value (type, regcache, writebuf);
359
360 return RETURN_VALUE_REGISTER_CONVENTION;
361 }
362
363 static enum return_value_convention
364 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
365 struct regcache *regcache, gdb_byte *readbuf,
366 const gdb_byte *writebuf)
367 {
368 enum type_code code = TYPE_CODE (type);
369
370 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
371 && !m68k_reg_struct_return_p (gdbarch, type))
372 {
373 /* The System V ABI says that:
374
375 "A function returning a structure or union also sets %a0 to
376 the value it finds in %a0. Thus when the caller receives
377 control again, the address of the returned object resides in
378 register %a0."
379
380 So the ABI guarantees that we can always find the return
381 value just after the function has returned. */
382
383 if (readbuf)
384 {
385 ULONGEST addr;
386
387 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
388 read_memory (addr, readbuf, TYPE_LENGTH (type));
389 }
390
391 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
392 }
393
394 /* This special case is for structures consisting of a single
395 `float' or `double' member. These structures are returned in
396 %fp0. For these structures, we call ourselves recursively,
397 changing TYPE into the type of the first member of the structure.
398 Since that should work for all structures that have only one
399 member, we don't bother to check the member's type here. */
400 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
401 {
402 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
403 return m68k_svr4_return_value (gdbarch, type, regcache,
404 readbuf, writebuf);
405 }
406
407 if (readbuf)
408 m68k_svr4_extract_return_value (type, regcache, readbuf);
409 if (writebuf)
410 m68k_svr4_store_return_value (type, regcache, writebuf);
411
412 return RETURN_VALUE_REGISTER_CONVENTION;
413 }
414 \f
415
416 /* Always align the frame to a 4-byte boundary. This is required on
417 coldfire and harmless on the rest. */
418
419 static CORE_ADDR
420 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
421 {
422 /* Align the stack to four bytes. */
423 return sp & ~3;
424 }
425
426 static CORE_ADDR
427 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
428 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
429 struct value **args, CORE_ADDR sp, int struct_return,
430 CORE_ADDR struct_addr)
431 {
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
433 gdb_byte buf[4];
434 int i;
435
436 /* Push arguments in reverse order. */
437 for (i = nargs - 1; i >= 0; i--)
438 {
439 struct type *value_type = value_enclosing_type (args[i]);
440 int len = TYPE_LENGTH (value_type);
441 int container_len = (len + 3) & ~3;
442 int offset;
443
444 /* Non-scalars bigger than 4 bytes are left aligned, others are
445 right aligned. */
446 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
447 || TYPE_CODE (value_type) == TYPE_CODE_UNION
448 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
449 && len > 4)
450 offset = 0;
451 else
452 offset = container_len - len;
453 sp -= container_len;
454 write_memory (sp + offset, value_contents_all (args[i]), len);
455 }
456
457 /* Store struct value address. */
458 if (struct_return)
459 {
460 store_unsigned_integer (buf, 4, struct_addr);
461 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
462 }
463
464 /* Store return address. */
465 sp -= 4;
466 store_unsigned_integer (buf, 4, bp_addr);
467 write_memory (sp, buf, 4);
468
469 /* Finally, update the stack pointer... */
470 store_unsigned_integer (buf, 4, sp);
471 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
472
473 /* ...and fake a frame pointer. */
474 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
475
476 /* DWARF2/GCC uses the stack address *before* the function call as a
477 frame's CFA. */
478 return sp + 8;
479 }
480
481 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
482
483 static int
484 m68k_dwarf_reg_to_regnum (int num)
485 {
486 if (num < 8)
487 /* d0..7 */
488 return (num - 0) + M68K_D0_REGNUM;
489 else if (num < 16)
490 /* a0..7 */
491 return (num - 8) + M68K_A0_REGNUM;
492 else if (num < 24)
493 /* fp0..7 */
494 return (num - 16) + M68K_FP0_REGNUM;
495 else if (num == 25)
496 /* pc */
497 return M68K_PC_REGNUM;
498 else
499 return NUM_REGS + NUM_PSEUDO_REGS;
500 }
501
502 \f
503 struct m68k_frame_cache
504 {
505 /* Base address. */
506 CORE_ADDR base;
507 CORE_ADDR sp_offset;
508 CORE_ADDR pc;
509
510 /* Saved registers. */
511 CORE_ADDR saved_regs[M68K_NUM_REGS];
512 CORE_ADDR saved_sp;
513
514 /* Stack space reserved for local variables. */
515 long locals;
516 };
517
518 /* Allocate and initialize a frame cache. */
519
520 static struct m68k_frame_cache *
521 m68k_alloc_frame_cache (void)
522 {
523 struct m68k_frame_cache *cache;
524 int i;
525
526 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
527
528 /* Base address. */
529 cache->base = 0;
530 cache->sp_offset = -4;
531 cache->pc = 0;
532
533 /* Saved registers. We initialize these to -1 since zero is a valid
534 offset (that's where %fp is supposed to be stored). */
535 for (i = 0; i < M68K_NUM_REGS; i++)
536 cache->saved_regs[i] = -1;
537
538 /* Frameless until proven otherwise. */
539 cache->locals = -1;
540
541 return cache;
542 }
543
544 /* Check whether PC points at a code that sets up a new stack frame.
545 If so, it updates CACHE and returns the address of the first
546 instruction after the sequence that sets removes the "hidden"
547 argument from the stack or CURRENT_PC, whichever is smaller.
548 Otherwise, return PC. */
549
550 static CORE_ADDR
551 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
552 struct m68k_frame_cache *cache)
553 {
554 int op;
555
556 if (pc >= current_pc)
557 return current_pc;
558
559 op = read_memory_unsigned_integer (pc, 2);
560
561 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
562 {
563 cache->saved_regs[M68K_FP_REGNUM] = 0;
564 cache->sp_offset += 4;
565 if (op == P_LINKW_FP)
566 {
567 /* link.w %fp, #-N */
568 /* link.w %fp, #0; adda.l #-N, %sp */
569 cache->locals = -read_memory_integer (pc + 2, 2);
570
571 if (pc + 4 < current_pc && cache->locals == 0)
572 {
573 op = read_memory_unsigned_integer (pc + 4, 2);
574 if (op == P_ADDAL_SP)
575 {
576 cache->locals = read_memory_integer (pc + 6, 4);
577 return pc + 10;
578 }
579 }
580
581 return pc + 4;
582 }
583 else if (op == P_LINKL_FP)
584 {
585 /* link.l %fp, #-N */
586 cache->locals = -read_memory_integer (pc + 2, 4);
587 return pc + 6;
588 }
589 else
590 {
591 /* pea (%fp); movea.l %sp, %fp */
592 cache->locals = 0;
593
594 if (pc + 2 < current_pc)
595 {
596 op = read_memory_unsigned_integer (pc + 2, 2);
597
598 if (op == P_MOVEAL_SP_FP)
599 {
600 /* move.l %sp, %fp */
601 return pc + 4;
602 }
603 }
604
605 return pc + 2;
606 }
607 }
608 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
609 {
610 /* subq.[wl] #N,%sp */
611 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
612 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
613 if (pc + 2 < current_pc)
614 {
615 op = read_memory_unsigned_integer (pc + 2, 2);
616 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
617 {
618 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
619 return pc + 4;
620 }
621 }
622 return pc + 2;
623 }
624 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
625 {
626 /* adda.w #-N,%sp */
627 /* lea (-N,%sp),%sp */
628 cache->locals = -read_memory_integer (pc + 2, 2);
629 return pc + 4;
630 }
631 else if (op == P_ADDAL_SP)
632 {
633 /* adda.l #-N,%sp */
634 cache->locals = -read_memory_integer (pc + 2, 4);
635 return pc + 6;
636 }
637
638 return pc;
639 }
640
641 /* Check whether PC points at code that saves registers on the stack.
642 If so, it updates CACHE and returns the address of the first
643 instruction after the register saves or CURRENT_PC, whichever is
644 smaller. Otherwise, return PC. */
645
646 static CORE_ADDR
647 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
648 struct m68k_frame_cache *cache)
649 {
650 if (cache->locals >= 0)
651 {
652 CORE_ADDR offset;
653 int op;
654 int i, mask, regno;
655
656 offset = -4 - cache->locals;
657 while (pc < current_pc)
658 {
659 op = read_memory_unsigned_integer (pc, 2);
660 if (op == P_FMOVEMX_SP)
661 {
662 /* fmovem.x REGS,-(%sp) */
663 op = read_memory_unsigned_integer (pc + 2, 2);
664 if ((op & 0xff00) == 0xe000)
665 {
666 mask = op & 0xff;
667 for (i = 0; i < 16; i++, mask >>= 1)
668 {
669 if (mask & 1)
670 {
671 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
672 offset -= 12;
673 }
674 }
675 pc += 4;
676 }
677 else
678 break;
679 }
680 else if ((op & 0177760) == P_MOVEL_SP)
681 {
682 /* move.l %R,-(%sp) */
683 regno = op & 017;
684 cache->saved_regs[regno] = offset;
685 offset -= 4;
686 pc += 2;
687 }
688 else if (op == P_MOVEML_SP)
689 {
690 /* movem.l REGS,-(%sp) */
691 mask = read_memory_unsigned_integer (pc + 2, 2);
692 for (i = 0; i < 16; i++, mask >>= 1)
693 {
694 if (mask & 1)
695 {
696 cache->saved_regs[15 - i] = offset;
697 offset -= 4;
698 }
699 }
700 pc += 4;
701 }
702 else
703 break;
704 }
705 }
706
707 return pc;
708 }
709
710
711 /* Do a full analysis of the prologue at PC and update CACHE
712 accordingly. Bail out early if CURRENT_PC is reached. Return the
713 address where the analysis stopped.
714
715 We handle all cases that can be generated by gcc.
716
717 For allocating a stack frame:
718
719 link.w %a6,#-N
720 link.l %a6,#-N
721 pea (%fp); move.l %sp,%fp
722 link.w %a6,#0; add.l #-N,%sp
723 subq.l #N,%sp
724 subq.w #N,%sp
725 subq.w #8,%sp; subq.w #N-8,%sp
726 add.w #-N,%sp
727 lea (-N,%sp),%sp
728 add.l #-N,%sp
729
730 For saving registers:
731
732 fmovem.x REGS,-(%sp)
733 move.l R1,-(%sp)
734 move.l R1,-(%sp); move.l R2,-(%sp)
735 movem.l REGS,-(%sp)
736
737 For setting up the PIC register:
738
739 lea (%pc,N),%a5
740
741 */
742
743 static CORE_ADDR
744 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
745 struct m68k_frame_cache *cache)
746 {
747 unsigned int op;
748
749 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
750 pc = m68k_analyze_register_saves (pc, current_pc, cache);
751 if (pc >= current_pc)
752 return current_pc;
753
754 /* Check for GOT setup. */
755 op = read_memory_unsigned_integer (pc, 4);
756 if (op == P_LEA_PC_A5)
757 {
758 /* lea (%pc,N),%a5 */
759 return pc + 6;
760 }
761
762 return pc;
763 }
764
765 /* Return PC of first real instruction. */
766
767 static CORE_ADDR
768 m68k_skip_prologue (CORE_ADDR start_pc)
769 {
770 struct m68k_frame_cache cache;
771 CORE_ADDR pc;
772 int op;
773
774 cache.locals = -1;
775 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
776 if (cache.locals < 0)
777 return start_pc;
778 return pc;
779 }
780
781 static CORE_ADDR
782 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
783 {
784 gdb_byte buf[8];
785
786 frame_unwind_register (next_frame, PC_REGNUM, buf);
787 return extract_typed_address (buf, builtin_type_void_func_ptr);
788 }
789 \f
790 /* Normal frames. */
791
792 static struct m68k_frame_cache *
793 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
794 {
795 struct m68k_frame_cache *cache;
796 gdb_byte buf[4];
797 int i;
798
799 if (*this_cache)
800 return *this_cache;
801
802 cache = m68k_alloc_frame_cache ();
803 *this_cache = cache;
804
805 /* In principle, for normal frames, %fp holds the frame pointer,
806 which holds the base address for the current stack frame.
807 However, for functions that don't need it, the frame pointer is
808 optional. For these "frameless" functions the frame pointer is
809 actually the frame pointer of the calling frame. Signal
810 trampolines are just a special case of a "frameless" function.
811 They (usually) share their frame pointer with the frame that was
812 in progress when the signal occurred. */
813
814 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
815 cache->base = extract_unsigned_integer (buf, 4);
816 if (cache->base == 0)
817 return cache;
818
819 /* For normal frames, %pc is stored at 4(%fp). */
820 cache->saved_regs[M68K_PC_REGNUM] = 4;
821
822 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
823 if (cache->pc != 0)
824 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
825
826 if (cache->locals < 0)
827 {
828 /* We didn't find a valid frame, which means that CACHE->base
829 currently holds the frame pointer for our calling frame. If
830 we're at the start of a function, or somewhere half-way its
831 prologue, the function's frame probably hasn't been fully
832 setup yet. Try to reconstruct the base address for the stack
833 frame by looking at the stack pointer. For truly "frameless"
834 functions this might work too. */
835
836 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
837 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
838 }
839
840 /* Now that we have the base address for the stack frame we can
841 calculate the value of %sp in the calling frame. */
842 cache->saved_sp = cache->base + 8;
843
844 /* Adjust all the saved registers such that they contain addresses
845 instead of offsets. */
846 for (i = 0; i < M68K_NUM_REGS; i++)
847 if (cache->saved_regs[i] != -1)
848 cache->saved_regs[i] += cache->base;
849
850 return cache;
851 }
852
853 static void
854 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
855 struct frame_id *this_id)
856 {
857 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
858
859 /* This marks the outermost frame. */
860 if (cache->base == 0)
861 return;
862
863 /* See the end of m68k_push_dummy_call. */
864 *this_id = frame_id_build (cache->base + 8, cache->pc);
865 }
866
867 static void
868 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
869 int regnum, int *optimizedp,
870 enum lval_type *lvalp, CORE_ADDR *addrp,
871 int *realnump, gdb_byte *valuep)
872 {
873 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
874
875 gdb_assert (regnum >= 0);
876
877 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
878 {
879 *optimizedp = 0;
880 *lvalp = not_lval;
881 *addrp = 0;
882 *realnump = -1;
883 if (valuep)
884 {
885 /* Store the value. */
886 store_unsigned_integer (valuep, 4, cache->saved_sp);
887 }
888 return;
889 }
890
891 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
892 {
893 *optimizedp = 0;
894 *lvalp = lval_memory;
895 *addrp = cache->saved_regs[regnum];
896 *realnump = -1;
897 if (valuep)
898 {
899 /* Read the value in from memory. */
900 read_memory (*addrp, valuep,
901 register_size (current_gdbarch, regnum));
902 }
903 return;
904 }
905
906 *optimizedp = 0;
907 *lvalp = lval_register;
908 *addrp = 0;
909 *realnump = regnum;
910 if (valuep)
911 frame_unwind_register (next_frame, (*realnump), valuep);
912 }
913
914 static const struct frame_unwind m68k_frame_unwind =
915 {
916 NORMAL_FRAME,
917 m68k_frame_this_id,
918 m68k_frame_prev_register
919 };
920
921 static const struct frame_unwind *
922 m68k_frame_sniffer (struct frame_info *next_frame)
923 {
924 return &m68k_frame_unwind;
925 }
926 \f
927 static CORE_ADDR
928 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
929 {
930 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
931
932 return cache->base;
933 }
934
935 static const struct frame_base m68k_frame_base =
936 {
937 &m68k_frame_unwind,
938 m68k_frame_base_address,
939 m68k_frame_base_address,
940 m68k_frame_base_address
941 };
942
943 static struct frame_id
944 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
945 {
946 gdb_byte buf[4];
947 CORE_ADDR fp;
948
949 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
950 fp = extract_unsigned_integer (buf, 4);
951
952 /* See the end of m68k_push_dummy_call. */
953 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
954 }
955 \f
956 #ifdef USE_PROC_FS /* Target dependent support for /proc */
957
958 #include <sys/procfs.h>
959
960 /* Prototypes for supply_gregset etc. */
961 #include "gregset.h"
962
963 /* The /proc interface divides the target machine's register set up into
964 two different sets, the general register set (gregset) and the floating
965 point register set (fpregset). For each set, there is an ioctl to get
966 the current register set and another ioctl to set the current values.
967
968 The actual structure passed through the ioctl interface is, of course,
969 naturally machine dependent, and is different for each set of registers.
970 For the m68k for example, the general register set is typically defined
971 by:
972
973 typedef int gregset_t[18];
974
975 #define R_D0 0
976 ...
977 #define R_PS 17
978
979 and the floating point set by:
980
981 typedef struct fpregset {
982 int f_pcr;
983 int f_psr;
984 int f_fpiaddr;
985 int f_fpregs[8][3]; (8 regs, 96 bits each)
986 } fpregset_t;
987
988 These routines provide the packing and unpacking of gregset_t and
989 fpregset_t formatted data.
990
991 */
992
993 /* Atari SVR4 has R_SR but not R_PS */
994
995 #if !defined (R_PS) && defined (R_SR)
996 #define R_PS R_SR
997 #endif
998
999 /* Given a pointer to a general register set in /proc format (gregset_t *),
1000 unpack the register contents and supply them as gdb's idea of the current
1001 register values. */
1002
1003 void
1004 supply_gregset (gregset_t *gregsetp)
1005 {
1006 int regi;
1007 greg_t *regp = (greg_t *) gregsetp;
1008
1009 for (regi = 0; regi < R_PC; regi++)
1010 {
1011 regcache_raw_supply (current_regcache, regi, (char *) (regp + regi));
1012 }
1013 regcache_raw_supply (current_regcache, PS_REGNUM, (char *) (regp + R_PS));
1014 regcache_raw_supply (current_regcache, PC_REGNUM, (char *) (regp + R_PC));
1015 }
1016
1017 void
1018 fill_gregset (gregset_t *gregsetp, int regno)
1019 {
1020 int regi;
1021 greg_t *regp = (greg_t *) gregsetp;
1022
1023 for (regi = 0; regi < R_PC; regi++)
1024 {
1025 if (regno == -1 || regno == regi)
1026 regcache_raw_collect (current_regcache, regi, regp + regi);
1027 }
1028 if (regno == -1 || regno == PS_REGNUM)
1029 regcache_raw_collect (current_regcache, PS_REGNUM, regp + R_PS);
1030 if (regno == -1 || regno == PC_REGNUM)
1031 regcache_raw_collect (current_regcache, PC_REGNUM, regp + R_PC);
1032 }
1033
1034 #if defined (FP0_REGNUM)
1035
1036 /* Given a pointer to a floating point register set in /proc format
1037 (fpregset_t *), unpack the register contents and supply them as gdb's
1038 idea of the current floating point register values. */
1039
1040 void
1041 supply_fpregset (fpregset_t *fpregsetp)
1042 {
1043 int regi;
1044 char *from;
1045
1046 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1047 {
1048 from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1049 regcache_raw_supply (current_regcache, regi, from);
1050 }
1051 regcache_raw_supply (current_regcache, M68K_FPC_REGNUM,
1052 (char *) &(fpregsetp->f_pcr));
1053 regcache_raw_supply (current_regcache, M68K_FPS_REGNUM,
1054 (char *) &(fpregsetp->f_psr));
1055 regcache_raw_supply (current_regcache, M68K_FPI_REGNUM,
1056 (char *) &(fpregsetp->f_fpiaddr));
1057 }
1058
1059 /* Given a pointer to a floating point register set in /proc format
1060 (fpregset_t *), update the register specified by REGNO from gdb's idea
1061 of the current floating point register set. If REGNO is -1, update
1062 them all. */
1063
1064 void
1065 fill_fpregset (fpregset_t *fpregsetp, int regno)
1066 {
1067 int regi;
1068
1069 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1070 {
1071 if (regno == -1 || regno == regi)
1072 regcache_raw_collect (current_regcache, regi,
1073 &fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1074 }
1075 if (regno == -1 || regno == M68K_FPC_REGNUM)
1076 regcache_raw_collect (current_regcache, M68K_FPC_REGNUM,
1077 &fpregsetp->f_pcr);
1078 if (regno == -1 || regno == M68K_FPS_REGNUM)
1079 regcache_raw_collect (current_regcache, M68K_FPS_REGNUM,
1080 &fpregsetp->f_psr);
1081 if (regno == -1 || regno == M68K_FPI_REGNUM)
1082 regcache_raw_collect (current_regcache, M68K_FPI_REGNUM,
1083 &fpregsetp->f_fpiaddr);
1084 }
1085
1086 #endif /* defined (FP0_REGNUM) */
1087
1088 #endif /* USE_PROC_FS */
1089
1090 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1091 We expect the first arg to be a pointer to the jmp_buf structure from which
1092 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1093 This routine returns true on success. */
1094
1095 static int
1096 m68k_get_longjmp_target (CORE_ADDR *pc)
1097 {
1098 gdb_byte *buf;
1099 CORE_ADDR sp, jb_addr;
1100 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1101
1102 if (tdep->jb_pc < 0)
1103 {
1104 internal_error (__FILE__, __LINE__,
1105 _("m68k_get_longjmp_target: not implemented"));
1106 return 0;
1107 }
1108
1109 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1110 sp = read_register (SP_REGNUM);
1111
1112 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1113 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
1114 return 0;
1115
1116 jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1117
1118 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1119 TARGET_PTR_BIT / TARGET_CHAR_BIT))
1120 return 0;
1121
1122 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1123 return 1;
1124 }
1125 \f
1126
1127 /* System V Release 4 (SVR4). */
1128
1129 void
1130 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1131 {
1132 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1133
1134 /* SVR4 uses a different calling convention. */
1135 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1136
1137 /* SVR4 uses %a0 instead of %a1. */
1138 tdep->struct_value_regnum = M68K_A0_REGNUM;
1139 }
1140 \f
1141
1142 /* Function: m68k_gdbarch_init
1143 Initializer function for the m68k gdbarch vector.
1144 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1145
1146 static struct gdbarch *
1147 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1148 {
1149 struct gdbarch_tdep *tdep = NULL;
1150 struct gdbarch *gdbarch;
1151
1152 /* find a candidate among the list of pre-declared architectures. */
1153 arches = gdbarch_list_lookup_by_info (arches, &info);
1154 if (arches != NULL)
1155 return (arches->gdbarch);
1156
1157 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1158 gdbarch = gdbarch_alloc (&info, tdep);
1159
1160 set_gdbarch_long_double_format (gdbarch, floatformats_m68881_ext);
1161 set_gdbarch_long_double_bit (gdbarch, 96);
1162
1163 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1164 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1165
1166 /* Stack grows down. */
1167 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1168 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1169
1170 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1171 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1172
1173 set_gdbarch_frame_args_skip (gdbarch, 8);
1174 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1175 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1176
1177 set_gdbarch_register_type (gdbarch, m68k_register_type);
1178 set_gdbarch_register_name (gdbarch, m68k_register_name);
1179 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1180 set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
1181 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1182 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1183 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1184 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1185 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1186 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1187 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1188
1189 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1190 set_gdbarch_return_value (gdbarch, m68k_return_value);
1191
1192 /* Disassembler. */
1193 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1194
1195 #if defined JB_PC && defined JB_ELEMENT_SIZE
1196 tdep->jb_pc = JB_PC;
1197 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1198 #else
1199 tdep->jb_pc = -1;
1200 #endif
1201 tdep->struct_value_regnum = M68K_A1_REGNUM;
1202 tdep->struct_return = reg_struct_return;
1203
1204 /* Frame unwinder. */
1205 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1206 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1207
1208 /* Hook in the DWARF CFI frame unwinder. */
1209 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1210
1211 frame_base_set_default (gdbarch, &m68k_frame_base);
1212
1213 /* Hook in ABI-specific overrides, if they have been registered. */
1214 gdbarch_init_osabi (info, gdbarch);
1215
1216 /* Now we have tuned the configuration, set a few final things,
1217 based on what the OS ABI has told us. */
1218
1219 if (tdep->jb_pc >= 0)
1220 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1221
1222 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1223
1224 return gdbarch;
1225 }
1226
1227
1228 static void
1229 m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1230 {
1231 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1232
1233 if (tdep == NULL)
1234 return;
1235 }
1236
1237 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1238
1239 void
1240 _initialize_m68k_tdep (void)
1241 {
1242 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1243 }
This page took 0.053809 seconds and 5 git commands to generate.